

1 Article

2 **Early developmental exposure to general anesthetic
3 agents in primary neuron culture disrupts synapse
4 formation via actions on the mTOR pathway**

5 **Jing Xu^{1,2}, R. Paige Mathena², Michael Xu², YuChia Wang², CheJui Chang³, Yiwen Fang³, Pengbo
6 Zhang¹, Roger A. Johns², C. David Mintz^{2,*}**

7 ¹ Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University School of
8 Medicine, Xi'an, Shaanxi, 710004, China; jxu72@jhmi.edu, zhpbo@mail.xjtu.edu.cn

9 ² Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of
10 Medicine, Baltimore, MD 21205, USA; rmathen1@jhmi.edu, michael.xu@downstate.edu,
11 yw3af@virginia.edu, rajohns@jhmi.edu, cmintz2@jhmi.edu

12 ³ Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan; jeff83831@gmail.com,
13 gs1606890220@gmail.com

14 * Correspondence: C. David Mintz, MD, PhD, Department of Anesthesiology, Ross Bldg. 370, 720 Rutland
15 Ave, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. Tel: 917-733-0422, E-mail:
16 cmintz2@jhmi.edu

17
18 **Abstract:** Human epidemiologic studies and laboratory investigations in animal models suggest
19 that exposure to general anesthetic agents (GAs) have harmful effects on brain development. The
20 mechanism underlying this putative iatrogenic condition is not clear and there are currently no
21 accepted strategies for prophylaxis or treatment. Recent evidence suggests that anesthetics might
22 cause persistent deficits in synaptogenesis by disrupting key events in neurodevelopment. Using
23 an in vitro model consisting of dissociated primary cultured mouse neurons we demonstrate
24 abnormal pre- and post-synaptic marker expression after a clinically relevant isoflurane anesthesia
25 exposure conducted during neuron development. We find that pharmacologic inhibition of the
26 mechanistic target of rapamycin (mTOR) pathway can reverse the observed changes. Isoflurane
27 exposure increases expression of phospho-S6, a marker of mTOR pathway activity, in a
28 concentration-dependent fashion and this effect occurs throughout neuronal development. The
29 mTOR 1 complex (mTORC1) and the mTOR 2 complex (mTORC2) branches of the pathway are both
30 activated by isoflurane exposure and this is reversible with branch-specific inhibitors. Upregulation
31 of mTOR is also seen with sevoflurane and propofol exposure, suggesting that this mechanism of
32 developmental anesthetic neurotoxicity may occur with all the commonly used GAs in pediatric
33 practice. We conclude that GAs disrupt the development of neurons during development by
34 activating a well-defined neurodevelopmental disease pathway and that this phenotype can be
35 reversed by pharmacologic inhibition.

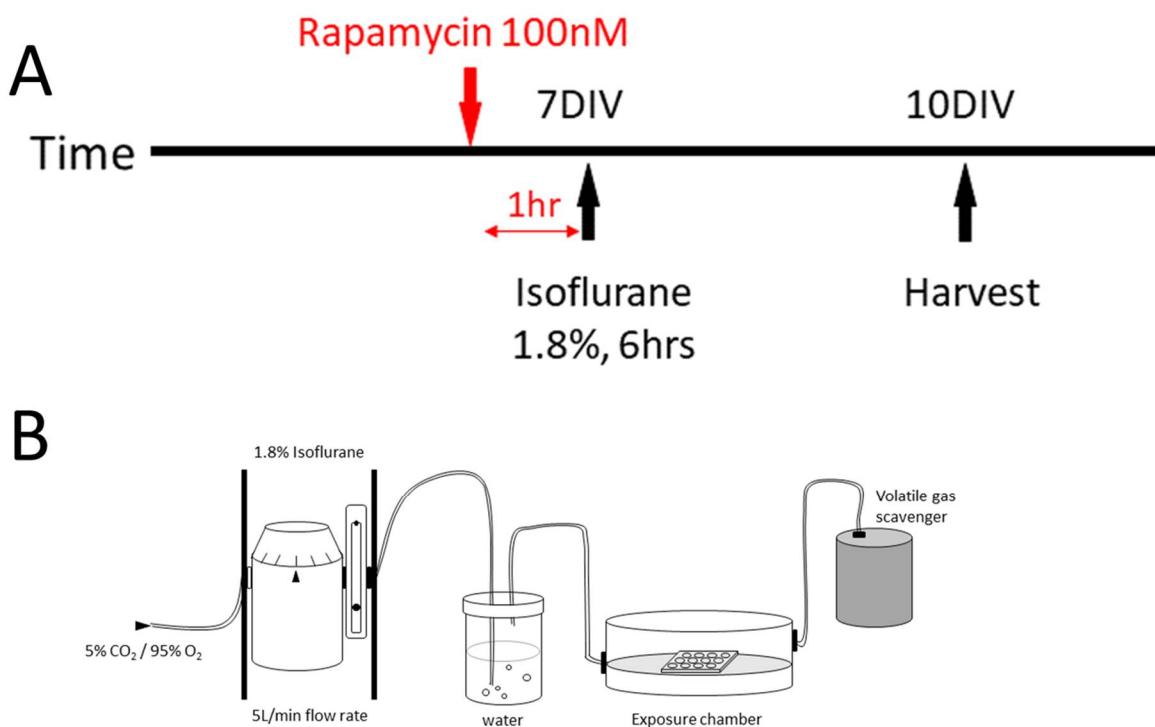
36 **Keywords:** Anesthesia; Neurotoxicity; Synapse; mTOR; Neurodevelopment

37 **1. Introduction**

38 The United States Food and Drug Administration has recently required that 12 commonly used
39 anesthetic and sedative agents with mechanisms of action on NMDA and GABA receptors carry
40 labels warning that repeated or lengthy exposure to these drugs between the third trimester and the
41 first three years of life may result in adverse consequences for brain development (FDA Drug Safety
42 Communication). An estimated 115,000 children each year are anesthetized for surgery and other
43 procedures in the U.S. alone, suggesting that millions of children are exposed to anesthesia each
44 year worldwide [1]. It is not yet clear which patients are potentially at risk of cognitive dysfunction

45 related to this exposure, but early results from the only two clinical trials that have reached
46 endpoints give reassurance that short, single exposures in healthy children do not have deleterious
47 effects [2, 3]. This finding is consistent with data from large epidemiologic studies showing no effect
48 of short, single early life exposures to surgery and anesthesia, but a correlation between long or
49 multiple exposures and reduced scores on cognitive testing, worsened scores in educational testing
50 assessments and increased billing codes indicates developmental or behavioral disorders [4-6].
51 Numerous studies have found that early postnatal exposure to GA in rodents results in deficits in
52 performance on tests of learning and memory [7-15], but rodent anesthesia models introduce a
53 confound of physiologic perturbation that is hard to measure and also the short timeline of rodent
54 brain development might exaggerate the consequences of a toxic developmental exposure.
55 However, recent data in non-human primates have provided definitive evidence that early
56 postnatal GA exposure can have lasting effects on cognition, including deficits in socioemotional
57 and learning function [16-19].
58

59 The mechanism by which a transient exposure to GA could have lasting consequences on brain
60 development has been the subject of considerable investigation, but no clear conclusion has been
61 reached [20, 21]. We have found evidences in an *in vivo* mouse model that early postnatal exposure
62 to isoflurane causes a lasting increase in activity in the mTOR pathway in the hippocampal dentate
63 gyrus. Inhibition of mTOR upregulation with rapamycin reversed a loss of neuronal spines in
64 dentate gyrus granule neurons and also restored performance on hippocampal-dependent learning
65 tests that are impaired by isoflurane exposure [8]. The mTOR pathway is a complex and
66 heterogeneous signaling system that integrates intra- and extracellular cue sensing and links to
67 numerous other signaling pathways in order to regulate metabolism, growth, and homeostasis [22].
68 A lasting anesthetic action on mTOR function is an intriguing potential mechanism of
69 developmental anesthetic neurotoxicity. The mTOR system is critical for neuronal development [23]
70 and a causative role of mTOR system dysfunction has been proposed for better understood
71 neurodevelopmental disorders, such as Fragile X, autism, schizophrenia, and drug addiction [24].
72 However, mTOR has not been extensively studied in this context, and the evidence linking it to
73 anesthetic toxicity is mixed [25].
74


75 Here we use an *in vitro* primary rat neuron culture system to further explore the hypothesis
76 that GAs disrupt neuron development via an upregulation of mTOR signaling. To this end we
77 employ quantitative immunohistochemistry to examine the effects of anesthetic-induced mTOR
78 changes on synapse development. We also test for contributions of the mTOR1 and mTOR2
79 complexes, which represent a divergence in the pathway. Finally, we ask whether effects on the
80 mTOR pathway generalize to multiple anesthetic agents.

