

1 Article

2 **Regional Differences in Energy and Environmental 3 Performance: An Empirical Study of 283 Cities in 4 China**

5 **Zuoren Sun^{1,*}, Chao An¹ and Huachen Sun^{2,*}**

6 ¹ Business School, Shandong University, Weihai, No. 180 West Culture Road, Weihai 264209, China;

7 ² Shandong Academy of Macroeconomic Research, No. 9 South Qianfoshan Road, Jinan 250014, China;

8 * Correspondence: sunzuoren@sdu.edu.cn (Z.S.); shc82623598@126.com (H.S.); Tel: +86-139-6312-2745 (Z.S.);
9 +86-176-8661-8088 (H.S.); Fax: +86-63-1568-8289

10

11 **Abstract:** This paper proposes a new non-radial biennial Luenberger energy and environmental
12 performance index (EEPI) to measure the EEP change in various Chinese cities. The sources of EEP
13 change, in terms of technical efficiency change and technological change, are examined by
14 Luenberger EEPI. The contributions from specific undesirable outputs and energy inputs to the EEP
15 change are identified by means of the non-radial efficiency measure. The proposed approach is
16 applied to evaluate the EEP of the industrial sector in 283 cities in China over 2010-2014. Factors
17 influencing the emission abatement potential are investigated by employing geographically
18 weighted regression (GWR) model. We find that 1) changes in EEP can be attributed to technological
19 progress but that technological progress slows down across the study period; 2) the soot emission
20 performance experiences a downturn among four specific sub-performances in line with the truth
21 that severe haze happened frequently in China; 3) the best performers begin to move from the
22 coastal to inland cities with the less resource consumption and higher ecological equality; 4) cities
23 with the strongest positive effect in regards to pollution intensity on emission abatement potential
24 are located in the areas around the Bohai Gulf, where air pollution is particularly severe.

25 **Keywords:** data envelopment analysis; biennial Luenberger index; geographically weighted
26 regression; EEP

27

28 **1. Introduction**

29 With the globalization, China accelerates melting into the world economy after entering WTO
30 and becomes world factory in international division with rapid economic growth. However, this
31 growth is mainly driven by development within the energy-intensive industrial sector [1]. According
32 to the BP Statistical Review of World Energy 2017 [2], China is currently the world's largest energy
33 consumer at 23% of the total global consumption and 27% of the demand growth of global energy
34 consumption in 2016. However, China has paid a high price to the environment for such rapid
35 advancement. Uncontrolled fossil fuel combustion has released poisonous substances in various
36 forms and led to all kinds of pollutions [3], e.g., water contamination, acid rain, and haze (smog).
37 Massive loads of waste gases have been emitted into the atmosphere to create a severe decline in air
38 quality.

39 China has suffered from severe haze over many of its cities comprised of fine particulate matter
40 less than 2.5 micrometers in diameter (PM2.5), especially in winter months, since 2013. In 2016, only
41 84 Chinese cities had standard air quality – this amounts to merely 24.9% among the 338 monitored
42 cities at or above the prefecture level (Report on the State of China's Environment in 2016 [4]).
43 Pollution severely affects Chinese citizens' daily living conditions and, ultimately, threatens their
44 health. Epidemiological studies have revealed a strong association between exposure to fine

45 particulate matter and mortality [5, 6]. Many environmental laws and regulations have been enacted
46 to combat this, including China's State Council's *Action Plan for Air Pollution Prevention and Control*
47 ¹targeting air quality in September 2013. One goal of the Action Plan is to reduce the annual average
48 concentration of fine particulate matter by 25% in the Beijing-Tianjin-Hebei region by 2017 against
49 the 2012 level. Measuring energy efficiency and environmental efficiency can provide quantitative
50 information for energy and environmental policy analysis and decision-making. Cities are not only
51 energy-consumptive, but also form the main sources of various pollutants. Cities, to this effect, are
52 the main battlefield for controlling pollutant emissions. It is essential for administrators to
53 understand the energy and environmental performance (EEP) of their cities to formulate scientific,
54 strategic goals for energy conservation and emission reduction.

55 In recent years, the data envelopment analysis (DEA) linear programming method has become
56 a popular approach to measuring energy and environmental efficiency to reduce energy
57 consumption and control emissions. DEA was proposed by Farrell [7] and developed by Charnes, et
58 al. [8] to automatically generate appropriate production functions to combine multiple inputs and
59 multiple outputs. The principle of DEA is to enable data to "speak for itself" rather than necessitate
60 excessive artificial parametric assumptions for functions [9]. Many previous researchers have studied
61 energy efficiency; Hu and Wang [10], for example, first established the total factor energy efficiency
62 (TFEE) concept by using DEA. Song, et al. [11] used a bootstrap-DEA approach to find that China's
63 energy efficiency has maintained a slow upward trend from 1992 to 2010. Özkara and Atak [12], and
64 later Feng and Wang [13], measured total-factor energy efficiency and energy savings potential in
65 Turkey's manufacturing industry and China's provincial industrial sectors, respectively. Zhou, et al.
66 [14] proposed an output-specific energy efficiency estimating method. These researchers
67 concentrated on static analysis without dynamic comparison. Honma and Hu [15] investigated the
68 dynamic changes in energy efficiency by introducing a Malmquist productivity index (MPI). Other
69 researchers, such as Wang and Zhou [16], Chang and Hu [17], and Zhang, et al. [18] have made
70 dynamic analyses of energy efficiency as well.

71 Beside above energy efficiency evaluation models, researchers center around securing as many
72 desirable outputs as possible while minimizing the undesirable outputs which are inevitably
73 produced by industrial production. Färe, et al. [19] first proposed the concept of environmental DEA
74 technology to incorporate undesirable outputs into efficiency evaluation frameworks. Kuosmanen
75 and Kortelainen [9] applied DEA to aggregate multiple undesirable outputs and emphasized the
76 trade-off between economic production and environmental protection in regards to the impact of
77 undesirable outputs on the economy. Kortelainen [20] extended the static framework to a dynamic
78 environmental performance analysis by using MPI; they decomposed the changes in environmental
79 performance into two components: relative environmental efficiency change and relative
80 environmental technological change.

81 Many previous researchers have used the radial DEA approach to measure environmental
82 performance, where in different undesirable outputs are adjusted by the same proportion. However,
83 radial efficiency measures overestimate technical efficiency due to the existence of nonzero slacks. A
84 series of non-radial DEA models have been developed to resolve this limitation. For example, Zhou,
85 et al. [21] employed a non-radial DEA approach to measure the environmental performance of OECD
86 countries. Zhang and Choi [22] explored total-factor carbon emission performance in China's fossil
87 fuel power plants using a metafrontier non-radial MPI. Rashidi and Saen [23] calculated the pure eco-
88 efficiency of OECD countries by a non-radial DEA model based on green indicators. Sueyoshi and
89 Goto [24] applied a non-radial DEA environmental assessment to evaluate the performance of coal-
90 fired power plants in the northeast United States. Xie, et al. [25] computed environmental efficiency
91 based on a directional distance function with the radial and non-radial slacks of outputs.

92 There are two major approaches to estimating productivity or efficiency changes: the Malmquist
93 productivity index and Luenberger productivity index. Some researchers assert that the Malmquist
94 productivity index overestimates productivity changes compared to the Luenberger [26, 27]. Further,

¹ One could refer to http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm for more details.

95 the Luenberger productivity index is a difference-based index, so it is well applicable to measuring
 96 differences in EEP. Recent researchers have adapted the Luenberger productivity index to study
 97 dynamic changes in productivity or efficiency. For instance, Mahlberg and Sahoo [28] applied non-
 98 radial decompositions of the Luenberger productivity index to analyze the eco-productivity
 99 performance behavior in 22 OECD countries. Based on a Luenberger environmental index, Azad and
 100 Ancev [29] measured the relative environmental efficiency of agricultural water use to reveal
 101 substantial variations across different regions. Wang [30] applied the Luenberger index to explore
 102 changes in energy and environmental productivity at the provincial level. Our research team
 103 developed a non-radial Luenberger productivity index to resolve the limitation of radial
 104 measurement [31, 32]. Non-radial efficiency measures can help us identify specific effects and
 105 contributions of energy factor and specific undesirable outputs, while radial efficiency measures do
 106 not reflect the impact of emission structures on efficiency changes.

107 The aforementioned studies centered around single aspects of energy efficiency or
 108 environmental performance rather than integrated EEP measurements. A few researchers have
 109 investigated the integrated EEP by new DEA models. Wang, et al. [33], for example, used DEA
 110 window analysis to find that EEP is highest in the eastern area of China compared to other regions.
 111 Zhou and Wang [34] explored the energy and CO₂ emission performance for over 100 countries by
 112 using a new directional distance function (DDF). Zhou, et al. [35], Vlontzos, et al. [36], Meng, et al.
 113 [37], Geng, et al. [38], Wang and Zhao [39], and Perez, et al. [40] measured integrated EEP in their
 114 respective studies. Previous researchers have tended to focus on the regional or national level and
 115 lack of research down to the city level, though cities play an important role in environmental
 116 governance. Cities are responsible for 75-80% of global greenhouse emissions [41, 42]. Only a few
 117 researchers, e.g., Li, et al. [43], Yuan, et al. [44], Wang, et al. [45], Zhou, et al. [46], and Guo, et al. [47]
 118 have explored environmental performance at the city level.

119 In the present study, we extended the extant research in two main aspects. In terms of
 120 methodology, we propose an additive DEA model combined with a slack-based measure and non-
 121 radial directional distance function as first developed by Färe and Grosskopf [48]. The Luenberger
 122 productivity index with an additive structure is used to measure changes in productivity (which
 123 differs from the Malmquist index with multiplicative structure). We established a biennial
 124 Luenberger index extended from biennial Malmquist index proposed by Pastor, et al. [49] to avoid
 125 infeasibility solution of DEA. In terms of indicator selection, we properly account for multi-
 126 undesirable outputs and compare these sub-performances. We also use the natural breaks method to
 127 identify break points by picking the class breaks which maintain the greatest similarity in one class
 128 but maximize the difference among different classes. Geographical location has a marked effect on
 129 the emission abatement potential, so we alter the traditional regression to geographically weighted
 130 regression (GWR) to allow our estimated coefficients of influencing factors to vary by location. The
 131 remainder of this paper is organized as follows. Section 2 presents the non-radial DEA model,
 132 decomposition method, and GWR estimation. Section 3 explains our data sources and presents our
 133 results with discussion. Section 4 summarizes our main conclusions.

134 2. Methodology

135 2.1. Biennial Energy and Environmental Production Technology

136 Consider a production process with the vectors of non-energy inputs (**x**), such as labor and
 137 capital input, and the vectors of energy inputs (**e**) to produce the vectors of desirable outputs (**y**) and
 138 undesirable outputs (**b**). The corresponding production set, called the energy and environmental
 139 production technology set, is:
 140

$$T = \{(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}) : (\mathbf{x}, \mathbf{e}) \text{ can produce } (\mathbf{y}, \mathbf{b})\} \quad (1)$$

141 In the energy and environmental production technology set **T**, inputs and desirable outputs are
 142 assumed to be strongly disposable. **T** satisfies two additional assumptions proposed by Färe,

143 Grosskopf, Lovell and Pasurka [19] to model a production technology that includes both desirable
144 and undesirable outputs.

145 (1) Weak disposability assumption: If $(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}) \in \mathbf{T}$ and $0 \leq \theta \leq 1$, then $(\mathbf{x}, \mathbf{e}, \theta\mathbf{y}, \theta\mathbf{b}) \in \mathbf{T}$. It
146 means that we can not reduce undesirable outputs alone while keeping the desirable
147 outputs constant. In practice, it is feasible to reduce the desirable outputs and undesirable
148 outputs at the same time; undesirable outputs can be abated at the cost of a decrease in
149 desirable output.

150 (2) Null-jointness assumption: If $(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}) \in \mathbf{T}$ and $\mathbf{b} = \mathbf{0}$, then $\mathbf{y} = \mathbf{0}$. Production must cease
151 entirely in order to fully eliminate undesirable outputs.

152 It is unlikely to find a concrete production function which depicts the energy and environmental
153 production technology set \mathbf{T} . Here, we use nonparametric DEA technology to approximately
154 represent \mathbf{T} with piecewise linear combinations of the observed data. On the assumption of constant
155 returns to scale (CRS), the energy and environmental production technology \mathbf{T} can be estimated as
156 follows:

$$157 \hat{\mathbf{T}} = \{(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}) : \sum_{k=1}^K \lambda_k x_{mk} \leq x_{mo}, m = 1, 2, \dots, M; \sum_{k=1}^K \lambda_k e_{qk} \leq e_{qo}, q = 1, 2, \dots, Q \\ \sum_{k=1}^K \lambda_k y_{nk} \geq y_{no}, n = 1, 2, \dots, N; \sum_{k=1}^K \lambda_k b_{jk} = b_{jo}, j = 1, 2, \dots, J \\ \lambda_k \geq 0, k = 1, 2, \dots, K\} \quad (2)$$

158 where λ_k is the intensity variable that ensures the technology set \mathbf{T} is bounded and closed. The
159 first three inequality constraints indicate the strong disposability on inputs and desirable outputs. To
160 ensure technology set \mathbf{T} satisfies the weak disposability and null-jointness assumptions, the equality
161 constraint is imposed on undesirable outputs.

