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Abstract: This paper proposes a new non-radial biennial Luenberger energy and environmental
performance index (EEPI) to measure the EEP change in various Chinese cities. The sources of EEP
change, in terms of technical efficiency change and technological change, are examined by
Luenberger EEPI The contributions from specific undesirable outputs and energy inputs to the EEP
change are identified by means of the non-radial efficiency measure. The proposed approach is
applied to evaluate the EEP of the industrial sector in 283 cities in China over 2010-2014. Factors
influencing the emission abatement potential are investigated by employing geographically
weighted regression (GWR) model. We find that 1) changes in EEP can be attributed to technological
progress but that technological progress slows down across the study period; 2) the soot emission
performance experiences a downtrend among four specific sub-performances in line with the truth
that severe haze happened frequently in China; 3) the best performers begin to move from the
coastal to inland cities with the less resource consumption and higher ecological equality; 4) cities
with the strongest positive effect in regards to pollution intensity on emission abatement potential
are located in the areas around the Bohai Gulf, where air pollution is particularly severe.

Keywords: data envelopment analysis; biennial Luenberger index; geographically weighted
regression; EEP

1. Introduction

With the globalization, China accelerates melting into the world economy after entering WTO
and becomes world factory in international division with rapid economic growth. However, this
growth is mainly driven by development within the energy-intensive industrial sector [1]. According
to the BP Statistical Review of World Energy 2017 [2], China is currently the world’s largest energy
consumer at 23% of the total global consumption and 27% of the demand growth of global energy
consumption in 2016. However, China has paid a high price to the environment for such rapid
advancement. Uncontrolled fossil fuel combustion has released poisonous substances in various
forms and led to all kinds of pollutions [3], e.g., water contamination, acid rain, and haze (smog).
Massive loads of waste gases have been emitted into the atmosphere to create a severe decline in air
quality.

China has suffered from severe haze over many of its cities comprised of fine particulate matter
less than 2.5 micrometers in diameter (PM2.5), especially in winter months, since 2013. In 2016, only
84 Chinese cities had standard air quality — this amounts to merely 24.9% among the 338 monitored
cities at or above the prefecture level (Report on the State of China’s Environment in 2016 [4]).
Pollution severely affects Chinese citizens’ daily living conditions and, ultimately, threatens their
health. Epidemiological studies have revealed a strong association between exposure to fine
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45  particulate matter and mortality [5, 6]. Many environmental laws and regulations have been enacted
46  to combat this, including China’s State Council’'s Action Plan for Air Pollution Prevention and Control
47  1ltargeting air quality in September 2013. One goal of the Action Plan is to reduce the annual average
48  concentration of fine particulate matter by 25% in the Beijing-Tianjin-Hebei region by 2017 against
49  the 2012 level. Measuring energy efficiency and environmental efficiency can provide quantitative
50  information for energy and environmental policy analysis and decision-making. Cities are not only
51  energy-consumptive, but also form the main sources of various pollutants. Cities, to this effect, are
52  the main battlefield for controlling pollutant emissions. It is essential for administrators to
53  understand the energy and environmental performance (EEP) of their cities to formulate scientific,
54  strategic goals for energy conservation and emission reduction.

55 In recent years, the data envelopment analysis (DEA) linear programming method has become
56 a popular approach to measuring energy and environmental efficiency to reduce energy
57  consumption and control emissions. DEA was proposed by Farrell [7] and developed by Charnes, et
58  al. [8] to automatically generate appropriate production functions to combine multiple inputs and
59  multiple outputs. The principle of DEA is to enable data to “speak for itself” rather than necessitate
60  excessive artificial parametric assumptions for functions [9]. Many previous researchers have studied
61  energy efficiency; Hu and Wang [10], for example, first established the total factor energy efficiency
62  (TFEE) concept by using DEA. Song, et al. [11] used a bootstrap-DEA approach to find that China’s
63 energy efficiency has maintained a slow upward trend from 1992 to 2010. Ozkara and Atak [12], and
64  later Feng and Wang [13], measured total-factor energy efficiency and energy savings potential in
65  Turkey’s manufacturing industry and China’s provincial industrial sectors, respectively. Zhou, et al.
66  [14] proposed an output-specific energy efficiency estimating method. These researchers
67  concentrated on static analysis without dynamic comparison. Honma and Hu [15] investigated the
68  dynamic changes in energy efficiency by introducing a Malmquist productivity index (MPI). Other
69  researchers, such as Wang and Zhou [16], Chang and Hu [17], and Zhang, et al. [18] have made
70 dynamic analyses of energy efficiency as well.

71 Beside above energy efficiency evaluation models, researchers center around securing as many
72 desirable outputs as possible while minimizing the undesirable outputs which are inevitably
73 produced by industrial production. Fare, et al. [19] first proposed the concept of environmental DEA
74  technology to incorporate undesirable outputs into efficiency evaluation frameworks. Kuosmanen
75  and Kortelainen [9] applied DEA to aggregate multiple undesirable outputs and emphasized the
76 trade-off between economic production and environmental protection in regards to the impact of
77  undesirable outputs on the economy. Kortelainen [20] extended the static framework to a dynamic
78  environmental performance analysis by using MPI; they decomposed the changes in environmental
79  performance into two components: relative environmental efficiency change and relative
80  environmental technological change.

81 Many previous researchers have used the radial DEA approach to measure environmental
82  performance, where in different undesirable outputs are adjusted by the same proportion. However,
83  radial efficiency measures overestimate technical efficiency due to the existence of nonzero slacks. A
84  series of non-radial DEA models have been developed to resolve this limitation. For example, Zhou,
85  etal [21] employed anon-radial DEA approach to measure the environmental performance of OECD
86  countries. Zhang and Choi [22] explored total-factor carbon emission performance in China’s fossil
87  fuel power plants using a metafrontier non-radial MPI. Rashidi and Saen [23] calculated the pure eco-
88 efficiency of OECD countries by a non-radial DEA model based on green indicators. Sueyoshi and
89  Goto [24] applied a non-radial DEA environmental assessment to evaluate the performance of coal-
90  fired power plants in the northeast United States. Xie, et al. [25] computed environmental efficiency
91  based on a directional distance function with the radial and non-radial slacks of outputs.