81 **2. Results and Discussion**

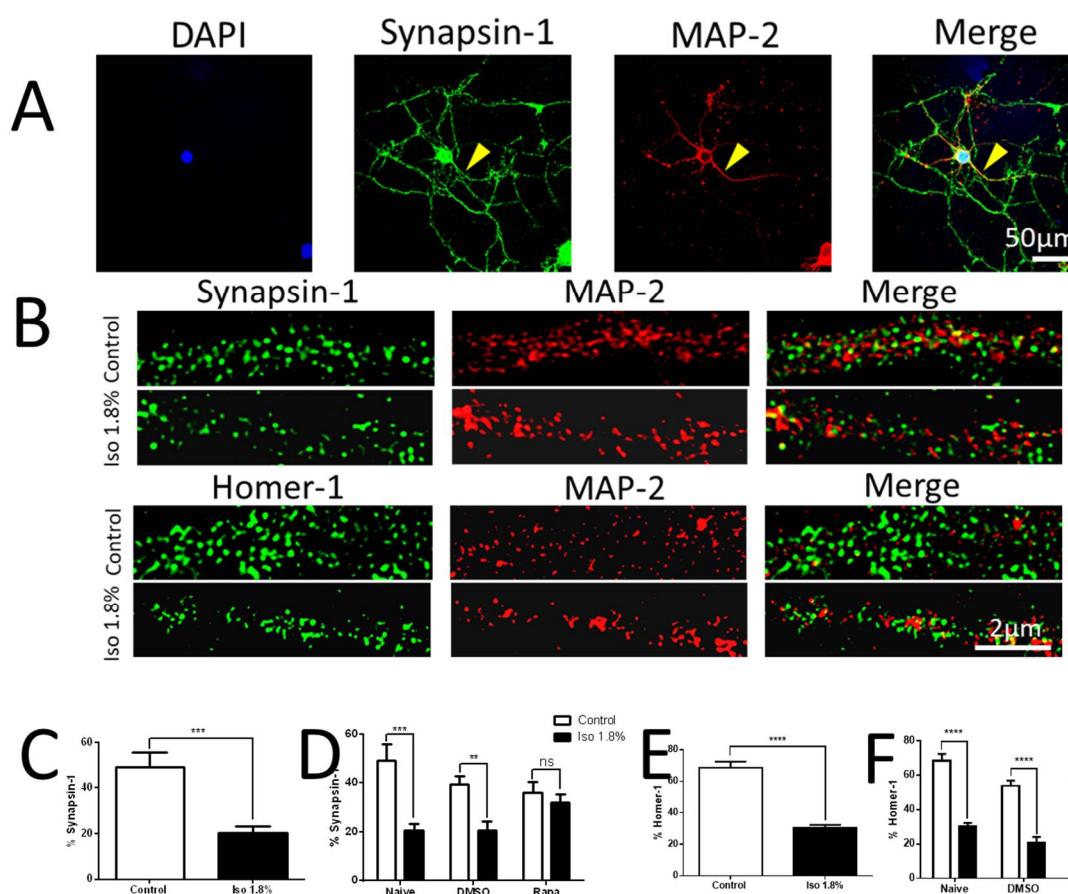
82 *2.1. Effects of 1.8% Isoflurane Exposure for 6hrs on Synaptogenesis*

83 Our previous work in newborn dentate gyrus granule neurons in the intact mouse showed that
84 isoflurane could act via an mTOR-mediated mechanism to cause a lasting reduction in the numbers
85 of dendritic spines, which represent a morphological marker for excitatory post-synaptic elements.

86 To determine whether this effect is an acute one that occurs during neuron synapse development and
 87 to test whether it generalizes to multiple neuronal types, we explored the effects of isoflurane
 88 administered during the period of ongoing synaptogenesis in cultured neocortical neurons, a
 89 population that is both heterogeneous and distinctly different from dentate gyrus neurons. Exposures
 90 consisting of 1.8% isoflurane for 6hrs were performed at 7 days *in vitro* (DIV) when synaptogenesis
 91 is ongoing, and results were assayed at 10 DIV when it is largely complete [26] (Figure 1). Double
 92 immunofluorescence staining was performed using MAP-2 as a dendritic marker to define the area
 93 over which synaptic markers were measured, and either Synapsin-1 to identify pre-synaptic elements
 94 or Homer-1 to identify excitatory post-synaptic elements. The locations of the images taken for
 95 analysis were 50 μ m from the nuclear, representative images showed in Figure 2A (Scale bar: 50 μ m)
 96 and Figure 2B (Scale bar: 2 μ m).

97

98 **Figure 1. Schematic representation of the experimental timeline and exposure induction diagram**
 99 *in vitro*.


100 (A). The general experiment timeline *in vitro*. The neurons were exposed to 1.8% isoflurane for 6hrs
 101 on their 7DIV, and 100nM rapamycin was added into the media 1hr before the exposure according
 102 to the experiment design. The fresh media change was done regularly. The cells were fixed for
 103 immunohistochemistry on 10DIV.

104 (B). Coverslips in 12-well plates were placed in identical air-tight, humidified chambers. Isoflurane
 105 was delivered using an agent-specific, calibrated inline and was diluted in 5% CO₂ / 95% O₂ carrier
 106 gas. Controls for these experiments received 5% CO₂ / 95% O₂ carrier gas only. After a 15-minute

107 equilibration period, then the sealed chambers placed in an incubator to maintain temperature at 37
 108 °C for the duration of anesthesia exposure.

109

110 We found that 6hrs of isoflurane treatment at a concentration of 1.8% resulted in a significant
 111 decrease in the intensity of Synapsin-1 immunoreactivity ($20.46 \pm 7.33\%$) compared to the control
 112 group ($48.95 \pm 19.02\%$, $p < 0.001$) (Figure 2C). Rapamycin treatment results in Synapsin-1 intensity
 113 levels ($32.11 \pm 9.10\%$) that are not significantly different from the control plus rapamycin treatment
 114 group ($36.13 \pm 11.70\%$), suggesting a rescue effect of rapamycin (Figure 2D). Carrier gas and isoflurane
 115 treatment were also used in the presence of the rapamycin diluent, dimethyl sulfoxide (DMSO), and
 116 the results did not differ from the same experiment performed without DMSO, indicating that the
 117 diluent has no independent effect. Isoflurane treatment at 1.8% for 6hrs resulted in a significant
 118 reduction in intensity of Homer-1 immunoreactivity ($30.47 \pm 5.22\%$) compared to the control group
 119 ($68.46 \pm 11.18\%$, $p < 0.0001$) (Figure 2E). As was found with Synapsin-1, rapamycin treatment after
 120 isoflurane exposure prevented the effects of isoflurane. Homer-1 immunoreactivity after rapamycin
 121 treatment did not differ significantly between the isoflurane ($49.33 \pm 7.32\%$) and carrier gas groups
 122 ($56.14 \pm 8.91\%$) (Figure 2F). Taken together, these data indicate that isoflurane interferes with the
 123 formation of excitatory synapses in developing cultured neocortical neurons and that this effect may
 124 be due to actions on the mTOR pathway.

125

126 **Figure 2. 1.8% isoflurane exposure for 6hrs decreases pre- and post-synaptic marker intensity *in***
127 ***vitro*.**

128 (A-B). Representative images of Synapsin-1/ Homer-1 (green), Map-2 (red), DAPI (blue)
129 immunofluorescence in neurons in dissociated culture at 10DIV are shown. The segment for the
130 dendrite was picked according to MAP-2 staining from each neuron and the locations for image taken
131 were defined as 20-30 μ m from the nuclear according to DAPI (shown as the yellow arrow pointing
132 in A).

133 (C-F). 6hrs of isoflurane exposure on 7DIV caused a significant difference in the intensity decrease of
134 Synapsin-1 compared to the control group (C), while rapamycin treatment before the isoflurane
135 exposure reversed the Synapsin-1 intensity to normal compared to the control with rapamycin
136 treatment group (D). The intensity of Homer-1 also decreased compared to the control group (E),
137 while rapamycin treatment before the isoflurane exposure reversed the Homer-1 intensity to normal
138 compared to the control with rapamycin treatment group (F). (n=30 per group, *p<0.05, **p<0.01,
139 ***p<0.001, ****p<0.0001, n.s. indicates no significant difference, t-test)

140

141 Our own work *in vivo* shows that newborn dentate gyrus neurons in mice exposed to GA with
142 isoflurane are found to have reduced numbers of spines overall and profoundly reduced numbers of
143 mushroom morphology spines over a month later [8]. As in our culture model, we found that this
144 effect was reversible by treatment with rapamycin not acutely, but for a week after the exposure.
145 While dendritic spines are generally the sites of excitatory post-synaptic elements, the correlation is
146 imperfect, and our finding of reduced Homer-1 immunoreactivity in culture lends weight to our
147 previous findings *in vivo*, particularly as we also found a decrease in expression of a pre-synaptic
148 marker as well. However, our results in this manuscript differ in some important ways. Our
149 anesthesia exposure occurred during synaptogenesis, rather than at the point of generation, and also
150 the neurons observed in a cortical culture differ morphologically and functionally from dentate gyrus
151 granule cells, which have many unusual features compared to other neurons. Thus, we predict based
152 on our findings that mTOR-mediated effects on synapse formation are likely to generalize across a
153 broad range of contexts. The current literature does not have any other studies of mTOR and
154 anesthetic effects on synapses, but the preponderance of evidence suggests at least that GA exposure
155 during development can disrupt synapse formation or maintenance. Two *in vivo* rodent studies
156 using electron microscopy to identify synapses found decreased synaptic density in the hippocampus
157 of young adult mice that had been exposed to GAs during the early postnatal phase [27, 28].
158 Interestingly, when this phenomenon was studied in the rodent pre-frontal cortex using light
159 microscopy to quantify spine numbers, it was found that a P5 exposure reduced spine number but a
160 P15 exposure actually increased spine number [29], suggesting that the state of neuron at the time of
161 exposure is critically important to determine the effect of GAs. Our findings in this manuscript
162 support the conclusion that GA exposure prior to stabilization of synapses leads to a failure of
163 synapse formation.

