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Abstract: This paper proposes a new non-radial biennial Luenberger energy and environmental 11 
performance index (EEPI) to measure the EEP change in various Chinese cities. The sources of EEP 12 
change, in terms of technical efficiency change and technological change, are examined by 13 
Luenberger EEPI. The contributions from specific undesirable outputs and energy inputs to the EEP 14 
change are identified by means of the non-radial efficiency measure. The proposed approach is 15 
applied to evaluate the EEP of the industrial sector in 283 cities in China over 2010-2014. Factors 16 
influencing the emission abatement potential are investigated by employing geographically 17 
weighted regression (GWR) model. We find that 1) changes in EEP can be attributed to technological 18 
progress but that technological progress slows down across the study period; 2) the soot emission 19 
performance experiences a downtrend among four specific sub-performances in line with the truth 20 
that severe haze happened frequently in China; 3) the best performers begin to move from the 21 
coastal to inland cities with the less resource consumption and higher ecological equality; 4) cities 22 
with the strongest positive effect in regards to pollution intensity on emission abatement potential 23 
are located in the areas around the Bohai Gulf, where air pollution is particularly severe. 24 

Keywords: data envelopment analysis; biennial Luenberger index; geographically weighted 25 
regression; EEP 26 

 27 

1. Introduction 28 

With the globalization, China accelerates melting into the world economy after entering WTO 29 
and becomes world factory in international division with rapid economic growth. However, this 30 
growth is mainly driven by development within the energy-intensive industrial sector [1]. According 31 
to the BP Statistical Review of World Energy 2017 [2], China is currently the world’s largest energy 32 
consumer at 23% of the total global consumption and 27% of the demand growth of global energy 33 
consumption in 2016. However, China has paid a high price to the environment for such rapid 34 
advancement. Uncontrolled fossil fuel combustion has released poisonous substances in various 35 
forms and led to all kinds of pollutions [3], e.g., water contamination, acid rain, and haze (smog). 36 
Massive loads of waste gases have been emitted into the atmosphere to create a severe decline in air 37 
quality. 38 

China has suffered from severe haze over many of its cities comprised of fine particulate matter 39 
less than 2.5 micrometers in diameter (PM2.5), especially in winter months, since 2013. In 2016, only 40 
84 Chinese cities had standard air quality – this amounts to merely 24.9% among the 338 monitored 41 
cities at or above the prefecture level (Report on the State of China’s Environment in 2016 [4]). 42 
Pollution severely affects Chinese citizens’ daily living conditions and, ultimately, threatens their 43 
health. Epidemiological studies have revealed a strong association between exposure to fine 44 
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particulate matter and mortality [5, 6]. Many environmental laws and regulations have been enacted 45 
to combat this, including China’s State Council’s Action Plan for Air Pollution Prevention and Control 46 
1targeting air quality in September 2013. One goal of the Action Plan is to reduce the annual average 47 
concentration of fine particulate matter by 25% in the Beijing-Tianjin-Hebei region by 2017 against 48 
the 2012 level. Measuring energy efficiency and environmental efficiency can provide quantitative 49 
information for energy and environmental policy analysis and decision-making. Cities are not only 50 
energy-consumptive, but also form the main sources of various pollutants. Cities, to this effect, are 51 
the main battlefield for controlling pollutant emissions. It is essential for administrators to 52 
understand the energy and environmental performance (EEP) of their cities to formulate scientific, 53 
strategic goals for energy conservation and emission reduction. 54 

In recent years, the data envelopment analysis (DEA) linear programming method has become 55 
a popular approach to measuring energy and environmental efficiency to reduce energy 56 
consumption and control emissions. DEA was proposed by Farrell [7] and developed by Charnes, et 57 
al. [8] to automatically generate appropriate production functions to combine multiple inputs and 58 
multiple outputs. The principle of DEA is to enable data to “speak for itself” rather than necessitate 59 
excessive artificial parametric assumptions for functions [9]. Many previous researchers have studied 60 
energy efficiency; Hu and Wang [10], for example, first established the total factor energy efficiency 61 
(TFEE) concept by using DEA. Song, et al. [11] used a bootstrap-DEA approach to find that China’s 62 
energy efficiency has maintained a slow upward trend from 1992 to 2010. Özkara and Atak [12], and 63 
later Feng and Wang [13], measured total-factor energy efficiency and energy savings potential in 64 
Turkey’s manufacturing industry and China’s provincial industrial sectors, respectively. Zhou, et al. 65 
[14] proposed an output-specific energy efficiency estimating method. These researchers 66 
concentrated on static analysis without dynamic comparison. Honma and Hu [15] investigated the 67 
dynamic changes in energy efficiency by introducing a Malmquist productivity index (MPI). Other 68 
researchers, such as Wang and Zhou [16], Chang and Hu [17], and Zhang, et al. [18] have made 69 
dynamic analyses of energy efficiency as well. 70 

Beside above energy efficiency evaluation models, researchers center around securing as many 71 
desirable outputs as possible while minimizing the undesirable outputs which are inevitably 72 
produced by industrial production. Färe, et al. [19] first proposed the concept of environmental DEA 73 
technology to incorporate undesirable outputs into efficiency evaluation frameworks. Kuosmanen 74 
and Kortelainen [9] applied DEA to aggregate multiple undesirable outputs and emphasized the 75 
trade-off between economic production and environmental protection in regards to the impact of 76 
undesirable outputs on the economy. Kortelainen [20] extended the static framework to a dynamic 77 
environmental performance analysis by using MPI; they decomposed the changes in environmental 78 
performance into two components: relative environmental efficiency change and relative 79 
environmental technological change. 80 

Many previous researchers have used the radial DEA approach to measure environmental 81 
performance, where in different undesirable outputs are adjusted by the same proportion. However, 82 
radial efficiency measures overestimate technical efficiency due to the existence of nonzero slacks. A 83 
series of non-radial DEA models have been developed to resolve this limitation. For example, Zhou, 84 
et al. [21] employed a non-radial DEA approach to measure the environmental performance of OECD 85 
countries. Zhang and Choi [22] explored total-factor carbon emission performance in China’s fossil 86 
fuel power plants using a metafrontier non-radial MPI. Rashidi and Saen [23] calculated the pure eco-87 
efficiency of OECD countries by a non-radial DEA model based on green indicators. Sueyoshi and 88 
Goto [24] applied a non-radial DEA environmental assessment to evaluate the performance of coal-89 
fired power plants in the northeast United States. Xie, et al. [25] computed environmental efficiency 90 
based on a directional distance function with the radial and non-radial slacks of outputs.  91 

There are two major approaches to estimating productivity or efficiency changes: the Malmquist 92 
productivity index and Luenberger productivity index. Some researchers assert that the Malmquist 93 
productivity index overestimates productivity changes compared to the Luenberger [26, 27]. Further, 94 

                                                        
1 One could refer to http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm for more details. 
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the Luenberger productivity index is a difference-based index, so it is well applicable to measuring 95 
differences in EEP. Recent researchers have adapted the Luenberger productivity index to study 96 
dynamic changes in productivity or efficiency. For instance, Mahlberg and Sahoo [28] applied non-97 
radial decompositions of the Luenberger productivity index to analyze the eco-productivity 98 
performance behavior in 22 OECD countries. Based on a Luenberger environmental index, Azad and 99 
Ancev [29] measured the relative environmental efficiency of agricultural water use to reveal 100 
substantial variations across different regions. Wang [30] applied the Luenberger index to explore 101 
changes in energy and environmental productivity at the provincial level. Our research team 102 
developed a non-radial Luenberger productivity index to resolve the limitation of radial 103 
measurement [31, 32]. Non-radial efficiency measures can help us identify specific effects and 104 
contributions of energy factor and specific undesirable outputs, while radial efficiency measures do 105 
not reflect the impact of emission structures on efficiency changes. 106 