92 There are two major approaches to estimating productivity or efficiency changes: the Malmquist
93  productivity index and Luenberger productivity index. Some researchers assert that the Malmquist
94  productivity index overestimates productivity changes compared to the Luenberger [26, 27]. Further,

1 One could refer to http://www.gov.cn/zwgk/2013-09/12/content 2486773.htm for more details.
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95  the Luenberger productivity index is a difference-based index, so it is well applicable to measuring
96  differences in EEP. Recent researchers have adapted the Luenberger productivity index to study
97  dynamic changes in productivity or efficiency. For instance, Mahlberg and Sahoo [28] applied non-
98  radial decompositions of the Luenberger productivity index to analyze the eco-productivity
99  performance behavior in 22 OECD countries. Based on a Luenberger environmental index, Azad and
100  Ancev [29] measured the relative environmental efficiency of agricultural water use to reveal
101  substantial variations across different regions. Wang [30] applied the Luenberger index to explore
102 changes in energy and environmental productivity at the provincial level. Our research team
103  developed a non-radial Luenberger productivity index to resolve the limitation of radial
104  measurement [31, 32]. Non-radial efficiency measures can help us identify specific effects and
105  contributions of energy factor and specific undesirable outputs, while radial efficiency measures do
106  not reflect the impact of emission structures on efficiency changes.
107 The aforementioned studies centered around single aspects of energy efficiency or
108  environmental performance rather than integrated EEP measurements. A few researchers have
109  investigated the integrated EEP by new DEA models. Wang, et al. [33], for example, used DEA
110  window analysis to find that EEP is highest in the eastern area of China compared to other regions.
111  Zhou and Wang [34] explored the energy and CO: emission performance for over 100 countries by
112 using a new directional distance function (DDF). Zhou, et al. [35], Vlontzos, et al. [36], Meng, et al.
113 [37], Geng, et al. [38], Wang and Zhao [39], and Perez, et al. [40] measured integrated EEP in their
114  respective studies. Previous researchers have tended to focus on the regional or national level and
115  lack of research down to the city level, though cities play an important role in environmental
116 ~ governance. Cities are responsible for 75-80% of global greenhouse emissions [41, 42]. Only a few
117 researchers, e.g., Li, et al. [43], Yuan, et al. [44], Wang, et al. [45], Zhou, et al. [46], and Guo, et al. [47]
118  have explored environmental performance at the city level.
119 In the present study, we extended the extant research in two main aspects. In terms of
120  methodology, we propose an additive DEA model combined with a slack-based measure and non-
121  radial directional distance function as first developed by Féare and Grosskopf [48]. The Luenberger
122 productivity index with an additive structure is used to measure changes in productivity (which
123 differs from the Malmquist index with multiplicative structure). We established a biennial
124  Luenberger index extended from biennial Malmquist index proposed by Pastor, et al. [49] to avoid
125  infeasibility solution of DEA. In terms of indicator selection, we properly account for multi-
126 undesirable outputs and compare these sub-performances. We also use the natural breaks method to
127 identify break points by picking the class breaks which maintain the greatest similarity in one class
128  but maximize the difference among different classes. Geographical location has a marked effect on
129  the emission abatement potential, so we alter the traditional regression to geographically weighted
130  regression (GWR) to allow our estimated coefficients of influencing factors to vary by location. The
131  remainder of this paper is organized as follows. Section 2 presents the non-radial DEA model,
132 decomposition method, and GWR estimation. Section 3 explains our data sources and presents our
133 results with discussion. Section 4 summarizes our main conclusions.

134 2. Methodology

135  2.1. Biennial Energy and Environmental Production Technology

136 Consider a production process with the vectors of non-energy inputs (x), such as labor and
137  capital input, and the vectors of energy inputs (e) to produce the vectors of desirable outputs (y) and
138  undesirable outputs (b). The corresponding production set, called the energy and environmental

139  production technology set, is:
140
T ={(x,e,y,b): (x,e) can produce (y,b) } (1)

141 In the energy and environmental production technology set T, inputs and desirable outputs are
142 assumed to be strongly disposable. T satisfies two additional assumptions proposed by Fare,
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Grosskopf, Lovell and Pasurka [19] to model a production technology that includes both desirable
and undesirable outputs.

(1) Weak disposability assumption: If (x,e,y,b) €T and 0 <6 <1, then (x,e,0y,6b) € T. It
means that we can not reduce undesirable outputs alone while keeping the desirable
outputs constant. In practice, it is feasible to reduce the desirable outputs and undesirable
outputs at the same time; undesirable outputs can be abated at the cost of a decrease in
desirable output.

(2) Nulljointness assumption: If (x,e,y,b) € Tand b = 0, theny = 0. Production must cease
entirely in order to fully eliminate undesirable outputs.

It is unlikely to find a concrete production function which depicts the energy and environmental
production technology set T. Here, we use nonparametric DEA technology to approximately
represent T with piecewise linear combinations of the observed data. On the assumption of constant
returns to scale (CRS), the energy and environmental production technology T can be estimated as
follows:

K
T= {(x,e,y,b): Z/l Xpp S Xppom=1,2,--- M Z/’tkeqk <e,, ¢=12,--,0
=l

3 @)
Z/’kank—ynos :1,2,-..’N; ﬂ’kbjk :bjo’ j:1’2’...’J

k=1

Akzo k=12, K}

where 4, is the intensity variable that ensures the technology set T is bounded and closed. The
first three inequality constraints indicate the strong disposability on inputs and desirable outputs. To
ensure technology set T satisfies the weak disposability and null-jointness assumptions, the equality
constraint is imposed on undesirable outputs.

Technology is generally stable in the short run, so we neglect technological changes from period
“t” to “t+1”, and combine technology set T* and T*! together as T® = T* U T**!, namely, biennial
energy and environmental technology, which represents the comprehensive technology shared by
periods “t” and “t+1”. In order to estimate TE, we use observations from periods “t” and “t+1” to
construct the biennial energy and environmental DEA technology T® as-formed by following linear
constraints:

={(x,e,y,b): Z/’t’”x’” +z/"t’x <x, m=12,-\M

mk —

K

Zx’t’“ ’+l+z/1’e;kée q=L2,---,Q
k=1
K K (3)
DAY+ Ay 2y, n=12-N
k=1 k=1
K

K
DAY b =b,  j=12,,
k=1 k=1
=20, A1 >0, k=1,2,--,K
Model (3) can avoid infeasible solutions to the DEA model when dealing with cross-period data.
Based on T, we propose a biennial Luenberger productivity index derived from the concept of the
biennial Malmquist productivity index [49].
2.2. Biennial Luenberger Energy and Environmental Performance Index

The Luenberger productivity index deduced by directional distance function (DDF) was first
proposed by Chambers, et al. [50]. The DDF allowing the simultaneous evaluation of input
contractions and output expansions can be defined as:

D[xe.y.big =(-8,»-80-8,--8,) | =sup| B|(x- Bg, e~ Be..y + Be,.b-Bg, ) T] @)
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177 where g = (—gx, —ge,gy,—gb) is the directional vector.

178 Based on the Luenberger productivity index, the EEP change can be decomposed into energy
179  and environmental technical efficiency change (catch-up effect) and energy and environmental
180  technological change (frontier-shift effect). For the biennial periods “#” and “t+1”, we first select
181  technology in the period “#” as the benchmark and then examine the EEP change by the difference in
182 DDFs from periods “t” to “t+1” referred to technology set T'. Energy and environmental
183  performance index (EEPI) used to measure the EEP change is defined as follows:

184 EEP] (x’,e’,y’,bt,x’”,e”',y‘”,b’”;g):Bt(x’,e’,y,b’;g) (XH] r+1 y/+l,bt+l;g) )
185  Similarly, EEPI can be defined with regard to the technology of the period “#+1”:

186 EEPIr,m (Xt,et,yt,bt,XH],eH],yH],bH];g) ZBH (x’,e’,)/,b’,g) ”' (XH] t+| y/+I,bt+l;g) (6)

187 We compute the simple arithmetic mean of Eq. (5) and (6) to eliminate the bias derived from
188  arbitrary period selection:

EEP[! (Xt et’yt bt z+1’ z+1,yz+1 b g)
189 1 |:D ( ’y bt,g) ( t+l’ z+1,yz+1 bz+1’g):| (7)
2 +|:Dt (Xt,et,yt,bt,g) _B“ ( t+l’ z+1’yz+1 bz+1,g):|}
190 The energy and environmental technical efficiency is defined by the differences in DDFs from
191  period “t” to “t+1” with respect to their own technologies; this reveals the change in distances of one

192 observation in two periods “t” and “t+1” to the corresponding frontier of technologies “#” and “t+1”
193  respectively.

