Research Series in Pure Mathematics Topology, Sets, Pages 1–20

Theory of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{Sets}$

KHODABOCUS M. I. AND SOOKIA N. U. H.

ABSTRACT. Several specific types of generalized sets of a generalized topological space have been defined and investigated for various purposes from time to time in the literature of topological spaces. Our recent research in the field of a new class of generalized sets of a generalized topological space is reported herein as a starting point for more generalized classes.

 $\begin{tabular}{lll} Key words & And & Phrases. & Generalized & topological & space, & generalized & operations, & generalized & sets \\ \end{tabular}$

1. Introduction

Just as the notion of \mathcal{T} -set¹ (open or closed set relative to ordinary topology) is fundamental and indispensable in the study of \(\mathcal{T}\)-sets in \(\mathcal{T}\)-spaces (arbitrary sets in ordinary topological spaces) and in the formulation of the concept of \mathfrak{g} - \mathcal{T} -set (generalized \mathcal{T} -open or \mathcal{T} -closed set relative to ordinary topology) in the study of \mathfrak{g} - \mathfrak{T} -sets in T-spaces (generalized sets in ordinary topological spaces) [18, 19, 23, 37, 39, 41], so is the notion of $\mathcal{T}_{\mathfrak{g}}$ -set (open or closed set relative to generalized topology) in the study of $\mathfrak{T}_{\mathfrak{g}}$ -sets in $\mathcal{T}_{\mathfrak{g}}$ -spaces (arbitrary sets in generalized topological spaces) and in the formulation of the concept of \mathfrak{g} - $\mathcal{T}_{\mathfrak{g}}$ -set (generalized $\mathcal{T}_{\mathfrak{g}}$ -open or $\mathcal{T}_{\mathfrak{g}}$ -closed set relative to generalized topology) in the study of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{q}}$ -sets in $\mathcal{T}_{\mathfrak{q}}$ -spaces (generalized sets in generalized topological spaces) [14]. Thus, the g-topology maps $\mathcal{T}_{\mathfrak{g}}:\mathcal{P}(\Omega)\to\mathcal{P}(\Omega)$ from the power set $\mathcal{P}(\Omega)$ of Ω into itself, thereby inducing \mathfrak{g} -topologies on the underlying set Ω , are classes of distinguished open subsets of a \mathcal{T} -space which are not \mathcal{T} -open sets but are $\mathcal{T}_{\mathfrak{g}}$ -open sets which are related to the families of \mathfrak{g} - \mathcal{T} -open sets [25, 35]. Examples of \mathfrak{g} - \mathfrak{T} -sets in \mathcal{T} -spaces are α -open and α -closed sets, introduced by [33]; β -open sets, introduced by [1] and γ -open sets, introduced by [34]. Examples of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets in $\mathcal{T}_{\mathfrak{g}}$ -spaces are Δ_{μ} -sets and ∇_{μ} sets, introduced by [24]; ω -open sets, introduced by [19] and θ -sets, introduced by [10]. From these α , β , γ -sets and, Δ_{μ} , ∇_{μ} , ω , θ -sets, the theories of \mathfrak{g} -T-sets and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets then appear to be subjects of primary interest.

To the best of our knowledge, the theory of \mathfrak{g} -T-sets is well-known and that of \mathfrak{g} -T $_{\mathfrak{g}}$ -sets less-known. The earliest works on the theory of \mathfrak{g} -T-sets are those of [27] [28, 27], [33], and [13, 12, 11, 10, 9], and the latest works on the theory of

¹Notes to the reader: The structures $\mathfrak{T}=(\Omega,\mathcal{T})$ and $\mathfrak{T}_{\mathfrak{g}}=(\Omega,\mathcal{T}_{\mathfrak{g}})$, respectively, are called ordinary and generalized topological spaces (briefly, \mathcal{T} -space and $\mathcal{T}_{\mathfrak{g}}$ -space). The symbols \mathcal{T} and $\mathcal{T}_{\mathfrak{g}}$, respectively, are called ordinary topology and generalized topology (briefly, topology and gtopology). Subsets of \mathfrak{T} and $\mathfrak{T}_{\mathfrak{g}}$, respectively, are called \mathfrak{T} -open and $\mathcal{T}_{\mathfrak{g}}$ -open sets, and their complements are called \mathcal{T} -closed and $\mathcal{T}_{\mathfrak{g}}$ -closed sets. Generalizations of \mathfrak{T} -sets, \mathcal{T} -open and \mathcal{T} -closed sets in \mathcal{T} , respectively, are called \mathcal{T} -closed sets; generalizations of $\mathfrak{T}_{\mathfrak{g}}$ -sets, $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets in $\mathcal{T}_{\mathfrak{g}}$ -respectively, are called \mathcal{T} -closed sets in $\mathcal{T}_{\mathfrak{g}}$ -respectively, are called \mathcal{T} -closed sets in $\mathcal{T}_{\mathfrak{g}}$ -closed sets.

g-T-sets are those of [36], [24, 23], [19], and [41], among others. [27] introduced and investigated the weaker forms of open sets, [33] introduced and investigated the structures of some classes of more or less nearly open sets, and [9] introduced the notion of g-topologies; [36] introduced the weaker forms of closed sets and studied some of their characterizations, [23] gave a unified framework for the study of several types of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets, [19] extended the notion of a type of \mathfrak{g} - \mathfrak{T} -sets in a \mathcal{T} -space to its analogue in a $\mathcal{T}_{\mathfrak{g}}$ -space, and [41] introduced and investigated several types of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets in $\mathcal{T}_{\mathfrak{g}}$ -spaces.

Several other specific classes of $\mathfrak{g-T},\,\mathfrak{g-T_g}$ -sets have been defined and investigated by other authors for various purposes from time to time in the literature of \mathcal{T} , $\mathcal{T}_{\mathfrak{g}}$ spaces [2, 3, 4, 5, 8, 17, 15, 20, 21, 22, 26, 29, 31, 30, 32, 35, 38, 40]. The fruitfulness of all these references have made significant contributions to the theory of \mathcal{T} , $\mathcal{T}_{\mathfrak{g}}$ spaces, among others. In this paper, we will show how further contributions can be added to the field in a unified way.

2. Theory

2.1. PRELIMINARIES. Our discussion starts by recalling a carefully chosen set of terms used in this study. Throughout this chapter, \$\mathcal{U}\$ stands for the universe of discourse, fixed within the framework of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{q}}$ -sets and containing as elements all sets $(\Omega, \Gamma\text{-sets}; \mathcal{T}, \mathfrak{g}\text{-}\mathcal{T}, \mathfrak{T}, \mathfrak{g}\text{-}\mathfrak{T}\text{-sets}; \mathcal{T}_{\mathfrak{g}}, \mathfrak{g}\text{-}\mathcal{T}_{\mathfrak{g}}, \mathfrak{T}_{\mathfrak{g}}, \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-sets})$ considered in this theory, and $I_n^0 \stackrel{\text{def}}{=} \{ \nu \in \mathbb{N}^0 : \nu \leq n \}$; index sets I_∞^0 , I_n^* , I_∞^* are defined similarly. A set $\Gamma \subset \mathfrak{U}$ is a subset of the set $\Omega \subset \mathfrak{U}$ and, for some $\mathcal{T}_{\mathfrak{g}}$ -open set $\mathcal{O}_{\mathfrak{g}} \in \mathcal{T} \cup \mathfrak{g}\text{-}\mathcal{T} \cup \mathcal{T}_{\mathfrak{g}} \cup \mathfrak{g}\text{-}\mathcal{T}_{\mathfrak{g}}$, these implications hold:

$$(2.1)\mathcal{O}_{\mathfrak{g}} \in \mathcal{T} \ \Rightarrow \ \mathcal{O}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathcal{T} \ \Rightarrow \ \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}} \ \Rightarrow \ \mathcal{O}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathcal{T}_{\mathfrak{g}} \ \Rightarrow \ \mathcal{O}_{\mathfrak{g}} \subset \Omega \subset \mathfrak{U}.$$

In a natural way, a monotonic map $\mathcal{T}_{\mathfrak{g}}:\mathcal{P}(\Omega)\to\mathcal{P}(\Omega)$ from the power set $\mathcal{P}(\Omega)$ of Ω into itself can be associated to a given mapping $\pi_{\mathfrak{g}}:\Omega\to\Omega$, thereby inducing a \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}\subset\mathcal{P}(\Omega)$ on the underlying set Ω [35]. Therefore, the definition of a $\mathcal{T}_{\mathfrak{g}}\text{-space}$ can be presented in a nice way. Thus, retaining the axioms to be satisfied by its g-topology [29], and assuming no separation axioms, unless otherwise stated, the following definition is suggestive:

DEFINITION 2.1 ($\mathcal{T}_{\mathfrak{g}}$ -Space). Let $\Omega \subset \mathfrak{U}$ be a given set and let $\mathcal{P}(\Omega) \stackrel{\mathrm{def}}{=} \{\mathcal{O}_{\mathfrak{g},\nu} \subseteq \Omega : \mathbb{C} : \mathbb{C} \in \mathcal{T} \}$ $\nu \in I_{\infty}^*$ be the family of all subsets $\mathcal{O}_{\mathfrak{g},1}, \mathcal{O}_{\mathfrak{g},2}, \ldots$, of Ω . Then every one-valued map of the type $\mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ satisfying the following axioms:

- $$\begin{split} \bullet \ & \text{Ax. I. } \mathcal{T}_{\mathfrak{g}}\left(\emptyset\right) = \emptyset, \\ \bullet \ & \text{Ax. II. } \mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right) \subseteq \mathcal{O}_{\mathfrak{g}}, \\ \bullet \ & \text{Ax. III. } \mathcal{T}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{O}_{\mathfrak{g},\nu}\right) = \bigcup_{\nu \in I_{\infty}^{*}} \mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\nu}\right), \end{split}$$

is called a " \mathfrak{g} -topology on Ω ," and the structure $\mathfrak{T}_{\mathfrak{g}}\stackrel{\mathrm{def}}{=}(\Omega,\mathcal{T}_{\mathfrak{g}})$ is called a " $\mathcal{T}_{\mathfrak{g}}$ -space."