The aforementioned studies centered around single aspects of energy efficiency or 107 
environmental performance rather than integrated EEP measurements. A few researchers have 108 
investigated the integrated EEP by new DEA models. Wang, et al. [33], for example, used DEA 109 
window analysis to find that EEP is highest in the eastern area of China compared to other regions. 110 
Zhou and Wang [34] explored the energy and CO2 emission performance for over 100 countries by 111 
using a new directional distance function (DDF). Zhou, et al. [35], Vlontzos, et al. [36], Meng, et al. 112 
[37], Geng, et al. [38], Wang and Zhao [39], and Perez, et al. [40] measured integrated EEP in their 113 
respective studies. Previous researchers have tended to focus on the regional or national level and 114 
lack of research down to the city level, though cities play an important role in environmental 115 
governance. Cities are responsible for 75-80% of global greenhouse emissions [41, 42]. Only a few 116 
researchers, e.g., Li, et al. [43], Yuan, et al. [44], Wang, et al. [45], Zhou, et al. [46], and Guo, et al. [47] 117 
have explored environmental performance at the city level. 118 

In the present study, we extended the extant research in two main aspects. In terms of 119 
methodology, we propose an additive DEA model combined with a slack-based measure and non-120 
radial directional distance function as first developed by Färe and Grosskopf [48]. The Luenberger 121 
productivity index with an additive structure is used to measure changes in productivity (which 122 
differs from the Malmquist index with multiplicative structure). We established a biennial 123 
Luenberger index extended from biennial Malmquist index proposed by Pastor, et al. [49] to avoid 124 
infeasibility solution of DEA. In terms of indicator selection, we properly account for multi-125 
undesirable outputs and compare these sub-performances. We also use the natural breaks method to 126 
identify break points by picking the class breaks which maintain the greatest similarity in one class 127 
but maximize the difference among different classes. Geographical location has a marked effect on 128 
the emission abatement potential, so we alter the traditional regression to geographically weighted 129 
regression (GWR) to allow our estimated coefficients of influencing factors to vary by location. The 130 
remainder of this paper is organized as follows. Section 2 presents the non-radial DEA model, 131 
decomposition method, and GWR estimation. Section 3 explains our data sources and presents our 132 
results with discussion. Section 4 summarizes our main conclusions. 133 

2. Methodology 134 

2.1. Biennial Energy and Environmental Production Technology 135 

Consider a production process with the vectors of non-energy inputs (ܠ), such as labor and 136 
capital input, and the vectors of energy inputs (܍) to produce the vectors of desirable outputs (ܡ) and 137 
undesirable outputs (܊). The corresponding production set, called the energy and environmental 138 
production technology set, is: 139 

 ( , , , ) : ( , ) can produce ( , )T x e y b x e y b 　                          (1) 
140 

In the energy and environmental production technology set ܂, inputs and desirable outputs are 141 
assumed to be strongly disposable. ܂	  satisfies two additional assumptions proposed by Färe, 142 
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Grosskopf, Lovell and Pasurka [19] to model a production technology that includes both desirable 143 
and undesirable outputs. 144 

(1) Weak disposability assumption: If (ܠ, ,܍ ,ܡ (܊ ∈ and	܂ 	0 ≤ ߠ ≤ 1 , then ,ܠ)	 ,܍ (܊ߠ,ܡߠ ∈ ܂ . It 145 
means that we can not reduce undesirable outputs alone while keeping the desirable 146 
outputs constant. In practice, it is feasible to reduce the desirable outputs and undesirable 147 
outputs at the same time; undesirable outputs can be abated at the cost of a decrease in 148 
desirable output. 149 

(2) Null-jointness assumption: If (ܠ, ,܍ ,ܡ (܊ ∈ ܊	and	܂ = ૙, then	ܡ = ૙. Production must cease 150 
entirely in order to fully eliminate undesirable outputs.  151 

It is unlikely to find a concrete production function which depicts the energy and environmental 152 
production technology set ܂	 . Here, we use nonparametric DEA technology to approximately 153 
represent	܂	with piecewise linear combinations of the observed data. On the assumption of constant 154 
returns to scale (CRS), the energy and environmental production technology ܂	can be estimated as 155 
follows: 156 

11
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157 

where	ߣ௞ 	is the intensity variable that ensures the technology set	܂	is bounded and closed. The 158 

first three inequality constraints indicate the strong disposability on inputs and desirable outputs. To 159 

ensure technology set	܂	satisfies the weak disposability and null-jointness assumptions, the equality 160 

constraint is imposed on undesirable outputs. 161 

Technology is generally stable in the short run, so we neglect technological changes from period 162 
“t” to “t+1”, and combine technology set ܜ܂ and ܜ܂ା૚ together as ۰܂ =  ା૚, namely, biennial 163ܜ܂⋃ܜ܂
energy and environmental technology, which represents the comprehensive technology shared by 164 
periods “t” and “t+1”. In order to estimate ۰܂, we use observations from periods “t” and “t+1” to 165 
construct the biennial energy and environmental DEA technology ܂෡୆ as-formed by following linear 166 
constraints: 167 
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168 

Model (3) can avoid infeasible solutions to the DEA model when dealing with cross-period data. 169 
Based on ܂෡୆, we propose a biennial Luenberger productivity index derived from the concept of the 170 
biennial Malmquist productivity index [49]. 171 

2.2. Biennial Luenberger Energy and Environmental Performance Index 172 

The Luenberger productivity index deduced by directional distance function (DDF) was first 173 
proposed by Chambers, et al. [50]. The DDF allowing the simultaneous evaluation of input 174 
contractions and output expansions can be defined as: 175 

   ; sup , , ,, , ,D            x e y b x e y bx g -g ,-g ,g ,-g x - g e - g + g - ge y b Ty b


        
(4) 176 
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where ܏ = ൫−܍܏−,ܠ܏,  ൯ is the directional vector. 177܊܏−,ܡ܏
Based on the Luenberger productivity index, the EEP change can be decomposed into energy 178 

and environmental technical efficiency change (catch-up effect) and energy and environmental 179 
technological change (frontier-shift effect). For the biennial periods “t” and “t+1”, we first select 180 
technology in the period “t” as the benchmark and then examine the EEP change by the difference in 181 
DDFs from periods “t” to “t+1” referred to technology set ܜ܂ . Energy and environmental 182 
performance index (EEPI) used to measure the EEP change is defined as follows: 183 

     , 1 1 1 1 1 1 1 1 1, , , , , , , ; , , , ; , , , ;
t tt t t t t t t t t t t t t t t t t tEEPI D D         x e y b x e y b g x e y b g x e y b g
 

           (5) 184 

Similarly, EEPI can be defined with regard to the technology of the period “t+1”: 185 

     1 1, 1 1 1 1 1 1 1 1 1, , , , , , , ; , , , , , , , ;
t tt t t t t t t t t t t t t t t t t tEEPI D D
          x e y b x e y b g x e y b g x e y b g