194 effcht’”' [xf,et,yf,b’,x”',e‘ + el bt+l ,g:| (X ¢ Y ,bt,g) n *' (Xt+l’et+l ,ym ,bt+l ,g) 8)
195 The energy and environmental technological change can be measured by comparing the distance
196  from one observed data point in the period “#” to the frontier of technology set of periods “t” and
197  “t+1” respectively, which measures the distance between two technologies “t” and “#+1”.
—t+l —

198 techch " (x €' ,y', b’ x" "y b ;g)=D (x'.¢'y’.b':g)-D (x €y b';g) ©)
199 Similar to Eq. (9), the energy and environmental technological change can be defined by
200  comparing one observed data point in the period “t+1” to the technology of period “#” and
201  “t+1”respectively:

—t+l —
202 techc 7,0+ (Xt,et’yt’bt’XHl’eHl,yHl’le;g) :DI (Xt+l’et+1’yt+l’bt+1;g)_DI(XHl,eHl’yHl’le;g) (10)
203 We also compute the simple arithmetic mean of Egs. (9) and (10) to eliminate the bias of period

204 selection:
techchf’”' (Xt,et,yt,bt,XHI,eHl,y[” le,g)
205 | [5”' (x'.e.y'.b";g)-D (x.e.y ,b’;g)} (11)

— 1+

_5 +|:D (XHI’et ’yr+l bHI,g) ( z‘+l’ez‘ ’yt+l bz+l g):|

206 Equations (7), (8), and (11) can be combined into a comprehensive equation which reflects the
207  additive structure of the Luenberger productivity index:
208 EEPIt,H] :effcht,tﬂ +techcht,t+] (12)

209 Per the definition of Dtor D¢*1, the biennial DDF based on T instead of T is:


http://dx.doi.org/10.20944/preprints201806.0080.v1
http://dx.doi.org/10.3390/su10072303

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2018

d0i:10.20944/preprints201806.0080.v1

6 of 28
—B
210 D' [x.ey.b:g=(-g,,-2.8,,-8, ) | = sup| B|(x- fe,.e- Bg..y + Bg,.b- By, ) e T"|  (13)
211 Similar to the definition of above Luenberger productivity index, the biennial Luenberger
212 productivity index has two components:
213 EEPIBZ’HI (Xt’et’yt’bt’xtﬂ’et+l’yt+l’bt+l;g) :BB (x’,e’,y’,b’;g) _BB ( t+1, t+1 ,yt+l bm,g) (14)
214 eﬂch;,t+l(Xt’et’yt’bt’xt+l’et+l’yt+l’bt+1;g)=5 (X e ’y bt,g) H'1(Xtéfl’etéfl’ytéfl’btéfl;g) (15)
£.t+1 ¢ ¢l e e G B (o o o W o o ‘.
215 teChChB (xt’e ,)/,b,xt ,€ ,y 9b 5g)_|: (X e’y ’b )g)_D (Xye 9y(9bag)} (16)
_|:BB (XHI ’et+| ’yr+l’bt+l ,g) _D’”l (XH] ’et+l ’yr+l ,bt+l ,g)}
216 EEPI;"" = effchy ' +techchy'™ 17)
217 2.3. Energy and Environmental Performance Measurement with Non-radial DEA Model
218 Based on the definition of DDF (Egs. (4), (13)) and estimated technology set of T and T® (Models
219 (2), (3)), the radial DDF can be estimated by the following DEA models:
D [x.e,y.b:g = (-x,-¢,y,-b) | = max 8
2/1’ L<(=B)x,, m=1,2, M
k=1
220 & 18
3 2iel (- Ple,, a=12,, 0 ()
=1
K
z nk_(1+ﬂ)yng - 2 “aN
=1
K
z fb;k:(l_ﬂ)bjg jzlsza'“a*]
k=1
Al20,  k=12,.K
33 [x,e,y,b;g = (-x,-e,y,-b)] = max f§
> A +z Aixn, <(=B)x,, m=1,2,--- .M
221 - (19)
z/ltn t+1+zl q/»7 ﬂ)eqo q=12,---, 0
k=1
DAy Y Ay 2 A+ By, n=12,, N
k=1 k=1
Z ALY A = (=B, j=1,2,, T
k=1
ALz0; A >0, k=1,2,,K
222 Traditional and biennial DDFs can be computed by Models (18) and (19), respectively. § denotes
223 the slack ratio (adjustment rate) or “inefficiency score”. If § = 0, then the corresponding DMU is
224  considered to be efficient and with no improvement potential. § > 0 indicates that the corresponding
225 DMU is inefficient and has not yet achieved the relative optimization. Models (18) and (19) are
226  regarded as radial DDFs with the same adjustment rate.
227 The radial DDF gives the same contraction (expansion) to all the inputs (outputs) and thus may
228  have weak technical efficiency. Increasing desirable outputs and decreasing inputs and undesirable
229 outputs can be further achieved under the current technical conditions, i.e., the radial DDF
230  overestimates the efficiency. The non-radial DDF can further identify potential in increasing inputs
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231  and decreasing outputs, so we use a non-radial DDF model to measure EEP here. Mathematically,
232 traditional and biennial radial DDFs can be improved by the following DEA models:

ﬁt |:X e y,b'g = ('X"e,y9'b):|

= max — (—; B., +é§ﬂq +%gﬂ,, +%;ﬂj)
233 zl’ X SA=B)x,,m=1,2, M ©0)
Ay <(=B)e, a=12:, 0

AyrzA = (1+ﬂn)yﬂo n=12,---, N

M* TM* IM*

ﬂ,fbj’.k =(1-B)b, j=12,.J

27

. =05 k=12,-,K
~B
D [x,e,y,b;g=(-x,-¢,y,-b)]

[ N J
LTI DN WAL WSS IR

ml

234 > A+ Zl’ Xy <(1=B,)x,,m =12, M 1)

k=1

ZA”" +Zleqk_(1 B)e, 4=12,,0

K
24 +Z/1Aynk A+ By, n=12,--, N

k=1

K K
Z%Jr]b;;] +Zlf,b;k =(-B)b, j=12,,J
=

k=1

A0 A >0, k=1,2,-,K

235 In Models (20) and (21), By, , By , Bn, OF B; represents the ratio of the slack to a non-energy input,
236  energy input, desirable output, and undesirable output respectively. If ,, = B, = B,, = B;, Models
237  (20) and (21) are converted into Models (18) and (19). The non-radial DDF allows us to exploit slacks
238  more exhaustively with stronger discrimination power than the radial DDF [51]. We mainly focused
239  on energy conservation and pollution reduction in this study, so the directional vector is set to g =
240  (0,—e,0,—b) here. The DDF we used can be calculated by the following DEA linear programming