In Def. 2.1, by Ax. I., Ax. II. and Ax. III., respectively, are meant that the unary operation $\mathcal{T}_{\mathfrak{g}}:\mathcal{P}\left(\Omega\right)\to\mathcal{P}\left(\Omega\right)$ preserves nullary union, is contracting and preserves binary union. Any element $\mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}(\Omega)$ of the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ is called a $\mathcal{T}_{\mathfrak{g}}$ -open set and its complement element $\mathcal{C}(\mathcal{O}_{\mathfrak{g}}) = \mathcal{K}_{\mathfrak{g}} \notin \mathcal{T}_{\mathfrak{g}}(\Omega)$ is called a $\mathcal{T}_{\mathfrak{g}}$ -closed set. If there exists a $\nu \in I_{\mathfrak{g}}^*$ such that $\mathcal{O}_{\mathfrak{g},\nu} = \Omega$, then $\mathfrak{T}_{\mathfrak{g}}$ is called a strong $\mathcal{T}_{\mathfrak{g}}$ -space [11, 35]. Moreover, if $\mathcal{T}_{\mathfrak{g}}(\bigcap_{\nu \in I_n^*} \mathcal{O}_{\mathfrak{g},\nu}) = \bigcap_{\nu \in I_n^*} \mathcal{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu})$ holds for any index set $I_n^* \subset I_\infty^*$ such that $n < \infty$, then $\mathfrak{T}_{\mathfrak{g}}$ is called a quasi $\mathcal{T}_{\mathfrak{g}}$ -space [13].

DEFINITION 2.2 (g-Closure, g-Interior Operators). Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space on the set $\Omega \subset \mathfrak{U}$ with a \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}} : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$. Then:

- ullet I. The operator $\mathrm{cl}_{\mathfrak{g}}:\mathcal{P}\left(\Omega
 ight)
 ightarrow\mathcal{P}\left(\Omega
 ight)$ carrying each $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g}}$ into its
- closure $\operatorname{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) = \mathfrak{T}_{\mathfrak{g}} \operatorname{int}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} \setminus \mathcal{S}_{\mathfrak{g}}) \subset \mathfrak{T}_{\mathfrak{g}}$ is called a "g-closure operator."

 II. The operator $\operatorname{int}_{\mathfrak{g}}: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ carrying each $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ into its interior $\operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) = \mathfrak{T}_{\mathfrak{g}} \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} \setminus \mathcal{S}_{\mathfrak{g}}) \subset \mathfrak{T}_{\mathfrak{g}}$ is called a "g-interior operator."

By convention, we let $\mathcal{T}_{\mathfrak{g}}(\Omega)$ and $\neg \mathcal{T}_{\mathfrak{g}}(\Omega)$, respectively, stand for the classes of all $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets relative to the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}$. Their proper definitions are contained below.

DEFINITION 2.3. Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space, let $\mathfrak{C}: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ denotes the absolute complement with respect to the underlying set $\Omega \subset \mathfrak{U}$, and let $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be any $\mathfrak{T}_{\mathfrak{g}}$ -set. The classes

$$\mathcal{T}_{\mathfrak{g}}\left(\Omega\right) \stackrel{\mathrm{def}}{=} \left\{ \mathcal{O}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \ \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}} \right\}, \quad \neg \mathcal{T}_{\mathfrak{g}}\left(\Omega\right) \stackrel{\mathrm{def}}{=} \left\{ \mathcal{K}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \ \mathfrak{C}\left(\mathcal{K}_{\mathfrak{g}}\right) \in \mathcal{T}_{\mathfrak{g}} \right\},$$

$$(2.2)$$

respectively, denote the classes of all $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets relative to the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{q}}$, and the classes

$$\mathrm{C}^{\mathrm{sub}}_{\mathcal{T}_{\mathfrak{g}}}\left[\mathcal{S}_{\mathfrak{g}}\right] \stackrel{\mathrm{def}}{=} \big\{\mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}: \ \mathcal{O}_{\mathfrak{g}} \subseteq \mathcal{S}_{\mathfrak{g}}\big\}, \quad \mathrm{C}^{\mathrm{sup}}_{\neg \mathcal{T}_{\mathfrak{g}}}\left[\mathcal{S}_{\mathfrak{g}}\right] \stackrel{\mathrm{def}}{=} \big\{\mathcal{K}_{\mathfrak{g}} \in \neg \mathcal{T}_{\mathfrak{g}}: \ \mathcal{K}_{\mathfrak{g}} \supseteq \mathcal{S}_{\mathfrak{g}}\big\},$$

(2.5)

respectively, denote the classes of $\mathcal{T}_{\mathfrak{g}}$ -open subsets and $\mathcal{T}_{\mathfrak{g}}$ -closed supersets (complements of the $\mathcal{T}_{\mathfrak{g}}$ -open subsets) of the $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ relative to the \mathfrak{g} -topology

That $C^{\mathrm{sub}}_{\mathcal{T}_{\mathfrak{g}}}[\mathcal{S}_{\mathfrak{g}}] \subseteq \mathcal{T}_{\mathfrak{g}}(\Omega)$ and $\neg \mathcal{T}_{\mathfrak{g}}(\Omega) \supseteq C^{\sup}_{\neg \mathcal{T}_{\mathfrak{g}}}[\mathcal{S}_{\mathfrak{g}}]$ are true for the $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in question are clear from the context. To this end, the \mathfrak{g} -closure and the \mathfrak{g} -interior of a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space define themselves as

$$(2.4) \qquad \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{=} \bigcup_{\mathcal{O}_{\mathfrak{g}} \in \mathrm{C}^{\operatorname{sub}}_{\mathcal{T}_{\mathfrak{g}}}[\mathcal{S}_{\mathfrak{g}}]} \mathcal{O}_{\mathfrak{g}}, \quad \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \stackrel{\mathrm{def}}{=} \bigcap_{\mathcal{K}_{\mathfrak{g}} \in \mathrm{C}^{\operatorname{sup}}_{\neg \mathcal{T}_{\mathfrak{g}}}[\mathcal{S}_{\mathfrak{g}}]} \mathcal{K}_{\mathfrak{g}}.$$

We note in passing that, $\mathrm{cl}_{\mathfrak{g}}\left(\cdot\right)\neq\mathrm{cl}\left(\cdot\right)$ and $\mathrm{int}_{\mathfrak{g}}\left(\cdot\right)\neq\mathrm{int}\left(\cdot\right)$, because the resulting sets obtained from the intersection of all $\mathcal{T}_{\mathfrak{g}}$ -closed supersets and the union of all $\mathcal{T}_{\mathfrak{g}}$ -open subsets, respectively, relative to the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}$ are not necessarily equal to those which would be obtained from the intersection of all \mathcal{T} -closed supersets and the union of all \mathcal{T} -open subsets relative to the topology \mathcal{T} [3]. Throughout this work, by $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\cdot)$, $\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\cdot)$, and $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\cdot)$, respectively, are meant $\operatorname{cl}_{\mathfrak{g}}(\operatorname{int}_{\mathfrak{g}}(\cdot)), \operatorname{int}_{\mathfrak{g}}(\operatorname{cl}_{\mathfrak{g}}(\cdot)), \operatorname{and} \operatorname{cl}_{\mathfrak{g}}(\operatorname{int}_{\mathfrak{g}}(\operatorname{cl}_{\mathfrak{g}}(\cdot))); \operatorname{other} \operatorname{composition} \operatorname{operators} \operatorname{are}$ defined in a similar way. Also, the backslash $\mathfrak{T}_{\mathfrak{g}} \setminus \mathcal{S}_{\mathfrak{g}}$ refers to the set-theoretic difference $\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}}$.

DEFINITION 2.4 (g-Operation). Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space on the set $\Omega \subset \mathfrak{U}$ with a $\mathfrak{g}\text{-topology }\mathcal{T}_{\mathfrak{g}}\,:\,\mathcal{P}(\Omega)\,\rightarrow\,\mathcal{P}(\Omega).\ \ \, \text{The mapping op}_{\mathfrak{g}}\,:\,\mathcal{P}(\Omega)\,\rightarrow\,\mathcal{P}(\Omega)\ \, \text{is called a}$ "g-operation" on $\mathcal{P}(\Omega)$ if the following statements hold:

$$\forall \mathcal{S}_{\mathfrak{g}} \in \mathcal{P}(\Omega) \setminus \{\emptyset\}, \ \exists (\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathcal{T}_{\mathfrak{g}} \setminus \{\emptyset\} \times \neg \mathcal{T}_{\mathfrak{g}} \setminus \{\emptyset\} :$$

$$(\operatorname{op}_{\mathfrak{g}}(\emptyset) = \emptyset) \vee (\neg \operatorname{op}_{\mathfrak{g}}(\emptyset) = \emptyset), \ (\mathcal{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})) \vee (\mathcal{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}})),$$

where $\neg op_{\mathfrak{g}}: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ is called the "complementary \mathfrak{g} -operation" on $\mathcal{P}(\Omega)$ and, for all $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathcal{S}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g},\nu}, \mathcal{S}_{\mathfrak{g},\mu} \in \mathcal{P}(\Omega) \setminus \{\emptyset\}$, the following axioms are satisfied:

- Ax. I. $\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee \left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right)$,
- $\bullet \ \mathrm{Ax.} \ \mathrm{II.} \ \left(\mathrm{op}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \vee \left(\neg \ \mathrm{op}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \ \mathrm{op}_{\mathfrak{g}} \circ \neg \ \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g}}\right)\right),$
- Ax. III. $(S_{\mathfrak{g},\nu} \subseteq S_{\mathfrak{g},\mu} \to \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu}) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\mu})) \vee (S_{\mathfrak{g},\mu} \subseteq S_{\mathfrak{g},\nu} \leftarrow \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\mu}) \supseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\nu})),$
- Ax. iv. $\left(\operatorname{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu,\mu}\mathcal{S}_{\mathfrak{g},\sigma}\right)\subseteq\bigcup_{\sigma=\nu,\mu}\operatorname{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\right)\vee\left(\neg\operatorname{op}_{\mathfrak{g}}\left(\bigcup_{\sigma=\nu,\mu}\mathcal{S}_{\mathfrak{g},\sigma}\right)\supseteq\bigcup_{\sigma=\nu,\mu}\neg\operatorname{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\sigma}\right)\right),$

for some $\mathcal{T}_{\mathfrak{g}}$ -open sets $\mathcal{O}_{\mathfrak{g}}$, $\mathcal{O}_{\mathfrak{g},\nu}$, $\mathcal{O}_{\mathfrak{g},\mu} \in \mathcal{T}_{\mathfrak{g}} \setminus \{\emptyset\}$ and $\mathcal{T}_{\mathfrak{g}}$ -closed sets $\mathcal{K}_{\mathfrak{g}}$, $\mathcal{K}_{\mathfrak{g},\nu}$, $\mathcal{K}_{\mathfrak{g},\mu} \in \neg \mathcal{T}_{\mathfrak{g}}$.