162 Technology is generally stable in the short run, so we neglect technological changes from period
163 “ t ” to “ $t+1$ ”, and combine technology set \mathbf{T}^t and \mathbf{T}^{t+1} together as $\mathbf{T}^B = \mathbf{T}^t \cup \mathbf{T}^{t+1}$, namely, biennial
164 energy and environmental technology, which represents the comprehensive technology shared by
165 periods “ t ” and “ $t+1$ ”. In order to estimate \mathbf{T}^B , we use observations from periods “ t ” and “ $t+1$ ” to
166 construct the biennial energy and environmental DEA technology $\hat{\mathbf{T}}^B$ as-formed by following linear
167 constraints:

$$168 \hat{\mathbf{T}}^B = \{(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}) : \sum_{k=1}^K \lambda_k^{t+1} x_{mk} + \sum_{k=1}^K \lambda_k^t x_{mk} \leq x_{mo} \quad m = 1, 2, \dots, M \\ \sum_{k=1}^K \lambda_k^{t+1} e_{qk} + \sum_{k=1}^K \lambda_k^t e_{qk} \leq e_{qo} \quad q = 1, 2, \dots, Q \\ \sum_{k=1}^K \lambda_k^{t+1} y_{nk} + \sum_{k=1}^K \lambda_k^t y_{nk} \geq y_{no} \quad n = 1, 2, \dots, N \\ \sum_{k=1}^K \lambda_k^{t+1} b_{jk} + \sum_{k=1}^K \lambda_k^t b_{jk} = b_{jo} \quad j = 1, 2, \dots, J \\ \lambda_k^t \geq 0; \lambda_k^{t+1} \geq 0; k = 1, 2, \dots, K\} \quad (3)$$

169 Model (3) can avoid infeasible solutions to the DEA model when dealing with cross-period data.
170 Based on $\hat{\mathbf{T}}^B$, we propose a biennial Luenberger productivity index derived from the concept of the
171 biennial Malmquist productivity index [49].

172 2.2. Biennial Luenberger Energy and Environmental Performance Index

173 The Luenberger productivity index deduced by directional distance function (DDF) was first
174 proposed by Chambers, et al. [50]. The DDF allowing the simultaneous evaluation of input
175 contractions and output expansions can be defined as:

$$176 \bar{D}[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (-\mathbf{g}_x, -\mathbf{g}_e, \mathbf{g}_y, -\mathbf{g}_b)] = \sup \left[\beta \left| (\mathbf{x} - \beta \mathbf{g}_x, \mathbf{e} - \beta \mathbf{g}_e, \mathbf{y} + \beta \mathbf{g}_y, \mathbf{b} - \beta \mathbf{g}_b) \in \mathbf{T} \right. \right] \quad (4)$$

177 where $\mathbf{g} = (-\mathbf{g}_x, -\mathbf{g}_e, \mathbf{g}_y, -\mathbf{g}_b)$ is the directional vector.

178 Based on the Luenberger productivity index, the EEP change can be decomposed into energy
179 and environmental technical efficiency change (catch-up effect) and energy and environmental
180 technological change (frontier-shift effect). For the biennial periods “ t ” and “ $t+1$ ”, we first select
181 technology in the period “ t ” as the benchmark and then examine the EEP change by the difference in
182 DDFs from periods “ t ” to “ $t+1$ ” referred to technology set \mathbf{T}^t . Energy and environmental
183 performance index (EEPI) used to measure the EEP change is defined as follows:

$$184 \quad EEPI^{t,t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) = \bar{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \quad (5)$$

185 Similarly, EEPI can be defined with regard to the technology of the period “ $t+1$ ”:

$$186 \quad EEPI^{t+1,t}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) = \bar{D}^{t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^t(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \quad (6)$$

187 We compute the simple arithmetic mean of Eq. (5) and (6) to eliminate the bias derived from
188 arbitrary period selection:

$$189 \quad \begin{aligned} & EEPI^{t,t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \\ &= \frac{1}{2} \left\{ \begin{aligned} & \left[\bar{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \right] \\ &+ \left[\bar{D}^{t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^t(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \right] \end{aligned} \right\} \end{aligned} \quad (7)$$

190 The energy and environmental technical efficiency is defined by the differences in DDFs from
191 period “ t ” to “ $t+1$ ” with respect to their own technologies; this reveals the change in distances of one
192 observation in two periods “ t ” and “ $t+1$ ” to the corresponding frontier of technologies “ t ” and “ $t+1$ ”
193 respectively.

$$194 \quad effch^{t,t+1}[\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}] = \bar{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \quad (8)$$

195 The energy and environmental technological change can be measured by comparing the distance
196 from one observed data point in the period “ t ” to the frontier of technology set of periods “ t ” and
197 “ $t+1$ ” respectively, which measures the distance between two technologies “ t ” and “ $t+1$ ”.

$$198 \quad techch^{t,t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) = \bar{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) - \bar{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) \quad (9)$$

199 Similar to Eq. (9), the energy and environmental technological change can be defined by
200 comparing one observed data point in the period “ $t+1$ ” to the technology of period “ t ” and
201 “ $t+1$ ” respectively:

$$202 \quad techch^{t+1,t}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) = \bar{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \quad (10)$$

203 We also compute the simple arithmetic mean of Eqs. (9) and (10) to eliminate the bias of period
204 selection:

$$205 \quad \begin{aligned} & techch^{t,t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \\ &= \frac{1}{2} \left\{ \begin{aligned} & \left[\bar{D}^{t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) - \bar{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) \right] \\ &+ \left[\bar{D}^t(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) - \bar{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g}) \right] \end{aligned} \right\} \end{aligned} \quad (11)$$

206 Equations (7), (8), and (11) can be combined into a comprehensive equation which reflects the
207 additive structure of the Luenberger productivity index:

$$208 \quad EEPI^{t,t+1} = effch^{t,t+1} + techch^{t,t+1} \quad (12)$$

209 Per the definition of \bar{D}^t or \bar{D}^{t+1} , the biennial DDF based on \mathbf{T}^B instead of \mathbf{T} is:

$$210 \quad \bar{D}^B \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (-\mathbf{g}_x, -\mathbf{g}_e, \mathbf{g}_y, -\mathbf{g}_b) \right] = \sup \left[\beta \left| (\mathbf{x} - \beta \mathbf{g}_x, \mathbf{e} - \beta \mathbf{g}_e, \mathbf{y} + \beta \mathbf{g}_y, \mathbf{b} - \beta \mathbf{g}_b) \in \mathbf{T}^B \right. \right] \quad (13)$$

211 Similar to the definition of above Luenberger productivity index, the biennial Luenberger
212 productivity index has two components:

$$213 \quad EEPI_B^{t,t+1} \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) = \bar{D}^B \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g} \right) - \bar{D}^B \left(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) \quad (14)$$

$$214 \quad effch_B^{t,t+1} \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) = \bar{D}^t \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g} \right) - \bar{D}^{t+1} \left(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) \quad (15)$$

$$215 \quad techch_B^{t,t+1} \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t, \mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) = \left[\bar{D}^B \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g} \right) - \bar{D}^t \left(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g} \right) \right] \\ - \left[\bar{D}^B \left(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) - \bar{D}^{t+1} \left(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g} \right) \right] \quad (16)$$

$$216 \quad EEPI_B^{t,t+1} = effch_B^{t,t+1} + techch_B^{t,t+1} \quad (17)$$

217 2.3. Energy and Environmental Performance Measurement with Non-radial DEA Model

218 Based on the definition of DDF (Eqs. (4), (13)) and estimated technology set of $\hat{\mathbf{T}}$ and $\hat{\mathbf{T}}^B$ (Models
219 (2), (3)), the radial DDF can be estimated by the following DEA models:

$$220 \quad \begin{aligned} \hat{D}^t \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (-\mathbf{x}, -\mathbf{e}, \mathbf{y}, -\mathbf{b}) \right] &= \max \beta \\ \sum_{k=1}^K \lambda_k^t x_{mk}^t &\leq (1 - \beta) x_{mo} \quad m = 1, 2, \dots, M \\ \sum_{k=1}^K \lambda_k^t e_{qk}^t &\leq (1 - \beta) e_{qo} \quad q = 1, 2, \dots, Q \\ \sum_{k=1}^K \lambda_k^t y_{nk}^t &\geq (1 + \beta) y_{no} \quad n = 1, 2, \dots, N \\ \sum_{k=1}^K \lambda_k^t b_{jk}^t &= (1 - \beta) b_{jo} \quad j = 1, 2, \dots, J \\ \lambda_k^t &\geq 0; \quad k = 1, 2, \dots, K \end{aligned} \quad (18)$$

$$221 \quad \begin{aligned} \hat{D}^B \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (-\mathbf{x}, -\mathbf{e}, \mathbf{y}, -\mathbf{b}) \right] &= \max \beta \\ \sum_{k=1}^K \lambda_k^{t+1} x_{mk}^{t+1} + \sum_{k=1}^K \lambda_k^t x_{mk}^t &\leq (1 - \beta) x_{mo} \quad m = 1, 2, \dots, M \\ \sum_{k=1}^K \lambda_k^{t+1} e_{qk}^{t+1} + \sum_{k=1}^K \lambda_k^t e_{qk}^t &\leq (1 - \beta) e_{qo} \quad q = 1, 2, \dots, Q \\ \sum_{k=1}^K \lambda_k^{t+1} y_{nk}^{t+1} + \sum_{k=1}^K \lambda_k^t y_{nk}^t &\geq (1 + \beta) y_{no} \quad n = 1, 2, \dots, N \\ \sum_{k=1}^K \lambda_k^{t+1} b_{jk}^{t+1} + \sum_{k=1}^K \lambda_k^t b_{jk}^t &= (1 - \beta) b_{jo} \quad j = 1, 2, \dots, J \\ \lambda_k^t &\geq 0; \quad \lambda_k^{t+1} \geq 0; \quad k = 1, 2, \dots, K \end{aligned} \quad (19)$$

222 Traditional and biennial DDFs can be computed by Models (18) and (19), respectively. β denotes
223 the slack ratio (adjustment rate) or “inefficiency score”. If $\beta = 0$, then the corresponding DMU is
224 considered to be efficient and with no improvement potential. $\beta > 0$ indicates that the corresponding
225 DMU is inefficient and has not yet achieved the relative optimization. Models (18) and (19) are
226 regarded as radial DDFs with the same adjustment rate.

227 The radial DDF gives the same contraction (expansion) to all the inputs (outputs) and thus may
228 have weak technical efficiency. Increasing desirable outputs and decreasing inputs and undesirable
229 outputs can be further achieved under the current technical conditions, i.e., the radial DDF
230 overestimates the efficiency. The non-radial DDF can further identify potential in increasing inputs

231 and decreasing outputs, so we use a non-radial DDF model to measure EEP here. Mathematically,
 232 traditional and biennial radial DDFs can be improved by the following DEA models:

$$\begin{aligned}
 & \widehat{D}^t \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (-\mathbf{x}, -\mathbf{e}, \mathbf{y}, -\mathbf{b}) \right] \\
 &= \max \frac{1}{4} \left(\frac{1}{M} \sum_{m=1}^M \beta_m + \frac{1}{Q} \sum_{q=1}^Q \beta_q + \frac{1}{N} \sum_{n=1}^N \beta_n + \frac{1}{J} \sum_{j=1}^J \beta_j \right) \\
 233 & \sum_{k=1}^K \lambda_k^t x_{mk}^t \leq (1 - \beta_m) x_{mo} \quad m = 1, 2, \dots, M \\
 & \sum_{k=1}^K \lambda_k^t e_{qk}^t \leq (1 - \beta_q) e_{qo} \quad q = 1, 2, \dots, Q \\
 & \sum_{k=1}^K \lambda_k^t y_{nk}^t \geq (1 + \beta_n) y_{no} \quad n = 1, 2, \dots, N \\
 & \sum_{k=1}^K \lambda_k^t b_{jk}^t = (1 - \beta_j) b_{jo} \quad j = 1, 2, \dots, J \\
 & \lambda_k^t \geq 0; \quad k = 1, 2, \dots, K
 \end{aligned} \tag{20}$$

$$\begin{aligned}
 & \widehat{D}^B \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (-\mathbf{x}, -\mathbf{e}, \mathbf{y}, -\mathbf{b}) \right] \\
 &= \max \frac{1}{4} \left(\frac{1}{M} \sum_{m=1}^M \beta_m + \frac{1}{Q} \sum_{q=1}^Q \beta_q + \frac{1}{N} \sum_{n=1}^N \beta_n + \frac{1}{J} \sum_{j=1}^J \beta_j \right) \\
 234 & \sum_{k=1}^K \lambda_k^{t+1} x_{mk}^{t+1} + \sum_{k=1}^K \lambda_k^t x_{mk}^t \leq (1 - \beta_m) x_{mo} \quad m = 1, 2, \dots, M \\
 & \sum_{k=1}^K \lambda_k^{t+1} e_{qk}^{t+1} + \sum_{k=1}^K \lambda_k^t e_{qk}^t \leq (1 - \beta_q) e_{qo} \quad q = 1, 2, \dots, Q \\
 & \sum_{k=1}^K \lambda_k^{t+1} y_{nk}^{t+1} + \sum_{k=1}^K \lambda_k^t y_{nk}^t \geq (1 + \beta_n) y_{no} \quad n = 1, 2, \dots, N \\
 & \sum_{k=1}^K \lambda_k^{t+1} b_{jk}^{t+1} + \sum_{k=1}^K \lambda_k^t b_{jk}^t = (1 - \beta_j) b_{jo} \quad j = 1, 2, \dots, J \\
 & \lambda_k^t \geq 0; \quad \lambda_k^{t+1} \geq 0; \quad k = 1, 2, \dots, K
 \end{aligned} \tag{21}$$