164

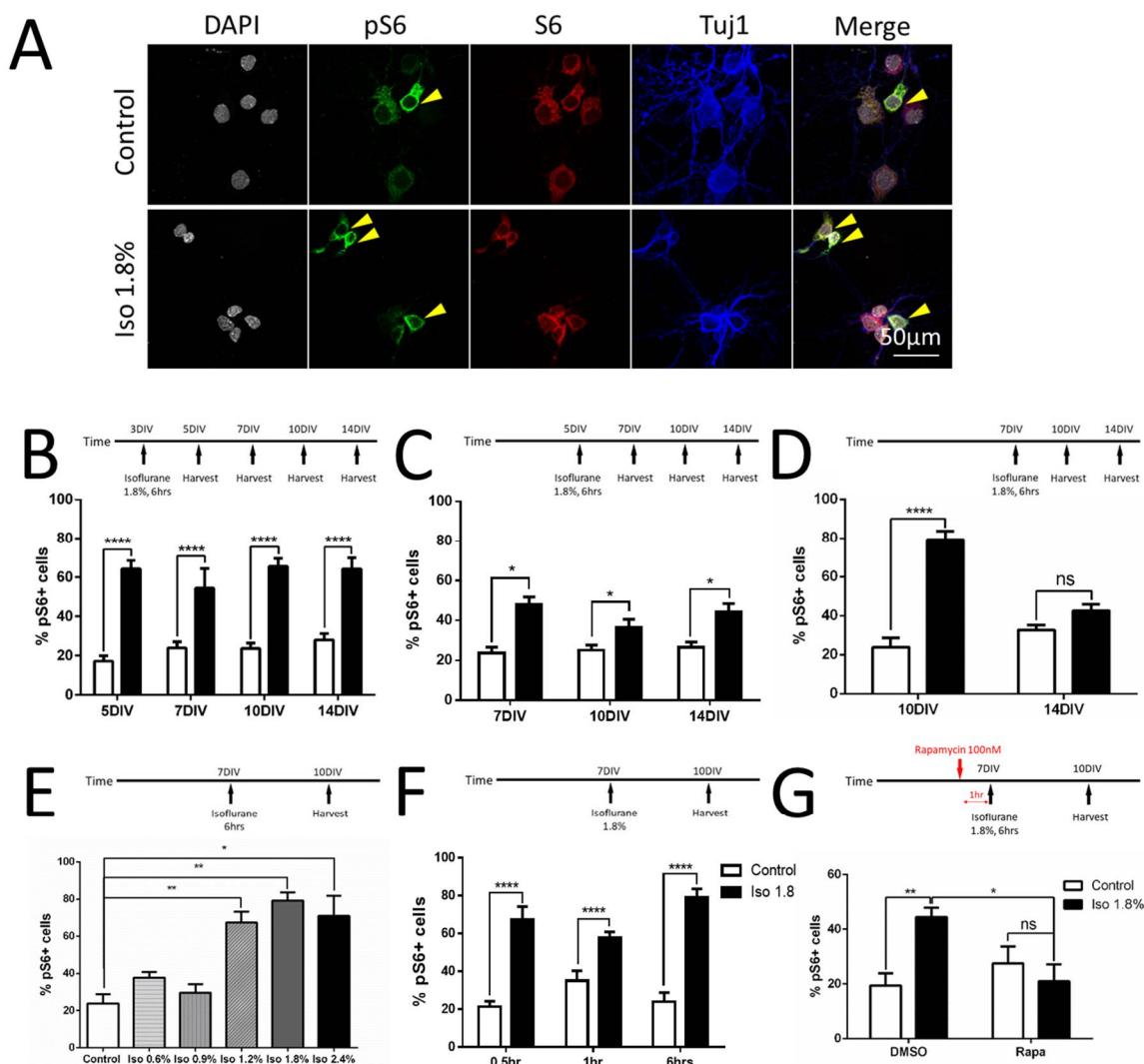
165 2.2. Parameters of Activation of mTOR by Isoflurane in Cultured Neurons

166 We have previously shown that isoflurane exposure causes a lasting increase in expression of
167 phospho-S6 (pS6), a commonly used marker of activity in the mTOR pathway [8, 25]. However, the
168 constraints of *in vivo* experimentation are such that we were unable to determine at what stage of
169 development neurons are subject to this phenomenon, and we were also unable to test the minimum
170 time of exposure and exposure dose required. To address these questions we stained for DAPI (grey)
171 to define cell bodies and immunolabeled for β III-tubulin (blue) to verify neuronal cell type. To
172 measure the activity in the mTOR pathway, we co-labeled for unphosphorylated-S6 (red) and
173 phosphorylated-S6 (green) to assess mTOR activation. A representative example of control and
174 isoflurane 1.8% for 6hrs treatment on 7DIV with harvest on 10DIV is shown (Figure 3A, Scale bar:
175 50 μ m).

176

177 We first tested the effects of varying the time of exposure to isoflurane on pS6 expression. We
178 found that 6hrs of 1.8% isoflurane treatment on 3DIV caused a significant increase in the percentage
179 of pS6 positive neurons (as the yellow arrows pointed out in Figure 3A) compared to the control
180 group with harvest at 5DIV ($64.25 \pm 15.95\%$ vs. $17.22 \pm 10.15\%$, $p < 0.0001$), 7DIV ($54.33 \pm 37.69\%$ vs.
181 $23.98 \pm 11.54\%$, $p < 0.0001$), 10DIV ($65.53 \pm 15.26\%$ vs. $23.73 \pm 9.60\%$, $p < 0.0001$), and 14 DIV ($64.17 \pm 21.40\%$
182 vs. $28.01 \pm 11.92\%$, $p < 0.0001$) (Figure 3B). Isoflurane treatment at 5DIV caused a significant increase in
183 the percentage increase of pS6+ neurons compared to the control group at 7DIV ($48.00 \pm 11.43\%$ vs.
184 $23.60 \pm 11.33\%$, $p < 0.05$), 10DIV ($36.65 \pm 14.74\%$ vs. $25.13 \pm 9.63\%$, $p < 0.05$), and 14 DIV ($44.36 \pm 15.36\%$ vs.
185 $26.65 \pm 9.57\%$, $p < 0.05$) (Figure 3C). Exposure at 7DIV caused a significant increase in pS6 positive
186 neurons compared to the control group on 10DIV ($79.21 \pm 16.54\%$ vs. $23.86 \pm 18.39\%$, $p < 0.0001$), but no
187 difference was detected at the 14 DIV ($42.51 \pm 12.51\%$ vs. $32.74 \pm 7.70\%$) harvest time point (Figure 3D).
188 These findings suggest that isoflurane exposure causes pS6 to increase at any early developmental
189 time point, but that the effect is reduced as the neuron approaches maturity.

190


191 Next, we tested the effects of different concentrations of isoflurane delivered at 7DIV and
192 assayed for pS6 on 10DIV. There was a significant difference between the 1.2% isoflurane group
193 ($67.33 \pm 22.31\%$, ANOVA, $p < 0.01$), 1.8% isoflurane group ($79.20 \pm 16.53\%$, ANOVA, $p < 0.01$) and 2.4%
194 isoflurane group ($71 \pm 32.31\%$, ANOVA, $p < 0.05$), compared to the control group ($23.86 \pm 18.39\%$), while
195 there is no significant difference between the 0.6% isoflurane group ($37.80 \pm 11.13\%$), 0.9% isoflurane
196 group ($29.65 \pm 13.18\%$) and the control group (Figure 3E). This represents a clear inflection point at a
197 value corresponding to one adult minimum alveolar concentration (MAC), which is a clinically
198 reasonable dose in pediatric setting.