241 models:
B [X,e,)’>b;g = (0,'6,0,-b):|
—maxL(l— 3 Jij +1—ZJ:,B )
2 Q q=1 ! J Jj=1 ’
K
242 ;A’kxmkgxmn m :1’25”',M (22)

K
zﬂ‘l\{e;k S(l_ﬂq)eqn q:1>2a"'a Q
K
DA =z v, n=12,-,N

K
S Abl = (- Bb, j=12,+,J

Al = 0; k=1,2,-,K
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~B
D [x.ey.b;g=(0,-¢,0,-b)]
118 1
= max—(—Zﬁq +=>"8))
2 = J o
K
Z/f{tﬂ t+]+lemk—x mzl’z’...’M
=1
243 K o (23)
ZAH et+ +Zﬂfe’ < (1_ﬁq)eqo q=1,2,"', Q
k=1
K
Zﬂ‘liﬂy:lz]_‘_z/lkynk_yno nzl’z"”’ N
=1
K
Zﬂf“bt”+21bt =(1-B)b,, j=12,, J
>0, M >0,k=12,,K
244 In Models (22) and (23), B, and B; represent the ratios of energy conservation and emission

245  abatement, respectively. Dt(x¢,et,y!,bt;g) represents the energy and environmental inefficiency, so
246 we can calculate EEP by 1 — Dt (x4, ef, yt, bt g).

247 If input-output combination (x,e,y,b) is observed in the period
248  period “t” and “t+1” respectively, we can estimate Dt (xt,ef,yt, bt;g) and Dt1(xt, e, yt, bt g) with
249  Model (22). We can estimate l—))t(xt“,e”l,y”l,bt“;g) and Dt+1(xt+, ettt y*1, bt g) similarly.
250  We can also estimate D (x¢f,et,yt, bt g) and DB(xt*1, et*1, y*1,bt*1; g) by employing Model (23)
251  with production activity (x,e,y,b) observed in the period “+” and “t+1” respectively.

252 To calculate the Luenberger EEPI which represents the EEP change, we need to calculate six
253  DDFs (activities in “#” and “#+1” refer to technologies in the period “#”, “t++1” and pooled respectively)
254 by Models (22) and (23). Given that different undesirable output structures impact the EEP, a non-
255  radial efficiency measure can help us identify specific effects and contributions of energy factor and
256  specific undesirable outputs. The total EEPI can be further decomposed into specific EEPIs to analyze
257  the contributions of specific undesirable outputs and energy inputs on total EEPI.

“ t/l

for two technologies in the

258  2.4. Exploratory Spatial Data Analysis- Moran’s Index

259 The sample data we used contains abundant spatial information, so we sought to consider the
260  spatial effects on EEP among different cities. We did so by applying Exploratory Spatial Data
261  Analysis (ESDA) to describe the spatial distribution of the EEP. We used Moran’s I statistic to
262  measure the spatial correlation at the city level, including global spatial correlation and local spatial
263 correlation [52].

264 (1) Global Moran’s I statistics

265 The global Moran’s I statistics reflect the similarity of attributes with their neighborhoods:
22w (G =T)(Y,-Y)

266 Moran's 1, = S (24)

S 2y

i=l j=I
267  where Y; represents the observed value in the ith city; n represents the number of the cities;
268  w;; represents the spatial weight matrix which reflects the spatial adjacent relationship in the ith
269  and jth cities. Global Moran’s I ranges from -1 to 1: value less than 0 represents a negative correlation,
270 O represents an uncorrelated relationship, and greater than 0 represents a positive correlation. As the
271  global Moran’s I moves towards -1, the spatial differences among cities become more obvious. If the
272 obtained value of global Moran’s I is near to 1, there are more intimate relations (e.g., high-value
273 clusters or low-value clusters) among cities.
274 (2) Local Moran’s I statistics
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=5 S 3, 5) 25)

If I;is greater than 0, the ith spatial unit is similar to its neighbors (i.e., “high-high” or “low-
low”); I, with a value lower than 0 represents dissimilarities to neighbors (“high-low” or “low-
high”). We can also visually identify the high-value clusters and low-value clusters according to the
map of local indicators of spatial association (LISA).

2.5. Geographically Weighted Regression Model

The spatial heterogeneity of our data means that explanatory variables have varying extent of
influence on the explained variable in different areas. Under the traditional econometric regression
model, regression parameters are same across whole regions and regional differences are neglected.
The geographically weighted regression (GWR) model [53, 54], which takes the regional difference
into account, allows regression parameters to change along with the geographical position.
Regression parameters in GWR are a data set rather than a fixed coefficient. The GWR model can be
derived as follows:

K
Vi ::Bo(”iavi)"'lek (ui’vi x TE (26)
k=l

where vector y represents the explained variable; vector x represents explanatory variables; (u;, v;)
is the space coordinate (longitude and latitude) in the area i. By (u;, v;) is the regression parameter for
the kth explanatory variable in the area i . g is random error; we assume that
£~N(0,02) and Cov(si,sj) =0( #j). To estimate regression parameters, we assign w,(u;v;),
w, (U, v), -+, wy(uy, v;) for the area i to represent influences from all other areas [55]. According to
the weighted least square method, we can then estimate the regression equation in (u;,v;) by
minimizing the following equation:

iw-(%,vi)[yi (149, = B ) Xy =B (1,93, | 27)

with
Y X, X, Xy X/
v 2 x|
yn xnl xn2 xj xnk _xn'_ (28)
B (u.v,) w, 0 0
_ 0 w 0
Bl P w0
By (1) 0 0 - w

We can then derive f(u;, v;) = (XTW(ui,vi)X)_1XTW(ui,vi)Y . The spatial weighting function is the key
to the above GWR model. Here, we use a Gaussian weighting function as the spatial weighting
function [55].

3. Empirical Study

3.1. Data Source and Description

We initiated our analysis using a data set containing 283 cities in China over 2010-2014. Certain
official statistics measurement criteria changed significantly in 2010, so we set the time period from

d0i:10.20944/preprints201806.0080.v1
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306 2010 to 2014 to maintain comparability across the data. We chose labor and capital as the two non-
307  energy inputs. Labor is defined by the number of employees in a city’s manufacturing industry
308  excluding the employees working in the construction industry. To define capital, we referred to the
309  total fixed assets and current assets at constant prices in 2010 [44]. We used the price indexes from
310  corresponding provinces because fixed asset investment price indexes are not available at the city
311  level. With regard to current assets, we adopted the consumer price index from the corresponding
312 city to eliminate the influence of fluctuations in prices. We could not obtain total energy consumption
313  in the industrial sector at the city level, so we chose the electricity consumption as an approximate
314  substitution [46]. We used gross industrial output as the sole desirable output and adopted the ex-
315  factory price index of industrial products to eliminate price fluctuations. The “undesirable outputs”
316  referred to in this paper contain three specific pollutants: industrial wastewater, industrial sulfur
317  dioxide (502), and industrial soot. We also used the ratio of value added of the service industry in
318  the city’s GDP to analyze GWR. Data was collected from the China City Statistical Yearbook (2011-
319  2015) [56] and China Provincial Statistical Yearbook (2011-2015) [57]. The descriptive statistics of
320  inputs and outputs we applied to empirical analysis are shown in Table 1.