 
           (6) 186 

We compute the simple arithmetic mean of Eq. (5) and (6) to eliminate the bias derived from 187 
arbitrary period selection: 188 

 
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    

, 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

, , , , , , , ;

, , , ; , , , ;1
2 , , , , , , , ,

t t t t t t t t t t

t tt t t t t t t t

t tt t t t t t t t

EEPI
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             

x e y b x e y b g

x e y b g x e y b g

x e y b g x e y b g

 

 
                      (7) 189 

The energy and environmental technical efficiency is defined by the differences in DDFs from 190 
period “t” to “t+1” with respect to their own technologies; this reveals the change in distances of one 191 
observation in two periods “t” and “t+1” to the corresponding frontier of technologies “t” and “t+1” 192 
respectively. 193 

   1, 1 1 1 1 1 1 1 1 1, , , , , , , ; , , , ; , , , ;
t tt t t t t t t t t t t t t t t t t teffch D D

            x e y b x e y b g x e y b g x e y b g
 

       
(8) 194 

The energy and environmental technological change can be measured by comparing the distance 195 
from one observed data point in the period “t” to the frontier of technology set of periods “t” and 196 
“t+1” respectively, which measures the distance between two technologies “t” and “t+1”. 197 

1, 1 1 1 1 1( , , , , , , , ; ) ( , , , ; ) ( , , , ; )
t tt t t t t t t t t t t t t t t t t ttechch D D
      x e y b x e y b g x e y b g x e y b g

 
       (9) 198 

Similar to Eq. (9), the energy and environmental technological change can be defined by 199 
comparing one observed data point in the period “t+1” to the technology of period “t” and 200 
“t+1”respectively: 201 

1, 1 1 1 1 1 1 1 1 1 1 1 1 1( , , , , , , , ; ) ( , , , ; ) ( , , , ; )
t tt t t t t t t t t t t t t t t t t ttechch D D
             x e y b x e y b g x e y b g x e y b g

 
    (10) 202 

We also compute the simple arithmetic mean of Eqs. (9) and (10) to eliminate the bias of period 203 
selection: 204 
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Equations (7), (8), and (11) can be combined into a comprehensive equation which reflects the 206 
additive structure of the Luenberger productivity index: 207 

, 1 , 1 , 1t t t t t tEEPI effch techch                                   (12) 208 

    Per the definition of	ܦሬሬ⃗ ௧or	ܦሬሬ⃗ ௧ାଵ, the biennial DDF based on	۰܂	instead of ܂	is: 209 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2018                   doi:10.20944/preprints201806.0080.v1

Peer-reviewed version available at Sustainability 2018, 10, 2303; doi:10.3390/su10072303

http://dx.doi.org/10.20944/preprints201806.0080.v1
http://dx.doi.org/10.3390/su10072303


 6 of 28 

   ; sup , , ,, , ,D            
B B

x e y b x e y bg -g , -g ,g , -g x - g e - g + g - g Tx e y b y b


   (13) 210 

Similar to the definition of above Luenberger productivity index, the biennial Luenberger 211 
productivity index has two components:  212 

     , 1 1 1 1 1 1 1 1 1, , , , , , , ; , , , ; , , , ;x e y b x e y b g x e y b g x e y b g
B Bt t t t t t t t t t t t t t t t t t

BEEPI D D         
 

     (14) 213 

     1, 1 1 1 1 1 1 1 1 1, , , , , , , ; , , , ; , , , ;x e y b x e y b g x e y b g x e y b g
t tt t t t t t t t t t t t t t t t t t

Beffch D D
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    (15) 214 
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, 1 , 1 , 1+  t t t t t t
B B BEEPI effch techch                                 (17) 216 

2.3. Energy and Environmental Performance Measurement with Non-radial DEA Model  217 

Based on the definition of DDF (Eqs. (4), (13)) and estimated technology set of ܂෡	and ܂෡۰	(Models 218 
(2), (3)), the radial DDF can be estimated by the following DEA models: 219 
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(19) 221 

Traditional and biennial DDFs can be computed by Models (18) and (19), respectively.	ߚ	denotes 222 
the slack ratio (adjustment rate) or “inefficiency score”. If	ߚ = 0, then the corresponding DMU is 223 
considered to be efficient and with no improvement potential.	ߚ > 0 indicates that the corresponding 224 
DMU is inefficient and has not yet achieved the relative optimization. Models (18) and (19) are 225 
regarded as radial DDFs with the same adjustment rate.  226 

The radial DDF gives the same contraction (expansion) to all the inputs (outputs) and thus may 227 
have weak technical efficiency. Increasing desirable outputs and decreasing inputs and undesirable 228 
outputs can be further achieved under the current technical conditions, i.e., the radial DDF 229 
overestimates the efficiency. The non-radial DDF can further identify potential in increasing inputs 230 
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and decreasing outputs, so we use a non-radial DDF model to measure EEP here. Mathematically, 231 
traditional and biennial radial DDFs can be improved by the following DEA models: 232 
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In Models (20) and (21),	ߚ௠ ௡ߚ	,	௤ߚ	,	 , or	ߚ௝ 	represents the ratio of the slack to a non-energy input, 235 
energy input, desirable output, and undesirable output respectively. If	ߚ௠ = ௤ߚ = ௡ߚ =  ௝, Models 236ߚ
(20) and (21) are converted into Models (18) and (19). The non-radial DDF allows us to exploit slacks 237 
more exhaustively with stronger discrimination power than the radial DDF [51]. We mainly focused 238 
on energy conservation and pollution reduction in this study, so the directional vector is set to	܏ =239 
(૙, ,܍− ૙,−܊) here. The DDF we used can be calculated by the following DEA linear programming 240 
models: 241 
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                   (23) 243 

In Models (22) and (23), ߚ௤  and ߚ௝  represent the ratios of energy conservation and emission 244 
abatement, respectively. ܦሬሬ⃗ ௧(ܠ௧, ௧܍ , ௧ܡ , ;௧܊  represents the energy and environmental inefficiency, so 245 (܏
we can calculate EEP by 1 − ሬሬ⃗ܦ ௧(ܠ௧ , ௧܍ , ,௧ܡ ;௧܊  246 	.(܏

If input-output combination (ܠ, ,܍ ,ܡ  observed in the period “t” for two technologies in the 247	is	(܊
period “t” and “t+1” respectively, we can estimate ܦሬሬ⃗ ௧(ܠ௧ , ௧܍ , ,௧ܡ ;௧܊ ሬሬ⃗ܦ and (܏ ௧ାଵ(ܠ௧ , ௧܍ , ,௧ܡ ;௧܊  with 248 (܏
Model (22). We can estimate ܦሬሬ⃗ ௧(ܠ௧ାଵ, ,௧ାଵ܍ ,௧ାଵܡ ;௧ାଵ܊ ሬሬ⃗ܦ and (܏ ௧ାଵ(ܠ௧ାଵ, ,௧ାଵ܍ ,௧ାଵܡ ;௧ାଵ܊  similarly. 249 (܏
We can also estimate ܦሬሬ⃗ ஻(ܠ௧ , ௧܍ , ,௧ܡ ;௧܊ ሬሬ⃗ܦ and (܏ ஻(ܠ௧ାଵ, ,௧ାଵ܍ ,௧ାଵܡ ;௧ାଵ܊  by employing Model (23) 250 (܏
with production activity (ܠ, ,܍ ,ܡ  observed in the period “t” and “t+1” respectively. 251 (܊