235 In Models (20) and (21), β_m , β_q , β_n , or β_j represents the ratio of the slack to a non-energy input,
 236 energy input, desirable output, and undesirable output respectively. If $\beta_m = \beta_q = \beta_n = \beta_j$, Models
 237 (20) and (21) are converted into Models (18) and (19). The non-radial DDF allows us to exploit slacks
 238 more exhaustively with stronger discrimination power than the radial DDF [51]. We mainly focused
 239 on energy conservation and pollution reduction in this study, so the directional vector is set to $\mathbf{g} =$
 240 $(\mathbf{0}, -\mathbf{e}, \mathbf{0}, -\mathbf{b})$ here. The DDF we used can be calculated by the following DEA linear programming
 241 models:

$$\begin{aligned}
 & \widehat{D}^t \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (\mathbf{0}, -\mathbf{e}, \mathbf{0}, -\mathbf{b}) \right] \\
 &= \max \frac{1}{2} \left(\frac{1}{Q} \sum_{q=1}^Q \beta_q + \frac{1}{J} \sum_{j=1}^J \beta_j \right) \\
 242 & \sum_{k=1}^K \lambda_k^t x_{mk}^t \leq x_{mo} \quad m = 1, 2, \dots, M \\
 & \sum_{k=1}^K \lambda_k^t e_{qk}^t \leq (1 - \beta_q) e_{qo} \quad q = 1, 2, \dots, Q \\
 & \sum_{k=1}^K \lambda_k^t y_{nk}^t \geq y_{no} \quad n = 1, 2, \dots, N \\
 & \sum_{k=1}^K \lambda_k^t b_{jk}^t = (1 - \beta_j) b_{jo} \quad j = 1, 2, \dots, J \\
 & \lambda_k^t \geq 0; \quad k = 1, 2, \dots, K
 \end{aligned} \tag{22}$$

$$\begin{aligned}
 & \widehat{D}^B \left[\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b}; \mathbf{g} = (\mathbf{0}, -\mathbf{e}, \mathbf{0}, -\mathbf{b}) \right] \\
 &= \max \frac{1}{2} \left(\frac{1}{Q} \sum_{q=1}^Q \beta_q + \frac{1}{J} \sum_{j=1}^J \beta_j \right) \\
 & \sum_{k=1}^K \lambda_k^{t+1} x_{mk}^{t+1} + \sum_{k=1}^K \lambda_k^t x_{mk}^t \leq x_{mo} \quad m = 1, 2, \dots, M \\
 & \sum_{k=1}^K \lambda_k^{t+1} e_{qk}^{t+1} + \sum_{k=1}^K \lambda_k^t e_{qk}^t \leq (1 - \beta_q) e_{qo} \quad q = 1, 2, \dots, Q \\
 & \sum_{k=1}^K \lambda_k^{t+1} y_{nk}^{t+1} + \sum_{k=1}^K \lambda_k^t y_{nk}^t \geq y_{no} \quad n = 1, 2, \dots, N \\
 & \sum_{k=1}^K \lambda_k^{t+1} b_{jk}^{t+1} + \sum_{k=1}^K \lambda_k^t b_{jk}^t = (1 - \beta_j) b_{jo} \quad j = 1, 2, \dots, J \\
 & \lambda_k^t \geq 0; \quad \lambda_k^{t+1} \geq 0; \quad k = 1, 2, \dots, K
 \end{aligned} \tag{23}$$

243

244 In Models (22) and (23), β_q and β_j represent the ratios of energy conservation and emission
 245 abatement, respectively. $\widehat{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g})$ represents the energy and environmental inefficiency, so
 246 we can calculate EEP by $1 - \widehat{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g})$.

247 If input-output combination $(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b})$ is observed in the period " t " for two technologies in the
 248 period " t " and " $t+1$ " respectively, we can estimate $\widehat{D}^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g})$ and $\widehat{D}^{t+1}(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g})$ with
 249 Model (22). We can estimate $\widehat{D}^t(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g})$ and $\widehat{D}^{t+1}(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g})$ similarly.
 250 We can also estimate $\widehat{D}^B(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g})$ and $\widehat{D}^B(\mathbf{x}^{t+1}, \mathbf{e}^{t+1}, \mathbf{y}^{t+1}, \mathbf{b}^{t+1}; \mathbf{g})$ by employing Model (23)
 251 with production activity $(\mathbf{x}, \mathbf{e}, \mathbf{y}, \mathbf{b})$ observed in the period " t " and " $t+1$ " respectively.

252 To calculate the Luenberger EEPI which represents the EEP change, we need to calculate six
 253 DDFs (activities in " t " and " $t+1$ " refer to technologies in the period " t ", " $t+1$ " and pooled respectively)
 254 by Models (22) and (23). Given that different undesirable output structures impact the EEP, a non-
 255 radial efficiency measure can help us identify specific effects and contributions of energy factor and
 256 specific undesirable outputs. The total EEPI can be further decomposed into specific EEPIs to analyze
 257 the contributions of specific undesirable outputs and energy inputs on total EEPI.

258 2.4. Exploratory Spatial Data Analysis- Moran's Index

259 The sample data we used contains abundant spatial information, so we sought to consider the
 260 spatial effects on EEP among different cities. We did so by applying Exploratory Spatial Data
 261 Analysis (ESDA) to describe the spatial distribution of the EEP. We used Moran's I statistic to
 262 measure the spatial correlation at the city level, including global spatial correlation and local spatial
 263 correlation [52].

264 (1) Global Moran's I statistics

265 The global Moran's I statistics reflect the similarity of attributes with their neighborhoods:

$$Moran's I_g = \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij} (Y_i - \bar{Y})(Y_j - \bar{Y})}{S^2 \sum_{i=1}^n \sum_{j=1}^n w_{ij}} \tag{24}$$

267 where Y_i represents the observed value in the i th city; n represents the number of the cities;
 268 w_{ij} represents the spatial weight matrix which reflects the spatial adjacent relationship in the i th
 269 and j th cities. Global Moran's I ranges from -1 to 1: value less than 0 represents a negative correlation,
 270 0 represents an uncorrelated relationship, and greater than 0 represents a positive correlation. As the
 271 global Moran's I moves towards -1, the spatial differences among cities become more obvious. If the
 272 obtained value of global Moran's I is near to 1, there are more intimate relations (e.g., high-value
 273 clusters or low-value clusters) among cities.

274 (2) Local Moran's I statistics

275

$$I_i = \frac{(x_i - \bar{x})}{S^2} \sum_j w_{ij} (x_j - \bar{x}) \quad (25)$$

276 If I_i is greater than 0, the i th spatial unit is similar to its neighbors (i.e., "high-high" or "low-
277 low"); I_i with a value lower than 0 represents dissimilarities to neighbors ("high-low" or "low-
278 high"). We can also visually identify the high-value clusters and low-value clusters according to the
279 map of local indicators of spatial association (LISA).

280 *2.5. Geographically Weighted Regression Model*

281 The spatial heterogeneity of our data means that explanatory variables have varying extent of
282 influence on the explained variable in different areas. Under the traditional econometric regression
283 model, regression parameters are same across whole regions and regional differences are neglected.
284 The geographically weighted regression (GWR) model [53, 54], which takes the regional difference
285 into account, allows regression parameters to change along with the geographical position.
286 Regression parameters in GWR are a data set rather than a fixed coefficient. The GWR model can be
287 derived as follows:

288

$$y_i = \beta_0(u_i, v_i) + \sum_{k=1}^K \beta_k(u_i, v_i) x_{ik} + \varepsilon_i \quad (26)$$

289 where vector y represents the explained variable; vector x represents explanatory variables; (u_i, v_i)
290 is the space coordinate (longitude and latitude) in the area i . $\beta_k(u_i, v_i)$ is the regression parameter for
291 the k th explanatory variable in the area i . ε_i is random error; we assume that
292 $\varepsilon_i \sim N(0, \sigma^2)$ and $\text{cov}(\varepsilon_i, \varepsilon_j) = 0$ ($i \neq j$). To estimate regression parameters, we assign $w_1(u_i, v_i)$,
293 $w_2(u_i, v_i)$, ..., $w_n(u_i, v_i)$ for the area i to represent influences from all other areas [55]. According to
294 the weighted least square method, we can then estimate the regression equation in (u_i, v_i) by
295 minimizing the following equation:

296

$$\sum_{i=1}^n w_i(u_i, v_i) [y_i - \beta_0(u_i, v_i) - \beta_1(u_i, v_i)x_{i1} - \cdots - \beta_K(u_i, v_i)x_{ik}]^2 \quad (27)$$

297 with

298

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_3 & x_{nk} \end{bmatrix} = \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix}$$

$$\boldsymbol{\beta}(u_i, v_i) = \begin{bmatrix} \beta_1(u_i, v_i) \\ \beta_2(u_i, v_i) \\ \vdots \\ \beta_K(u_i, v_i) \end{bmatrix}, \mathbf{W}_{(u_i, v_i)} = \begin{bmatrix} w_{i1} & 0 & \cdots & 0 \\ 0 & w_{i2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_{ik} \end{bmatrix} \quad (28)$$

299 We can then derive $\hat{\beta}(u_i, v_i) = (\mathbf{X}^T \mathbf{W}_{(u_i, v_i)} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}_{(u_i, v_i)} \mathbf{Y}$. The spatial weighting function is the key
300 to the above GWR model. Here, we use a Gaussian weighting function as the spatial weighting
301 function [55].

302 *3. Empirical Study*

303 *3.1. Data Source and Description*

304 We initiated our analysis using a data set containing 283 cities in China over 2010-2014. Certain
305 official statistics measurement criteria changed significantly in 2010, so we set the time period from

306 2010 to 2014 to maintain comparability across the data. We chose labor and capital as the two non-
 307 energy inputs. Labor is defined by the number of employees in a city's manufacturing industry
 308 excluding the employees working in the construction industry. To define capital, we referred to the
 309 total fixed assets and current assets at constant prices in 2010 [44]. We used the price indexes from
 310 corresponding provinces because fixed asset investment price indexes are not available at the city
 311 level. With regard to current assets, we adopted the consumer price index from the corresponding
 312 city to eliminate the influence of fluctuations in prices. We could not obtain total energy consumption
 313 in the industrial sector at the city level, so we chose the electricity consumption as an approximate
 314 substitution [46]. We used gross industrial output as the sole desirable output and adopted the ex-
 315 factory price index of industrial products to eliminate price fluctuations. The "undesirable outputs"
 316 referred to in this paper contain three specific pollutants: industrial wastewater, industrial sulfur
 317 dioxide (SO_2), and industrial soot. We also used the ratio of value added of the service industry in
 318 the city's GDP to analyze GWR. Data was collected from the China City Statistical Yearbook (2011-
 319 2015) [56] and China Provincial Statistical Yearbook (2011-2015) [57]. The descriptive statistics of
 320 inputs and outputs we applied to empirical analysis are shown in Table 1.

321 **Table 1.** Descriptive statistics of inputs and outputs in 2010-2014.

Index	Variable	Unit	Quantity	Mean	St.Dev	Min	Max
Non-energy input	Labor force	thousand persons	283×5	19.16	28.18	0.39	260.92
	Current assets	billion Yuan	283×5	116.27	196.44	0.83	1808.43
	Fixed assets	billion Yuan	283×5	90.15	106.34	0.86	827.94
Energy input	Industrial electricity	100 million kWh	283×5	60.19	91.97	0.045	805.76
Desirable output	Gross industrial output	billion Yuan	283×5	310.31	423.71	1.53	3278.23
Undesirable output	Industrial wastewater	million tons	283×5	74.71	84.99	0.23	868.04
	Industrial sulfur dioxide	thousand tons	283×5	58.78	57.33	0.002	572.75
	Industrial soot	thousand tons	283×5	41.71	188.64	0.034	5168.81

322 *3.2. Results and Discussion*

323 *3.2.1. Static Energy and Environmental Performance*

324 *3.2.1.1. Descriptive Statistics of Energy and Environmental Performance*

325 We first compared the EEP and its decompositions consisting of energy, wastewater, SO_2 , soot
 326 emission performance (sub-performance or sub-efficiency) at both national and regional levels. Our
 327 calculations of the mean, standard deviation, minimum value, and maximal value in the four areas
 328 involve five-year \times cities' total performance and its decompositions (where \times represents the number
 329 of cities in the corresponding area) encompassing both temporal and spatial dimensions. Table 2
 330 shows the descriptive statistics of EEP for 283 cities in China in 2010-2014.

331

332

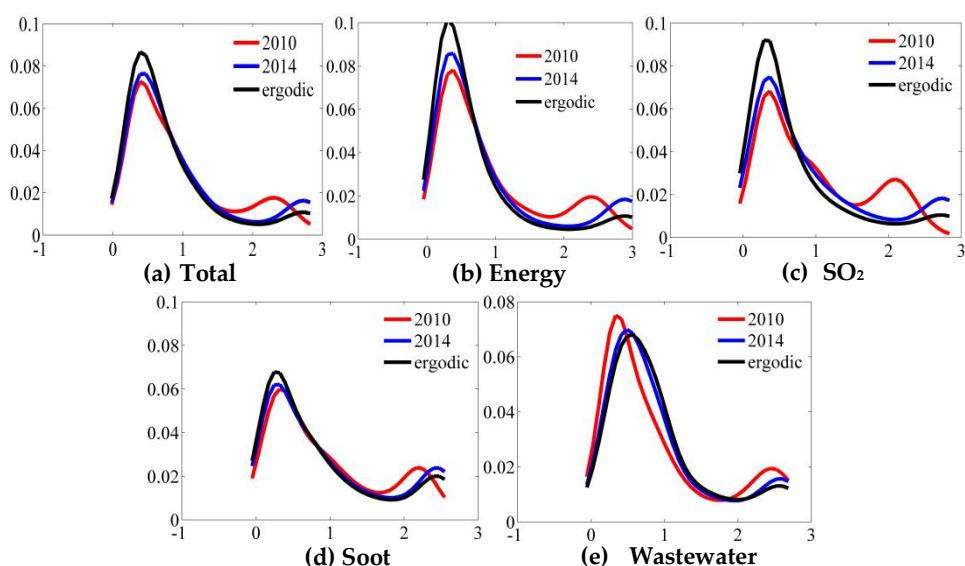
Table 2. Descriptive statistics of EEP and sub-performances.