The formulation of Def. 2.5 is based on the axioms of the Čech closure operator [5] and the various axioms used by many mathematicians to define closure operators [32]. The class $\mathcal{L}_{\mathfrak{g}}[\Omega]$ stands for the class of all possible \mathfrak{g} -operators and their complementary \mathfrak{g} -operators in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$.

DEFINITION 2.5 ($\mathbf{op}_{\mathfrak{g}}(\cdot)$ -Elements). Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space. The elements of the class $\mathcal{L}_{\mathfrak{g}}[\Omega] = \mathcal{L}_{\mathfrak{g}}^{\omega}[\Omega] \times \mathcal{L}_{\mathfrak{g}}^{\kappa}[\Omega]$, where

$$(2.6) \quad \mathcal{L}_{\mathfrak{g}} \big[\Omega \big] \stackrel{\mathrm{def}}{=} \big\{ \mathbf{op}_{\mathfrak{g},\nu\mu} \left(\cdot \right) = \big(\mathrm{op}_{\mathfrak{g},\nu} \left(\cdot \right), \neg \, \mathrm{op}_{\mathfrak{g},\mu} \left(\cdot \right) \big) : \ (\nu,\mu) \in I_3^0 \times I_3^0 \big\},$$

in the $\mathcal{T}_{\mathfrak{g}}\text{-space }\mathfrak{T}_{\mathfrak{g}}$ are defined as:

$$\operatorname{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}^{\omega}_{\mathfrak{g}}[\Omega] \stackrel{\operatorname{def}}{=} \left\{ \operatorname{op}_{\mathfrak{g},0}(\cdot), \operatorname{op}_{\mathfrak{g},1}(\cdot), \operatorname{op}_{\mathfrak{g},2}(\cdot), \operatorname{op}_{\mathfrak{g},3}(\cdot) \right\}$$

$$= \left\{ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot) \right\};$$

$$\neg \operatorname{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}^{\kappa}_{\mathfrak{g}}[\Omega] \stackrel{\operatorname{def}}{=} \left\{ \neg \operatorname{op}_{\mathfrak{g},0}(\cdot), \neg \operatorname{op}_{\mathfrak{g},1}(\cdot), \neg \operatorname{op}_{\mathfrak{g},2}(\cdot), \neg \operatorname{op}_{\mathfrak{g},3}(\cdot) \right\}$$

$$= \left\{ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\cdot), \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot), \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\cdot) \right\}.$$

We remark in passing that, $\mathbf{op}_{\mathfrak{g},11}(\cdot) = \neg \mathbf{op}_{\mathfrak{g},22}(\cdot)$, and the use of $\mathbf{op}_{\mathfrak{g}}(\cdot) = (\operatorname{op}_{\mathfrak{g}}(\cdot), \neg \operatorname{op}_{\mathfrak{g}}(\cdot)) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$ on a class of $\mathfrak{T}_{\mathfrak{g}}$ -sets will construct a new class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets, just as the use of $\mathcal{L}[\Omega] \stackrel{\mathrm{def}}{=} \{ \mathbf{op}_{\nu}(\cdot) = (\operatorname{op}_{\nu}(\cdot), \neg \operatorname{op}_{\nu}(\cdot)) : \nu \in I_{3}^{0} \}$ on the class of \mathfrak{T} -sets have constructed the new class of \mathfrak{g} - \mathfrak{T} -sets. But since $\operatorname{cl}_{\mathfrak{g}}(\cdot) \neq \operatorname{cl}(\cdot)$ and $\operatorname{int}_{\mathfrak{g}}(\cdot) \neq \operatorname{int}(\cdot)$, in general, it follows that $\operatorname{op}_{\mathfrak{g}}(\cdot) \neq \operatorname{op}(\cdot)$ and, therefore, the new class of \mathfrak{g} - \mathfrak{T} -sets that will be obtained from the first construction will, in general, differ from the new class of \mathfrak{g} - \mathfrak{T} -sets that had been obtained from the second construction.

Definition 2.6 (g- ν - $\mathfrak{T}_{\mathfrak{g}}$ -Set). A $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space is called a "g- $\mathfrak{T}_{\mathfrak{g}}$ -set" if and only if there exist a pair $(\mathcal{O}_{\mathfrak{g}},\mathcal{K}_{\mathfrak{g}}) \in \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}$ of $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets, and a g-operator $\mathbf{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$ such that the following statement holds:

$$(2.8) \qquad (\exists \xi) \left[(\xi \in \mathcal{S}_{\mathfrak{g}}) \land \left(\left(\mathcal{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}} \right) \right) \lor \left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}} \right) \right) \right) \right].$$

The \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -sets:

(2.9)
$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] \stackrel{\mathrm{def}}{=} \big\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \big(\exists \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}(\cdot)\big) \\ \big[\big(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}(\mathcal{O}_{\mathfrak{g}})\big) \vee \big(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}(\mathcal{K}_{\mathfrak{g}})\big)\big]\big\}.$$

It is called a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open set if it satisfies the first property in \mathfrak{g} - ν -S[$\mathfrak{T}_{\mathfrak{g}}$] and a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -closed set if it satisfies the second property in \mathfrak{g} - ν -S[$\mathfrak{T}_{\mathfrak{g}}$]. The classes of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \stackrel{\mathrm{def}}{=} \left\{ \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \left(\exists \mathcal{O}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right) \right) \left[\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g}}\right) \right] \right\}, \\
(2.10) \quad \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] \stackrel{\mathrm{def}}{=} \left\{ \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \left(\exists \mathcal{K}_{\mathfrak{g}}, \mathbf{op}_{\mathfrak{g},\nu}\left(\cdot\right) \right) \left[\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g}}\right) \right] \right\}.$$

From the class \mathfrak{g} - ν -S[$\mathfrak{T}_{\mathfrak{g}}$], consisting of the classes \mathfrak{g} - ν -O[$\mathfrak{T}_{\mathfrak{g}}$] and \mathfrak{g} - ν -K[$\mathfrak{T}_{\mathfrak{g}}$], respectively, of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets of category ν , where $\nu \in I_3^0$, there results in the following definition.

DEFINITION 2.7. Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space. If, for each $\nu \in I_3^0$, \mathfrak{g} - ν -O[$\mathfrak{T}_{\mathfrak{g}}$] and \mathfrak{g} - ν -K[$\mathfrak{T}_{\mathfrak{g}}$], respectively, denote the classes of \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets of category ν , then

$$\mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \bigcup_{\nu \in I_{3}^{0}} \big(\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]\big) \\
= \big(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big]\big) \cup \big(\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]\big) \\
= \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big].$$

In the sequel, it is interesting to view the concepts of open, semi-open, preopen, semi-preopen sets as \mathfrak{g} -T-open sets of categories 0, 1, 2, and 3; likewise, to view the concepts of closed, semi-closed, preclosed, semi-preclosed sets as \mathfrak{g} -T-closed sets of categories 0, 1, 2, and 3. These can be realised by omitting the subscript " \mathfrak{g} " in all symbols of the above definitions.

DEFINITION 2.8 (\mathfrak{g} - ν - \mathfrak{T} -Set). A \mathfrak{T} -set $\mathcal{S} \subset \mathfrak{T}$ in a \mathcal{T} -space is called a " \mathfrak{g} - \mathfrak{T} -set" if and only if there exists a pair $(\mathcal{O}, \mathcal{K}) \in \mathcal{T} \times \neg \mathcal{T}$ of \mathcal{T} -open and \mathcal{T} -closed sets, and an operator $\mathbf{op}(\cdot) \in \mathcal{L}[\Omega]$ such that the following statement holds:

$$(2.12) \qquad (\exists \xi) \left[(\xi \in \mathcal{S}) \land \left((\mathcal{S} \subseteq \text{op}(\mathcal{O})) \lor (\mathcal{S} \supseteq \neg \text{op}(\mathcal{K})) \right) \right].$$

The \mathfrak{g} - \mathfrak{T} -set $\mathcal{S}\subset\mathfrak{T}$ is said to be of category ν if and only if it belongs to the following class of \mathfrak{g} - ν - \mathcal{T} -sets:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}\big] \stackrel{\mathrm{def}}{=} \big\{\mathcal{S} \subset \mathfrak{T} : \ (\exists \mathcal{O}, \mathcal{K}, \mathbf{op}_{\nu}\left(\cdot\right)) \\ \big[(\mathcal{S} \subseteq \mathrm{op}_{\nu}\left(\mathcal{O}\right)) \vee (\mathcal{S} \supseteq \neg \mathrm{op}_{\nu}\left(\mathcal{K}\right)) \big] \big\}.$$

It is called a \mathfrak{g} - ν - \mathfrak{T} -open set if it satisfies the first property in \mathfrak{g} - ν - \mathfrak{T} [\mathfrak{T}] and a \mathfrak{g} - ν - \mathfrak{T} -closed set if it satisfies the second property in \mathfrak{g} - ν - \mathfrak{T} -losed sets, respectively, are defined by

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}\big] \stackrel{\mathrm{def}}{=} \left\{\mathcal{S}\subset\mathfrak{T}: \ (\exists\mathcal{O},\mathbf{op}_{\nu}\left(\cdot\right))\left[\mathcal{S}\subseteq\mathrm{op}_{\nu}\left(\mathcal{O}\right)\right]\right\},$$

$$(2.14) \qquad \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}\big] \stackrel{\mathrm{def}}{=} \left\{\mathcal{S}\subset\mathfrak{T}: \ (\exists\mathcal{K},\mathbf{op}_{\nu}\left(\cdot\right))\left[\mathcal{S}\supseteq\neg\,\mathrm{op}_{\nu}\left(\mathcal{K}\right)\right]\right\}.$$

As in the previous definitions, from the class \mathfrak{g} - ν -S[\mathfrak{T}], consisting of the classes \mathfrak{g} - ν -O[\mathfrak{T}] and \mathfrak{g} - ν -K[\mathfrak{T}], respectively, of \mathfrak{g} - ν - \mathfrak{T} -open and \mathfrak{g} - ν - \mathfrak{T} -closed sets of category ν , where $\nu \in I_3^0$, there results in the following definition.