To calculate the Luenberger EEPI which represents the EEP change, we need to calculate six 252 
DDFs (activities in “t” and “t+1” refer to technologies in the period “t”, “t+1” and pooled respectively) 253 
by Models (22) and (23). Given that different undesirable output structures impact the EEP, a non-254 
radial efficiency measure can help us identify specific effects and contributions of energy factor and 255 
specific undesirable outputs. The total EEPI can be further decomposed into specific EEPIs to analyze 256 
the contributions of specific undesirable outputs and energy inputs on total EEPI. 257 

2.4. Exploratory Spatial Data Analysis- Moran’s Index 258 

The sample data we used contains abundant spatial information, so we sought to consider the 259 
spatial effects on EEP among different cities. We did so by applying Exploratory Spatial Data 260 
Analysis (ESDA) to describe the spatial distribution of the EEP. We used Moran’s I statistic to 261 
measure the spatial correlation at the city level, including global spatial correlation and local spatial 262 
correlation [52]. 263 

(1) Global Moran’s I statistics 264 
The global Moran’s I statistics reflect the similarity of attributes with their neighborhoods: 265 
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(24) 266 

where ௜ܻ		 represents the observed value in the ith city; ݊	 represents the number of the cities; 267 
௜௝ݓ 	represents the spatial weight matrix which reflects the spatial adjacent relationship in the ith 268 
and	jth cities. Global Moran’s I ranges from -1 to 1: value less than 0 represents a negative correlation, 269 
0 represents an uncorrelated relationship, and greater than 0 represents a positive correlation. As the 270 
global Moran’s I moves towards -1, the spatial differences among cities become more obvious. If the 271 
obtained value of global Moran’s I is near to 1, there are more intimate relations (e.g., high-value 272 
clusters or low-value clusters) among cities. 273 

 (2) Local Moran’s I statistics 274 
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If		ܫ௜ 	is greater than 0, the ith spatial unit is similar to its neighbors (i.e., “high-high” or “low-276 
low”); 		ܫ୧, with a value lower than 0 represents dissimilarities to neighbors (“high-low” or “low-277 
high”). We can also visually identify the high-value clusters and low-value clusters according to the 278 
map of local indicators of spatial association (LISA). 279 

2.5. Geographically Weighted Regression Model 280 

The spatial heterogeneity of our data means that explanatory variables have varying extent of 281 
influence on the explained variable in different areas. Under the traditional econometric regression 282 
model, regression parameters are same across whole regions and regional differences are neglected. 283 
The geographically weighted regression (GWR) model [53, 54], which takes the regional difference 284 
into account, allows regression parameters to change along with the geographical position. 285 
Regression parameters in GWR are a data set rather than a fixed coefficient. The GWR model can be 286 
derived as follows: 287 
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 288 

where vector ݕ represents the explained variable; vector ݔ represents explanatory variables; (ݑ௜ ,  ௜) 289ݒ
is the space coordinate (longitude and latitude) in the area	݅. ߚ௞(ݑ௜ ,  is the regression parameter for 290	௜)ݒ
the 	 kth explanatory variable in the area ݅ ௜ߝ .  is random error; we assume that 291 
,௜~ܰ(0ߝ σଶ) and ௜ߝ൫ݒ݋ܿ , ௝൯ߝ = 0	(݅ ≠ ݆) . To estimate regression parameters, we assign ௜ݑ)ଵݓ	 , (௜ݒ , 292 
௜ݑ)ଶݓ , ௜ݑ)௡ݓ ,⋯	,(௜ݒ ,  for the area ݅ to represent influences from all other areas [55]. According to 293	௜)ݒ
the weighted least square method, we can then estimate the regression equation in (ݑ௜ , (௜ݒ  by 294 
minimizing the following equation: 295 
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                          (28) 298 

We can then derive ߚመ(ݑ௜ , (௜ݒ = ൫܅்܆(௨೔,௩೔)܆൯
ିଵ
 The spatial weighting function is the key 299 .	܇(࢏࢜,࢏࢛)܅ࢀ܆

to the above GWR model. Here, we use a Gaussian weighting function as the spatial weighting 300 
function [55]. 301 

3. Empirical Study 302 

3.1. Data Source and Description 303 

We initiated our analysis using a data set containing 283 cities in China over 2010-2014. Certain 304 
official statistics measurement criteria changed significantly in 2010, so we set the time period from 305 
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2010 to 2014 to maintain comparability across the data. We chose labor and capital as the two non-306 
energy inputs. Labor is defined by the number of employees in a city’s manufacturing industry 307 
excluding the employees working in the construction industry. To define capital, we referred to the 308 
total fixed assets and current assets at constant prices in 2010 [44]. We used the price indexes from 309 
corresponding provinces because fixed asset investment price indexes are not available at the city 310 
level. With regard to current assets, we adopted the consumer price index from the corresponding 311 
city to eliminate the influence of fluctuations in prices. We could not obtain total energy consumption 312 
in the industrial sector at the city level, so we chose the electricity consumption as an approximate 313 
substitution [46]. We used gross industrial output as the sole desirable output and adopted the ex-314 
factory price index of industrial products to eliminate price fluctuations. The “undesirable outputs” 315 
referred to in this paper contain three specific pollutants: industrial wastewater, industrial sulfur 316 
dioxide (SO2), and industrial soot. We also used the ratio of value added of the service industry in 317 
the city’s GDP to analyze GWR. Data was collected from the China City Statistical Yearbook (2011-318 
2015) [56] and China Provincial Statistical Yearbook (2011-2015) [57]. The descriptive statistics of 319 
inputs and outputs we applied to empirical analysis are shown in Table 1. 320 

Table 1. Descriptive statistics of inputs and outputs in 2010-2014. 321 

Index Variable Unit Quantity Mean St.Dev Min Max 

Non-energy 
input 

Labor force 
10 

thousand 
persons 

283×5 19.16 28.18 0.39 260.92 

Current assets 
billion 
Yuan 283×5 116.27 196.44 0. 83 1808.43 

Fixed assets billion 
Yuan 283×5 90.15 106.34 0.86 827.94 

Energy 
input Industrial electricity 

100 
million 

kWh 
283×5 60.19 91.97 0.045 805.76 

Desirable 
output 

Gross industrial 
output 

billion 
Yuan 283×5 310.31 423.71 1.53 3278.23 

Undesirable 
output 

Industrial 
wastewater 

million 
tons 283×5 74.71 84.99 0.23 868.04 

Industrial sulfur 
dioxide 

thousand 
tons 283×5 58.78 57.33 0.002 572.75 

Industrial soot thousand 
tons 283×5 41.71 188.64 0.034 5168.81 

3.2. Results and Discussion 322 

3.2.1. Static Energy and Environmental Performance 323 

3.2.1.1. Descriptive Statistics of Energy and Environmental Performance 324 

We first compared the EEP and its decompositions consisting of energy, wastewater, SOଶ, soot 325 
emission performance (sub-performance or sub-efficiency) at both national and regional levels. Our 326 
calculations of the mean, standard deviation, minimum value, and maximal value in the four areas 327 
involve five-year x cities’ total performance and its decompositions (where	x represents the number 328 
of cities in the corresponding area) encompassing both temporal and spatial dimensions. Table 2 329 
shows the descriptive statistics of EEP for 283 cities in China in 2010-2014. 330 
  331 
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Table 2. Descriptive statistics of EEP and sub-performances. 332 