Performance (efficiency)	Area	Quantity	Mean	St.Dev	Min	Max
Total	East	87×5	0.473	0.298	0.069	1.000
	China	283×5	0.365	0.292	0.016	1.000
	Central	99×5	0.362	0.282	0.031	1.000
	Northeast	33×5	0.272	0.236	0.025	1.000
	West	64×5	0.270	0.276	0.016	1.000
Energy	East	87×5	0.456	0.328	0.042	1.000
	Central	99×5	0.364	0.304	0.012	1.000
	China	283×5	0.358	0.315	0.008	1.000
	West	64×5	0.259	0.291	0.008	1.000
	Northeast	33×5	0.257	0.253	0.019	1.000
Wastewater	East	87×5	0.418	0.326	0.015	1.000
	China	283×5	0.355	0.308	0.011	1.000
	Central	99×5	0.347	0.303	0.038	1.000
	Northeast	33×5	0.333	0.283	0.024	1.000
	West	64×5	0.280	0.292	0.011	1.000
SO ₂	East	87×5	0.481	0.330	0.037	1.000
	China	283×5	0.358	0.321	0.007	1.000
	Central	99×5	0.338	0.314	0.020	1.000
	Northeast	33×5	0.281	0.266	0.017	1.000
	West	64×5	0.264	0.303	0.007	1.000
Soot	East	87×5	0.572	0.336	0.014	1.000
	China	283×5	0.403	0.339	0.014	1.000
	Central	99×5	0.356	0.311	0.001	1.000
	West	64×5	0.299	0.311	0.004	1.000
	Northeast	33×5	0.246	0.267	0.014	1.000

333 3.2.1.2. Distribution Dynamic Analysis of Energy and Environmental Performance

334 We next tracked the EEP evolution for 283 cities in China via the distribution dynamics approach
 335 [58-60]. Each city's EEP and its decompositions were divided by 283 cities' yearly average levels to
 336 form the corresponding relative performance indicators. These indicators can then be used to
 337 estimate the kernel densities and stochastic kernels.

338 Figure 1 shows the distributions of kernel densities for the total performance and sub-
 339 performances. The distribution of total performance in 2010 is bimodal with more than 80% of cities'
 340 performance distributed around 0.5 times the average performance level and other cities'
 341 performance concentrated on 2.5 times level (possessed by the best performers). Most cities' total
 342 performances were below average in 2010, but a select few cities performed extremely well and
 343 formed a small convergence club led by best performers. In 2014, the distribution of total performance
 344 nearly reached around 0.5 times the average performance level; the small convergence club dispersed
 345 and members in it became smaller. The ergodic distribution indicates clear convergence to 0.5 times
 346 the average level and small convergence club would nearly disappear. Other kernel density plots for
 347 sub-performances indicate that: 1) energy performance features strong convergence to 0.5 times the
 348 average performance level; 2) small convergence clubs for environmental performances are more
 349 obvious than energy performance.

350
351352
353

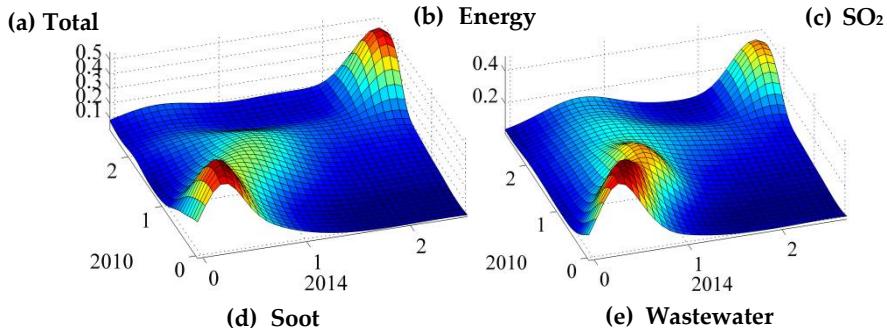
354

Figure 1. Distributions of total performance and sub-performances

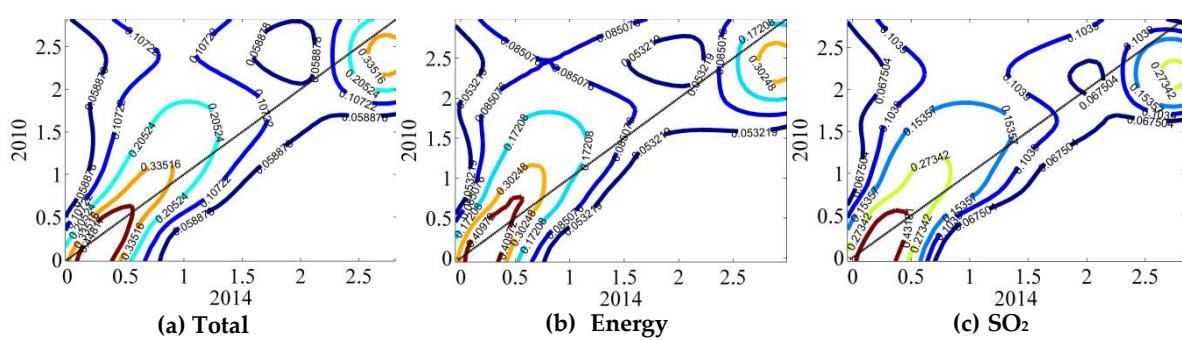
355

356
357

358



359



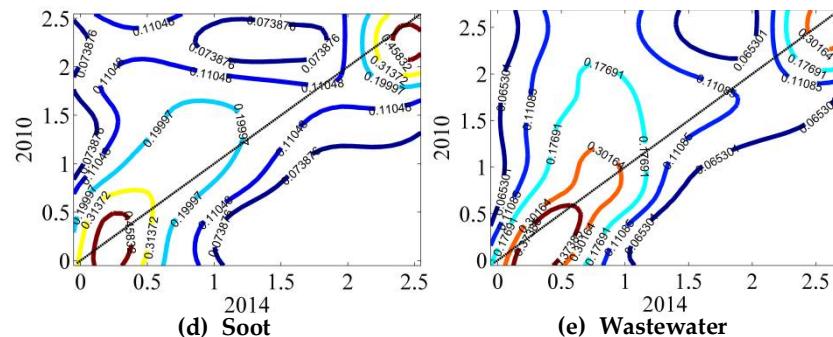


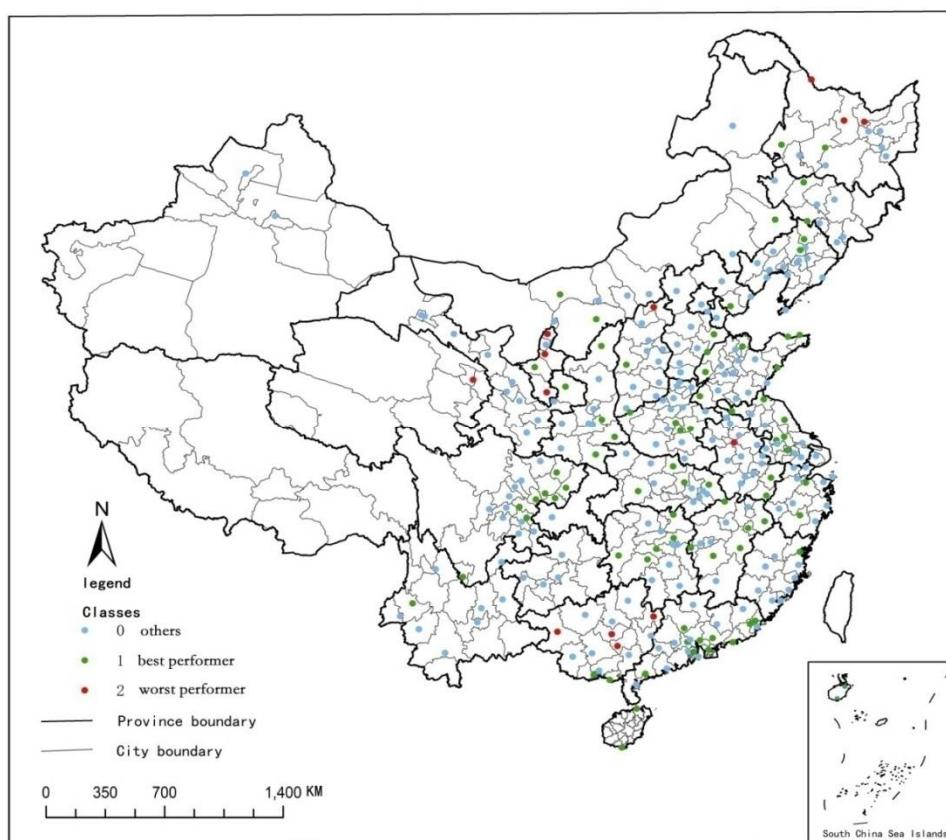
Figure 3. Contour stochastic kernel plots for total and sub-performances

As shown in the 3D stochastic kernel and 2D contour part plots (Figures 2-3), for cities with below-average levels in total performance and sub-performances, the transition probability generally moves counter-clockwise from the 45° diagonal – cities with relatively low EEP compared to the average level remarkably improved over the study period. Cities with above-average performance, conversely, can be divided into two groups: The first group, the small convergence club led by the best performers, remain near the 45° diagonal in the upper right-hand corner. In the second group, cities with high total performance and sub-performances gradually decrease in efficiency and converge to average levels.

3.2.1.3. Analysis of Best and Worst Performers

Identifying the best performers can provide good benchmarks for cities with lower efficiency in terms of energy conservation and emissions abatement. If EEP equals 1 ($D^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) = 0$), i.e., the city was located in the production frontier for at least in one year between 2010 and 2014, the city is defined as a “best performer”. As shown in Figure 4, the best performers are mainly located in Guangdong, Shandong, Jiangsu, Jiangxi, Sichuan, and Hainan provinces. The best performers possess advanced service industries, which generally consume few resources, or have high ecological quality. In Qingdao, Shenzhen, and Dongguan, for example, the ratio of service industry to GDP was 51.22%, 57.39%, and 52.14% in 2014, respectively. The service industry consumes relatively little energy though it does require a great deal of labor, capital, and technology. Besides, these developed cities with sufficient funding also can improve their energy conservation and abatement ability via technical innovation and advanced managerial experience. These cities consume less energy and emit less pollution while maximizing desirable outputs. Provinces such as Jiangxi, Sichuan, and Hainan have less developed economies but still exhibit high EEP due to natural endowments (high ecological quality) and economic support from tourism.

A city with EEP no more than 0.1 ($D^t(\mathbf{x}^t, \mathbf{e}^t, \mathbf{y}^t, \mathbf{b}^t; \mathbf{g}) > 0.9$) in all years of 2010-2014 is defined as a “worst performer”. As shown in Figure 4, the worst performers are mainly distributed in Heilongjiang, Guangxi, Ningxia, and Shanxi provinces which are generally rich in coal or nonferrous metal resources. Cities like Datong (Shanxi), Shizuishan (Ningxia), Huainan (Anhui) and Hegang (Heilongjiang) are important coal bases of China. A great deal of pollutants are emitted by coal exploitation and processing. Other cities like Guigang (Guangxi) and Baise (also Guangxi) are important nonferrous metal bases of China. Nonferrous metallurgy likewise produces substantial air pollutants as well as mercury and chromium pollution.



393

394 **Figure 4.** Distribution of best performers and worst performers

395 3.2.2. Analysis of Dynamic Changes in Energy and Environmental Performance

396 3.2.2.1. National Level

397 We examined dynamic changes in EEP and its decompositions by EEPI. We first calculated the
 398 average value at the country level involving a five-year span of 283 cities' total performance changes
 399 and decompositions over temporal and spatial dimensions. The average EEP change, technical
 400 efficiency change, and technological change are 2.38%, -1.57% and 3.95%, respectively (Table 3). That
 401 is to say, China made considerable progress in the energy conservation and emissions abatement in
 402 the study period. The Chinese government made great strides in environmental protection under the
 403 12th five-year plan (FYP) (2011-2015), which focused on upgrading the industrial structure for low
 404 energy consumption and pollution reduction. Further, the manufacturing industry comprised 57.2%
 405 of GDP in 2010 but only 47.1% in 2014. Changes in technical efficiency continually declined with the
 406 exception of the period 2012-2013, whereas a slower and slower upward trend was observed in
 407 technological changes. In other words, EEP change is mainly driven by technological progress rather
 408 than technical efficiency improvement [11, 46, 61]. Government policies targeting the improvement
 409 of technical efficiency in the manufacturing sector may indeed enhance overall environmental
 410 performance.