199

200 Then we sought to determine the minimum duration of exposure to isoflurane that is required
201 to cause an increase in mTOR signaling. We exposed P7 neurons to 1.8% isoflurane with varying
202 durations and measured pS6 levels on 10DIV. There was a significant difference between the 0.5h
203 isoflurane group ($67.28 \pm 26.06\%$) compared to the control group ($21.40 \pm 10.43\%$, $p < 0.0001$), 1h
204 isoflurane group ($58.00 \pm 10.62\%$) compared to the control group ($35.07 \pm 19.39\%$, $p < 0.0001$), and 6hrs
205 isoflurane group ($79.20 \pm 16.53\%$) compared to the control group ($23.86 \pm 18.39\%$, $p < 0.0001$) (Figure 3F).
206 Half an hour exposure is the shortest practical duration to measure in our model, and we conclude
207 that even brief exposures have the potential to act on the mTOR pathway.

208

209 In order to further confirm that the increase in pS6 labeling that we observe is in fact evidence of
 210 mTOR pathway activation we treated the cultures with rapamycin as in Figure 2. We found that there
 211 was a significant increase of the percentage of pS6 positive cells among all the DAPI/ Tubulin neurons
 212 between the isoflurane + vehicle (DMSO) group ($44.49 \pm 9.73\%$) compared to the control + vehicle
 213 (DMSO) group ($19.44 \pm 16.86\%$, $p < 0.01$). Rapamycin treatment prevented the increase of pS6
 214 immunoactivity in the isoflurane group ($21.00 \pm 23.25\%$) compared to the isoflurane group without
 215 rapamycin ($44.49 \pm 9.73\%$, $p < 0.05$), and there was no significant difference between isoflurane+
 216 rapamycin group compared to the control+ rapamycin group ($27.52 \pm 23.06\%$) (Figure 3G).

217

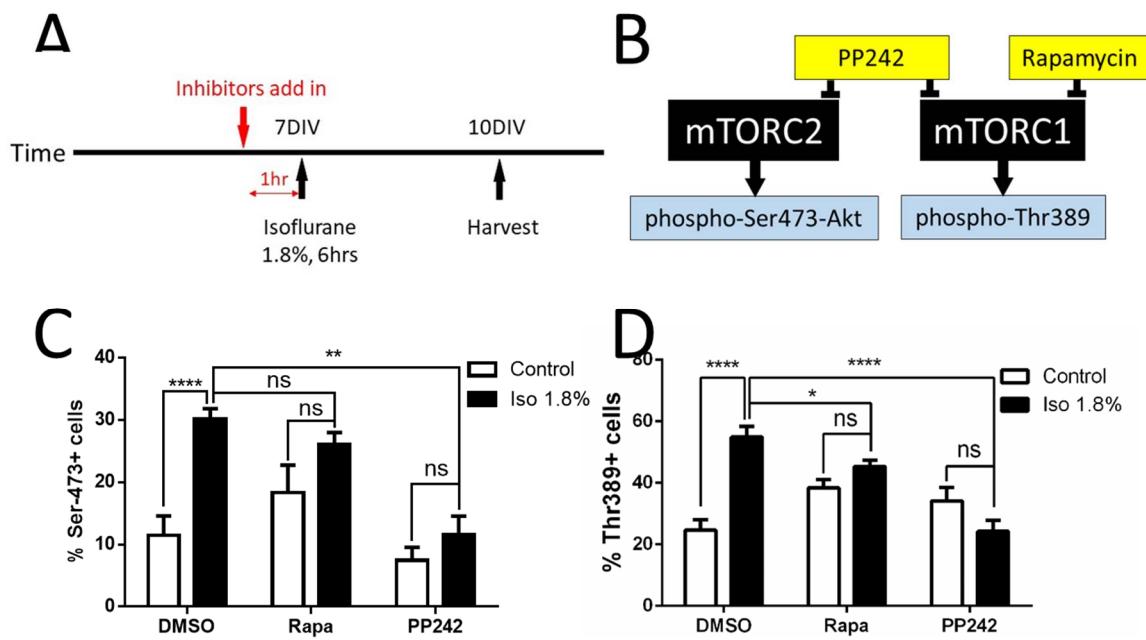
218 **Figure 3. Isoflurane exposure at different time points showed effects on the downstream marker**
 219 **of mTOR pathway.**

220 (A). Representative images of DAPI (grey), pS6 (green), S6 (red), beta III Tubulin (blue)
 221 immunofluorescence in the dissociated neurons at 10DIV.

222 (B-G). 6hrs of 1.8% isoflurane treatment on different early time points caused significant increases in
 223 the percentage of pS6 positive cells among all the DAPI/ Tubulin neurons compared to the control
 224 group at late time points except the ones exposed on 7DIV and tested on 14DIV (B-D). The effect on
 225 pS6 levels at 10DIV varied depending on the doses of isoflurane. There was a significant increase in

226 immunoactivity starting from the 1.2% isoflurane group to the 2.4% isoflurane group, while lower
227 doses (0.6% and 0.9%) remained at control levels of pS6 immunoactivity (E). Different exposure
228 durations (0.5hr, 1hr and 6hrs) of 1.8% isoflurane also resulted in increased pS6 immunoactivity at
229 all exposure times compared to control (F). Adding rapamycin, the mTOR pathway inhibitor
230 reversed the increase of pS6 after isoflurane exposure on 7DIV (G). (n=15 per group, * $p<0.05$, ** $p<0.01$,
231 *** $p<0.0001$, n.s. indicates no significant difference, ANOVA, t-test)
232

233 The use of a dissociated culture model presents a substantial advantage for studying the
234 pharmacology of anesthetic toxicity as compared to *in vivo* models, as the short timeline of
235 experiments and the lesser requirements for resources allow for the study of a broad range of doses
236 and exposure paradigms. The general consensus in the literature is that the period of
237 synaptogenesis represents the peak window of vulnerability to developmental anesthetic
238 neurotoxicity *in vivo* [30, 31], but *in vivo* synaptogenesis is a heterogeneous process that occurs over
239 long periods of time as different cohorts of neurons mature over widely variable timelines. Using
240 the culture model, in which synaptogenesis is synchronous starting from 5DIV and ending about
241 14DIV [32], we asked which stages of synaptogenesis are vulnerable to a potentially harmful
242 increase in mTOR pathway in response to isoflurane exposure to gain a clearer understanding of
243 the potential window of vulnerability. The only time point we studied at which pS6 upregulation
244 due to isoflurane exposure was at all abated was the P7 exposure with measurement of pS6 at
245 14DIV. Synapses are highly dependent on filamentous actin for stability during the first week in
246 culture, but during the second week there is a marked shift towards persistence of synapses even
247 when actin is perturbed [33]. Several previous studies have suggested that isoflurane toxicity
248 during development may be mediated in part via effects on the actin cytoskeleton [34, 35], and our
249 results are consistent with the period of actin-dependent synapse formation as the window of
250 vulnerability to mTOR mediated effects on synaptogenesis. One of the principal concerns in the
251 study of developmental anesthetic toxicity is that many reported phenomenon may lack clinical
252 relevance as they are reported by studies that use only supra-therapeutic doses, sometimes in
253 excess of 2 adult MAC, or unrealistically long exposure times, which in some cases are as much as
254 24 hours [36]. Our findings in cultured neurons show that the vulnerability of neurons to
255 isoflurane-induced mTOR activation appears to have a threshold between 0.9% and 1.2%
256 isoflurane, which is a dose that is clinically realistic as it represents less than 1 MAC for pediatric
257 patients [37]. Furthermore, the duration of exposure required to generate a significant effect is
258 strikingly short at 30 minutes, the briefest exposure that is practical in our system. This finding does
259 call into question the clinical relevance of mTOR activation as the evidence from clinical trials
260 suggests that anesthetic exposures under an hour do not have measurable effects on children [38,
261 39]. However, it is reasonable to suppose that *in vivo*, particularly in the setting of a complex brain
262 with a long developmental timeline, there may be a high threshold for phenotypically detectable
263 events, which exceeds the threshold for detectable change at the cellular and molecular level.
264 Nevertheless, the discrepancy between thresholds of toxicity in rodent models and human and non-
265 human primates remains an unsolved problem in the field of anesthetic toxicity in neuro-
266 development [40].


267

268 2.3. Effects of Isoflurane Exposure on the mTORC1 and mTORC2 Pathway

269 The mTOR pathway has two principal branches, which arise from mTORC1 and mTORC2. These
270 pathways perform biologically distinct functions in some settings, but there is substantial
271 communication between them [41]. We next sought to determine whether the effects of isoflurane are
272 mediated through one branch of the pathway. This was accomplished via a series of experiments
273 using mTOR pathway inhibitors with differential effects between mTORC1 and mTORC2, and by
274 measuring levels of immunoreactivity of downstream phospho-proteins that are activated
275 differentially between the pathway branches. Inhibitors were added into the media one hour before
276 the 1.8% isoflurane/ carrier gas exposure at 7DIV for a harvest at 10DIV (Figure 4A). The
277 concentrations of the inhibitor were maintained after the exposure by media change with fresh
278 inhibitor on 8DIV and 9DIV. The branch specific inhibitor and readout strategy (shown in Figure 4B)
279 is as follows: PP242 was used as an inhibitor to block both mTORC1 and mTORC2 pathways
280 simultaneously. Rapamycin was used as an mTORC1-specific pathway inhibitor. Ser473
281 phosphorylated Akt (pAkt, Ser473) was used as an mTORC2 downstream activity marker while
282 Thr389 phosphorylated 70S6 (p70S6, Thr389) was used as an activity marker downstream from
283 mTORC1. The combination of these inhibitors and markers has been shown to be effective in
284 differentiating activity in between the mTORC1 and mTORC2 branches [42].