Performance 
(efficiency) Area Quantity Mean St.Dev Min Max 

Total 

East 87×5 0.473  0.298  0.069  1.000  
China 283×5 0.365  0.292  0.016  1.000  
Central 99×5 0.362  0.282  0.031  1.000  

Northeast 33×5 0.272  0.236  0.025  1.000  
West 64×5 0.270  0.276  0.016  1.000  

Energy 

East 87×5 0.456  0.328  0.042  1.000  
Central 99×5 0.364  0.304  0.012  1.000  
China 283×5 0.358  0.315  0.008  1.000  
West 64×5 0.259  0.291  0.008  1.000  

Northeast 33×5 0.257  0.253  0.019  1.000  

Wastewater 

East 87×5 0.418  0.326  0.015  1.000  
China 283×5 0.355  0.308  0.011  1.000  
Central 99×5 0.347  0.303  0.038  1.000  

Northeast 33×5 0.333  0.283  0.024  1.000  
West 64×5 0.280  0.292  0.011  1.000  

SO2 

East 87×5 0.481  0.330  0.037  1.000  
China 283×5 0.358  0.321  0.007  1.000  
Central 99×5 0.338  0.314  0.020  1.000  

Northeast 33×5 0.281  0.266  0.017  1.000  
West 64×5 0.264  0.303  0.007  1.000  

Soot 

East 87×5 0.572  0.336  0.014 1.000  
China 283×5 0.403  0.339  0.014 1.000  
Central 99×5 0.356  0.311  0.001  1.000  

West 64×5 0.299  0.311  0.004  1.000  
Northeast 33×5 0.246  0.267  0.014  1.000  

3.2.1.2. Distribution Dynamic Analysis of Energy and Environmental Performance 333 

We next tracked the EEP evolution for 283 cities in China via the distribution dynamics approach 334 
[58-60]. Each city’s EEP and its decompositions were divided by 283 cities’ yearly average levels to 335 
form the corresponding relative performance indicators. These indicators can then be used to 336 
estimate the kernel densities and stochastic kernels. 337 

Figure 1 shows the distributions of kernel densities for the total performance and sub-338 
performances. The distribution of total performance in 2010 is bimodal with more than 80% of cities’ 339 
performance distributed around 0.5 times the average performance level and other cities’ 340 
performance concentrated on 2.5 times level (possessed by the best performers). Most cities’ total 341 
performances were below average in 2010, but a select few cities performed extremely well and 342 
formed a small convergence club led by best performers. In 2014, the distribution of total performance 343 
nearly reached around 0.5 times the average performance level; the small convergence club dispersed 344 
and members in it became smaller. The ergodic distribution indicates clear convergence to 0.5 times 345 
the average level and small convergence club would nearly disappear. Other kernel density plots for 346 
sub-performances indicate that: 1) energy performance features strong convergence to 0.5 times the 347 
average performance level; 2) small convergence clubs for environmental performances are more 348 
obvious than energy performance. 349 
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  350 
 351 

 352 
 353 

Figure 1. Distributions of total performance and sub-performances 354 

 355 

 356 
 357 

Figure 2. 3D surface of stochastic kernel plots for total and sub-performances 358 

 359 
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 360 

 Figure 3. Contour stochastic kernel plots for total and sub-performances  361 

As shown in the 3D stochastic kernel and 2D contour part plots (Figures 2-3), for cities with 362 
below-average levels in total performance and sub-performances, the transition probability generally 363 
moves counter-clockwise from the 45° diagonal – cities with relatively low EEP compared to the 364 
average level remarkably improved over the study period. Cities with above-average performance, 365 
conversely, can be divided into two groups: The first group, the small convergence club led by the 366 
best performers, remain near the 45° diagonal in the upper right-hand corner. In the second group, 367 
cities with high total performance and sub-performances gradually decrease in efficiency and 368 
converge to average levels. 369 

3.2.1.3. Analysis of Best and Worst Performers 370 

Identifying the best performers can provide good benchmarks for cities with lower efficiency in 371 
terms of energy conservation and emissions abatement. If EEP equals 1 (ܦ୲(ܠ୲, ,୲܍ ,୲ܡ ;୲܊ (܏ = 0), i.e., 372 
the city was located in the production frontier for at least in one year between 2010 and 2014, the city 373 
is defined as a “best performer”. As shown in Figure 4, the best performers are mainly located in 374 
Guangdong, Shandong, Jiangsu, Jiangxi, Sichuan, and Hainan provinces. The best performers 375 
possess advanced service industries, which generally consume few resources, or have high ecological 376 
quality. In Qingdao, Shenzhen, and Dongguan, for example, the ratio of service industry to GDP was 377 
51.22%, 57.39%, and 52.14% in 2014, respectively. The service industry consumes relatively little 378 
energy though it does require a great deal of labor, capital, and technology. Besides, these developed 379 
cities with sufficient funding also can improve their energy conservation and abatement ability via 380 
technical innovation and advanced managerial experience. These cities consume less energy and emit 381 
less pollution while maximizing desirable outputs. Provinces such as Jiangxi, Sichuan, and Hainan 382 
have less developed economies but still exhibit high EEP due to natural endowments (high ecological 383 
quality) and economic support from tourism. 384 

A city with EEP no more than 0.1 (ܦ୲(ܠ୲, ,୲܍ ,୲ܡ ;୲܊ (܏ > 0.9) in all years of 2010-2014 is defined 385 

as a “worst performer”. As shown in Figure 4, the worst performers are mainly distributed in 386 

Heilongjiang, Guangxi, Ningxia, and Shanxi provinces which are generally rich in coal or nonferrous 387 

metal resources. Cities like Datong (Shanxi), Shizuishan (Ningxia), Huainan (Anhui) and Hegang 388 

(Heilongjiang) are important coal bases of China. A great deal of pollutants are emitted by coal 389 

exploitation and processing. Other cities like Guigang (Guangxi) and Baise (also Guangxi) are 390 

important nonferrous metal bases of China. Nonferrous metallurgy likewise produces substantial air 391 

pollutants as well as mercury and chromium pollution.  392 

(d) Soot (e) Wastewater 
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 393 

Figure 4. Distribution of best performers and worst performers 394 

3.2.2. Analysis of Dynamic Changes in Energy and Environmental Performance 395 

3.2.2.1. National Level 396 

We examined dynamic changes in EEP and its decompositions by EEPI. We first calculated the 397 
average value at the country level involving a five-year span of 283 cities’ total performance changes 398 
and decompositions over temporal and spatial dimensions. The average EEP change, technical 399 
efficiency change, and technological change are 2.38%, -1.57% and 3.95%, respectively (Table 3). That 400 
is to say, China made considerable progress in the energy conservation and emissions abatement in 401 
the study period. The Chinese government made great strides in environmental protection under the 402 
12th five-year plan (FYP) (2011-2015), which focused on upgrading the industrial structure for low 403 
energy consumption and pollution reduction. Further, the manufacturing industry comprised 57.2% 404 
of GDP in 2010 but only 47.1% in 2014. Changes in technical efficiency continually declined with the 405 
exception of the period 2012-2013, whereas a slower and slower upward trend was observed in 406 
technological changes. In other words, EEP change is mainly driven by technological progress rather 407 
than technical efficiency improvement [11, 46, 61]. Government policies targeting the improvement 408 
of technical efficiency in the manufacturing sector may indeed enhance overall environmental 409 
performance. 410 