411

Table 3. Arithmetic mean of EEPI and its decompositions for 283 cities

Index	2010-2011	2011-2012	2012-2013	2013-2014	average
$EEPI_{total}^{t,t+1}$	0.0004	0.0246	0.0634	0.0067	0.0238
$effch_{total}^{t,t+1}$	-0.0969	-0.0067	0.0579	-0.0172	-0.0157
$techch_{total}^{t,t+1}$	0.0973	0.0313	0.0055	0.0239	0.0395

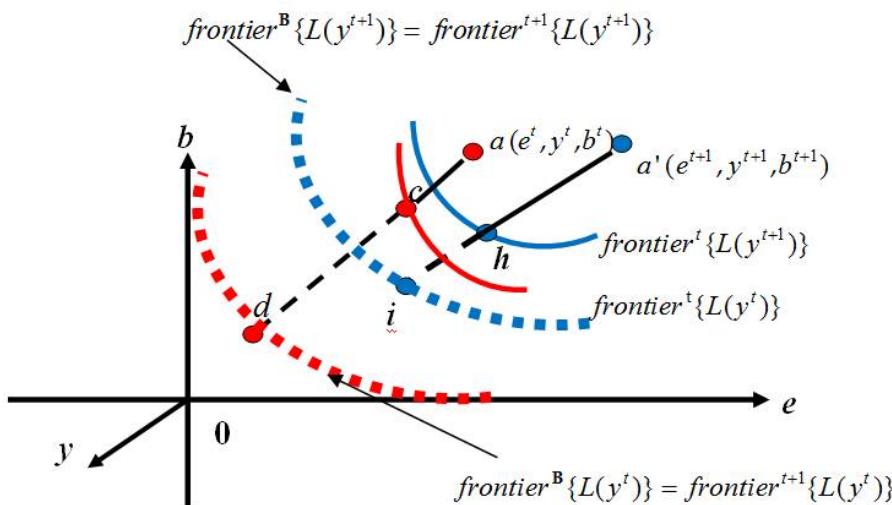
412 Cities on the production frontier achieved rapid technological progress and made other cities
 413 more difficult to catch up with the production frontier. In other word, the decrease of technical
 414 efficiency is a relative deterioration caused by fast technological progress. The decline in technical
 415 efficiency is roughly consistent with observations previously made by Meng, Fan, Zhou and Zhou
 416 [61]. We further interpreted the deterioration of technical efficiency by assuming that a production
 417 activity with one energy input, one desirable output, and undesirable output can have reduced
 418 energy input and undesirable output while fixing desirable output as shown in Figure 5. The energy
 419 and environmental production technology can be represented by the energy and environmental
 420 input set:

421
$$L(y) = \{(e, b) : (e, b) \text{ can produce } y\} \quad (29)$$

422 Suppose that one production unit's activities are observed with two
 423 points $a(e^t, y^t, b^t)$ and $a'(e^{t+1}, y^{t+1}, b^{t+1})$ at periods "t" and "t+1" respectively. frontier^t represents
 424 the production frontier at period "t". frontier^B denotes the biennial production frontier of pooled
 425 observations from period "t" and "t+1", and frontier^B could be completely determined
 426 by frontier^{t+1} which implies that $\text{frontier}^B = \text{frontier}^{t+1}$. Considering $y^{t+1} \geq y^t$ with the
 427 coordinate y , production frontiers in blue lines (i.e., cross section with $y = y^{t+1}$) are higher than those
 428 in red lines (i.e., cross section with $y = y^t$) as a result of technological progress. We express the
 429 biennial Luenberger index as follows:

430
$$\begin{aligned} EEPI_B^{t,t+1} &= (a - d) - (a' - i) \\ effch_B^{t,t+1} &= (a - c) - (a' - i) \\ techch_B^{t,t+1} &= \{(a - d) - (a - c)\} - \{(a' - i) - (a' - i)\} \\ &= (c - d) \end{aligned} \quad (30)$$

431 Given $(a - c) < (a' - i)$, as shown in Fig. 5, the catch up effect becomes weak and the technical
 432 efficiency deteriorates, which indicates that relative deterioration occurs. However, considering $(a -$
 433 $d) > (a' - i)$, a' is closer to frontier^B than a , which implies that the EEP for observed production
 434 activity improves from period t to $t+1$.



435

436 **Figure 5.** Deterioration of technical efficiency

437 Table 4 shows the contributions of specific energy and undesirable output to the changes in total
 438 performance and sub-performances. Energy plays a more important role (contribution over 50%)
 439 than undesirable outputs in total performance change and its four sub-performances. With respect to
 440 undesirable outputs, SO₂ performance change has the strongest effect on total performance change
 441 (25.36%) while the effect of soot emission performance change is the lowest (0.80%). Technological

442 change behaves similarly; SO₂ technological change contributes more to total technological change
 443 (26.91%) than soot technological change (4.15%). Technical efficiency change shows much different
 444 characteristics. The contribution from wastewater technical efficiency change to total technical
 445 efficiency change was the smallest (4.74%) while SO₂ technical efficiency change made the largest
 446 contribution (28.64%). In effect, SO₂ has become the largest contributor to total performance change
 447 and sub-performance changes among the three undesirable outputs.

448 **Table 4.** Contributions of specific energy and undesirable output to total performance change, sub-
 449 performance changes

Index	$EEPI_{total}^{t,t+1}$	$EEPI_{energy}^{t,t+1}$	$EEPI_{SO2}^{t,t+1}$	$EEPI_{soot}^{t,t+1}$	$EEPI_{wastewater}^{t,t+1}$
Average	0.0238	0.0123	0.0061	-0.0002	0.0055
Contribution	100%	51.01%	25.36%	0.80%	22.83%
Index	$effch_{total}^{t,t+1}$	$effch_{energy}^{t,t+1}$	$effch_{SO2}^{t,t+1}$	$effch_{soot}^{t,t+1}$	$effch_{wastewater}^{t,t+1}$
Average	-0.0157	-0.0086	-0.0045	-0.0018	-0.0007
Contribution	100%	54.97%	28.64%	11.65%	4.74%
Index	$techch_{total}^{t,t+1}$	$techch_{energy}^{t,t+1}$	$techch_{SO2}^{t,t+1}$	$techch_{soot}^{t,t+1}$	$techch_{wastewater}^{t,t+1}$
Average	0.0395	0.0210	0.0106	0.0016	0.0063
Contribution	100%	53.09%	26.91%	4.15%	15.85%

450 3.2.2.2. Regional Level

451 China can be divided into four areas by economic development levels and geographical
 452 characteristics: eastern, northeastern, central, and western areas. Urban agglomeration, considered to
 453 be an economic growth point, leads regional economic development. We explored the regional
 454 differences in urban agglomeration accordingly. The ten agglomerations we observed include
 455 Beijing-Tianjin-Hebei, the central and southern of Liaoning province, the Yangtze River Delta, the
 456 western side of the Taiwan Strait, the Shandong Peninsula, the Central Plain, the middle Yangtze
 457 River, the Pearl River Delta, Sichuan and Chongqing, and the Central Shaanxi Plain [62, 63].

458 Table 5 shows the average changes in EEPI and its decompositions among the four areas for
 459 every two consecutive years. The average changes in EEP are positive indicating a marked
 460 improvement in the four areas over the study period. The central area shows the most significant
 461 performance improvement (2.97%), followed by the eastern (2.73%) and western (1.96%) areas. The
 462 northeastern area experienced almost no EEP change (0.50%). Heavy industry renders the
 463 northeastern area less able to improve its EEP. We also found that the eastern area achieved the
 464 greatest technological progress (5.86%) while experiencing the greatest decline in technical efficiency
 465 (-3.14%) among the four areas; technological progress in the eastern area makes a greater contribution
 466 to performance improvement, which substantially offsets the deterioration of technical efficiency.

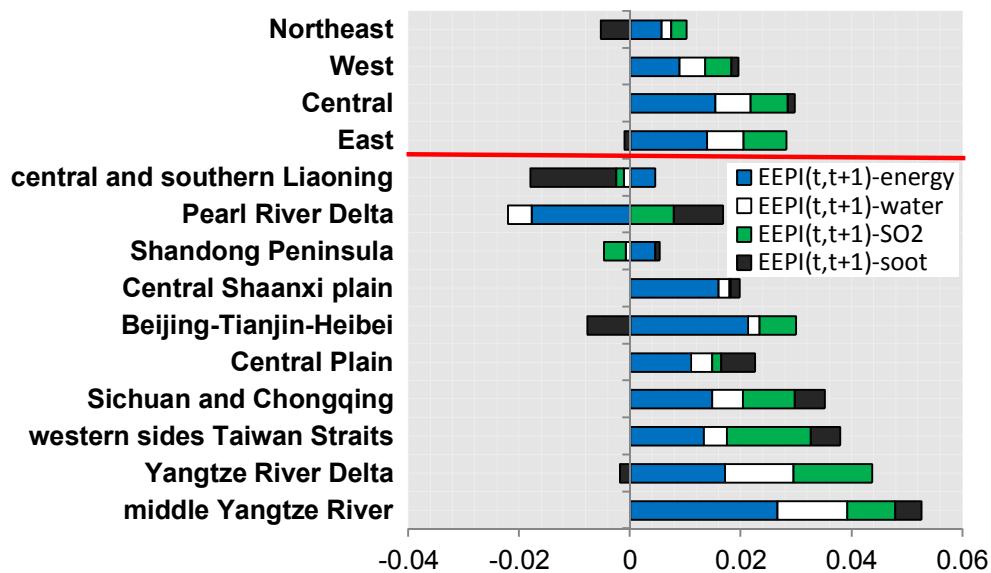
467 **Table 5.** Arithmetic means for $EEPI_{total}^{t,t+1}$, $effch_{total}^{t,t+1}$ and $techch_{total}^{t,t+1}$ in 2010-2014 among four areas

Arithmetic mean	$EEPI_{total}^{t,t+1}$	$effch_{total}^{t,t+1}$	$techch_{total}^{t,t+1}$
East	0.0273	-0.0314	0.0586
Central	0.0297	-0.0081	0.0378
West	0.0196	-0.0032	0.0228
Northeast	0.0050	-0.0215	0.0264

468 We next compared the effects of specific energy and undesirable output on the changes in total
 469 performance and sub-performances in the four areas and ten urban agglomerations. Figure 6 shows
 470 the contributions from specific energy and undesirable outputs to total performance change among
 471 four areas and ten urban agglomerations. Energy contribution rates in the eastern (50.93%), central

472 (51.79%), and northeastern (88.20%) areas explain more than half of the performance improvement
 473 but less so in the western area (45.38%). Most sub-performances in the four areas were improved.
 474 Soot emission performance declined in eastern and northeastern areas over 2010-2014, likely because
 475 the environmental regulation for soot emissions was eased during the study period in line with the
 476 truth that severe haze happened frequently in China. In the 10th FYP period, the central government
 477 placed quantified constraints on soot emission which were canceled in the 11th and 12th FYP periods;
 478 the top priority for the central government with mixed environmental regulations was to curb
 479 excessive emissions of SO_2 and NO_x .

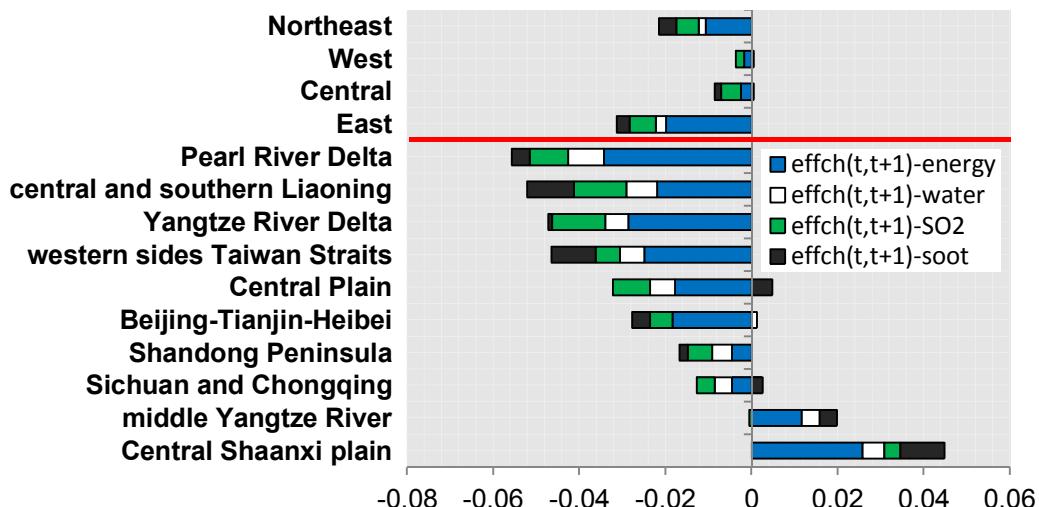
480 Energy is apparently the major driving force for improving total performance in the Beijing-
 481 Tianjin-Hebei region, where energy accounts for 95.68% of the improvement in total performance.
 482 Energy contributed 80.64% to the improvement in total performance in the central Shaanxi plain,
 483 which is an important coal base in China. Most urban agglomerations achieved significant
 484 improvement in total performance during 2010-2014, especially the middle Yangtze River. Total
 485 performance declined in the central and southern Liaoning province, however, due to the
 486 deterioration in soot emission performance. Total performance in the Pearl River Delta also declined
 487 due to a rapid increase in energy consumption.



488

489 **Figure 6.** Contributions of specific energy and undesirable outputs performance to total
 490 performance among four areas and ten urban agglomerations

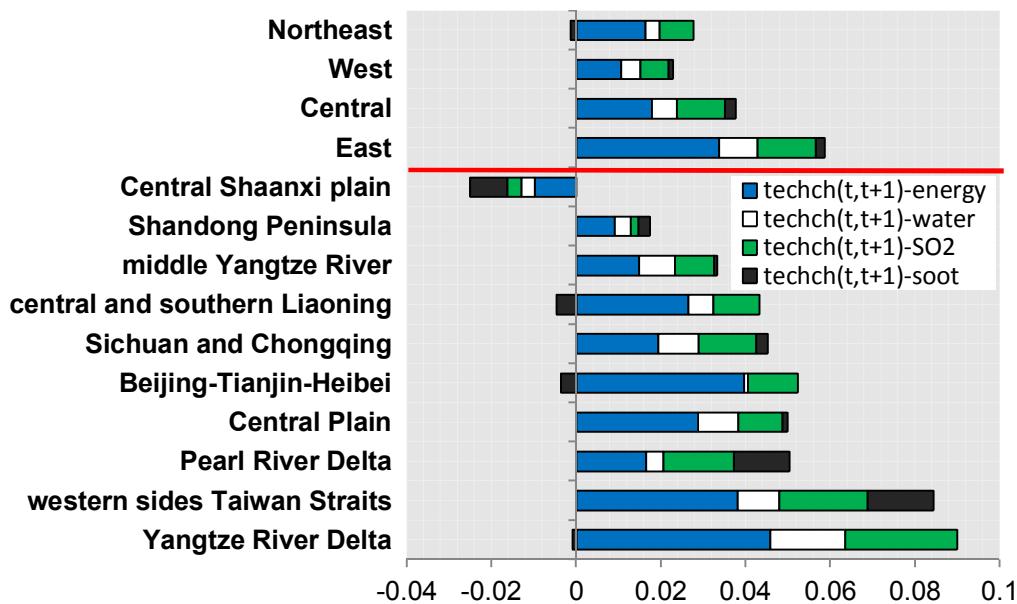
491 Figure 7 shows contributions from specific energy and undesirable outputs to the total technical
 492 efficiency change among the four areas and ten urban agglomerations. Total technical efficiency
 493 decreased significantly in all four regions. Deterioration in energy technical efficiency is the root
 494 cause of decline in total technical efficiency in the four areas with exception of the central area, which
 495 is defined by a decrease in SO_2 technical efficiency (elsewhere the second-most important cause of
 496 decline). Technical efficiency in most urban agglomerations decreased continually from 2010 to 2014.
 497 Only the middle Yangtze River area and central Shaanxi plain made progress in technical efficiency,
 498 which can be attributed to improvements in energy efficiency.