DEFINITION 2.9. Let \mathfrak{T} be a \mathcal{T} -space. If, for each $\nu \in I_3^0$, \mathfrak{g} - ν -O[\mathfrak{T}] and \mathfrak{g} - ν -K[\mathfrak{T}], respectively, denote the classes of \mathfrak{g} - ν - \mathfrak{T} -open and \mathfrak{g} - ν - \mathfrak{T} -closed sets of category ν ,

KHODABOCUS M. I. AND SOOKIA N. U. H.

then

6

$$\mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}\big] = \bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\big[\mathfrak{T}\big] = \bigcup_{\nu \in I_3^0} \big(\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}\big] \cup \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}\big]\big) \\
= \big(\bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}\big]\big) \cup \big(\bigcup_{\nu \in I_3^0} \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}\big]\big) \\
= \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}\big] \cup \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}\big].$$

The classes of $\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{T}_{\mathfrak{g}}$ -closed sets in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ as well as the classes of \mathfrak{T} -open and \mathfrak{T} -closed sets in a \mathcal{T} -space \mathfrak{T} are defined as thus:

DEFINITION 2.10. Let $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathcal{T}_{\mathfrak{g}})$ be a $\mathcal{T}_{\mathfrak{g}}$ -space and let $\mathfrak{T} = (\Omega, \mathcal{T})$ be a \mathcal{T} -space.

- ullet I. The classes $O\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $K\left[\mathfrak{T}_{\mathfrak{g}}\right]$ denote the families of $\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{T}_{\mathfrak{g}}$ closed sets, respectively, in $\mathfrak{T}_{\mathfrak{g}}$, with $S[\mathfrak{T}_{\mathfrak{g}}] = O[\mathfrak{T}_{\mathfrak{g}}] \cup K[\mathfrak{T}_{\mathfrak{g}}]$.
- \bullet II. The classes O $[\mathfrak{T}]$ and K $[\mathfrak{T}]$ denote the families of $\mathfrak{T}\text{-}\mathrm{open}$ and $\mathfrak{T}\text{-}\mathrm{closed}$ sets, respectively, in \mathfrak{T} , with $S[\mathfrak{T}] = O[\mathfrak{T}] \cup K[\mathfrak{T}]$.

In the following sections, the main results of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets are presented.

3. Main Results

Theorem 3.1. Let $\operatorname{cl}_{\mathfrak{g}}:\mathcal{P}(\Omega)\to\mathcal{P}(\Omega)$ and $\operatorname{int}_{\mathfrak{g}}:\mathcal{P}(\Omega)\to\mathcal{P}(\Omega)$, respectively, be \mathfrak{g} -closure and \mathfrak{g} -interior operators in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. Then:

- I. $\operatorname{cl}_{\mathfrak{g}}(\cdot)$ and $\operatorname{int}_{\mathfrak{g}}(\cdot)$ are enhancing and contracting, respectively.
- II. $\operatorname{cl}_{\mathfrak{q}}(\cdot)$ and $\operatorname{int}_{\mathfrak{q}}(\cdot)$ are idempotent.
- III. $\operatorname{cl}_{\mathfrak{q}}(\cdot)$ and $\operatorname{int}_{\mathfrak{q}}(\cdot)$ are monotone.

PROOF. I. Since the following logical statement

$$\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}: \ (\forall \xi) \left[(\xi \in \mathrm{cl}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}} \right) \leftarrow \xi \in \mathcal{S}_{\mathfrak{g}} \right) \vee (\xi \in \mathrm{int}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}} \right) \rightarrow \xi \in \mathcal{S}_{\mathfrak{g}}) \right],$$

holds, it follows that $\mathcal{S}_{\mathfrak{g}}\subseteq\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)$ or $\mathcal{S}_{\mathfrak{g}}\supseteq\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)$, which prove I.

II. If $\mathcal{S}_{\mathfrak{g}}$ is open, then $\mathcal{S}_{\mathfrak{g}} = \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$; if it is closed, $\mathcal{S}_{\mathfrak{g}} = \operatorname{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$. Consequently, the substitutions $\mathcal{S}_{\mathfrak{g}} \mapsto \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$ and $\mathcal{S}_{\mathfrak{g}} \mapsto \operatorname{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$, respectively, give $\operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) = \operatorname{int}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$ and $\operatorname{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) = \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$, which prove II.

III. Let $\mathcal{R}_{\mathfrak{g}}$, $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ such that $\mathcal{R}_{\mathfrak{g}} \subseteq \mathcal{S}_{\mathfrak{g}}$. Then, $\mathcal{R}_{\mathfrak{g}} \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathcal{R}_{\mathfrak{g}})$, $\mathcal{R}_{\mathfrak{g}} \supseteq \operatorname{int}_{\mathfrak{g}}(\mathcal{R}_{\mathfrak{g}})$,

 $\mathcal{S}_{\mathfrak{g}}\subseteq\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right), \text{ and } \mathcal{S}_{\mathfrak{g}}\supseteq\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \text{ by I. Consequently, } \operatorname{int}_{\mathfrak{g}}\left(\mathcal{R}_{\mathfrak{g}}\right)\subseteq\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \text{ and } \mathcal{S}_{\mathfrak{g}}$ $\operatorname{cl}_{\mathfrak{g}}(\mathcal{R}_{\mathfrak{g}}) \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}), \text{ which prove III.}$

LEMMA 3.2. Let $S_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set of a $\mathcal{T}_{\mathfrak{g}}$ -space. Then:

- $\begin{array}{l} \bullet \text{ I. } (\mathcal{S}_{\mathfrak{g}} = \emptyset) \wedge (\Omega \in \mathcal{T}_{\mathfrak{g}}) \ \Rightarrow \ (\operatorname{int}_{\mathfrak{g}} (\mathcal{S}_{\mathfrak{g}}) = \emptyset) \wedge (\operatorname{cl}_{\mathfrak{g}} (\emptyset) = \emptyset); \\ \bullet \text{ II. } (\mathcal{S}_{\mathfrak{g}} = \emptyset) \wedge (\Omega \notin \mathcal{T}_{\mathfrak{g}}) \ \Rightarrow \ (\operatorname{int}_{\mathfrak{g}} (\mathcal{S}_{\mathfrak{g}}) = \emptyset) \wedge (\operatorname{cl}_{\mathfrak{g}} (\emptyset) \neq \emptyset). \end{array}$

PROOF. If $\mathcal{S}_{\mathfrak{g}}=\emptyset$ and $\Omega\in\mathcal{T}_{\mathfrak{g}},$ then $\left(\emptyset\in C^{\mathrm{sub}}_{\mathcal{T}_{\mathfrak{g}}}\left[\emptyset\right]\right)\wedge\left(\emptyset\in C^{\sup}_{\mathcal{T}_{\mathfrak{g}}}\left[\emptyset\right]\right).$ Consequently, $\operatorname{int}_{\mathfrak{g}}(\emptyset), \operatorname{cl}_{\mathfrak{g}}(\emptyset) = \emptyset$

If $\mathcal{S}_{\mathfrak{g}} = \emptyset$ and $\Omega \notin \mathcal{T}_{\mathfrak{g}}$, then $(\emptyset \in C^{\mathrm{sub}}_{\mathcal{T}_{\mathfrak{g}}}[\emptyset]) \wedge (\emptyset \notin C^{\mathrm{sup}}_{\mathcal{T}_{\mathfrak{g}}}[\emptyset])$. Consequently, $\operatorname{int}_{\mathfrak{g}}(\emptyset) = \emptyset$ and $\operatorname{int}_{\mathfrak{g}}(\emptyset) \neq \emptyset$. These prove the lemma.

THEOREM 3.3. If $S_{\mathfrak{g},1}$, $S_{\mathfrak{g},2}$, ..., $S_{\mathfrak{g},n} \subset \mathfrak{T}_{\mathfrak{g}}$ are $n \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets of a $\mathcal{T}_{\mathfrak{g}}$ -space, then:

- I. $\operatorname{cl}_{\mathfrak{g}}\left(\bigcup_{\nu\in I_n^*}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcup_{\nu\in I_n^*}\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right),$
- II. $\operatorname{int}_{\mathfrak{g}}\left(\bigcup_{\nu\in I_{x}^{*}}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcup_{\nu\in I_{x}^{*}}\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right).$