Table 3. Arithmetic mean of EEPI and its decompositions for 283 cities  411 

Index 2010-2011 2011-2012 2012-2013 2013-2014 average 
௧௢௧௔௟ܫܲܧܧ

௧,௧ାଵ 0.0004 0.0246 0.0634 0.0067 0.0238 
݂݂݁ܿℎ௧௢௧௔௟

௧,௧ାଵ -0.0969 -0.0067 0.0579 -0.0172 -0.0157 
ℎܿℎ௧௢௧௔௟ܿ݁ݐ

௧,௧ାଵ 0.0973 0.0313 0.0055 0.0239 0.0395 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2018                   doi:10.20944/preprints201806.0080.v1

Peer-reviewed version available at Sustainability 2018, 10, 2303; doi:10.3390/su10072303

http://dx.doi.org/10.20944/preprints201806.0080.v1
http://dx.doi.org/10.3390/su10072303


 15 of 28 

Cities on the production frontier achieved rapid technological progress and made other cities 412 
more difficult to catch up with the production frontier. In other word, the decrease of technical 413 
efficiency is a relative deterioration caused by fast technological progress. The decline in technical 414 
efficiency is roughly consistent with observations previously made by Meng, Fan, Zhou and Zhou 415 
[61]. We further interpreted the deterioration of technical efficiency by assuming that a production 416 
activity with one energy input, one desirable output, and undesirable output can have reduced 417 
energy input and undesirable output while fixing desirable output as shown in Figure 5. The energy 418 
and environmental production technology can be represented by the energy and environmental 419 
input set: 420 

(ݕ)ۺ = {(݁, ܾ):			(݁, ܾ)			can	produce	421 (29)                        {ݕ 

Suppose that one production unit’s activities are observed with two 422 
points	ܽ	(݁௧ , ௧ݕ , ܾ௧)	and	ܽᇱ(݁௧ାଵ, ,௧ାଵݕ ܾ௧ାଵ)	at periods “t” and “t+1” respectively. frontier୲		represents 423 
the production frontier at period “t”. frontier୆	denotes the biennial production frontier of pooled 424 
observations from period “t” and “t+1”, and frontier୆	 could be completely determined 425 
by 	frontier୲ାଵ	 which implies that 	frontier୆ = frontier୲ାଵ . Considering ௧ାଵݕ	 ≥ ௧ݕ  with the 426 
coordinate	ݕ, production frontiers in blue lines (i.e., cross section with	ݕ =  ௧ାଵ) are higher than those 427ݕ
in red lines (i.e., cross section with ݕ =  ௧) as a result of technological progress. We express the 428ݕ
biennial Luenberger index as follows: 429 

, 1

, 1

, 1

( ) ( ' )

( ) ( ' )

{( ) ( )} {( ' ) ( ' )}
= ( )

t t
B
t t
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t t
B
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techch a d a c a i a i

c d







   

   

       


               (30) 430 

Given	(ܽ − ܿ) < (ܽᇱ − ݅), as shown in Fig. 5, the catch up effect becomes weak and the technical 431 
efficiency deteriorates, which indicates that relative deterioration occurs. However, considering	(ܽ −432 
݀) > (ܽᇱ − ݅),  ܽᇱ is closer to frontier୆		than	ܽ, which implies that the EEP for observed production 433 
activity improves from period t to t+1. 434 

 435 

Figure 5. Deterioration of technical efficiency 436 

Table 4 shows the contributions of specific energy and undesirable output to the changes in total 437 
performance and sub-performances. Energy plays a more important role (contribution over 50%) 438 
than undesirable outputs in total performance change and its four sub-performances. With respect to 439 
undesirable outputs, SO2 performance change has the strongest effect on total performance change 440 
(25.36%) while the effect of soot emission performance change is the lowest (0.80%). Technological 441 
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change behaves similarly; SO2 technological change contributes more to total technological change 442 
(26.91%) than soot technological change (4.15%). Technical efficiency change shows much different 443 
characteristics. The contribution from wastewater technical efficiency change to total technical 444 
efficiency change was the smallest (4.74%) while SO2 technical efficiency change made the largest 445 
contribution (28.64%). In effect, SO2 has become the largest contributor to total performance change 446 
and sub-performance changes among the three undesirable outputs.  447 

Table 4. Contributions of specific energy and undesirable output to total performance change, sub-448 
performance changes 449 

Index ܫܲܧܧ௧௢௧௔௟
௧,௧ାଵ ܫܲܧܧ௘௡௘௥௚௬

௧,௧ାଵ ௌைଶܫܲܧܧ 
௧,௧ାଵ ܫܲܧܧ௦୭୭୲

௧,௧ାଵ ܫܲܧܧ௪௔௦௧௘௪௔௧௘௥
௧,௧ାଵ  

Average 0.0238 0.0123 0.0061 -0.0002 0.0055 
Contribution 100% 51.01% 25.36% 0.80% 22.83% 

Index ݂݂݁ܿℎ௧௢௧௔௟
௧,௧ାଵ ݂݂݁ܿℎ௘௡௘௥௚௬

௧,௧ାଵ  ݂݂݁ܿℎௌைଶ
௧,௧ାଵ ݂݂݁ܿℎ௦௢௢௧

௧,௧ାଵ ݂݂݁ܿℎ௪௔௦௧௘௪௔௧௘௥
௧,௧ାଵ  

Average -0.0157 -0.0086 -0.0045 -0.0018 -0.0007 
Contribution 100% 54.97% 28.64% 11.65% 4.74% 

Index ܿ݁ݐℎܿℎ௧௢௧௔௟
௧,௧ାଵ ܿ݁ݐℎܿℎ௘௡௘௥௚௬

௧,௧ାଵ ℎܿℎௌைଶܿ݁ݐ 
௧,௧ାଵ ܿ݁ݐℎܿℎ௦௢௢௧

௧,௧ାଵ ܿ݁ݐℎܿℎ௪௔௦௧௘௪௔௧௘௥
௧,௧ାଵ  

Average 0.0395 0.0210 0.0106 0.0016 0.0063 
Contribution 100% 53.09% 26.91% 4.15% 15.85% 

3.2.2.2. Regional Level  450 

China can be divided into four areas by economic development levels and geographical 451 
characteristics: eastern, northeastern, central, and western areas. Urban agglomeration, considered to 452 
be an economic growth point, leads regional economic development. We explored the regional 453 
differences in urban agglomeration accordingly. The ten agglomerations we observed include 454 
Beijing-Tianjin-Hebei, the central and southern of Liaoning province, the Yangtze River Delta, the 455 
western side of the Taiwan Strait, the Shandong Peninsula, the Central Plain, the middle Yangtze 456 
River, the Pearl River Delta, Sichuan and Chongqing, and the Central Shaanxi Plain [62, 63].  457 

Table 5 shows the average changes in EEPI and its decompositions among the four areas for 458 
every two consecutive years. The average changes in EEP are positive indicating a marked 459 
improvement in the four areas over the study period. The central area shows the most significant 460 
performance improvement (2.97%), followed by the eastern (2.73%) and western (1.96%) areas. The 461 
northeastern area experienced almost no EEP change (0.50%). Heavy industry renders the 462 
northeastern area less able to improve its EEP. We also found that the eastern area achieved the 463 
greatest technological progress (5.86%) while experiencing the greatest decline in technical efficiency 464 
(-3.14%) among the four areas; technological progress in the eastern area makes a greater contribution 465 
to performance improvement, which substantially offsets the deterioration of technical efficiency. 466 