499

500 **Figure 7.** Contributions of specific energy and undesirable outputs to total technical efficiency
 501 among four areas and ten urban agglomerations

502 Figure 8 shows the contributions of specific energy and undesirable outputs to total
 503 technological change among the four areas and ten urban agglomerations. Energy contributed more
 504 significantly than the sum of undesirable outputs in the total technological change in the four areas;
 505 SO₂ technology was markedly improved while soot technology only slightly so. Technical progress
 506 in almost all ten urban agglomerations (except the central Shaanxi) grew continually. Total
 507 technological change in the central Shaanxi area declined 2.5% on average due to the bad performance
 508 of best performers around the central Shaanxi area.



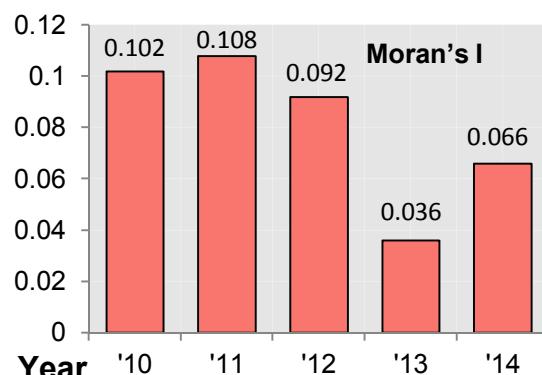
509

510 **Figure 8.** Contributions of specific energy and undesirable outputs to total technological change
 511 among four areas and ten urban agglomerations

512 3.2.3. Analysis of Spatial Distribution Evolution on Energy and Environmental Performance Potential

513 3.2.3.1. EEP Spatial Pattern

514 The average value of global Moran's I_g is 0.0807, indicating a positive spatial correlation. The
 515 positive difference in EEP spatial distribution increases along with the decline of global Moran's I_g .

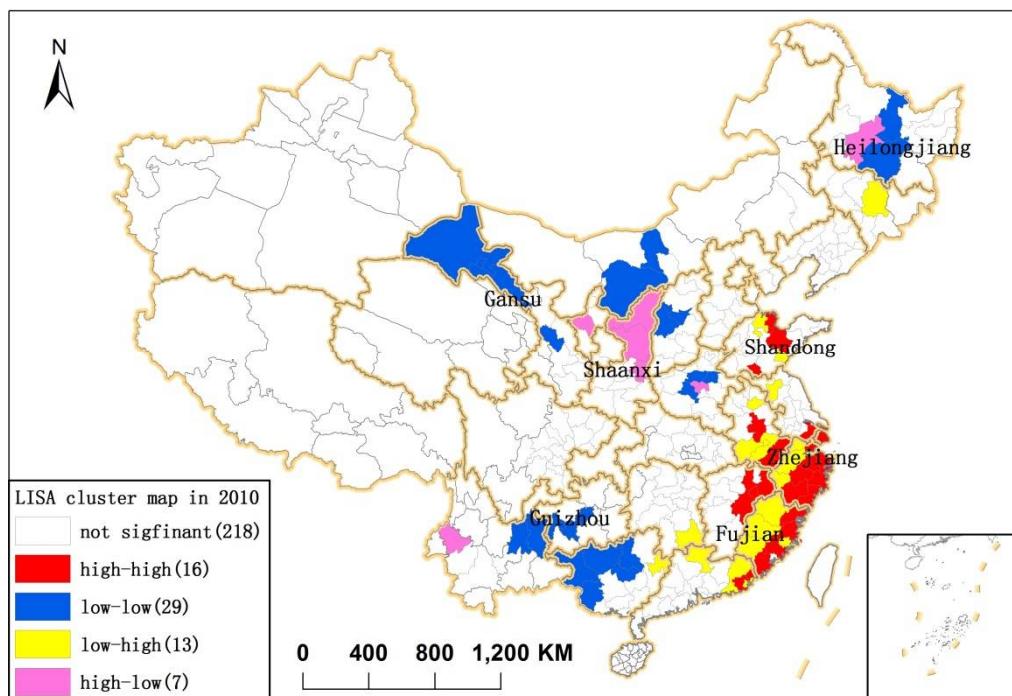


516

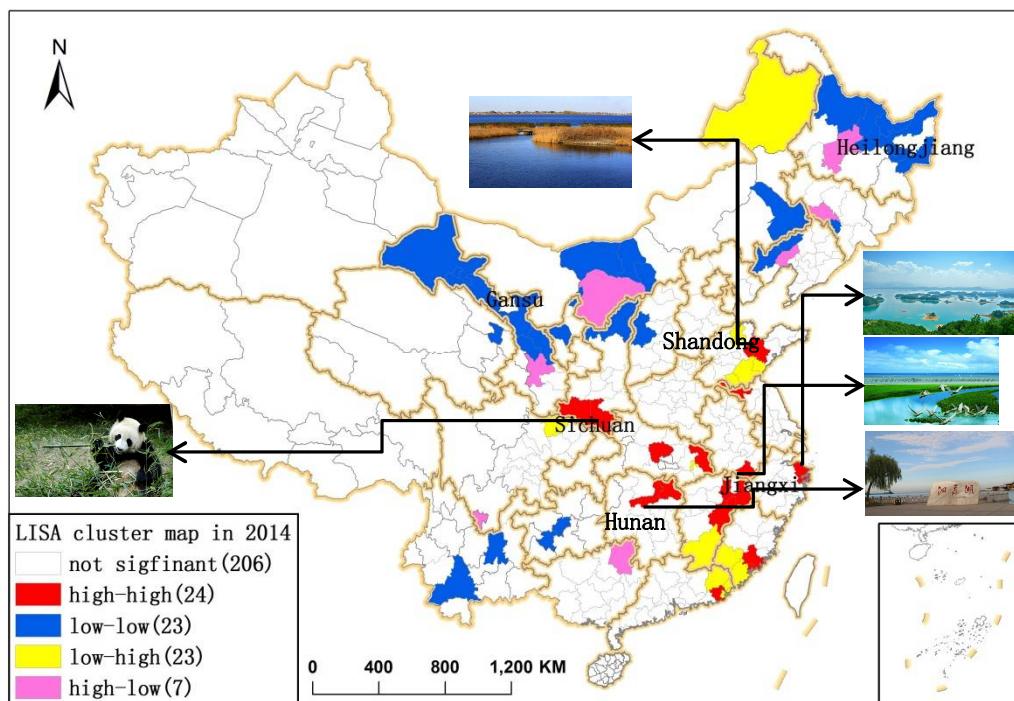
517

Figure 9. Changes in global Moran's I_g of EEP

518 We used a LISA cluster map based on the local Moran's I_l to observe the spatial agglomeration
 519 effects, i.e., whether a spatial unit shows a spatial correlation with its neighbors or not (Figure 10).
 520 There is significant agglomeration effect evidenced by four types of spatial correlations: high-high,
 521 low-low, low-high (middle is low and surroundings are high) and high-low (middle is high and
 522 surroundings are low). The high-high type mainly exists in the Huanghe Delta and the developed
 523 southeast coast of China in 2010. The high-high type areas spread from the developed southeast coast
 524 to the areas with high ecological quality, such as the northern border between Sichuan and Hubei
 525 provinces (which have a famous giant panda habitat called the Shennongjia National Nature Reserve)
 526 or the Dongting lake basin (the third-largest lake in China renowned for its beautiful scenery in the
 527 north of Hunan province); China's second largest lake, Poyang, is located in the northern Jiangxi
 528 province with a forest acreage over 60%; the Huanghe Delta and Yangtze River Delta similarly have
 529 rich wetland resources which maintain the high-high cluster characteristics resulting from their
 530 inherently high ecological quality. Cities with high ecological quality, especially those with national
 531 nature reserves, wetlands and forests, most commonly feature high-high type correlations.



532



533

534

535 3.2.3.2. Influencing Factors on Energy and Environmental Performance Potential

536 Considering the spatial heterogeneity, we used the GWR method instead of the ordinary (global)
 537 linear regression to capture influencing factors on EEP potential with the aim to reveal its spatially
 538 varying links. Energy is positively correlated with pollutants because pollutants mainly originate in
 539 the combustion of energy sources. Energy conservation potential and SO₂ emission abatement
 540 potential exhibit similar distribution characteristics for this reason. In this study, we focused on the
 541 influencing factors of SO₂ emission abatement potential:

$$542 \quad Potential_{SO_2} = D_{SO_2}^t (x^t, e^t, y^t, b^t, g) \times SO_2 \text{ Emission} \quad (31)$$

543 We used three key factors to interpret the change in SO₂ emission abatement potential: gross
 544 industrial output, pollution intensity, and industrial structure. Here, the ratio of SO₂ emission to gross
 545 industrial output represents pollution intensity; the industrial structure is measured by the share of
 546 GDP of the service industry [43, 64, 65]. The following GWR model was used to investigate the effects
 547 of various influencing factors on SO₂ emission abatement potential:

$$548 \quad Potential_{SO_2} = \beta_0(u_i, v_i) + \beta_1(u_i, v_i)GIO_i + \beta_2(u_i, v_i)SI_i + \beta_3(u_i, v_i)SR_i + \varepsilon_i \quad (32)$$

549 where β denotes the coefficient parameter; ε is a random error term; GIO denotes the gross
 550 industrial output; SR denotes the share of GDP of the service industry; SI represents SO₂ pollution
 551 intensity.

552 As shown in Table 6, Model (32) passes the 1% level significance test. The R^2 indicator of
 553 goodness of fit is 0.67 (R^2 in global regression result is 0.20), which is fairly high. The range of local
 554 R^2 is between 0.36 and 0.9.

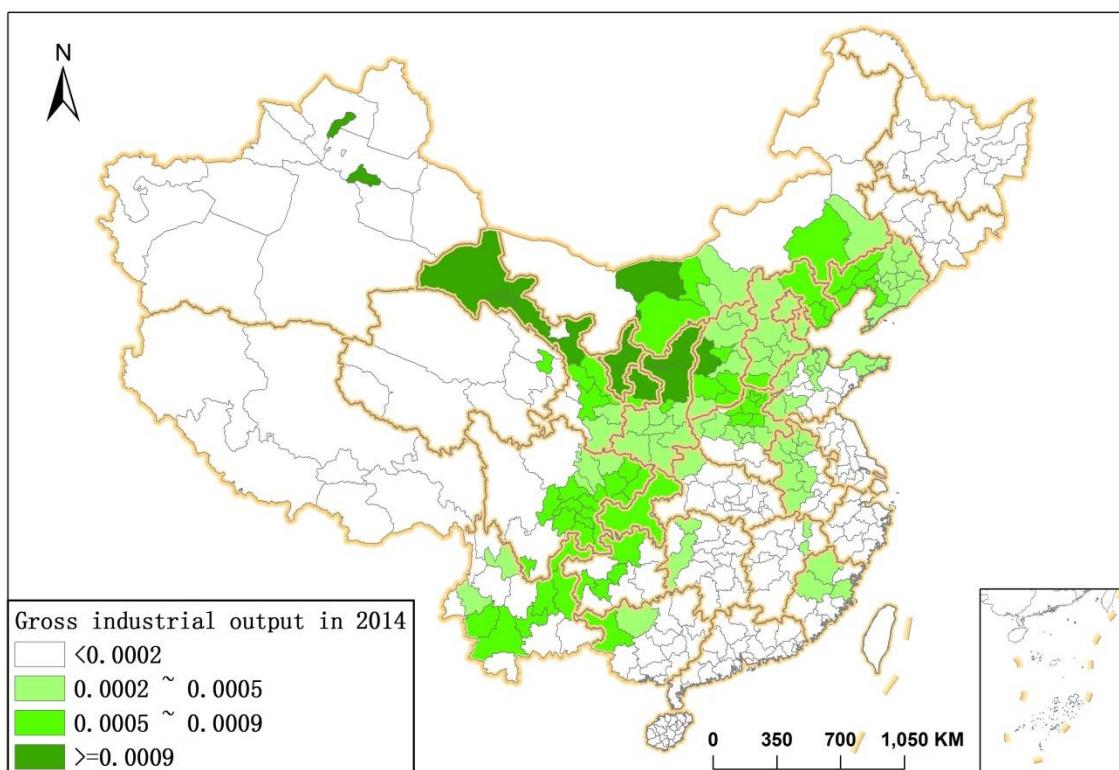
555 **Table 6.** Overall fitting results GWR model based on SO₂ emission abatement potential

Indicator	SO ₂ emission abatement potential
-----------	--

local R^2	0.36-0.90
R^2	0.67
adjusted R^2	0.57
residual sum of squares	5.17 E+10
AICc	6322
F	4.84
probability	0.003