PROOF. Expressed in set-builder notation, the \mathfrak{g} -closure and the \mathfrak{g} -interior of a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space can also be defined as thus:

$$\begin{split} \operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{=} & \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \; \left(\mathcal{S}_{\mathfrak{g}} \cap \operatorname{cl}\left(\mathcal{O}_{\mathfrak{g}}\right) \neq \emptyset\right) \wedge \left(\xi \in \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}\right)\right\}, \\ \operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) & \stackrel{\operatorname{def}}{=} & \left\{\xi \in \mathfrak{T}_{\mathfrak{g}}: \; \left(\mathcal{S}_{\mathfrak{g}} \cap \operatorname{int}\left(\mathcal{O}_{\mathfrak{g}}\right) = \operatorname{int}\left(\mathcal{O}_{\mathfrak{g}}\right)\right) \wedge \left(\xi \in \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}\right)\right\}, \end{split}$$

respectively, from which it is easily seen that,

$$\begin{split} \operatorname{cl}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g}, \nu} \right) &= \bigcup_{\nu \in I_{n}^{*}} \left\{ \xi \in \mathfrak{T}_{\mathfrak{g}} : \left(\mathcal{S}_{\mathfrak{g}, \nu} \cap \operatorname{cl} \left(\mathcal{O}_{\mathfrak{g}} \right) \neq \emptyset \right) \wedge \left(\xi \in \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}} \right) \right\} \\ &= \left\{ \xi \in \mathfrak{T}_{\mathfrak{g}} : \left(\left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g}, \nu} \right) \cap \operatorname{cl} \left(\mathcal{O}_{\mathfrak{g}} \right) \neq \emptyset \right) \wedge \left(\xi \in \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}} \right) \right\} \\ &= \left\{ \xi \in \mathfrak{T}_{\mathfrak{g}} : \left(\bigcup_{\nu \in I_{n}^{*}} \left(\mathcal{S}_{\mathfrak{g}, \nu} \cap \operatorname{cl} \left(\mathcal{O}_{\mathfrak{g}} \right) \right) \neq \emptyset \right) \wedge \left(\xi \in \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}} \right) \right\} \\ &= \left\{ \xi \in \mathfrak{T}_{\mathfrak{g}} : \bigvee_{\nu \in I_{n}^{*}} \left(\left(\mathcal{S}_{\mathfrak{g}, \nu} \cap \operatorname{cl} \left(\mathcal{O}_{\mathfrak{g}} \right) \neq \emptyset \right) \wedge \left(\xi \in \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}} \right) \right) \right\} \\ &= \bigcup_{\nu \in I^{*}} \operatorname{cl}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}, \nu} \right). \end{split}$$

To prove that $\operatorname{int}_{\mathfrak{g}}\left(\bigcup_{\nu\in I_n^*}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcup_{\nu\in I_n^*}\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right)$, it suffices to substitute $\mathcal{S}_{\mathfrak{g},\nu}\cap$ int $(\mathcal{O}_{\mathfrak{g}})=\operatorname{int}\left(\mathcal{O}_{\mathfrak{g}}\right)$ for $\mathcal{S}_{\mathfrak{g},\nu}\cap\operatorname{cl}\left(\mathcal{O}_{\mathfrak{g}}\right)\neq\emptyset$ in the above proof. This completes the proof. Q.E.D.

COROLLARY 3.4. If $S_{\mathfrak{g},1}$, $S_{\mathfrak{g},2}$, ..., $S_{\mathfrak{g},n} \subset \mathfrak{T}_{\mathfrak{g}}$ are $n \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets of a $\mathcal{T}_{\mathfrak{g}}$ -space, then:

- I. $\operatorname{cl}_{\mathfrak{g}}\left(\bigcap_{\nu\in I_n^*}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcap_{\nu\in I_n^*}\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right),$
- II. $\operatorname{int}_{\mathfrak{g}}\left(\bigcap_{\nu\in I_n^*}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcap_{\nu\in I_n^*}\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right).$

Proposition 3.5. For any $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, the following statement holds:

(3.1)
$$\mathfrak{T}_{\mathfrak{a}} - \operatorname{int}_{\mathfrak{a}} (\mathcal{S}_{\mathfrak{a}}) - \operatorname{cl}_{\mathfrak{a}} (\mathfrak{T}_{\mathfrak{a}} - \mathcal{S}_{\mathfrak{a}}) = \emptyset.$$

PROOF. Let $\xi \in \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}})$. Then, $\xi \in \mathfrak{T}_{\mathfrak{g}} \setminus \mathcal{S}_{\mathfrak{g}}$ since, $\mathfrak{T}_{\mathfrak{g}} \setminus \mathcal{S}_{\mathfrak{g}} \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}})$. But, $\mathfrak{T}_{\mathfrak{g}} \setminus \mathcal{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}})$ and, consequently, $\xi \in \mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$. Hence, there follows that, $\operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}}) \subseteq \mathfrak{T}_{\mathfrak{g}} - \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$. Conversely, let $\xi \in \mathfrak{T}_{\mathfrak{g}} - \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$. Then, $\xi \in \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}))$, since $\mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}))$. But, since $\mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}))$, and, consequently, $\xi \in \mathfrak{T}_{\mathfrak{g}} \setminus \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$. Hence, $\mathfrak{T}_{\mathfrak{g}} - \operatorname{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{cl}_{\mathfrak{g}}(\mathfrak{T}_{\mathfrak{g}} - \mathcal{S}_{\mathfrak{g}})$.

Since $\operatorname{cl}_{\mathfrak{g}}\left(\mathfrak{T}_{\mathfrak{g}}-\mathcal{S}_{\mathfrak{g}}\right)=\mathfrak{T}_{\mathfrak{g}}-\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)$ is equivalent to

$$\left(\operatorname{cl}_{\mathfrak{q}}\left(\mathfrak{T}_{\mathfrak{q}}-\mathcal{S}_{\mathfrak{q}}\right)\subseteq\mathfrak{T}_{\mathfrak{q}}-\operatorname{int}_{\mathfrak{q}}\left(\mathcal{S}_{\mathfrak{q}}\right)\right)\wedge\left(\operatorname{cl}_{\mathfrak{q}}\left(\mathfrak{T}_{\mathfrak{q}}-\mathcal{S}_{\mathfrak{q}}\right)\supseteq\mathfrak{T}_{\mathfrak{q}}-\operatorname{int}_{\mathfrak{q}}\left(\mathcal{S}_{\mathfrak{q}}\right)\right),$$

the proof of the proposition at once follows.

Q.E.D.

PROPOSITION 3.6. Let $cl_{\mathfrak{g}}: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ and $int_{\mathfrak{g}}: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$, respectively, be \mathfrak{g} -closure and \mathfrak{g} -interior operators in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. If $\mathcal{S}_{\mathfrak{g},1}, \, \mathcal{S}_{\mathfrak{g},2}, \, \ldots, \, \mathcal{S}_{\mathfrak{g},n} \subset \mathfrak{T}_{\mathfrak{g}}$ are $n \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets of the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, then:

- I. $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{\mathfrak{m}}^*} \mathcal{S}_{\mathfrak{g},\nu} \right) = \bigcup_{\nu \in I_{\mathfrak{m}}^*} \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g},\nu} \right),$
- II. $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\bigcup_{\nu \in I^*} \mathcal{S}_{\mathfrak{g},\nu}) = \bigcup_{\nu \in I^*} \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\mathcal{S}_{\mathfrak{g},\nu}).$

PROOF. Since the relations

$$\operatorname{cl}_{\mathfrak{g}}\left(\bigcup_{\nu\in I^*}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcup_{\nu\in I^*}\operatorname{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right),\quad\operatorname{int}_{\mathfrak{g}}\left(\bigcup_{\nu\in I^*}\mathcal{S}_{\mathfrak{g},\nu}\right)=\bigcup_{\nu\in I^*}\operatorname{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g},\nu}\right)$$

hold, it follows that

$$\begin{array}{rcl} \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g}, \nu} \right) & = & \operatorname{cl}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \operatorname{int}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}, \nu} \right) \right) \\ & = & \bigcup_{\nu \in I_{n}^{*}} \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}, \nu} \right) \\ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g}, \nu} \right) & = & \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \operatorname{cl}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}, \nu} \right) \right), \\ & = & \bigcup_{\nu \in I_{n}^{*}} \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}, \nu} \right), \end{array}$$

which were to be proved.

Q.E.D.

From the above proposition, it is obvious that

$$\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \right) = \bigcup_{\nu \in I_{n}^{*}} \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g},\nu} \right)$$

$$\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\bigcup_{\nu \in I^{*}} \mathcal{S}_{\mathfrak{g},\nu} \right) = \bigcup_{\nu \in I^{*}} \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g},\nu} \right).$$

On this basis, we have the following corollary:

COROLLARY 3.7. Let $\mathbf{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$ be a \mathfrak{g} -operator in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. If $\mathcal{S}_{\mathfrak{g},1}$, $\mathcal{S}_{\mathfrak{g},2}, \ldots, \mathcal{S}_{\mathfrak{g},n} \subset \mathfrak{T}_{\mathfrak{g}}$ are $n \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets of the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, then:

$$(3.3) op_{\mathfrak{g}} \circ \neg op_{\mathfrak{g}} \left(\bigcup_{\nu \in I_n^*} \mathcal{S}_{\mathfrak{g},\nu} \right) = \bigcup_{\nu \in I_n^*} op_{\mathfrak{g}} \circ \neg op_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g},\nu} \right).$$

Theorem 3.8. If $S_{\mathfrak{g},1}$, $S_{\mathfrak{g},2}$, ..., $S_{\mathfrak{g},n} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ are $n \geq 1$ $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-sets of a class}$ $\mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, then $\bigcup_{\nu \in I_n^*} S_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$.

PROOF. The statement $S_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ for every $\nu \in I_n^*$ is identical to the logical statement:

$$\exists \left(\mathcal{O}_{\mathfrak{g},\nu},\mathcal{K}_{\mathfrak{g},\nu}\right) \in \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}: \ \left(\mathcal{S}_{\mathfrak{g},\nu} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\nu}\right)\right) \vee \left(\mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\mathcal{K}_{\mathfrak{g},\nu}\right)\right).$$

On the other hand, if $\mathbf{op}_{\mathfrak{q}}(\cdot) \in \mathcal{L}_{\mathfrak{q}}[\Omega]$ is a \mathfrak{g} -operator in the $\mathcal{T}_{\mathfrak{q}}$ -space, then

$$\begin{aligned} \mathrm{op}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_n^*} \mathcal{O}_{\mathfrak{g}, \nu} \right) &= \bigcup_{\nu \in I_n^*} \mathrm{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g}, \nu} \right), \\ \neg \mathrm{op}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_n^*} \mathcal{K}_{\mathfrak{g}, \nu} \right) &= \bigcup_{\nu \in I_n^*} \neg \mathrm{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g}, \nu} \right). \end{aligned}$$

Consequently,

$$\bigvee_{\nu \in I_{n}^{*}} \left(\left(\mathcal{S}_{\mathfrak{g},\nu} \subseteq \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\nu} \right) \right) \right) \\
\Rightarrow \left(\left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \subseteq \bigcup_{\nu \in I_{n}^{*}} \operatorname{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \supseteq \bigcup_{\nu \in I_{n}^{*}} \neg \operatorname{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\nu} \right) \right) \right) \\
\Rightarrow \left(\left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \subseteq \operatorname{op}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \operatorname{op}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{n}^{*}} \mathcal{K}_{\mathfrak{g},\nu} \right) \right) \right).$$

But, $\bigcup_{\nu \in I_n^*} \mathcal{O}_{\mathfrak{g},\nu} \in \mathcal{T}_{\mathfrak{g}}$ and $\bigcup_{\nu \in I_n^*} \mathcal{K}_{\mathfrak{g},\nu} \in \neg \mathcal{T}_{\mathfrak{g}}$. Hence, $\bigcup_{\nu \in I_n^*} \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$. This proves the theorem.