Table 5. Arithmetic means for EEPI୲୭୲ୟ୪
୲,୲ାଵ, effch୲୭୲ୟ୪

୲,୲ାଵ		and	techch୲୭୲ୟ୪				
୲,୲ାଵ in 2010-2014 among four areas 467 

Arithmetic mean ܫܲܧܧ௧௢௧௔௟
௧,௧ାଵ ݂݂݁ܿℎ௧௢௧௔௟

௧,௧ାଵ ܿ݁ݐℎܿℎ௧௢௧௔௟
௧,௧ାଵ 

East 0.0273 -0.0314 0.0586 
Central 0.0297 -0.0081 0.0378 

West 0.0196 -0.0032 0.0228 
Northeast 0.0050 -0.0215 0.0264 

We next compared the effects of specific energy and undesirable output on the changes in total 468 
performance and sub-performances in the four areas and ten urban agglomerations. Figure 6 shows 469 
the contributions from specific energy and undesirable outputs to total performance	change among 470 
four areas and ten urban agglomerations. Energy contribution rates in the eastern (50.93%), central 471 
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(51.79%), and northeastern (88.20%) areas explain more than half of the performance improvement 472 
but less so in the western area (45.38%). Most sub-performances in the four areas were improved. 473 
Soot emission performance declined in eastern and northeastern areas over 2010-2014, likely because 474 
the environmental regulation for soot emissions was eased during the study period in line with the 475 
truth that severe haze happened frequently in China. In the 10th FYP period, the central government 476 
placed quantified constraints on soot emission which were canceled in the 11th and 12th FYP periods; 477 
the top priority for the central government with mixed environmental regulations was to curb 478 
excessive emissions of SO2 and NOX. 479 

Energy is apparently the major driving force for improving total performance in the Beijing-480 
Tianjin-Hebei region, where energy accounts for 95.68% of the improvement in total performance. 481 
Energy contributed 80.64% to the improvement in total performance in the central Shaanxi plain, 482 
which is an important coal base in China. Most urban agglomerations achieved significant 483 
improvement in total performance during 2010-2014, especially the middle Yangtze River. Total 484 
performance declined i n	 the central and southern Liaoning province, however, due to the 485 
deterioration in	soot emission performance. Total performance in the Pearl River Delta also declined 486 
due to a rapid increase in energy consumption.  487 

 488 

Figure 6. Contributions of specific energy and undesirable outputs performance to total 489 
performance among four areas and ten urban agglomerations 490 

Figure 7 shows contributions from specific energy and undesirable outputs to the total technical 491 
efficiency change among the four areas and ten urban agglomerations. Total technical efficiency 492 
decreased significantly in all four regions. Deterioration in energy technical efficiency is the root 493 
cause of decline in total technical efficiency in the four areas with exception of the central area, which 494 
is defined by a decrease in SO2 technical efficiency (elsewhere the second-most important cause of 495 
decline). Technical efficiency in most urban agglomerations decreased continually from 2010 to 2014. 496 
Only the middle Yangtze River area and central Shaanxi plain made progress in technical efficiency, 497 
which can be attributed to improvements in energy efficiency. 498 
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 499 

Figure 7. Contributions of specific energy and undesirable outputs to total technical efficiency 500 
among four areas and ten urban agglomerations 501 

Figure 8 shows the contributions of specific energy and undesirable outputs to total 502 
technological change among the four areas and ten urban agglomerations. Energy contributed more 503 
significantly than the sum of undesirable outputs in the total technological change in the four areas; 504 
SO2 technology was markedly improved while soot technology only slightly so. Technical progress 505 
in almost all ten urban agglomerations (except the central Shaanxi) grew continually. Total 506 
technological change in the central Shaanxi area declined 2.5% on average due to the bad performance 507 
of best performers around the central Shaanxi area. 508 

 509 

Figure 8. Contributions of specific energy and undesirable outputs to total technological change 510 
among four areas and ten urban agglomerations 511 

3.2.3. Analysis of Spatial Distribution Evolution on Energy and Environmental Performance Potential 512 

3.2.3.1. EEP Spatial Pattern 513 

The average value of global Moran’s ܫ୥	is 0.0807, indicating a positive spatial correlation. The 514 
positive difference in EEP spatial distribution increases along with the decline of global Moran’s ܫ୥. 515 
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 516 

Figure 9. Changes in global Moran’s 	I୥ of EEP 517 

We used a LISA cluster map based on the local Moran’s ܫ୪	to observe the spatial agglomeration 518 
effects, i.e., whether a spatial unit shows a spatial correlation with its neighbors or not (Figure 10). 519 
There is significant agglomeration effect evidenced by four types of spatial correlations: high-high, 520 
low-low, low-high (middle is low and surroundings are high) and high-low (middle is high and 521 
surroundings are low). The high-high type mainly exists in the Huanghe Delta and the developed 522 
southeast coast of China in 2010. The high-high type areas spread from the developed southeast coast 523 
to the areas with high ecological quality, such as the northern border between Sichuan and Hubei 524 
provinces (which have a famous giant panda habitat called the Shennongjia National Nature Reserve) 525 
or the Dongting lake basin (the third-largest lake in China renowned for its beautiful scenery in the 526 
north of Hunan province); China’s second largest lake, Poyang, is located in the northern Jiangxi 527 
province with a forest acreage over 60%; the Huanghe Delta and Yangtze River Delta similarly have 528 
rich wetland resources which maintain the high-high cluster characteristics resulting from their 529 
inherently high ecological quality. Cities with high ecological quality, especially those with national 530 
nature reserves, wetlands and forests, most commonly feature high-high type correlations. 531 

 532 
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 533 

Figure 10. LISA cluster map of EEP in 2010 and 2014 534 

3.2.3.2. Influencing Factors on Energy and Environmental Performance Potential 535 

Considering the spatial heterogeneity, we used the GWR method instead of the ordinary (global) 536 
linear regression to capture influencing factors on EEP potential with the aim to reveal its spatially 537 
varying links. Energy is positively correlated with pollutants because pollutants mainly originate in 538 
the combustion of energy sources. Energy conservation potential and SO2 emission abatement 539 
potential exhibit similar distribution characteristics for this reason. In this study, we focused on the 540 
influencing factors of SO2 emission abatement potential: 541 

૛ࡻࡿ݈ܽ݅ݐ݊݁ݐ݋ܲ = ௌைమܦ
௧ ,୲ܠ) ,୲܍ ,୲ܡ ;୲܊ (܏ × ܵ ଶܱ  542 (31)                  ݊݋݅ݏݏ݅݉ܧ	

We used three key factors to interpret the change in SO2 emission abatement potential: gross 543 
industrial output, pollution intensity, and industrial structure. Here, the ratio of SO2 emission to gross 544 
industrial output represents pollution intensity; the industrial structure is measured by the share of 545 
GDP of the service industry [43, 64, 65]. The following GWR model was used to investigate the effects 546 
of various influencing factors on SO2 emission abatement potential: 547 

૛௜ࡻࡿ݈ܽ݅ݐ݊݁ݐ݋ܲ = ௜ݑ)଴ߚ , (௜ݒ + ௜ݑ)ଵߚ , ܫܩ(௜ݒ ௜ܱ + ௜ݑ)ଶߚ , ௜ܫܵ(௜ݒ + ௜ݑ)ଷߚ , ௜)ܴܵ௜ݒ +  ௜       (32) 548ߝ

where ߚ	denotes the coefficient parameter; ߝ  is a random error term; ܱܫܩ  denotes the gross 549 
industrial output; ܴܵ denotes the share of GDP of the service industry; ܵܫ represents SO2 pollution 550 
intensity. 551 