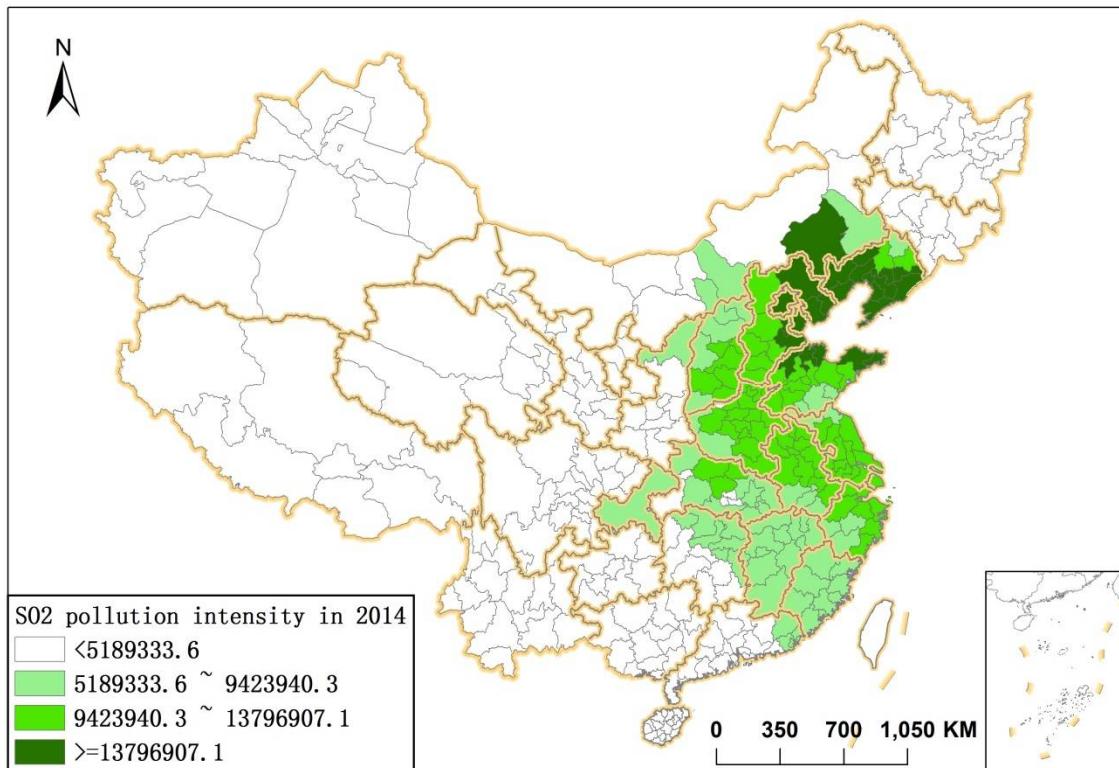
556 Figure 11(a)-(c) shows the spatial distribution of influencing factors that affect SO₂ emission
 557 abatement potential. The natural breaks (Jenks) method was used to split the regression coefficient
 558 into four categories to ensure scientific geographical results. In most cities, the gross industrial output
 559 shows a positive effect on SO₂ emission abatement potential. Cities with larger gross industrial output
 560 need to consume more energy and are thus inclined to emit more SO₂. The strongest impact
 561 coefficients of gross industrial output are distributed in the western parts of the country. The effects
 562 of gross industrial output on SO₂ emission abatement potential also show a significant downtrend
 563 from the western interior to the eastern coast. Pollution intensity is also correlated with SO₂ emission
 564 abatement potential, because cities with higher pollution intensity produce more pollutants. Heavy
 565 industry accounts for a considerable proportion of manufacturing in areas around the Bohai Gulf.
 566 Cities in the Shandong Peninsula, central and southern Liaoning province, and Beijing-Tianjin-Hebei
 567 showed the strongest pollution intensity in terms of SO₂ emission abatement potential (i.e., areas
 568 around the Bohai Gulf where severe haze is relatively common [66-68]).

569 The ratio of the service industry to GDP shows an uncertain effect on SO₂ emission abatement
 570 potential. We next examined the correlation between the ratio of the service industry to GDP and SO₂
 571 emission abatement potential with standardized z-scores, as shown in Figure 12. The Pearson
 572 correlation between them is pretty weak (0.119). Only 37 (55) cities pass the significance tests at 5%
 573 (10%) level among all 283 cities. This suggests that industrial structure is not the significant
 574 influencing factor of SO₂ emission abatement potential during our study period. In fact,
 575 improvements to industrial structure caused by relatively fast growth in the service industry do not
 576 significantly reduce SO₂ emissions. Although the ratio of manufacturing industry to GDP is
 577 decreasing on the whole, the ever-increasing value added by the manufacturing industry increases
 578 SO₂ emissions and leaves considerable room for emission abatement. This phenomenon is more
 579 common in developed cities, like Shanghai or cities in Jiangsu and Zhejiang provinces. He, et al. [69]
 580 and Hu, et al. [70] similarly found that industrial structure does not significantly affect industrial
 581 pollution at the city level in China.



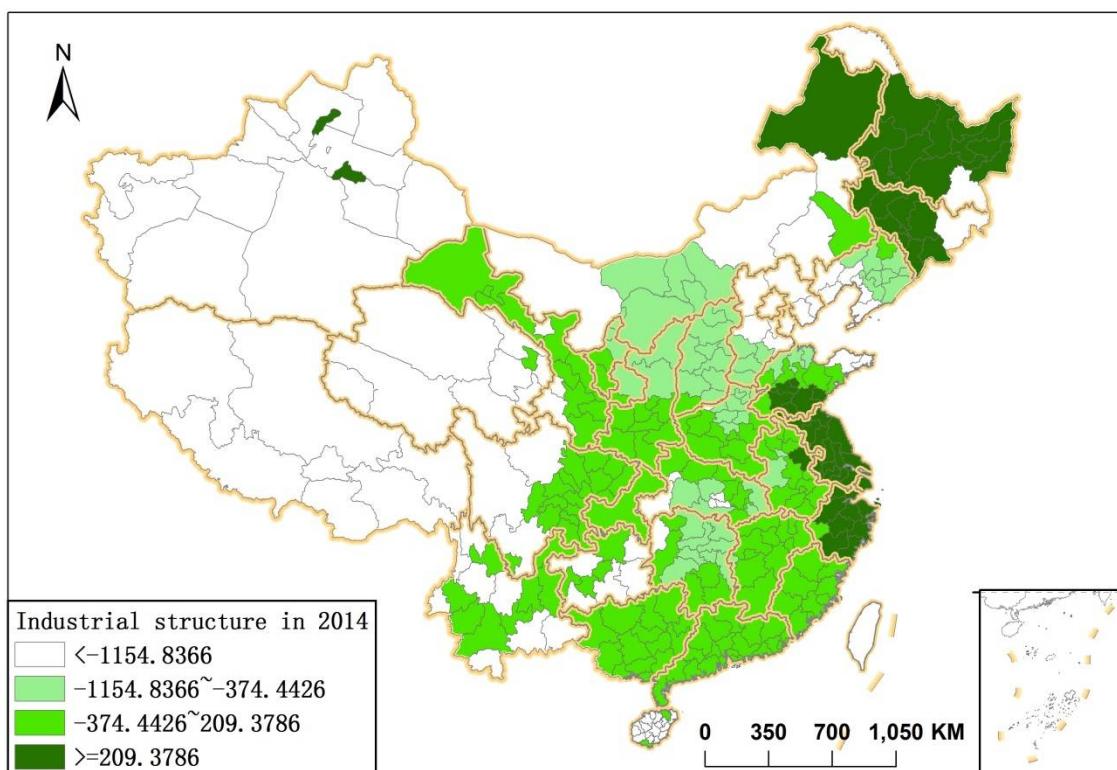
582

(a) Regression coefficient of gross industrial output



583

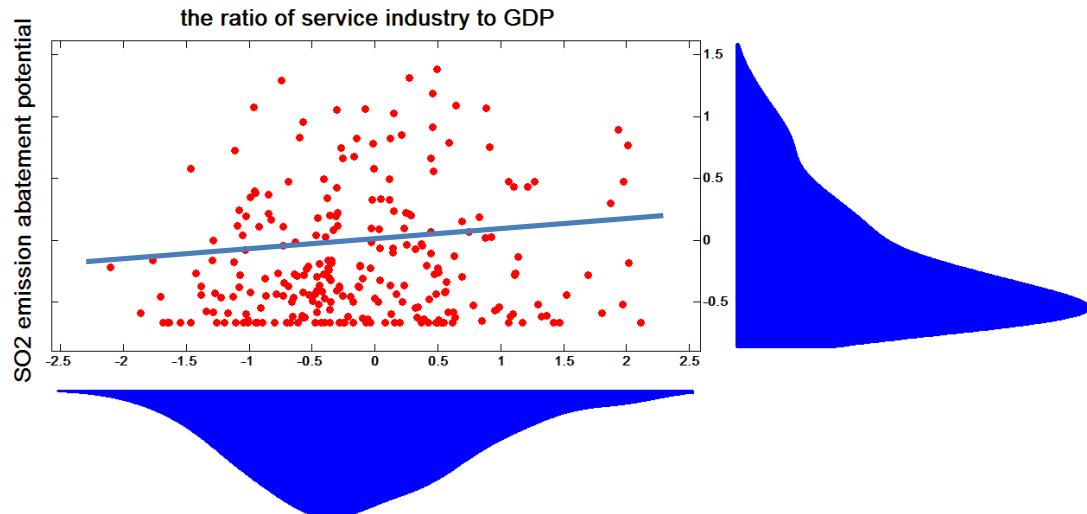
(b) Regression coefficient of SO₂ pollution intensity



(c) Regression coefficient of industrial structure

584

585

Figure 11. Local GWR estimates of influencing factors for SO₂ emission abatement potential in 2014

586

587
588**Figure 12.** Correlation between ratio of service industry to GDP and SO₂ emission abatement potential589 **4. Conclusions**

590 China is currently facing a trade-off between economic development and environmental
 591 protection. Chinese cities represent complete, independent administrative districts which implement
 592 environmental regulations; top administrators are held accountable for environmental damages. A
 593 given city's energy utilization and environment regulation directly influence the amount to which it
 594 pollutes the environment, and to identify the best performer and regional difference on EEP will

595 stimulate the cities to learn from each other. This paper proposed a new biennial Luenberger EEP to
596 avoid infeasibility problem in conducting data envelopment analysis. Changes in EEP were
597 decomposed into technical efficiency change and technological change. To examine the contributions
598 of specific undesirable outputs (e.g., SO₂, soot, and wastewater) and energy inputs to the EEP, the
599 total performance was divided into sub-performances via a non-radial measure. We empirically
600 analyzed a sample of 283 cities from 2010 to 2014 accordingly and investigated the primary drivers
601 of emission abatement potential based on the GWR model. Our main conclusions can be summarized
602 as follows.

603 (1) The best performers are mainly located in the Guangdong, Shandong, Jiangsu, Jiangxi,
604 Sichuan, and Hainan provinces, while the worst performers are mainly distributed in Heilongjiang,
605 Guangxi, Ningxia, and Shanxi provinces. The best performers possess advanced service industries
606 and either consume less energy or have inherently high ecological quality, while the worst
607 performers depend on abundant coal and nonferrous metal resources to support economic
608 development. Best performers tended to move from the coastal towards the inland area over time.

609 (2) At the national level, average EEP change, technical efficiency change, and technological
610 change values are 2.38%, -1.57%, and 7.90%, respectively. China achieved remarkable progress in
611 energy conservation and emission abatement over the study period. The deterioration of the technical
612 efficiency is a relative deterioration caused by the fast technological progress. Changes in EEP are
613 primarily attributable to technological progress, but said progress slowed down during the study
614 period.

615 (3) At the regional level, the central area (2.97%) shows the greatest improvement in total
616 performance followed by eastern (2.73%) and western (1.96%) areas. The northeastern area (0.50%)
617 shows almost no change in EEP. The eastern area achieves the greatest technological progress (5.86%)
618 but greatest decline in technical efficiency (-3.14%) among the four areas. The sub-performances all
619 increased apart from soot emission performance. Deterioration in SO₂ technical efficiency is the
620 biggest driver of deteriorated technical efficiency in all four areas.

621 We used the ESDA method to find that EEP has obvious spatial agglomeration features. The
622 high-high type clusters mainly exist in Shandong province and the southeast coast of China; high-
623 high type clusters move from coastal areas towards the inland areas which have inherently better
624 ecological quality. The factors that affect SO₂ emission abatement potential exhibit significant spatial
625 heterogeneity in different areas. The gross industrial output positively affects SO₂ emission
626 abatement potential in most cities. The strongest impact coefficients of gross industrial output are
627 mainly distributed in the western area. Cities with the strongest positive effect of pollution intensity
628 on SO₂ emission abatement potential were mainly distributed in central and southern Liaoning
629 province, Beijing-Tianjin-Hebei, and Shandong Peninsula areas (i.e., areas around the Bohai Gulf
630 which are characterized by haze problems). The ratio of service industry to GDP has an uncertain
631 effect on SO₂ emission abatement potential, indicating that industrial structure is not the significant
632 influencing factor of SO₂ emission abatement potential in the study period.

633 **Acknowledgments:** This work was supported by the National Natural Science Foundation of China
634 (Grant No. 71704095).

635 **Author Contributions:** This work was designed, analyzed, and written by the both authors. The data were
636 gathered by the corresponding author.

637 **Conflicts of Interest:** The authors declare no conflict of interest.

638

639 **References**

640 1. Song, M.; Wang, S.; Yu, H.; Yang, L.; Wu, J., To reduce energy consumption and to maintain rapid economic
641 growth: Analysis of the condition in China based on expended IPAT model. *Renewable & Sustainable Energy
642 Reviews* **2011**, 15, (9), 5129-5134.

643 2. British Petroleum Company. *BP Statistical Review of World Energy 2017*; British Petroleum Company: London,
644 UK, 2017.

645 3. Chen, J.; Song, M.; Xu, L., Evaluation of environmental efficiency in China using data envelopment analysis.
646 *Ecological Indicators* 2015, 52, 577-583.

647 4. Ministry of Ecology and Environmental of the People's Republic of China. *Report on the State of China's
648 Environment in 2016*; Ministry of Ecology and Environmental of the People's Republic of China: Beijing,
649 China, 2016.

650 5. Lepeule, J.; Schwartz, J., Chronic exposure to fine particles and mortality: an extended follow-up of the
651 Harvard Six Cities study from 1974 to 2009. *Environmental health perspectives* 2012, 120, (7), 965-70.