285

286 We found a significant difference in the percentage of pAkt positive neurons between the
287 isoflurane + vehicle (DMSO) group ($30.19 \pm 6.12\%$) and the control + vehicle (DMSO) group ($11.45 \pm$
288 11.71% , $p < 0.0001$). As expected, rapamycin treatment did not change pAkt levels which was shown
289 in the isoflurane + rapamycin group ($26.09 \pm 7.04\%$) compared to the isoflurane + DMSO group, but
290 there was a significant difference between the isoflurane+ PP242 group ($14.60 \pm 14.50\%$) compared to
291 the isoflurane+ DMSO group ($p < 0.01$). While comparison between the isoflurane+ PP242 group and
292 the control+ PP242 group ($4.16 \pm 5.27\%$) showed no significant difference. Taken together, the
293 mTORC2 was affected during the isoflurane exposure to the neurons. There was a significant increase
294 in the percentage of Thr-389 positive cells among all the DAPI/ Tubulin neurons between the
295 isoflurane + vehicle (DMSO) group ($54.88 \pm 10.56\%$) compared to those of the control+ vehicle (DMSO)
296 group ($24.67 \pm 10.19\%$, $p < 0.0001$) (Figure 4D). Adding rapamycin before the exposure prevented the
297 changes in Thr-389 levels ($45.37 \pm 6.09\%$) seen with the isoflurane + DMSO group ($p < 0.05$), and there
298 was a significant difference between isoflurane+ PP242 group ($24.22 \pm 13.66\%$) compared to the
299 isoflurane + DMSO group ($p < 0.0001$). While comparing the isoflurane+ PP242 group and the control+
300 PP242 group ($34.15 \pm 16.55\%$), no significant difference was measured. Taken together, these data
301 indicate that isoflurane acts on both the mTORC1 and mTORC2 branches. This is principally
302 significant because it shows that therapeutic strategies cannot be designed around only one pathway
303 branch or the other, unless it can be determined that the deleterious effects occur downstream of only
304 one of the two branches.

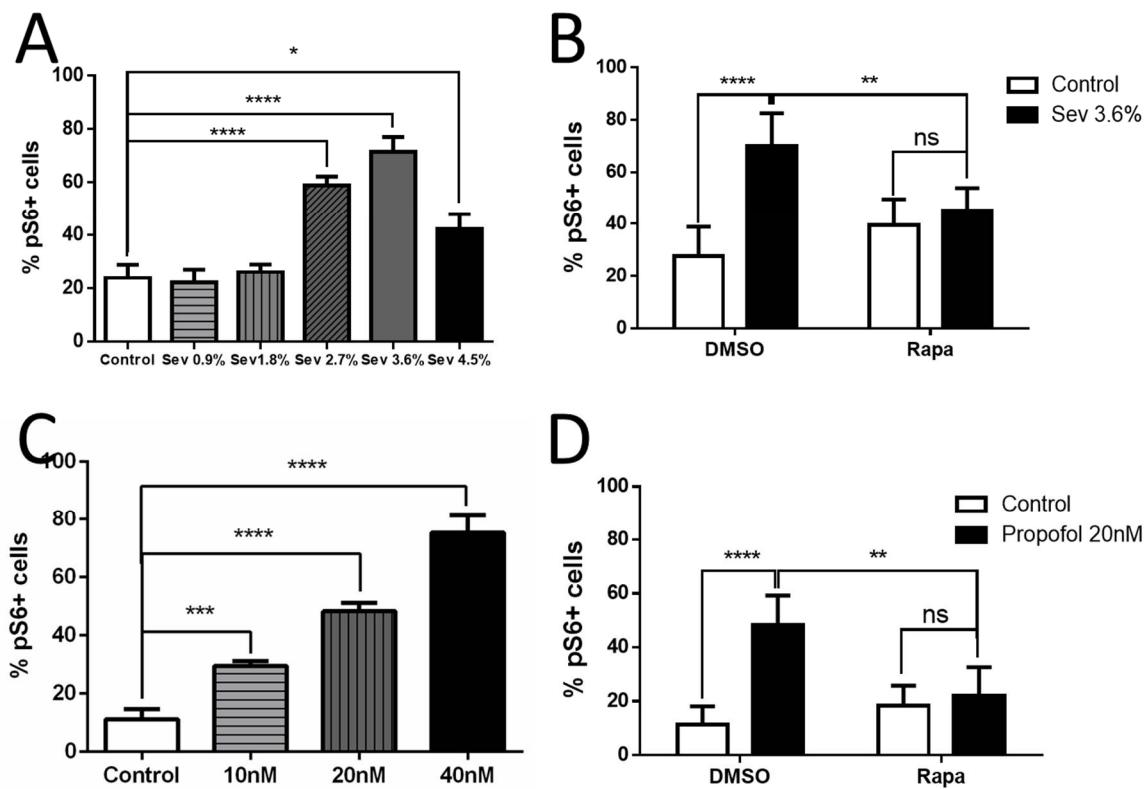
Figure 4. Effects of 1.8% isoflurane exposure for 6hrs on the downstream marker of mTORC1 and mTORC2 pathway.

(A). The timeline for adding mTORC1 / mTORC2 inhibitors. The inhibitors were added to the media 1 hour before the 1.8% isoflurane/ carrier gas exposure on the 7DIV. The cells were fixed for immunohistochemistry on 10DIV.

(B). A visual diagram showing the inhibition of PP242 and rapamycin on mTORC1 and mTORC2 pathways.

(C-D). For the mTORC2 downstream marker Ser473-Akt, there is a significant increase after 1.8% isoflurane exposure for 6hrs on 7DIV compared to the control group. Adding rapamycin did not fully reverse it back to normal, but adding PP242 made a significant difference between the isoflurane+PP242 and isoflurane+ DMSO groups, while the positive Ser-473 cells returned back to normal compared to the control+ PP242 group. This indicates that mTORC2 pathway is involved in the isoflurane neurotoxicity changes (C). For the mTORC1 downstream marker Thr389, isoflurane exposure increased its immunoactivity significantly, while adding either rapamycin or PP242 reversed its immunoactivity back to normal. This indicates that mTORC1 pathway is also involved in the deficiency of neuron growth caused by isoflurane as well (D). (n=15 per group, *p<0.05, **p<0.01, ***p<0.0001, n.s. indicates no significant difference, ANOVA, t-test)

324 *2.4. Effects of Sevoflurane and propofol on the Downstream Marker of mTOR Pathway.*


325 A key question in developmental anesthesia toxicity is whether unwanted effects of anesthetic
326 agents could be avoided through different choices of the primary anesthetic drug used. Thus, we
327 asked what the effects of sevoflurane, the most commonly used volatile agent in pediatric anesthesia
328 practice, and propofol, which is an intravenous agent that serves as the next likely alternative to
329 isoflurane or sevoflurane, are on the mTOR pathway. Sevoflurane exposure in cultured neurons was
330 accomplished using the same methods used for isoflurane exposure. Propofol exposure was
331 accomplished by adding propofol in a carrier to the culture media, followed by media replacement
332 at the appropriate time to terminate the exposure.

333

334 We measured the effect of a range of clinically relevant concentrations of sevoflurane and
335 propofol delivered at 7DIV on pS6 levels measures at 10DIV. We found no significant difference in
336 the percentage of neurons positive for pS6 between the 0.9% sevoflurane group ($22.29 \pm 14.86\%$) or
337 the 1.8% sevoflurane group ($26.03 \pm 10.52\%$) and the control group ($23.85 \pm 18.39\%$) (Figure 5A).
338 However, at 2.7% sevoflurane ($59.00 \pm 12.11\%$, $p < 0.0001$), 3.6% sevoflurane ($71.35 \pm 21.27\%$, $p < 0.0001$)
339 and 4.5% sevoflurane group ($42.39 \pm 20.91\%$, $p < 0.05$), there was a significant increase in the percentage
340 of pS6+ neurons over control (Figure 5A). Rapamycin treatment prevented the increase in pS6
341 labeling with 3.6% sevoflurane exposure ($45.13 \pm 8.77\%$ for sevoflurane plus rapamycin compared to
342 $39.42 \pm 10.10\%$ for rapamycin plus carrier gas, no significant difference.) (Figure 5B). One adult MAC
343 of sevoflurane is approximately 1.8%, and thus compared to isoflurane, a higher dose of sevoflurane,
344 which is at the high end of a clinically reasonable concentration, is required to show an increase in
345 pS6 expression.