Theorem 3.9. If $S_{\mathfrak{g},1}$, $S_{\mathfrak{g},2}$, ..., $S_{\mathfrak{g},n} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ are $n \geq 1$ $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-sets of a class}$ $\mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ in a $\mathcal{T}_{\mathfrak{g}}\text{-space }\mathfrak{T}_{\mathfrak{g}}$, then

$$(3.4) \qquad (\bigcap_{\nu \in I_n^*} \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]) \vee (\bigcap_{\nu \in I_n^*} \mathcal{S}_{\mathfrak{g},\nu} \notin \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]).$$

PROOF. Because, $S_{\mathfrak{g},1}$, $S_{\mathfrak{g},2}$, ..., $S_{\mathfrak{g},n} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ by hypothesis, the trueness of $\bigcap_{\nu \in I_n^*} S_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ and $\bigcap_{\nu \in I_n^*} S_{\mathfrak{g},\nu} \notin \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ evidently depend on the following property:

$$\bigwedge_{\nu \in I_n^*} \left(\left(\mathcal{S}_{\mathfrak{g},\nu} \subseteq \mathrm{op}_{\mathfrak{g}} \left(\mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \, \mathrm{op}_{\mathfrak{g}} \left(\mathcal{K}_{\mathfrak{g},\nu} \right) \right) \right),$$

where $(\mathcal{O}_{\mathfrak{g},\nu},\mathcal{K}_{\mathfrak{g},\nu}) \in \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}$ for every $\nu \in I_n^*$. Furthermore, because the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -settheoretic operations concern finite intersections, it suffices to prove the theorem for n=2. Set the first property preceding \vee to $P(\nu)$ and that following \vee to $Q(\nu)$. Then, its decomposition gives

$$\bigwedge_{\nu \in I_{2}^{*}} (P(\nu) \vee Q(\nu)) = (\bigwedge_{\nu \in I_{2}^{*}} P(\nu)) \vee (\bigwedge_{\nu \in I_{2}^{*}} Q(\nu))$$

$$= (P(1) \wedge Q(2)) \vee (P(2) \wedge Q(1)).$$

If $\mathcal{S}_{\mathfrak{g},1}$, $\mathcal{S}_{\mathfrak{g},2} \in \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ are both $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open sets then $\bigwedge_{\nu \in I_2^*} P(\nu)$ is true, and if they are both $\mathfrak{g}\text{-}\mathcal{T}_{\mathfrak{g}}$ -closed sets then $\bigwedge_{\nu \in I_2^*} Q(\nu)$ is true. In these two cases, $\bigcap_{\nu \in I_2^*} \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$. Because, in general, there does not necessarily exists $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -set which is simultaneously $\mathfrak{g}\text{-}\mathcal{T}_{\mathfrak{g}}$ -open and $\mathfrak{g}\text{-}\mathcal{T}_{\mathfrak{g}}$ -closed, both $P(1) \land Q(2)$ and $P(2) \land Q(1)$ are untrue; thus, $\bigcap_{\nu \in I_2^*} \mathcal{S}_{\mathfrak{g},\nu} \notin \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$. These prove the theorem. Q.E.D.

Theorem 3.10. Let $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set and let $\mathbf{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$ be a \mathfrak{g} -operator in a $\mathcal{T}_{\mathfrak{g}}$ -space. If $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}$ -S $[\mathfrak{T}_{\mathfrak{g}}]$, then

$$(3.5) \qquad (\operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\operatorname{S}[\mathfrak{T}_{\mathfrak{g}}]) \vee (\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\operatorname{S}[\mathfrak{T}_{\mathfrak{g}}]).$$

PROOF. Let $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$. Then, $\big(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}\,(\mathcal{O}_{\mathfrak{g}})\big) \vee \big(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{K}_{\mathfrak{g}})\big)$ for some pair $(\mathcal{O}_{\mathfrak{g}},\mathcal{K}_{\mathfrak{g}}) \in \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}$ of $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets relative to $\mathcal{T}_{\mathfrak{g}}$. Consequently, $\mathrm{op}_{\mathfrak{g}}\,(\mathcal{S}_{\mathfrak{g}}) \subseteq \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}\,(\mathcal{O}_{\mathfrak{g}})$ or $\neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{S}_{\mathfrak{g}}) \supseteq \neg \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{K}_{\mathfrak{g}})$. But, $\mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}\,(\mathcal{O}_{\mathfrak{g}}) \subseteq \mathrm{op}_{\mathfrak{g}}\,(\mathcal{O}_{\mathfrak{g}})$ and $\neg \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{K}_{\mathfrak{g}}) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{K}_{\mathfrak{g}})$. Thus, there follows that $\mathrm{op}_{\mathfrak{g}}\,(\mathcal{S}_{\mathfrak{g}}) \subseteq \mathrm{op}_{\mathfrak{g}}\,(\mathcal{O}_{\mathfrak{g}})$ or $\neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{S}_{\mathfrak{g}}) \supseteq \neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{K}_{\mathfrak{g}})$, and, hence, $\mathrm{op}_{\mathfrak{g}}\,(\mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ or $\neg \mathrm{op}_{\mathfrak{g}}\,(\mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$, which proves the theorem.

PROPOSITION 3.11. Let $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ and suppose the logical statement

$$(3.6) \qquad (\exists \mathcal{R}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}) \left[\left(\mathcal{R}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}} \right) \right) \vee \left(\mathcal{R}_{\mathfrak{g}} \supseteq \neg \, \mathrm{op}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}} \right) \right) \right]$$

holds, then $\mathcal{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}]$.

PROOF. Let there exists a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{R}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ such that $\mathcal{R}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$ or $\mathcal{R}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$. But $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ implies $\operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ or $\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$. Thus, $\mathcal{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$. This completes the proof. Q.E.D.

COROLLARY 3.12. Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space. If $\mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ denotes a class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closed sets, and $\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ denotes a class of $\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{T}_{\mathfrak{g}}$ -closed sets, then

$$(3.7) \qquad \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] \supseteq \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] \supseteq \mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cup \mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] \supseteq \mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big].$$

An important remark should be pointed out at this stage.

REMARK 3.13. The converse of the statement "if $S_{\mathfrak{g}} \in S[\mathfrak{T}_{\mathfrak{g}}]$ then $S_{\mathfrak{g}} \in \mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}]$ " is obviously untrue. Because, the negation of this statement gives

$$(S_{\mathfrak{g}} \in S[\mathfrak{T}_{\mathfrak{g}}]) \wedge (\neg (S_{\mathfrak{g}} \in \mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}])),$$

which is an untrue statements.

Theorem 3.14. Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space. If $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, then

$$(3.8) \ \mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\big] \Leftrightarrow \big(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}}\right)\big) \vee \big(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}}\right)\big).$$

PROOF. Sufficiency. Let

$$\left(\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}} \circ \neg \mathrm{op}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}}\right)\right) \vee \left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}}\right)\right).$$

Then, the substitution of $\neg \operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) = \mathcal{O}_{\mathfrak{g}}$ in the logical statement preceding \vee and $\operatorname{op}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}) = \mathcal{K}_{\mathfrak{g}}$ in that following \vee gives $\left(\mathcal{S}_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})\right) \vee \left(\mathcal{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}})\right)$.

Necessity. Let $S_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$. Then, $(S_{\mathfrak{g}} \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})) \vee (S_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}}))$. Consequently, substituting $\mathcal{O}_{\mathfrak{g}} = \neg \operatorname{op}_{\mathfrak{g}}(S_{\mathfrak{g}})$ in the logical statement preceding \vee and $\mathcal{K}_{\mathfrak{g}} = \operatorname{op}_{\mathfrak{g}}(S_{\mathfrak{g}})$ in that following \vee , the required logical statement at once follows, which proves the theorem. Q.E.D. Q.E.D.

The class $\mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ forms a \mathfrak{g} -topology on Ω , which will be denoted by $\mathcal{T}_{\mathfrak{g}\text{-S}}$.

THEOREM 3.15. Let $\mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ be a given $\mathfrak{g}\text{-class}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. Then the one-valued map $\mathcal{T}_{\mathfrak{g}\text{-S}}:\mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \to \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ forms a $\mathfrak{g}\text{-topology}$ on Ω in the $\mathcal{T}_{\mathfrak{g}}$ -space.

PROOF. By definition, $(\emptyset = \operatorname{op}_{\mathfrak{g}}(\emptyset)) \vee (\emptyset = \neg \operatorname{op}_{\mathfrak{g}}(\emptyset))$. Since, either $\operatorname{op}_{\mathfrak{g}}(\emptyset) \subseteq \operatorname{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})$ or $\neg \operatorname{op}_{\mathfrak{g}}(\emptyset) \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}})$ holds, where $\mathcal{O}_{\mathfrak{g}}$, $\mathcal{K}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, respectively, are some $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets in $\mathfrak{T}_{\mathfrak{g}}$, it follows that $\emptyset \in \mathfrak{g}$ -S $[\mathfrak{T}_{\mathfrak{g}}]$ and, hence, $\mathcal{T}_{\mathfrak{g}$ -S}(\emptyset) = \emptyset .