652 6. Lepeule, J.; Bind, M. A.; Baccarelli, A. A.; Koutrakis, P.; Tarantini, L.; Litonjua, A.; Sparrow, D.; Vokonas,
653 P.; Schwartz, J. D., Epigenetic influences on associations between air pollutants and lung function in elderly
654 men: the normative aging study. *Environmental health perspectives* 2014, 122, (6), 566-72.

655 7. Farrell, M. J., The Measurement of Productive Efficiency. *Journal of the Royal Statistical Society* 1957, 120, (3),
656 253-290.

657 8. Charnes, A.; Cooper, W. W.; Rhodes, E., Measuring the efficiency of decision-making units. *European
658 Journal of Operational Research* 1979, 3, (4), 339.

659 9. Kuosmanen, T.; Kortelainen, M., Measuring Eco-efficiency of Production with Data Envelopment Analysis.
660 *Journal of Industrial Ecology* 2005, 9, (4), 59-72.

661 10. Hu, J. L.; Wang, S. C., Total-factor energy efficiency of regions in China. *Energy Policy* 2006, 34, (17), 3206-
662 3217.

663 11. Song, M.; Yang, L.; Wu, J.; Lv, W., Energy saving in China: Analysis on the energy efficiency via bootstrap-
664 DEA approach. *Energy Policy* 2013, 57, 1-6.

665 12. Özkara, Y.; Atak, M., Regional total-factor energy efficiency and electricity saving potential of
666 manufacturing industry in Turkey. *Energy* 2015, 93, 495-510.

667 13. Feng, C.; Wang, M., Analysis of energy efficiency and energy savings potential in China's provincial
668 industrial sectors. *Journal of Cleaner Production* 2017, 164.

669 14. Zhou, D. Q.; Wu, F.; Zhou, X.; Zhou, P., Output-specific energy efficiency assessment: A data envelopment
670 analysis approach. *Applied Energy* 2016, 177, 117-126.

671 15. Honma, S.; Hu, J. L., Total-factor energy productivity growth of regions in Japan. *Energy Policy* 2009, 37,
672 (10), 3941-3950.

673 16. Wang, Q. W.; Zhou, D. Q., An empirical study on the change of total factor energy efficiency in China.
674 *Systems Engineering* 2008, 26, (7), 74-80.

675 17. Chang, T. P.; Hu, J. L., Total-factor energy productivity growth, technical progress, and efficiency change:
676 An empirical study of China. *Applied Energy* 2010, 87, (10), 3262-3270.

677 18. Zhang, X. P.; Cheng, X. M.; Yuan, J. H.; Gao, X. J., Total-factor energy efficiency in developing countries.
678 *Energy Policy* 2011, 39, (2), 644-650.

679 19. Färe, R.; Grosskopf, S.; Lovell, C. A. K.; Pasurka, C., Multilateral productivity comparisons when some
680 outputs are undesirable: A nonparametric approach. *Review of Economics & Statistics* 1989, 71, (1), 90-98.

681 20. Kortelainen, M., Dynamic environmental performance analysis: A Malmquist index approach. *Ecological
682 Economics* 2008, 64, (4), 701-715.

683 21. Zhou, P.; Ang, B. W.; Poh, K. L., Measuring environmental performance under different environmental
684 DEA technologies. *Energy Economics* 2008, 30, (1), 1-14.

685 22. Zhang, N.; Choi, Y., Total-factor carbon emission performance of fossil fuel power plants in China: A
686 metafrontier non-radial Malmquist index analysis. *Energy Economics* **2013**, *40*, (2), 549-559.

687 23. Rashidi, K.; Saen, R. F., Measuring eco-efficiency based on green indicators and potentials in energy saving
688 and undesirable output abatement. *Energy Economics* **2015**, *50*, 18-26.

689 24. Sueyoshi, T.; Goto, M., Environmental assessment on coal-fired power plants in U.S. north-east region by
690 DEA non-radial measurement. *Energy Economics* **2015**, *50*, (8), 125-139.

691 25. Xie, B. C.; Duan, N.; Wang, Y. S., Environmental efficiency and abatement cost of China's industrial sectors
692 based on a three-stage data envelopment analysis. *Journal of Cleaner Production* **2016**, *153*.

693 26. Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R., The Luenberger productivity indicator in the water
694 industry: An empirical analysis for England and Wales. *Utilities Policy* **2014**, *30*, (9), 18-28.

695 27. Managi, S., Luenberger and Malmquist productivity indices in Japan, 1955–1995. *Applied Economics Letters*
696 **2003**, *10*, (9), 581-584.

697 28. Mahlberg, B.; Sahoo, B. K., Radial and non-radial decompositions of Luenberger productivity indicator
698 with an illustrative application. *International Journal of Production Economics* **2011**, *131*, (2), 721-726.

699 29. Azad, M. A. S.; Ancev, T., Measuring environmental efficiency of agricultural water use: A Luenberger
700 environmental indicator. *Journal of Environmental Management* **2014**, *145*, (145C), 314-320.

701 30. Wang, K., Evaluation and decomposition of energy and environmental productivity change using DEA.
702 **2016**.

703 31. Wang, K.; Wei, Y. M., Sources of energy productivity change in China during 1997–2012: A decomposition
704 analysis based on the Luenberger productivity indicator. *Energy Economics* **2016**, *54*, 50-59.

705 32. Xian, Y.; Huang, Z., Sources of carbon productivity change: A decomposition and disaggregation analysis
706 based on global Luenberger productivity indicator and endogenous directional distance function. *Ecological
707 Indicators* **2016**, *66*, 545-555.

708 33. Wang, K.; Wei, Y. M.; Zhang, X., A comparative analysis of China's regional energy and emission
709 performance: Which is the better way to deal with undesirable outputs? *Energy Policy* **2012**, *46*, 574-584.

710 34. Zhou, P.; Wang, H., Energy and CO₂ emission performance in electricity generation: A non-radial
711 directional distance function approach. *European Journal of Operational Research* **2012**, *221*, (3), 625-635.

712 35. Zhou, P.; Poh, K. L.; Ang, B. W., A non-radial DEA approach to measuring environmental performance.
713 *European Journal of Operational Research* **2007**, *178*, (1), 1-9.

714 36. Vlontzos, G.; Niavis, S.; Manos, B., A DEA approach for estimating the agricultural energy and
715 environmental efficiency of EU countries. *Renewable & Sustainable Energy Reviews* **2014**, *40*, 91-96.

716 37. Meng, F.; Su, B.; Thomson, E.; Zhou, D.; Zhou, P., Measuring China's regional energy and carbon emission
717 efficiency with DEA models: A survey. *Applied Energy* **2016**, *183*, 1-21.

718 38. Geng, Z. Q.; Dong, J. G.; Han, Y. M.; Zhu, Q. X., Energy and environment efficiency analysis based on an
719 improved environment DEA cross-model: Case study of complex chemical processes. *Applied Energy* **2017**,
720 *205*, 465-476.

721 39. Wang, J.; Zhao, T., Regional energy-environmental performance and investment strategy for China's non-
722 ferrous metals industry: a non-radial DEA based analysis. *Journal of Cleaner Production* **2016**.

723 40. Perez, K.; González-Araya, M. C.; Iriarte, A., Energy and GHG emission efficiency in the Chilean
724 manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes. *Energy Economics*
725 **2017**, *66*.

726 41. Satterthwaite, D., Cities' contribution to global warming: notes on the allocation of greenhouse gas
727 emissions. *Environ Urban* **20**(2):539. *Environment & Urbanization* **2008**, *20*, (2), 539-550.

728 42. Harris, P. G.; Chow, A. S. Y.; Symons, J., Greenhouse gas emissions from cities and regions: International
729 implications revealed by Hong Kong. *Energy Policy* **2012**, *44*, (44), 416-424.

730 43. Li, X. G.; Yang, J.; Liu, X. J., Analysis of Beijing's environmental efficiency and related factors using a DEA
731 model that considers undesirable outputs. *Mathematical & Computer Modelling* **2013**, *58*, (5-6), 956-960.

732 44. Yuan, P.; Cheng, S.; Sun, J.; Liang, W., Measuring the environmental efficiency of the Chinese industrial
733 sector: A directional distance function approach. *Mathematical & Computer Modelling* **2013**, *58*, (5-6), 936-947.

734 45. Wang, Q.; Zhao, Z.; Shen, N.; Liu, T., Have Chinese cities achieved the win-win between environmental
735 protection and economic development? From the perspective of environmental efficiency. *Ecological
736 Indicators* **2015**, *51*, 151-158.

737 46. Zhou, D. Q.; Wang, Q.; Su, B.; Zhou, P.; Yao, L. X., Industrial energy conservation and emission reduction
738 performance in China: A city-level nonparametric analysis. *Applied Energy* **2016**, *166*, 201-209.

739 47. Guo, J.; Zhu, D.; Wu, X.; Yan, Y., Study on Environment Performance Evaluation and Regional Differences
740 of Strictly-Environmental-Monitored Cities in China. *Sustainability* **2017**, *9*, (12), 2094.

741 48. Färe, R.; Grosskopf, S., Directional distance functions and slacks-based measures of efficiency. *European
742 Journal of Operational Research* **2010**, *200*, (1), 320-322.

743 49. Pastor, J. T.; Asmild, M.; Lovell, C. A. K., The biennial Malmquist productivity change index. *Socio-Economic
744 Planning Sciences* **2011**, *45*, (1), 10-15.

745 50. Chambers, R. G.; Chung, Y.; Färe, R., Benefit and distance functions. *Journal of Economic Theory* **1995**, *70*, (2),
746 407-419.

747 51. Wang, H.; Zhou, P.; Zhou, D. Q., Scenario-based energy efficiency and productivity in China: A non-radial
748 directional distance function analysis. *Energy Economics* **2013**, *40*, (2), 795-803.

749 52. Getis, A.; Ord, J. K., *The analysis of spatial association by use of distance statistics*. Springer Berlin Heidelberg:
750 2010; p 127-145.

751 53. Brunsdon, C.; Fotheringham, A. S.; Charlton, M. E., Geographically weighted regression: A method for
752 exploring spatial nonstationarity. *Geographical Analysis* **1996**, *28*, (4), 281-298.

753 54. Fotheringham, A. S.; Brunsdon, C.; Charlton, M., *Geographically weighted regression: The analysis of spatially
754 varying relationships*. International Union of Crystallography: 2002; p C125-C126.

755 55. Brunsdon, C.; Fotheringham, A. S.; Charlton, M., Geographically weighted summary statistics— a
756 framework for localised exploratory data analysis. *Computers Environment & Urban Systems* **2002**, *26*, (6),
757 501-524.

758 56. National Bureau of Statistics of the People's Republic of China. *The China City Statistical Yearbook 2011-2015*;
759 National Bureau of Statistics of the People's Republic of China: Beijing, China, 2011-2015.

760 57. National Bureau of Statistics of the People's Republic of China. *The China Provincial Statistical Yearbook 2011-
761 2015*; National Bureau of Statistics of the People's Republic of China: Beijing, China, 2011-2015.

762 58. Quah, D., Empirical cross-section dynamics in economic growth. *Discussion Paper* **1992**, *37*, 426-434.

763 59. Quah, D., Empirics for economic growth and convergence. *Cepr Discussion Papers* **1996**, *40*, (6), 1353-1375.

764 60. Quah, D. T., Empirics for growth and distribution: stratification, polarization, and convergence clubs.
765 *Journal of Economic Growth* **1997**, *2*, (1), 27-59.

766 61. Meng, F. Y.; Fan, L. W.; Zhou, P.; Zhou, D. Q., Measuring environmental performance in China's industrial
767 sectors with non-radial DEA. *Mathematical & Computer Modelling* **2013**, *58*, (5-6), 1047-1056.

768 62. Deng, L. J.; Zhang, P. Y.; Ping, L. I., Equilibrium of population and economic development in the top ten
769 urban agglomerations in China. *Journal of the Graduate School of the Chinese Academy of Sciences* **2010**.

770 63. Zeng, P.; Chen, F., Empirical research of "energy-environment-economy" comprehensive accounting
771 system of the top ten urban agglomerations in china. *Forum on Science & Technology in China* **2012**.

772 64. Peng, L.; Zhang, Y.; Wang, Y.; Zeng, X.; Peng, N.; Yu, A., Energy efficiency and influencing factor analysis
773 in the overall Chinese textile industry. *Energy* **2015**, 93, (2), 1222-1229.

774 65. Fan, Y.; Bai, B.; Qi, Q.; Peng, K.; Yue, Z.; Jing, G., Study on eco-efficiency of industrial parks in China based
775 on data envelopment analysis. *Journal of Environmental Management* **2017**, 192, 107-115.

776 66. Su, B.; Zhan, M.; Zhai, J.; Wang, Y.; Fischer, T., Spatio-temporal variation of haze days and atmospheric
777 circulation pattern in China (1961–2013). *Quaternary International* **2015**, 380-381, (15), 14-21.

778 67. Zhang, J.; Chen, J.; Xia, X.; Che, H.; Fan, X.; Xie, Y.; Han, Z.; Chen, H.; Lu, D., Heavy aerosol loading over
779 the Bohai Bay as revealed by ground and satellite remote sensing. *Atmospheric Environment* **2015**, 124.

780 68. Zhou, M.; Zhang, Y.; Han, Y.; Wu, J.; Du, X.; Xu, H.; Feng, Y.; Han, S., Spatial and temporal characteristics
781 of PM2.5 acidity during autumn in marine and coastal area of Bohai Sea, China, based on two-site contrast.
782 *Atmospheric Research* **2018**, 202.

783 69. He, C.; Huang, Z.; Ye, X., Spatial heterogeneity of economic development and industrial pollution in urban
784 China. *Stochastic Environmental Research & Risk Assessment* **2014**, 28, (4), 767-781.

785 70. Hu, Z.; Miao, J.; Miao, C., Agglomeration characteristics of industrial pollution and their influencing factors
786 on the scale of cities in China. *Dili Yanjiu (Geographical Research)* **2016**, 35, (8), 1470-1482.(in Chinese).

787

788