321 Table 1. Descriptive statistics of inputs and outputs in 2010-2014.
Index Variable Unit Quantity Mean St.Dev  Min Max
10
Labor force thousand 283x5 19.16 28.18 0.39  260.92
Non-energy I;eill'lsizf:
input Current assets 283x5 116.27 196.44 0.83 1808.43
Yuan
Fixed assets bilion  yoss 9015 10634 086  827.94
Yuan
E 100
C8Y Industrial electricity  million  283x5 6019 9197  0.045 805.76
input
kWh
Desirable Gross industrial billion 2835 31031 42371 153 32783
output output Yuan
Industrial million oens 7471 8499 023 868.04
wastewater tons
Undesirable Indus‘.cna.l sulfur thousand 283x5 58.78 5733 0002 57275
output dioxide tons
Industrial soot th(:;asnd 283x5 4171 188.64 0.034 5168.81

322 3.2. Results and Discussion
323  3.2.1. Static Energy and Environmental Performance
324  3.2.1.1. Descriptive Statistics of Energy and Environmental Performance

325 We first compared the EEP and its decompositions consisting of energy, wastewater, SO,, soot
326  emission performance (sub-performance or sub-efficiency) at both national and regional levels. Our
327 calculations of the mean, standard deviation, minimum value, and maximal value in the four areas
328  involve five-year x cities’ total performance and its decompositions (where x represents the number
329  of cities in the corresponding area) encompassing both temporal and spatial dimensions. Table 2
330  shows the descriptive statistics of EEP for 283 cities in China in 2010-2014.

331
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332 Table 2. Descriptive statistics of EEP and sub-performances.
Perff)r.m ance Area Quantity Mean St.Dev  Min Max
(efficiency)
East 87x5 0.473 0.298  0.069 1.000
China 283x5 0.365 0.292  0.016  1.000
Total Central 99x5 0.362 0.282  0.031 1.000
Northeast 33x5 0.272 0.236  0.025 1.000
West 64x5 0.270 0.276  0.016 1.000
East 87x5 0.456 0.328  0.042 1.000
Central 99x5 0.364 0.304  0.012 1.000
Energy China 283x%5 0.358 0.315  0.008  1.000
West 64x5 0.259 0.291 0.008 1.000
Northeast 33x5 0.257 0.253  0.019 1.000
East 87x5 0.418 0.326  0.015 1.000
China 283x5 0.355 0.308  0.011  1.000
Wastewater Central 99x5 0.347 0.303 0.038 1.000
Northeast 33x5 0.333 0.283  0.024 1.000
West 64x5 0.280 0.292  0.011 1.000
East 87x5 0.481 0.330  0.037  1.000
China 283x5 0.358 0.321  0.007  1.000
SO Central 99x5 0.338 0.314  0.020 1.000
Northeast 33x5 0.281 0.266  0.017  1.000
West 64x5 0.264 0.303  0.007  1.000
East 87x5 0.572 0.336  0.014  1.000
China 283x5 0.403 0.339 0.014  1.000
Soot Central 99x5 0.356 0.311 0.001 1.000
West 64x5 0.299 0.311 0.004 1.000
Northeast 33x5 0.246 0.267  0.014 1.000
333  3.2.1.2. Distribution Dynamic Analysis of Energy and Environmental Performance
334 We next tracked the EEP evolution for 283 cities in China via the distribution dynamics approach

335  [58-60]. Each city’s EEP and its decompositions were divided by 283 cities” yearly average levels to
336  form the corresponding relative performance indicators. These indicators can then be used to
337  estimate the kernel densities and stochastic kernels.

338 Figure 1 shows the distributions of kernel densities for the total performance and sub-
339  performances. The distribution of total performance in 2010 is bimodal with more than 80% of cities’
340  performance distributed around 0.5 times the average performance level and other cities’
341  performance concentrated on 2.5 times level (possessed by the best performers). Most cities’ total
342  performances were below average in 2010, but a select few cities performed extremely well and
343  formed a small convergence club led by best performers. In 2014, the distribution of total performance
344  nearly reached around 0.5 times the average performance level; the small convergence club dispersed
345  and members in it became smaller. The ergodic distribution indicates clear convergence to 0.5 times
346  the average level and small convergence club would nearly disappear. Other kernel density plots for
347  sub-performances indicate that: 1) energy performance features strong convergence to 0.5 times the
348  average performance level; 2) small convergence clubs for environmental performances are more
349  obvious than energy performance.
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Figure 3. Contour stochastic kernel plots for total and sub-performances

As shown in the 3D stochastic kernel and 2D contour part plots (Figures 2-3), for cities with
below-average levels in total performance and sub-performances, the transition probability generally
moves counter-clockwise from the 45° diagonal - cities with relatively low EEP compared to the
average level remarkably improved over the study period. Cities with above-average performance,
conversely, can be divided into two groups: The first group, the small convergence club led by the
best performers, remain near the 45° diagonal in the upper right-hand corner. In the second group,
cities with high total performance and sub-performances gradually decrease in efficiency and
converge to average levels.

3.2.1.3. Analysis of Best and Worst Performers

Identifying the best performers can provide good benchmarks for cities with lower efficiency in
terms of energy conservation and emissions abatement. If EEP equals 1 (D'(x%,e',y*,b%; g) = 0), i.e,
the city was located in the production frontier for at least in one year between 2010 and 2014, the city
is defined as a “best performer”. As shown in Figure 4, the best performers are mainly located in
Guangdong, Shandong, Jiangsu, Jiangxi, Sichuan, and Hainan provinces. The best performers
possess advanced service industries, which generally consume few resources, or have high ecological
quality. In Qingdao, Shenzhen, and Dongguan, for example, the ratio of service industry to GDP was
51.22%, 57.39%, and 52.14% in 2014, respectively. The service industry consumes relatively little
energy though it does require a great deal of labor, capital, and technology. Besides, these developed
cities with sufficient funding also can improve their energy conservation and abatement ability via
technical innovation and advanced managerial experience. These cities consume less energy and emit
less pollution while maximizing desirable outputs. Provinces such as Jiangxi, Sichuan, and Hainan
have less developed economies but still exhibit high EEP due to natural endowments (high ecological
quality) and economic support from tourism.