Let $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$. Then, since $\mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$, it follows that $\mathcal{S}_{\mathfrak{g}}$ is a superset of $\mathcal{T}_{\mathfrak{g}\text{-S}}(\mathcal{S}_{\mathfrak{g}})$. Hence, $\mathcal{T}_{\mathfrak{g}\text{-S}}(\mathcal{S}_{\mathfrak{g}}) \subseteq \mathcal{S}_{\mathfrak{g}}$.

Let $\mathcal{S}_{\mathfrak{g},1}$, $\mathcal{S}_{\mathfrak{g},2}$, ... be $\mathfrak{T}_{\mathfrak{g}}$ -sets satisfying, for every $\nu \in I_{\infty}^*$, $\mathcal{S}_{\mathfrak{g},\nu}$. Then, there exist classes $\{\mathcal{O}_{\mathfrak{g},\nu} \in \mathcal{T}_{\mathfrak{g}} : \nu \in I_{\infty}^*\}$ and $\{\mathcal{K}_{\mathfrak{g},\nu} \in \neg \mathcal{T}_{\mathfrak{g}} : \nu \in I_{\infty}^*\}$, respectively, of $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets such that

$$\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \subseteq \mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{O}_{\mathfrak{g},\nu}\right)\right) \vee \left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \mathrm{op}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{K}_{\mathfrak{g},\nu}\right)\right),$$

a relation established on the following expressions:

$$\bigcup_{\nu \in I_{\infty}^{*}} \operatorname{op}_{\mathfrak{g}} (\mathcal{O}_{\mathfrak{g},\nu}) = \operatorname{op}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{O}_{\mathfrak{g},\nu} \right),
\bigcup_{\nu \in I_{\infty}^{*}} \neg \operatorname{op}_{\mathfrak{g}} (\mathcal{K}_{\mathfrak{g},\nu}) = \neg \operatorname{op}_{\mathfrak{g}} \left(\bigcup_{\nu \in I_{\infty}^{*}} \mathcal{K}_{\mathfrak{g},\nu} \right).$$

Consequently, $\bigcup_{\nu \in I_{\infty}^*} \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$, since $\bigcup_{\nu \in I_{\infty}^*} \mathcal{O}_{\mathfrak{g},\nu} \in \mathcal{T}_{\mathfrak{g}}$ is a $\mathcal{T}_{\mathfrak{g}}$ -open set and $\bigcup_{\nu \in I_{\infty}^*} \mathcal{O}_{\mathfrak{g},\nu} \in \neg \mathcal{T}_{\mathfrak{g}}$ is a $\mathcal{T}_{\mathfrak{g}}$ -closed set. Hence,

$$\textstyle \mathcal{T}_{\mathfrak{g}\text{-}\mathrm{S}}\big(\textstyle\bigcup_{\nu\in I_\infty^*}\mathcal{S}_{\mathfrak{g},\nu}\big)=\textstyle\bigcup_{\nu\in I_\infty^*}\mathcal{T}_{\mathfrak{g}\text{-}\mathrm{S}}\,(\mathcal{S}_{\mathfrak{g},\nu}).$$

These prove the theorem.

An immediate consequence of the above theorem is the following corollary.

COROLLARY 3.16. Let a $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space. Then the structure $(\Omega, \mathcal{T}_{\mathfrak{g}-S})$, where $\mathcal{T}_{\mathfrak{g}-S}: \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \to \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$, is a $\mathcal{T}_{\mathfrak{g}}$ -space.

To condense the set-builder notation describing the classes \mathfrak{g} -S[$\mathfrak{T}_{\mathfrak{g}}$] and then classify it into sub-classes, predicates must be introduced, and the choice made is to consider the so-called *Boolean-valued functions* on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$, the definition of which are given below.

DEFINITION 3.17. Let $(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}$ and let $\mathbf{op}_{\mathfrak{g}}(\cdot) \in \mathcal{L}_{\mathfrak{g}}[\Omega]$ be a \mathfrak{g} -operator in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. The first two predicates

$$P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq) \stackrel{\mathrm{def}}{=} (\exists \mathcal{O}_{\mathfrak{g}}, \mathrm{op}_{\mathfrak{g}}(\cdot)) (\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})),$$

$$P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq) \stackrel{\mathrm{def}}{=} (\exists \mathcal{K}_{\mathfrak{g}}, \neg \mathrm{op}_{\mathfrak{g}}(\cdot)) (\mathcal{S}_{\mathfrak{g}} \supseteq \neg \mathrm{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}})),$$

$$P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq) \stackrel{\mathrm{def}}{=} P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq)$$

$$\vee P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq)$$

$$(3.9)$$

are called a Boolean-valued functions on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}.$

In this respect, $\mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] \stackrel{\mathrm{def}}{=} \big\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : P_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq\big)\big\}$. Moreover, employing the set-builder notations, the class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closed sets, denoted by $\mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ and $\mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]$, respectively, may then be defined as thus:

Definition 3.18. Let $\mathfrak{T}_{\mathfrak{g}}$ be a $\mathcal{T}_{\mathfrak{g}}$ -space. The classes

$$\mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \stackrel{\mathrm{def}}{=} \{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq\big)\}, \\
(3.10) \qquad \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] \stackrel{\mathrm{def}}{=} \{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq\big)\}, \\$$

respectively, such that $\mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] = \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] \bigcup \mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]$, denote the families of all $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{open}$ and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}\mathrm{closed}$ sets in $\mathfrak{T}_{\mathfrak{g}}$.

It is interesting to demonstrate their usefulness. In this direction, let us prove in a different way that $\mathfrak{g-T}_{\mathfrak{g}}\text{-set-theoretic operations}$ is closed under arbitrary unions.

THEOREM 3.19. If $\{S_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}] : \nu \in I_n^*\}$ and $\{S_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}] : \nu \in I_n^*\}$, respectively, are finite collections of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closed sets in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, then

$$\bigcup_{\mu \in I_n^*} \left\{ \xi \in \mathfrak{T}_{\mathfrak{g}} : \left(\exists \nu \in I_\mu^* \right) \left(\xi \in \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \right) \right\} \subseteq \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big],$$

(3.11)
$$\bigcap_{\mu \in I_n^*} \left\{ \xi \in \mathfrak{T}_{\mathfrak{g}} : \left(\forall \nu \in I_{\mu}^* \right) \left(\xi \in \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] \right) \right\} \subseteq \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big].$$

PROOF. For every $\nu \in I_{\mu}^{*}$, there exist $(\mathcal{O}_{\mathfrak{g},\nu}, \mathcal{K}_{\mathfrak{g},\nu}) \in \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}$ such that properties $P_{\mathfrak{g}}(\mathcal{R}_{\mathfrak{g},\nu}, \mathcal{O}_{\mathfrak{g},\nu}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq)$ and $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g},\nu}, \mathcal{K}_{\mathfrak{g},\nu}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq)$ hold for some pair $(\mathcal{R}_{\mathfrak{g},\nu}, \mathcal{S}_{\mathfrak{g},\nu}) \in \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}K[\mathfrak{T}_{\mathfrak{g}}]$. Consequently,

$$\mathrm{P}_{\mathfrak{g}}\big(\bigcup_{\nu\in I_{\mu}^{*}}\mathcal{R}_{\mathfrak{g},\nu},\bigcup_{\nu\in I_{\mu}^{*}}\mathcal{O}_{\mathfrak{g},\nu};\mathbf{op}_{\mathfrak{g}}\left(\cdot\right);\subseteq\big) \quad = \quad \bigvee_{\nu\in I_{\mu}^{*}}\mathrm{P}_{\mathfrak{g}}\big(\mathcal{R}_{\mathfrak{g},\nu},\mathcal{O}_{\mathfrak{g},\nu};\mathbf{op}_{\mathfrak{g}}\left(\cdot\right);\subseteq\big),$$

$$\mathrm{P}_{\mathfrak{g}} \big(\bigcup_{\nu \in I_{\mu}^{*}} \mathcal{S}_{\mathfrak{g},\nu}, \bigcup_{\nu \in I_{\mu}^{*}} \mathcal{K}_{\mathfrak{g},\nu}; \mathbf{op}_{\mathfrak{g}} \left(\cdot \right); \supseteq \big) \quad = \quad \bigwedge_{\nu \in I_{\mu}^{*}} \mathrm{P}_{\mathfrak{g}} \big(\mathcal{S}_{\mathfrak{g},\nu}, \mathcal{K}_{\mathfrak{g},\nu}; \mathbf{op}_{\mathfrak{g}} \left(\cdot \right); \supseteq \big).$$

Hence, it suffices to set

$$\mathrm{P}_{\mathfrak{g}} \big(\mathcal{R}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}} \left(\cdot \right) ; \subseteq \big) \quad = \quad \bigvee_{\nu \in I_{\mu}^{*}} \mathrm{P}_{\mathfrak{g}} \big(\mathcal{R}_{\mathfrak{g}, \nu}, \mathcal{O}_{\mathfrak{g}, \nu}; \mathbf{op}_{\mathfrak{g}} \left(\cdot \right) ; \subseteq \big),$$

$$P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq) = \bigvee_{\nu \in I_{\mu}^{*}} P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g},\nu}, \mathcal{K}_{\mathfrak{g},\nu}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq),$$

and the theorem is proved.

$$Q.E.D.$$
 $Q.E.D.$

If in $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq)$ it be assumed that $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$, we have the following theorem:

THEOREM 3.20. Let $(S_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. If $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$, then

$$(3.12) \qquad \left\{ \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}} : \ \mathrm{P}_{\mathfrak{g}} \left(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}} \left(\cdot \right); \subseteq, \supseteq \right) \right\} \subseteq \mathfrak{g}\text{-}\mathrm{S} \left[\mathfrak{T}_{\mathfrak{g}} \right].$$

PROOF. It is clear that

$$\begin{split} \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}\left(\cdot\right); \subseteq, \supseteq\big) &= \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}\left(\cdot\right); \subseteq\big) \\ &\quad \forall \, \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}\left(\cdot\right); \supseteq\big), \end{split}$$

and the Boolean-valued functions surrounding \vee hold on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$. Consequently, the following two cases must be considered in proving the theorem:

CASE I. Let $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq)$ hold on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$. Then, $\mathcal{S}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}})$. But, $\mathcal{O}_{\mathfrak{g}} \in \mathfrak{g}\text{-O}[\mathfrak{T}_{\mathfrak{g}}]$ and, consequently, $\mathcal{O}_{\mathfrak{g}} \subseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu})$ and $\mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g}}) \subseteq \mathrm{op}_{\mathfrak{g}} \circ \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu}) \subseteq \mathrm{op}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu})$ for some $\mathcal{O}_{\mathfrak{g},\nu} \in \mathcal{T}_{\mathfrak{g}}$, by the properties of the $\mathfrak{g}\text{-operator}$. Hence, $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g},\nu}; \mathrm{op}_{\mathfrak{g}}(\cdot); \subseteq)$ holds on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$.