As shown in Table 6, Model (32) passes the 1% level significance test. The ܴଶ  indicator of 552 
goodness of fit is 0.67 (ܴଶ	in global regression result is 0.20), which is fairly high. The range of local 553 
ܴଶ is between 0.36 and 0.9.  554 

Table 6. Overall fitting results GWR model based on SO2 emission abatement potential 555 

Indicator 
 SO2 emission abatement 

potential 

 

Shandong 

 

 

 

 

Hunan 

(b) LISA cluster map in 2014 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2018                   doi:10.20944/preprints201806.0080.v1

Peer-reviewed version available at Sustainability 2018, 10, 2303; doi:10.3390/su10072303

http://dx.doi.org/10.20944/preprints201806.0080.v1
http://dx.doi.org/10.3390/su10072303


 21 of 28 

local ܴଶ 0.36-0.90 
ܴଶ 0.67 

adjusted	ܴଶ 0.57 

residual sum of squares 5.17 E+10 

AICc 6322 

F 4.84 

probability 0.003 

Figure 11(a)-(c) shows the spatial distribution of influencing factors that affect SO2 emission 556 
abatement potential. The natural breaks (Jenks) method was used to split the regression coefficient 557 
into four categories to ensure scientific geographical results. In most cities, the gross industrial output 558 
shows a positive effect on SO2 emission abatement potential. Cities with larger gross industrial output 559 
need to consume more energy and are thus inclined to emit more SO2. The strongest impact 560 
coefficients of gross industrial output are distributed in the western parts of the country. The effects 561 
of gross industrial output on SO2 emission abatement potential also show a significant downtrend 562 
from the western interior to the eastern coast. Pollution intensity is also correlated with SO2 emission 563 
abatement potential, because cities with higher pollution intensity produce more pollutants. Heavy 564 
industry accounts for a considerable proportion of manufacturing in areas around the Bohai Gulf. 565 
Cities in the Shandong Peninsula, central and southern Liaoning province, and Beijing-Tianjin-Hebei 566 
showed the strongest pollution intensity in terms of SO2 emission abatement potential (i.e., areas 567 
around the Bohai Gulf where severe haze is relatively common [66-68]).  568 

The ratio of the service industry to GDP shows an uncertain effect on SO2 emission abatement 569 
potential. We next examined the correlation between the ratio of the service industry to GDP and SO2 570 
emission abatement potential with standardized z-scores, as shown in Figure 12. The Pearson 571 
correlation between them is pretty weak (0.119). Only 37 (55) cities pass the significance tests at 5% 572 
(10%) level among all 283 cities. This suggests that industrial structure is not the significant 573 
influencing factor of SO2 emission abatement potential during our study period. In fact, 574 
improvements to industrial structure caused by relatively fast growth in the service industry do not 575 
significantly reduce SO2 emissions. Although the ratio of manufacturing industry to GDP is 576 
decreasing on the whole, the ever-increasing value added by the manufacturing industry increases 577 
SO2 emissions and leaves considerable room for emission abatement. This phenomenon is more 578 
common in developed cities, like Shanghai or cities in Jiangsu and Zhejiang provinces. He, et al. [69] 579 
and Hu, et al. [70] similarly found that industrial structure does not significantly affect industrial 580 
pollution at the city level in China. 581 
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 582 

 583 

(a) Regression coefficient of gross industrial output  

(b) Regression coefficient of SO2 pollution intensity  
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 584 

Figure 11. Local GWR estimates of influencing factors for SO2 emission abatement potential in 2014 585 

 586 

Figure 12. Correlation between ratio of service industry to GDP and SO2 emission abatement 587 
potential 588 

4. Conclusions 589 

China is currently facing a trade-off between economic development and environmental 590 
protection. Chinese cities represent complete, independent administrative districts which implement 591 
environmental regulations; top administrators are held accountable for environmental damages. A 592 
given city’s energy utilization and environment regulation directly influence the amount to which it 593 
pollutes the environment, and to identify the best performer and regional difference on EEP will 594 

 
(c) Regression coefficient of industrial structure  
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stimulate the cities to learn from each other. This paper proposed a new biennial Luenberger EEPI to 595 
avoid infeasibility problem in conducting data envelopment analysis. Changes in EEP were 596 
decomposed into technical efficiency change and technological change. To examine the contributions 597 
of specific undesirable outputs (e.g., SO2, soot, and wastewater) and energy inputs to the EEP, the 598 
total performance was divided into sub-performances via a non-radial measure. We empirically 599 
analyzed a sample of 283 cities from 2010 to 2014 accordingly and investigated the primary drivers 600 
of emission abatement potential based on the GWR model. Our main conclusions can be summarized 601 
as follows.  602 

(1) The best performers are mainly located in the Guangdong, Shandong, Jiangsu, Jiangxi, 603 
Sichuan, and Hainan provinces, while the worst performers are mainly distributed in Heilongjiang, 604 
Guangxi, Ningxia, and Shanxi provinces. The best performers possess advanced service industries 605 
and either consume less energy or have inherently high ecological quality, while the worst 606 
performers depend on abundant coal and nonferrous metal resources to support economic 607 
development. Best performers tended to move from the coastal towards the inland area over time. 608 

(2) At the national level, average EEP change, technical efficiency change, and technological 609 
change values are 2.38%, -1.57%, and 7.90%, respectively. China achieved remarkable progress in 610 
energy conservation and emission abatement over the study period. The deterioration of the technical 611 
efficiency is a relative deterioration caused by the fast technological progress. Changes in EEP are 612 
primarily attributable to technological progress, but said progress slowed down during the study 613 
period.  614 

(3) At the regional level, the central area (2.97%) shows the greatest improvement in total 615 
performance followed by eastern (2.73%) and western (1.96%) areas. The northeastern area (0.50%) 616 
shows almost no change in EEP. The eastern area achieves the greatest technological progress (5.86%) 617 
but greatest decline in technical efficiency (-3.14%) among the four areas. The sub-performances all 618 
increased apart from soot emission performance. Deterioration in SO2 technical efficiency is the 619 
biggest driver of deteriorated technical efficiency in all four areas.  620 

We used the ESDA method to find that EEP has obvious spatial agglomeration features. The 621 
high-high type clusters mainly exist in Shandong province and the southeast coast of China; high-622 
high type clusters move from coastal areas towards the inland areas which have inherently better 623 
ecological quality. The factors that affect SO2 emission abatement potential exhibit significant spatial 624 
heterogeneity in different areas. The gross industrial output positively affects SO2 emission 625 
abatement potential in most cities. The strongest impact coefficients of gross industrial output are 626 
mainly distributed in the western area. Cities with the strongest positive effect of pollution intensity 627 
on SO2 emission abatement potential were mainly distributed in central and southern Liaoning 628 
province, Beijing-Tianjin-Hebei, and Shandong Peninsula areas (i.e., areas around the Bohai Gulf 629 
which are characterized by haze problems). The ratio of service industry to GDP has an uncertain 630 
effect on SO2 emission abatement potential, indicating that industrial structure is not the significant 631 
influencing factor of SO2 emission abatement potential in the study period. 632 
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