A city with EEP no more than 0.1 (D'(x", e%,y%, b’ g) > 0.9) in all years of 2010-2014 is defined
as a “worst performer”. As shown in Figure 4, the worst performers are mainly distributed in
Heilongjiang, Guangxi, Ningxia, and Shanxi provinces which are generally rich in coal or nonferrous
metal resources. Cities like Datong (Shanxi), Shizuishan (Ningxia), Huainan (Anhui) and Hegang
(Heilongjiang) are important coal bases of China. A great deal of pollutants are emitted by coal
exploitation and processing. Other cities like Guigang (Guangxi) and Baise (also Guangxi) are
important nonferrous metal bases of China. Nonferrous metallurgy likewise produces substantial air
pollutants as well as mercury and chromium pollution.

d0i:10.20944/preprints201806.0080.v1
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Figure 4. Distribution of best performers and worst performers

3.2.2. Analysis of Dynamic Changes in Energy and Environmental Performance
3.2.2.1. National Level

We examined dynamic changes in EEP and its decompositions by EEPI. We first calculated the
average value at the country level involving a five-year span of 283 cities’ total performance changes
and decompositions over temporal and spatial dimensions. The average EEP change, technical
efficiency change, and technological change are 2.38%, -1.57% and 3.95%, respectively (Table 3). That
is to say, China made considerable progress in the energy conservation and emissions abatement in
the study period. The Chinese government made great strides in environmental protection under the
12th five-year plan (FYP) (2011-2015), which focused on upgrading the industrial structure for low
energy consumption and pollution reduction. Further, the manufacturing industry comprised 57.2%
of GDP in 2010 but only 47.1% in 2014. Changes in technical efficiency continually declined with the
exception of the period 2012-2013, whereas a slower and slower upward trend was observed in
technological changes. In other words, EEP change is mainly driven by technological progress rather
than technical efficiency improvement [11, 46, 61]. Government policies targeting the improvement
of technical efficiency in the manufacturing sector may indeed enhance overall environmental
performance.

Table 3. Arithmetic mean of EEPI and its decompositions for 283 cities

d0i:10.20944/preprints201806.0080.v1

Index 2010-2011 2011-2012 2012-2013 2013-2014 average
EEPISH 0.0004 0.0246 0.0634 0.0067 0.0238
effchist! -0.0969 -0.0067 0.0579 -0.0172 -0.0157

techchith 0.0973 0.0313 0.0055 0.0239 0.0395
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412 Cities on the production frontier achieved rapid technological progress and made other cities
413 more difficult to catch up with the production frontier. In other word, the decrease of technical
414  efficiency is a relative deterioration caused by fast technological progress. The decline in technical
415  efficiency is roughly consistent with observations previously made by Meng, Fan, Zhou and Zhou
416  [61]. We further interpreted the deterioration of technical efficiency by assuming that a production
417  activity with one energy input, one desirable output, and undesirable output can have reduced
418  energy input and undesirable output while fixing desirable output as shown in Figure 5. The energy
419  and environmental production technology can be represented by the energy and environmental
420  input set:

421 L(y) = {(e,b): (e,b) can produce y} (29)

422 Suppose that one production unit's activities are observed with two
423  pointsa (et,yt, b*)and a’(e**?, yt*t, bt*1) at periods “t” and “t+1” respectively. frontier' represents
424 the production frontier at period “#”. frontier® denotes the biennial production frontier of pooled
425  observations from period “+’ and “t+1”, and frontier® could be completely determined
426 by frontier™! which implies that frontier® = frontier** . Considering y®*! > y* with the
427  coordinate y, production frontiers in blue lines (i.e., cross section with y = y*1) are higher than those
428  in red lines (i.e., cross section with y = y*) as a result of technological progress. We express the
429  biennial Luenberger index as follows:

EEPI""' =(a—d)—(a'-i)

430 effchy”™  =(a—c)—(a'-i) 0
techchy™ ={(a—d)—(a—c)}—{(a'-i)—(a'-i)}
=(c-d)
431 Given (a — ¢) < (a' — i), as shown in Fig. 5, the catch up effect becomes weak and the technical

432 efficiency deteriorates, which indicates that relative deterioration occurs. However, considering (a —
433 d) > (@’ —i), a iscloserto frontier® than a, which implies that the EEP for observed production
434  activity improves from period t to #+1.

Sfrontier® {L(y'™)} = frontier™ {L(3'™")}

a' (ef-.—llyf—llbf—l)

* A
~ ;,‘: frontier' {L(y")}
‘0 d,/ “. : tL i
* i n.....'ﬁ‘onner{ ()}
L
e

Sfrontier®{L(y")} = frontier™ ' {L(¥")}

435
436 Figure 5. Deterioration of technical efficiency
437 Table 4 shows the contributions of specific energy and undesirable output to the changes in total

438  performance and sub-performances. Energy plays a more important role (contribution over 50%)
439  than undesirable outputs in total performance change and its four sub-performances. With respect to
440  undesirable outputs, SOz performance change has the strongest effect on total performance change
441 (25.36%) while the effect of soot emission performance change is the lowest (0.80%). Technological
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442  change behaves similarly; SO2 technological change contributes more to total technological change
443  (26.91%) than soot technological change (4.15%). Technical efficiency change shows much different
444  characteristics. The contribution from wastewater technical efficiency change to total technical
445  efficiency change was the smallest (4.74%) while SO: technical efficiency change made the largest
446  contribution (28.64%). In effect, SOz has become the largest contributor to total performance change
447  and sub-performance changes among the three undesirable outputs.

448 Table 4. Contributions of specific energy and undesirable output to total performance change, sub-
449 performance changes
Index EEPI Y EEPI; EEPIZH EEPIZE! EEPIGS . er
Average 0.0238 0.0123 0.0061 -0.0002 0.0055
Contribution 100% 51.01% 25.36% 0.80% 22.83%
Index effchip  effcheonengy  effchgyy’  effchss  effehastewater
Average -0.0157 -0.0086 -0.0045 -0.0018 -0.0007
Contribution 100% 54.97% 28.64% 11.65% 4.74%
Index techchfllh  techchfity,, — techchiit'  techchlll!  techchliitoater
Average 0.0395 0.0210 0.0106 0.0016 0.0063
Contribution 100% 53.09% 26.91% 4.15% 15.85%

450  3.2.2.2. Regional Level

451 China can be divided into four areas by economic development levels and geographical
452 characteristics: eastern, northeastern, central, and western areas. Urban agglomeration, considered to
453  be an economic growth point, leads regional economic development. We explored the regional
454  differences in urban agglomeration accordingly. The ten agglomerations we observed include
455  Beijing-Tianjin-Hebei, the central and southern of Liaoning province, the Yangtze River Delta, the
456 western side of the Taiwan Strait, the Shandong Peninsula, the Central Plain, the middle Yangtze
457  River, the Pearl River Delta, Sichuan and Chongqing, and the Central Shaanxi Plain [62, 63].

458 Table 5 shows the average changes in EEPI and its decompositions among the four areas for
459  every two consecutive years. The average changes in EEP are positive indicating a marked
460  improvement in the four areas over the study period. The central area shows the most significant
461  performance improvement (2.97%), followed by the eastern (2.73%) and western (1.96%) areas. The
462  northeastern area experienced almost no EEP change (0.50%). Heavy industry renders the
463  northeastern area less able to improve its EEP. We also found that the eastern area achieved the
464  greatest technological progress (5.86%) while experiencing the greatest decline in technical efficiency
465  (-3.14%) among the four areas; technological progress in the eastern area makes a greater contribution
466  to performance improvement, which substantially offsets the deterioration of technical efficiency.