346

347 Next, we tested the effects of propofol on pS6 expression. There was a significant increase in the
348 percentage of pS6 positive cells measured in the 10nM propofol group ($29.57 \pm 6.05\%$, $p < 0.001$), the
349 20nM propofol group ($48.26 \pm 10.98\%$, $p < 0.0001$), and the 40nM propofol group ($74.42 \pm 17.78\%$,
350 $p < 0.0001$), compared to the control group ($11.22 \pm 6.94\%$). Adding rapamycin 1 hour before the 20nM
351 propofol exposure decreased the pS6 immunoactivity ($22.02 \pm 10.63\%$) compared to the ones without
352 rapamycin treatment ($48.26 \pm 10.98\%$, $p < 0.01$), and there was no significant difference between the
353 20nM propofol+ rapamycin group and the control+ rapamycin group ($18.29 \pm 7.50\%$) (Figure 5D).
354 These data indicate that propofol may also mediate its effects through the mTOR pathway, although
355 there is no clear way to draw equivalence in dosing between isoflurane or sevoflurane and propofol.
356 One of the most practical strategies to potentially avoid anesthetic toxicity would be to choose drugs
357 that do not activate pathways that result in toxic effects related to neural development. While
358 numerous studies have identified mechanisms specific to either the potent volatile agents or to
359 propofol [20], relatively few studies have conducted head to head comparisons between these two
360 principal approaches to general anesthesia. Our data suggest to the extent that mTOR is a key
361 mechanism in developmental anesthetic neurotoxicity, the choice of the agent may not be protective.

362

363 **Figure 5. Effects of sevoflurane and propofol on the downstream marker of the mTOR pathway.**
364 (A-B). The effect on pS6 levels at 10DIV varied depending on the doses of sevoflurane at 7DIV. There
365 was a significant increase in immunoactivity starting from the 2.7% sevoflurane group to the 4.5%
366 sevoflurane group, while lower doses (0.9% and 1.8%) remained at control levels of pS6 (A).
367 Rapamycin treatment prevented the increase in pS6 labeling with 3.6% sevoflurane exposure (B).
368 (C-D). Different doses of propofol at 7DIV had similar effects on pS6 levels at 10DIV. There was a
369 significant increase in pS6 immunoactivity starting from the 10nM propofol group to the 40nM
370 propofol group (C). Rapamycin treatment prevented the increase in pS6 labeling with 20nM propofol
371 exposure (D). (n=15 per group, **p<0.01, ***p<0.001, ****p<0.0001, ANOVA, t-test)

3. Materials and Methods

3.1. Neuronal Cultures

372 Primary neuron cultures were obtained from BrainBits, LLC (Springfield, IL, USA). Cultures
373 consisted of dissociated neurons obtained from neocortex dissected from E18 Sprague Dawley rat
374 embryos according to the company protocols. Neurons were plated on 12 mm glass coverslips at
375 16,000 cells/cm² and maintained in NbActiv4 medium (BrainBits, Springfield, IL, USA) with half
376 media changes conducted three times per week. Pilot experiments showed over 95% of cells from
377 these cultures are immunopositive for β -tubulin, suggesting a high degree of purity. Experiments
378 were performed on neurons between 3 and 14DIV, and all experiments incorporated coverslips
379 from a minimum of three separate cultures.

380

3.2. Anesthetic Agent Exposure

384 Coverslips in 12-well plates were placed in identical air-tight, humidified chambers (Billups-
385 Rothenberg, Del Mar, CA, USA) as previously described [43]. Isoflurane (Baxter Healthcare
386 Cooperation, Deerfield, IL, USA) or sevoflurane (AbbVie Inc., North Chicago, IL, USA) was
387 delivered using an agent-specific, calibrated inline vaporizer (SuperaVet, Vaporizer Sales and
388 Services Inc., Rockmart, GA, USA), and was diluted in 5% CO₂ / 95% O₂ carrier gas. Controls for
389 these experiments received 5% CO₂ / 95% O₂ carrier gas only. There was a 15-minute equilibration
390 period, which was required to achieve the correct concentration of isoflurane or sevoflurane as
391 measured by a 5250 RGM gas analyzer (Datex-Ohmeda, Madison, WI, USA). Then the sealed
392 chambers were placed in an incubator to maintain temperature at 37°C for the duration of
393 anesthesia exposure. Isoflurane / sevoflurane concentration was periodically measured at the end of
394 the experimental period to verify that it was appropriately maintained throughout the exposure.
395 The propofol exposure was done by adding pure 2, 6-diisopropylphenol (Sigma Aldrich, Saint
396 Louis, MO, USA) into experiment wells, and incubated at 37°C for the duration of anesthesia
397 exposure. The exposure was terminated by removing all the media and by adding a combination of
398 previously removed media without propofol and fresh media.
399

400 3.3. *The mTOR Pathway Inhibition*

401 The mTOR inhibitors used in this study were as follows: PP242 at 1µM (EMD Millipore,
402 Billerica, MA, USA), and rapamycin at 100nM (Sigma Aldrich, Saint Louis, MO, USA). They were
403 used to inhibit mTORC1 or mTORC2, which are distinct functional pathways of the mTOR
404 pathway. The neurons were pretreated with inhibitors 1 hour before isoflurane or carrier gas
405 exposure. The inhibitor concentration was maintained until the time of fixation by incorporating
406 inhibitor in media changes.
407

408 3.4. *Immunocytochemistry*

409 Fluorescent immunocytochemistry and labeling with fluorescently tagged F-actin were
410 conducted as previously described [44]. Neurons on coverslips were briefly fixed with 4%
411 paraformaldehyde at room temperature for 10 minutes, then permeabilized and blocked for 1 hour
412 at room temperature in 5% donkey serum with 0.1% Triton X-100. Neurons were incubated
413 overnight at 4°C in using the following antibodies: rabbit-anti-Synapsin-1 (1:200, EMD Millipore,
414 Burlington, MA, USA), chicken-anti-Homer-1 (1:400, Synaptic Systems, Goettingen, Germany),
415 mouse-anti-MAP-2 (1:200, Abcam, Cambridge, MA, USA), rabbit anti-human phospho-p70S6K
416 (Thr-389, 1:1000, EMD Millipore, Billrecia, MA, USA), rabbit anti-human phospho-AKT (Ser-
417 473, 1:500, Cell Signaling Technologies, Danvers, MA, USA), rabbit anti-human S6 (1:100, Cell
418 Signaling Technologies, Danvers, MA, USA), rabbit anti-human phospho-S6 (Ser-235/236, Cell
419 Signaling Technologies, Danvers, MA, USA), and chicken-anti-human anti-β-III Tubulin (1:1000,
420 EMD Millipore, Billrecia, MA, USA). All the antibodies were diluted in phosphate-buffered saline
421 solution containing 0.1% Triton X-100. After rinsing, neurons were incubated for 2hrs with a
422 fluorescent secondary antibody and 4', 6-diamidino-2-phenylindole (DAPI) at the manufacturer's
423 recommended concentration (Jackson Immuno Research Labs, West Grove, PA, USA).
424 Subsequently, neurons were mounted on coverslips using 2.5% PVA/ DABCO Mounting Media.
425

426 *3.5. Imaging and Microscopic Analysis*

427 A Leica SP8 confocal microscope was used to capture all microscopic images. Cell counting
428 analyses were conducted manually. In these experiments, the counting field was conducted by
429 capturing five 63x fields that were selected to represent all four quadrants and the center of the
430 coverslip. Neuronal cell bodies were identified as those positive for both β -III Tubulin and DAPI, and
431 representative images were taken using a 63x 1.0 N.A. objective with an additional 1.0x magnification
432 lens in line. For the synaptic marker analysis, five neurons from each sample were evenly distributed
433 throughout the coverslip to represent all four quadrants and the center was randomly selected for
434 analysis. Images were taken using a 63x 1.0 N.A. objective with an additional 5x magnification lens
435 in line. One dendrite was picked according to MAP-2 staining from each neuron and the locations for
436 image taken were defined as 20-30 μ m from the nuclear according to DAPI. Synaptic puncta were
437 quantified using ImageJ software. The dendrite segment outline was traced and the area
438 quantification was done according to the MAP-2 channel, and the threshold was maintained the same
439 for the synaptic marker channel. The intensity of Synapsin-1/ Homer-1 puncta inside the dendrite
440 outline was measured and recorded. Both imaging and analysis were conducted by an investigator
441 blind to condition.

442

443 *3.6. Statistical Analysis*

444 Results are expressed as mean \pm SEM. All statistical analysis was conducted using Prism 6.0
445 (GraphPad, San Diego, CA, USA). Student's t-test was used for determine statistical differences
446 between each experiment group and the control-group data. One-way ANOVA with multiple
447 comparisons for the data with group number over three. Multiple t-test were used between the
448 groups and have the same exposure condition but different inhibitor treatments. All data examined
449 with parametric tests were determined to be normally distributed and was done by an investigator
450 blind to condition. Statistical significance for all tests was set a priori at $p<0.05$.