467 Table 5. Arithmetic means for EEPI{\" |, effchi* | and techch{sl in 2010-2014 among four areas
Arithmetic mean EEPI Y effchitt! techchitth
East 0.0273 -0.0314 0.0586
Central 0.0297 -0.0081 0.0378
West 0.0196 -0.0032 0.0228
Northeast 0.0050 -0.0215 0.0264
468 We next compared the effects of specific energy and undesirable output on the changes in total

469  performance and sub-performances in the four areas and ten urban agglomerations. Figure 6 shows
470  the contributions from specific energy and undesirable outputs to total performance change among
471  four areas and ten urban agglomerations. Energy contribution rates in the eastern (50.93%), central
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472 (51.79%), and northeastern (88.20%) areas explain more than half of the performance improvement
473 but less so in the western area (45.38%). Most sub-performances in the four areas were improved.
474  Soot emission performance declined in eastern and northeastern areas over 2010-2014, likely because
475  the environmental regulation for soot emissions was eased during the study period in line with the
476  truth that severe haze happened frequently in China. In the 10th FYP period, the central government
477  placed quantified constraints on soot emission which were canceled in the 11th and 12th FYP periods;
478  the top priority for the central government with mixed environmental regulations was to curb
479  excessive emissions of SO2 and NOx.

480 Energy is apparently the major driving force for improving total performance in the Beijing-
481  Tianjin-Hebei region, where energy accounts for 95.68% of the improvement in total performance.
482  Energy contributed 80.64% to the improvement in total performance in the central Shaanxi plain,
483  which is an important coal base in China. Most urban agglomerations achieved significant
484  improvement in total performance during 2010-2014, especially the middle Yangtze River. Total
485  performance declined in the central and southern Liaoning province, however, due to the
486  deterioration in soot emission performance. Total performance in the Pearl River Delta also declined
487  due to arapid increase in energy consumption.

Northeast

West

Central

East

central and southern Liaoning
Pearl River Delta

Shandong Peninsula

Central Shaanxi plain
Beijing-Tianjin-Heibei
Central Plain

Sichuan and Chonggqging
western sides Taiwan Straits
Yangtze River Delta

middle Yangtze River
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489 Figure 6. Contributions of specific energy and undesirable outputs performance to total
490 performance among four areas and ten urban agglomerations
491 Figure 7 shows contributions from specific energy and undesirable outputs to the total technical

492 efficiency change among the four areas and ten urban agglomerations. Total technical efficiency
493  decreased significantly in all four regions. Deterioration in energy technical efficiency is the root
494  cause of decline in total technical efficiency in the four areas with exception of the central area, which
495  is defined by a decrease in SO: technical efficiency (elsewhere the second-most important cause of
496  decline). Technical efficiency in most urban agglomerations decreased continually from 2010 to 2014.
497  Only the middle Yangtze River area and central Shaanxi plain made progress in technical efficiency,
498  which can be attributed to improvements in energy efficiency.
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500 Figure 7. Contributions of specific energy and undesirable outputs to total technical efficiency
501 among four areas and ten urban agglomerations

502 Figure 8 shows the contributions of specific energy and undesirable outputs to total
503  technological change among the four areas and ten urban agglomerations. Energy contributed more
504  significantly than the sum of undesirable outputs in the total technological change in the four areas;
505  SO:2 technology was markedly improved while soot technology only slightly so. Technical progress
506  in almost all ten urban agglomerations (except the central Shaanxi) grew continually. Total
507  technological change in the central Shaanxi area declined 2.5% on average due to the bad performance
508  of best performers around the central Shaanxi area.
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510 Figure 8. Contributions of specific energy and undesirable outputs to total technological change
511 among four areas and ten urban agglomerations

512 3.2.3. Analysis of Spatial Distribution Evolution on Energy and Environmental Performance Potential
513  3.2.3.1. EEP Spatial Pattern

514 The average value of global Moran’s I, is 0.0807, indicating a positive spatial correlation. The
515  positive difference in EEP spatial distribution increases along with the decline of global Moran’s I,.
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517 Figure 9. Changes in global Moran’s I, of EEP

518 We used a LISA cluster map based on the local Moran’s I; to observe the spatial agglomeration
519 effects, i.e,, whether a spatial unit shows a spatial correlation with its neighbors or not (Figure 10).
520  There is significant agglomeration effect evidenced by four types of spatial correlations: high-high,
521  low-low, low-high (middle is low and surroundings are high) and high-low (middle is high and
522  surroundings are low). The high-high type mainly exists in the Huanghe Delta and the developed
523  southeast coast of China in 2010. The high-high type areas spread from the developed southeast coast
524  to the areas with high ecological quality, such as the northern border between Sichuan and Hubei
525  provinces (which have a famous giant panda habitat called the Shennongjia National Nature Reserve)
526  or the Dongting lake basin (the third-largest lake in China renowned for its beautiful scenery in the
527  north of Hunan province); China’s second largest lake, Poyang, is located in the northern Jiangxi
528  province with a forest acreage over 60%; the Huanghe Delta and Yangtze River Delta similarly have
529  rich wetland resources which maintain the high-high cluster characteristics resulting from their
530  inherently high ecological quality. Cities with high ecological quality, especially those with national
531  nature reserves, wetlands and forests, most commonly feature high-high type correlations.

LISA cluster map in 2010
not sigfinant(218)

I hich-high(16)
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532
(a) LISA cluster map in 2010
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533 (b) LISA cluster map in 2014
534 Figure 10. LISA cluster map of EEP in 2010 and 2014
535  3.2.3.2. Influencing Factors on Energy and Environmental Performance Potential
536 Considering the spatial heterogeneity, we used the GWR method instead of the ordinary (global)

537  linear regression to capture influencing factors on EEP potential with the aim to reveal its spatially
538  varying links. Energy is positively correlated with pollutants because pollutants mainly originate in
539  the combustion of energy sources. Energy conservation potential and SO: emission abatement
540  potential exhibit similar distribution characteristics for this reason. In this study, we focused on the
541  influencing factors of SOz emission abatement potential:

542 Potentialgg, = D§02 (x4 et y', b%; g) X SO, Emission (31)

543 We used three key factors to interpret the change in SO: emission abatement potential: gross
544  industrial output, pollution intensity, and industrial structure. Here, the ratio of SOz emission to gross
545  industrial output represents pollution intensity; the industrial structure is measured by the share of
546  GDP of the service industry [43, 64, 65]. The following GWR model was used to investigate the effects
547  of various influencing factors on SO: emission abatement potential:

548 PotentialSOZi = Lo(u;, vy) + B1(u;, v)GIO; + By (u;, v;)SI; + B3 (u;, v;)SR; + & (32)

549  where f denotes the coefficient parameter; € is a random error term; GIO denotes the gross
550  industrial output; SR denotes the share of GDP of the service industry; SI represents SO: pollution
551  intensity.

552 As shown in Table 6, Model (32) passes the 1% level significance test. The R? indicator of
553  goodness of fit is 0.67 (R? in global regression result is 0.20), which is fairly high. The range of local
554  R? is between 0.36 and 0.9.