451

452 **4. Conclusions**

453 In summary, we conclude that the potent volatile anesthetics and propofol, which are the
454 mainstays of nearly all pediatric anesthetics, all have the capacity to upregulate signaling in both
455 branches of the mTOR pathway in neurons during synaptogenesis. Anesthetic exposure in this
456 setting inhibits synaptogenesis, and this effect is reversible with the mTOR inhibitor, rapamycin. Our
457 study has several limitations, principally related to study of neural development in culture, where
458 there is no patterned activity. In addition, because manipulation of mTOR via genetic means is
459 problematic, only pharmacologic inhibition was used. Nevertheless, we believe that future study of
460 mTOR as a putative mechanism for developmental anesthetic neurotoxicity in dissociated culture
461 will prove informative, and that questions about which types of neurons and synapses are at risk and
462 what the effects on neural function could be successfully addressed in this model system.

463

464 **Author Contributions:** Data curation, Jing Xu, CheJui Chang and Yiwen Fang; Formal analysis, Jing Xu; Funding
465 acquisition, Jing Xu and C. David Mintz; Methodology, Jing Xu, R. Paige Mathena, Michael Xu, CheJui Chang,
466 Yiwen Fang and C. David Mintz; Software, Jing Xu and R. Paige Mathena; Supervision, Pengbo Zhang, Roger
467 A. Johns and C. David Mintz; Writing – original draft, Jing Xu and C. David Mintz; Writing – review & editing,

468 R. Paige Mathena, Michael Xu, YuChia Wang, CheJui Chang, Yiwen Fang, Pengbo Zhang, Roger A. Johns and
469 C. David Mintz.

470 **Funding:** This research was funded by 1R01GM120519-01 to C.D.M., and a grant from the Chinese Scholarship
471 Council (201606280280) to J.X..

472 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
473 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
474 to publish the results.

475 Abbreviations

GA	General Anesthetics
mTOR	mechanistic target of rapamycin
mTOR C1	the mTOR 1 complex
mTOR C2	the mTOR 2 complex
DIV	days <i>in vitro</i>
DAPI	4',6-diamidino-2-phenylindole
DMSO	dimethyl sulfoxide
pS6	phosphorylated S6
MAC	minimum alveolar concentration
Ser473	Ser473 phosphorylated Akt
Thr389	Thr389 phosphorylated 70S6

476 References

- 477 1. Tzong, K. Y.; Han, S.; Roh, A.; Ing, C., Epidemiology of pediatric surgical admissions in US children:
478 data from the HCUP kids inpatient database. *Journal of neurosurgical anesthesiology* **2012**, *24*, (4), 391-5,
479 DOI: 10.1097/ANA.0b013e31826a0345.
- 480 2. Davidson, A. J.; Disma, N.; de Graaff, J. C.; Withington, D. E.; Dorris, L.; Bell, G.; Stargatt, R.;
481 Bellinger, D. C.; Schuster, T.; Arnup, S. J.; Hardy, P.; Hunt, R. W.; Takagi, M. J.; Giribaldi, G.;
482 Hartmann, P. L.; Salvo, I.; Morton, N. S.; von Ungern Sternberg, B. S.; Locatelli, B. G.; Wilton, N.;
483 Lynn, A.; Thomas, J. J.; Polaner, D.; Bagshaw, O.; Szmuk, P.; Absalom, A. R.; Frawley, G.; Berde, C.;
484 Ormond, G. D.; Marmor, J.; McCann, M. E., Neurodevelopmental outcome at 2 years of age after
485 general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre,
486 randomised controlled trial. *Lancet (London, England)* **2016**, *387*, (10015), 239-50, DOI: 10.1016/s0140-
487 6736(15)00608-x.
- 488 3. Sun, L. S.; Li, G.; Miller, T. L.; Salorio, C.; Byrne, M. W.; Bellinger, D. C.; Ing, C.; Park, R.; Radcliffe, J.;
489 Hays, S. R.; DiMaggio, C. J.; Cooper, T. J.; Rauh, V.; Maxwell, L. G.; Youn, A.; McGowan, F. X.,
490 Association Between a Single General Anesthesia Exposure Before Age 36 Months and
491 Neurocognitive Outcomes in Later Childhood. *JAMA* **2016**, *315*, (21), 2312-20, DOI:
492 10.1001/jama.2016.6967.
- 493 4. DiMaggio, C.; Sun, L. S.; Li, G., Early childhood exposure to anesthesia and risk of developmental and
494 behavioral disorders in a sibling birth cohort. *Anesthesia and analgesia* **2011**, *113*, (5), 1143-51, DOI:
495 10.1213/ANE.0b013e3182147f42.
- 496 5. Ing, C.; DiMaggio, C.; Whitehouse, A.; Hegarty, M. K.; Brady, J.; von Ungern-Sternberg, B. S.;
497 Davidson, A.; Wood, A. J.; Li, G.; Sun, L. S., Long-term Differences in Language and Cognitive

498 Function After Childhood Exposure to Anesthesia. *Pediatrics* **2012**, *130*, (3), e476-85, DOI: peds.2011-
499 3822.

500 6. Wilder, R. T.; Flick, R. P.; Sprung, J.; Katusic, S. K.; Barbaresi, W. J.; Mickelson, C.; Gleich, S. J.;
501 Schroeder, D. R.; Weaver, A. L.; Warner, D. O., Early exposure to anesthesia and learning disabilities
502 in a population-based birth cohort. *Anesthesiology* **2009**, *110*, (4), 796-804, DOI:
503 10.1097/01.anes.0000344728.34332.5d.

504 7. Jevtovic-Todorovic, V.; Hartman, R. E.; Izumi, Y.; Benshoff, N. D.; Dikranian, K.; Zorumski, C. F.;
505 Olney, J. W.; Wozniak, D. F., Early exposure to common anesthetic agents causes widespread
506 neurodegeneration in the developing rat brain and persistent learning deficits. *The Journal of
507 neuroscience : the official journal of the Society for Neuroscience* **2003**, *23*, (3), 876-82.

508 8. Kang, E.; Jiang, D.; Ryu, Y. K.; Lim, S.; Kwak, M.; Gray, C. D.; Xu, M.; Choi, J. H.; Junn, S.; Kim, J.; Xu,
509 J.; Schaefer, M.; Johns, R. A.; Song, H.; Ming, G. L.; Mintz, C. D., Early postnatal exposure to
510 isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via
511 activation of the mTOR pathway. *PLoS Biol* **2017**, *15*, (7), e2001246, DOI: 10.1371/journal.pbio.2001246.

512 9. Lee, B. H.; Chan, J. T.; Hazarika, O.; Vutskits, L.; Sall, J. W., Early exposure to volatile anesthetics
513 impairs long-term associative learning and recognition memory. *PLoS One* **2014**, *9*, (8), e105340, DOI:
514 10.1371/journal.pone.0105340.

515 10. Levin, E. D.; Uemura, E.; Bowman, R. E., Neurobehavioral toxicology of halothane in rats.
516 *Neurotoxicology and teratology* **1991**, *13*, (4), 461-70.

517 11. Sanders, R. D.; Xu, J.; Shu, Y.; Januszewski, A.; Halder, S.; Fidalgo, A.; Sun, P.; Hossain, M.; Ma, D.;
518 Maze, M., Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal
519 rats. *Anesthesiology* **2009**, *110*, (5), 1077-85, DOI: 10.1097/ALN.0b013e31819daedd.

520 12. Satomoto, M.; Satoh, Y.; Terui, K.; Miyao, H.; Takishima, K.; Ito, M.; Imaki, J., Neonatal exposure to
521 sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice.
522 *Anesthesiology* **2009**, *110*, (3), 628-37, DOI: 10.1097/ALN.0b013e3181974fa2.

523 13. Stratmann, G.; Sall, J. W.; May, L. D.; Bell, J. S.; Magnusson, K. R.; Rau, V.; Visrodia, K. H.; Alvi, R. S.;
524 Ku, B.; Lee, M. T.; Dai, R., Isoflurane differentially affects neurogenesis and long-term neurocognitive
525 function in 60-day-old and 7-day-old rats. *Anesthesiology* **2009**, *110*, (4), 834-48, DOI:
526 10.1097/ALN.0b013e31819c463d.

527 14. Fang, F.; Xue, Z.; Cang, J., Sevoflurane exposure in 7-day-old rats affects neurogenesis,
528 neurodegeneration and neurocognitive function. *Neurosci Bull* **2012**, *28*, (5), 499-508, DOI:
529 10.1007/s12264-012-1260-4.