555 Table 6. Overall fitting results GWR model based on SOz emission abatement potential

) SOz emission abatement
Indicator ]
potential
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local R? 0.36-0.90
R? 0.67
adjusted R? 0.57
residual sum of squares 5.17 E+10
AlCc 6322
F 4.84
probability 0.003
556 Figure 11(a)-(c) shows the spatial distribution of influencing factors that affect SO emission

557  abatement potential. The natural breaks (Jenks) method was used to split the regression coefficient
558  into four categories to ensure scientific geographical results. In most cities, the gross industrial output
559  shows a positive effect on SO: emission abatement potential. Cities with larger gross industrial output
560 need to consume more energy and are thus inclined to emit more SO: The strongest impact
561  coefficients of gross industrial output are distributed in the western parts of the country. The effects
562  of gross industrial output on SO: emission abatement potential also show a significant downtrend
563  from the western interior to the eastern coast. Pollution intensity is also correlated with SOz emission
564  abatement potential, because cities with higher pollution intensity produce more pollutants. Heavy
565  industry accounts for a considerable proportion of manufacturing in areas around the Bohai Gulf.
566  Cities in the Shandong Peninsula, central and southern Liaoning province, and Beijing-Tianjin-Hebei
567  showed the strongest pollution intensity in terms of SO: emission abatement potential (i.e., areas
568  around the Bohai Gulf where severe haze is relatively common [66-68]).

569 The ratio of the service industry to GDP shows an uncertain effect on SOz emission abatement
570  potential. We next examined the correlation between the ratio of the service industry to GDP and SO
571  emission abatement potential with standardized z-scores, as shown in Figure 12. The Pearson
572 correlation between them is pretty weak (0.119). Only 37 (55) cities pass the significance tests at 5%
573 (10%) level among all 283 cities. This suggests that industrial structure is not the significant
574  influencing factor of SO: emission abatement potential during our study period. In fact,
575  improvements to industrial structure caused by relatively fast growth in the service industry do not
576  significantly reduce SO: emissions. Although the ratio of manufacturing industry to GDP is
577  decreasing on the whole, the ever-increasing value added by the manufacturing industry increases
578  SO: emissions and leaves considerable room for emission abatement. This phenomenon is more
579  common in developed cities, like Shanghai or cities in Jiangsu and Zhejiang provinces. He, et al. [69]
580  and Hu, et al. [70] similarly found that industrial structure does not significantly affect industrial
581  pollution at the city level in China.


http://dx.doi.org/10.20944/preprints201806.0080.v1
http://dx.doi.org/10.3390/su10072303

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2018

doi:10.20944/preprints201806.0080.v1

22 of 28

Gross industrial output in 2014
[ 1<0.0002

[ 10.0002 ™ 0.0005
[ 0.0005 ™ 0.0009

350 700 1,050 KM !
B >=0. 0009 . ey .
582 . - . .
(a) Regression coefficient of gross industrial output
S02 pollution intensity in 2014 Whvzia ‘ i 5
1 <5189333.6 ai;;-ﬁww““ :
5189333.6 ~ 9423940. 3 : ' s
[ 9423940. 3 ™~ 13796907. 1 @ 0 350 700 1,050 KM y
I >=13796907. 1 | | [
583

(b) Regression coefficient of SO2 pollution intensity


http://dx.doi.org/10.20944/preprints201806.0080.v1
http://dx.doi.org/10.3390/su10072303

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2018 d0i:10.20944/preprints201806.0080.v1

23 of 28

Industrial structure in 2014
[ 1<-1154. 8366

[ 1-1154.8366™-374. 4426
[ -374. 44267209. 3786

I >=209. 3786

0 350 700 1,050 KM |
| :

584 (c) Regression coefficient of industrial structure

585 Figure 11. Local GWR estimates of influencing factors for SO2 emission abatement potential in 2014
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587 Figure 12. Correlation between ratio of service industry to GDP and SO: emission abatement
588 potential

589 4. Conclusions

590 China is currently facing a trade-off between economic development and environmental
591  protection. Chinese cities represent complete, independent administrative districts which implement
592  environmental regulations; top administrators are held accountable for environmental damages. A
593  given city’s energy utilization and environment regulation directly influence the amount to which it
594  pollutes the environment, and to identify the best performer and regional difference on EEP will
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595  stimulate the cities to learn from each other. This paper proposed a new biennial Luenberger EEPI to
596  avoid infeasibility problem in conducting data envelopment analysis. Changes in EEP were
597  decomposed into technical efficiency change and technological change. To examine the contributions
598  of specific undesirable outputs (e.g., SOz, soot, and wastewater) and energy inputs to the EEP, the
599  total performance was divided into sub-performances via a non-radial measure. We empirically
600  analyzed a sample of 283 cities from 2010 to 2014 accordingly and investigated the primary drivers
601  of emission abatement potential based on the GWR model. Our main conclusions can be summarized
602  as follows.

603 (1) The best performers are mainly located in the Guangdong, Shandong, Jiangsu, Jiangxi,
604  Sichuan, and Hainan provinces, while the worst performers are mainly distributed in Heilongjiang,
605  Guangxi, Ningxia, and Shanxi provinces. The best performers possess advanced service industries
606  and either consume less energy or have inherently high ecological quality, while the worst
607  performers depend on abundant coal and nonferrous metal resources to support economic
608  development. Best performers tended to move from the coastal towards the inland area over time.
609 (2) At the national level, average EEP change, technical efficiency change, and technological
610  change values are 2.38%, -1.57%, and 7.90%, respectively. China achieved remarkable progress in
611  energy conservation and emission abatement over the study period. The deterioration of the technical
612  efficiency is a relative deterioration caused by the fast technological progress. Changes in EEP are
613  primarily attributable to technological progress, but said progress slowed down during the study
614  period.

615 (3) At the regional level, the central area (2.97%) shows the greatest improvement in total
616  performance followed by eastern (2.73%) and western (1.96%) areas. The northeastern area (0.50%)
617  shows almost no change in EEP. The eastern area achieves the greatest technological progress (5.86%)
618  but greatest decline in technical efficiency (-3.14%) among the four areas. The sub-performances all
619  increased apart from soot emission performance. Deterioration in SO: technical efficiency is the
620  biggest driver of deteriorated technical efficiency in all four areas.

621 We used the ESDA method to find that EEP has obvious spatial agglomeration features. The
622 high-high type clusters mainly exist in Shandong province and the southeast coast of China; high-
623  high type clusters move from coastal areas towards the inland areas which have inherently better
624  ecological quality. The factors that affect SOz emission abatement potential exhibit significant spatial
625  heterogeneity in different areas. The gross industrial output positively affects SO: emission
626  abatement potential in most cities. The strongest impact coefficients of gross industrial output are
627  mainly distributed in the western area. Cities with the strongest positive effect of pollution intensity
628  on SO: emission abatement potential were mainly distributed in central and southern Liaoning
629  province, Beijing-Tianjin-Hebei, and Shandong Peninsula areas (i.e., areas around the Bohai Gulf
630  which are characterized by haze problems). The ratio of service industry to GDP has an uncertain
631  effect on SO emission abatement potential, indicating that industrial structure is not the significant
632  influencing factor of SOz emission abatement potential in the study period.
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