530 15. Gonzales, E. L.; Yang, S. M.; Choi, C. S.; Mabunga, D. F.; Kim, H. J.; Cheong, J. H.; Ryu, J. H.; Koo, B.
531 N.; Shin, C. Y., Repeated neonatal propofol administration induces sex-dependent long-term
532 impairments on spatial and recognition memory in rats. *Biomol Ther (Seoul)* **2015**, *23*, (3), 251-60, DOI:
533 10.4062/biomolther.2014.120.

534 16. Alvarado, M. C.; Murphy, K. L.; Baxter, M. G., Visual recognition memory is impaired in rhesus
535 monkeys repeatedly exposed to sevoflurane in infancy. *Br J Anaesth* **2017**, *119*, (3), 517-523, DOI:
536 10.1093/bja/aew473.

537 17. Coleman, K.; Robertson, N. D.; Dissen, G. A.; Neuringer, M. D.; Martin, L. D.; Cuzon Carlson, V. C.;
538 Kroenke, C.; Fair, D.; Brambrink, A. M., Isoflurane Anesthesia Has Long-term Consequences on
539 Motor and Behavioral Development in Infant Rhesus Macaques. *Anesthesiology* **2017**, *126*, (1), 74-84,
540 DOI: 10.1097/ALN.0000000000001383.

541 18. Raper, J.; Alvarado, M. C.; Murphy, K. L.; Baxter, M. G., Multiple Anesthetic Exposure in Infant
542 Monkeys Alters Emotional Reactivity to an Acute Stressor. *Anesthesiology* **2015**, 123, (5), 1084-92, DOI:
543 10.1097/ALN.0000000000000851.

544 19. Raper, J.; De Biasio, J. C.; Murphy, K. L.; Alvarado, M. C.; Baxter, M. G., Persistent alteration in
545 behavioural reactivity to a mild social stressor in rhesus monkeys repeatedly exposed to sevoflurane
546 in infancy. *Br J Anaesth* **2018**, 120, (4), 761-767, DOI: 10.1016/j.bja.2018.01.014.

547 20. Vutskits, L.; Xie, Z., Lasting impact of general anaesthesia on the brain: mechanisms and relevance.
548 *Nat Rev Neurosci* **2016**, 17, (11), 705-717, DOI: 10.1038/nrn.2016.128.

549 21. Yu, D.; Li, L.; Yuan, W., Neonatal anesthetic neurotoxicity: Insight into the molecular mechanisms of
550 long-term neurocognitive deficits. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie*
551 **2017**, 87, 196-199, DOI: 10.1016/j.biopha.2016.12.062.

552 22. Laplante, M.; Sabatini, D. M., mTOR signaling in growth control and disease. *Cell* **2012**, 149, (2), 274-
553 93, DOI: 10.1016/j.cell.2012.03.017.

554 23. Takei, N.; Nawa, H., mTOR signaling and its roles in normal and abnormal brain development.
555 *Frontiers in molecular neuroscience* **2014**, 7, 28, DOI: 10.3389/fnmol.2014.00028.

556 24. Costa-Mattioli, M.; Monteggia, L. M., mTOR complexes in neurodevelopmental and neuropsychiatric
557 disorders. *Nature neuroscience* **2013**, 16, (11), 1537-43, DOI: 10.1038/nn.3546.

558 25. Xu, J.; Kang, E.; Mintz, C. D., Anesthetics disrupt brain development via actions on the mTOR
559 pathway. *Communicative & Integrative Biology* **2018**, e1451719, DOI: 10.1080/19420889.2018.1451719.

560 26. Goslin, K.; Banker, G., Experimental observations on the development of polarity by hippocampal
561 neurons in culture. *The Journal of cell biology* **1989**, 108, (4), 1507-16, DOI:
562 Amrock, L. G.; Starner, M. L.; Murphy, K. L.; Baxter, M. G., Long-term effects of single or multiple
563 neonatal sevoflurane exposures on rat hippocampal ultrastructure. *Anesthesiology* **2015**, 122, (1), 87-95,
564 DOI: 10.1097/ALN.0000000000000477.

565 28. Lunardi, N.; Ori, C.; Erisir, A.; Jevtovic-Todorovic, V., General anesthesia causes long-lasting
566 disturbances in the ultrastructural properties of developing synapses in young rats. *Neurotox Res* **2010**,
567 17, (2), 179-88, DOI: 10.1007/s12640-009-9088-z.

568 29. Briner, A.; Nikonenko, I.; De Roo, M.; Dayer, A.; Muller, D.; Vutskits, L., Developmental Stage-
569 dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal
570 cortex. *Anesthesiology* **2011**, 115, (2), 282-93, DOI: 10.1097/ALN.0b013e318221fbbd.

571 30. Jevtovic-Todorovic, V., General Anesthetics and Neurotoxicity: How Much Do We Know?
572 *Anesthesiology clinics* **2016**, 34, (3), 439-51, DOI: 10.1016/j.anclin.2016.04.001.

573 31. Lei, X.; Guo, Q.; Zhang, J., Mechanistic insights into neurotoxicity induced by anesthetics in the
574 developing brain. *International journal of molecular sciences* **2012**, 13, (6), 6772-99, DOI:
575 10.3390/ijms13066772.

576 32. Bunker, G.; Goslin, K., *Culturing nerve cells*. 2nd ed.; MIT Press: Cambridge, Mass., 1998; p xii, 666 p.,
577 11 p. of plates.

578 33. Zhang, W.; Benson, D. L., Stages of synapse development defined by dependence on F-actin. *The
579 Journal of neuroscience : the official journal of the Society for Neuroscience* **2001**, 21, (14), 5169-81.

580 34. Lemkuil, B. P.; Head, B. P.; Pearn, M. L.; Patel, H. H.; Drummond, J. C.; Patel, P. M., Isoflurane
581 neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization. *Anesthesiology*
582 **2011**, 114, (1), 49-57, DOI: 10.1097/ALN.0b013e318201dcb3.

583 35. Lunardi, N.; Hucklenbruch, C.; Latham, J. R.; Scarpa, J.; Jevtovic-Todorovic, V., Isoflurane impairs
584 immature astroglia development in vitro: the role of actin cytoskeleton. *J Neuropathol Exp Neurol* **2011**,
585 70, (4), 281-91, DOI: 10.1097/NEN.0b013e31821284e9.

586 36. Brown, R. E., Jr., Safety considerations of anesthetic drugs in children. *Expert opinion on drug safety*
587 2017, 16, (4), 445-454, DOI: 10.1080/14740338.2017.1295037.

588 37. Murray, D. J.; Mehta, M. P.; Forbes, R. B., The additive contribution of nitrous oxide to isoflurane
589 MAC in infants and children. *Anesthesiology* **1991**, 75, (2), 186-90.

590 38. Sun, L., Early childhood general anaesthesia exposure and neurocognitive development. *Br J Anaesth*
591 2010, 105 Suppl 1, i61-8, DOI: 10.1093/bja/aeq302.

592 39. Sanders, R. D.; Hassell, J.; Davidson, A. J.; Robertson, N. J.; Ma, D., Impact of anaesthetics and surgery
593 on neurodevelopment: an update. *Br J Anaesth* **2013**, 110 Suppl 1, i53-72, DOI: 10.1093/bja/aet054.

594 40. Rappaport, B. A.; Suresh, S.; Hertz, S.; Evers, A. S.; Orser, B. A., Anesthetic neurotoxicity--clinical
595 implications of animal models. *N Engl J Med* **2015**, 372, (9), 796-7, DOI: 10.1056/NEJMp1414786.

596 41. Dowling, R. J.; Topisirovic, I.; Fonseca, B. D.; Sonenberg, N., Dissecting the role of mTOR: lessons
597 from mTOR inhibitors. *Biochimica et biophysica acta* **2010**, 1804, (3), 433-9, DOI:
598 10.1016/j.bbapap.2009.12.001.

599 42. Warren, K. J.; Fang, X.; Gowda, N. M.; Thompson, J. J.; Heller, N. M., The TORC1-activated Proteins,
600 p70S6K and GRB10, Regulate IL-4 Signaling and M2 Macrophage Polarization by Modulating
601 Phosphorylation of Insulin Receptor Substrate-2. *The Journal of biological chemistry* **2016**, 291, (48),
602 24922-24930, DOI: 10.1074/jbc.M116.756791.

603 43. Mintz, C. D.; Barrett, K. M.; Smith, S. C.; Benson, D. L.; Harrison, N. L., Anesthetics interfere with
604 axon guidance in developing mouse neocortical neurons in vitro via a gamma-aminobutyric acid type
605 A receptor mechanism. *Anesthesiology* **2013**, 118, (4), 825-33, DOI: 10.1097/ALN.0b013e318287b850.

606 44. Mintz, C. D.; Smith, S. C.; Barrett, K. M.; Benson, D. L., Anesthetics interfere with the polarization of
607 developing cortical neurons. *Journal of neurosurgical anesthesiology* **2012**, 24, (4), 368-75, DOI:
608 10.1097/ANA.0b013e31826a03a6.

609