CASE II. Let $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \supseteq)$ hold on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$. Then, $\mathcal{S}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}})$. But, $\mathcal{K}_{\mathfrak{g}} \in \mathfrak{g}\text{-K}[\mathfrak{T}_{\mathfrak{g}}]$ and, consequently, $\mathcal{K}_{\mathfrak{g}} \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\nu})$ and $\operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g}}) \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\nu}) \supseteq \neg \operatorname{op}_{\mathfrak{g}}(\mathcal{K}_{\mathfrak{g},\nu})$ for some $\mathcal{K}_{\mathfrak{g},\nu} \in \neg \mathcal{T}_{\mathfrak{g}}$, by the properties of the \mathfrak{g} -operator. Hence, $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g},\nu}; \operatorname{op}_{\mathfrak{g}}(\cdot); \supseteq)$ holds on $\mathfrak{T}_{\mathfrak{g}} \times \mathcal{T}_{\mathfrak{g}} \cup \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$.

From CASE I. and CASE II., it follows that

$$\begin{split} &\left\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}: \ \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}\left(\cdot\right); \subseteq \big)\right\} \subseteq \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big], \\ &\left\{\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}: \ \mathrm{P}_{\mathfrak{g}}\big(\mathcal{S}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}\left(\cdot\right); \supseteq \big)\right\} \subseteq \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]. \end{split}$$

But, since $\mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \mathfrak{g}\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \bigcup \mathfrak{g}\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]$, the proof of the theorem at once follows. Q.E.D. Q.E.D.

The following theorem shows that the class \mathfrak{g} -S[$\mathfrak{T}_{\mathfrak{g}}$], upon satisfaction of two conditions, is the smallest class of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$.

THEOREM 3.21. Let $\mathfrak{g}\text{-S}_{0}[\mathfrak{T}_{\mathfrak{g}}] = \mathfrak{g}\text{-O}_{0}[\mathfrak{T}_{\mathfrak{g}}] \cup \mathfrak{g}\text{-K}_{0}[\mathfrak{T}_{\mathfrak{g}}]$ be a class of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-sets in a}$ $\mathcal{T}_{\mathfrak{g}}\text{-space }\mathfrak{T}_{\mathfrak{g}}$ such that the following two conditions are satisfied:

- I. If $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{O}_{\varrho}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}\mathrm{K}_{\varrho}[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathrm{P}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq)$ holds on $\mathfrak{T}_{\mathfrak{g}} \times \mathfrak{g}\text{-}\mathrm{O}_{\varrho}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}\mathrm{K}_{\varrho}[\mathfrak{T}_{\mathfrak{g}}] \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}$, then $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{S}_{\varrho}[\mathfrak{T}_{\mathfrak{g}}]$.
- II. The relation $S_{\mathfrak{g}} \in S[\mathfrak{T}_{\mathfrak{g}}]$ implies $S_{\mathfrak{g}} \in \mathfrak{g}\text{-}S_{\theta}[\mathfrak{T}_{\mathfrak{g}}]$.

Then, \mathfrak{g} -S[$\mathfrak{T}_{\mathfrak{q}}$] $\subseteq \mathfrak{g}$ -S $_{\theta}$ [$\mathfrak{T}_{\mathfrak{q}}$].

PROOF. Let $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$. Then $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq)$ holds on $\mathfrak{T}_{\mathfrak{g}} \times O[\mathfrak{T}_{\mathfrak{g}}] \times K[\mathfrak{T}_{\mathfrak{g}}] \times \mathcal{L}_{\underline{\mathfrak{g}}}[\Omega] \times \{\subseteq, \supseteq\}$ for some pair $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in O[\mathfrak{T}_{\mathfrak{g}}] \times K[\mathfrak{T}_{\mathfrak{g}}]$. But, $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in O[\mathfrak{T}_{\mathfrak{g}}] \times K[\mathfrak{T}_{\mathfrak{g}}]$ implies $(\mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}O_{0}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-}K_{0}[\mathfrak{T}_{\mathfrak{g}}]$ by I., and the latter together with the trueness of $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq)$ on $\mathfrak{T}_{\mathfrak{g}} \times \mathfrak{g}\text{-}\mathrm{O}_{0}\big[\mathfrak{T}_{\mathfrak{g}}\big] \times \mathfrak{g}\text{-}\mathrm{K}_{0}\big[\mathfrak{T}_{\mathfrak{g}}\big] \times \mathcal{L}_{\mathfrak{g}}\big[\Omega\big] \times \big\{\subseteq,\supseteq\big\} \text{ implies } \mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{S}_{0}\big[\mathfrak{T}_{\mathfrak{g}}\big] \text{ by II. Thus,}$ $\mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}]\subseteq\mathfrak{g}\text{-}S_0[\mathfrak{T}_{\mathfrak{g}}],$ which completes the proof.

In the earlier discussion, the set $\Omega \subset \mathfrak{U}$ carried the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}(\Omega)$. A \mathfrak{g} topology of this kind will be termed an absolute \mathfrak{g} -topology. To this end, if $\Gamma \subseteq \Omega$ is any subset of Ω then, obviously, we would expect Γ to carry the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}(\Gamma)$. But, since $\mathcal{T}_{\mathfrak{g}}(\Gamma) \subseteq \mathcal{T}_{\mathfrak{g}}(\Omega)$, as a consequence of the fact that $\mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Gamma) \to \mathcal{P}(\Gamma)$ is the one-valued restriction map of $\mathcal{T}_{\mathfrak{g}}:\mathcal{P}(\Omega)\to\mathcal{P}(\Omega)$, which follows from the statement, $\Gamma \subseteq \Omega$ implies $\mathcal{P}(\Gamma) \subseteq \mathcal{P}(\Omega)$, it does make sense to term $\mathcal{T}_{\mathfrak{a}}(\Gamma)$ a $relative\ \mathfrak{g}\text{-}topology.$ In order to determine what any $\mathfrak{g}\text{-}set\text{-}theoretic concepts}$ for the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathcal{T}_{\mathfrak{g}}(\Omega))$ becomes when discussion is restricted to $\Gamma \subseteq \Omega$, it merely suffices to regard Γ as the set which carries the relative \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}}\left(\Gamma\right)$ and carry over the discussion verbatim.

Definition 3.22 ($\mathcal{T}_{\mathfrak{g}}$ -Subspace). Let $\mathfrak{T}_{\mathfrak{g}}\left(\Omega\right)\stackrel{\mathrm{def}}{=}\left(\Omega,\mathcal{T}_{\mathfrak{g}}\left(\Omega\right)\right)$ be a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, where $\Omega \subset \mathfrak{U}$ carries the absolute \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}} : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$, and let $\mathcal{P}(\Gamma) \stackrel{\mathrm{def}}{=} \{\mathcal{O}_{\mathfrak{g},\nu} \subset \mathcal{P}(\Omega) \in \mathcal{P}(\Omega) \}$ $\Gamma: \nu \in I_{\infty}^*$ be the family of all subsets $\mathcal{O}_{\mathfrak{g},1}, \mathcal{O}_{\mathfrak{g},2}, \ldots$, of any subset $\Gamma \subseteq \Omega$ of Ω , then every one-valued restriction map of the type

$$(3.13) \mathcal{T}_{\mathfrak{g}}: \mathcal{P}(\Gamma) \longmapsto \mathcal{T}_{\mathfrak{g}}(\Gamma) \stackrel{\mathrm{def}}{=} \{ \mathcal{O}_{\mathfrak{g}} \cap \Gamma : \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}(\Omega) \},$$

defines a "relative \mathfrak{g} -topology on Γ ," and the structure $\mathfrak{T}_{\mathfrak{g}}(\Gamma) \stackrel{\mathrm{def}}{=} (\Gamma, \mathcal{T}_{\mathfrak{g}}(\Gamma))$ is called a " $\mathcal{T}_{\mathfrak{g}}$ -subspace."

Theorem 3.23. Let $\mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}(\Gamma) \subseteq \mathfrak{T}_{\mathfrak{g}}(\Omega)$, where $\mathfrak{T}_{\mathfrak{g}}(\Gamma) = (\Gamma, \mathcal{T}_{\mathfrak{g}}(\Gamma))$ is the $\mathcal{T}_{\mathfrak{g}}$ -subspace of a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}(\Omega) = (\Omega, \mathcal{T}_{\mathfrak{g}}(\Omega))$. If $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}(\Omega)]$, then $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{T}_{\mathfrak{g}}(\Omega)$

PROOF. If $S_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}(\Omega)]$, then $P_{\mathfrak{g}}(S_{\mathfrak{g}}, \mathcal{O}_{\mathfrak{g}}, \mathcal{K}_{\mathfrak{g}}; \mathbf{op}_{\mathfrak{g}}(\cdot); \subseteq, \supseteq)$ holds on $\mathfrak{T}_{\mathfrak{g}}(\Omega) \times$ $\mathcal{T}_{\mathfrak{g}}(\Omega) \cup \neg \mathcal{T}_{\mathfrak{g}}(\Omega) \times \mathcal{L}_{\mathfrak{g}}[\Omega] \times \{\subseteq, \supseteq\}.$ Therefore, if $\mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}(\Gamma)]$, then $P_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}} \cap \mathcal{S}_{\mathfrak{g}})$ $\Gamma, \mathcal{O}_{\mathfrak{g}} \cap \Gamma, \mathcal{K}_{\mathfrak{g}} \cap \Gamma; \mathbf{op}_{\mathfrak{g}} \; (\cdot) \; ; \subseteq, \supseteq) \; \mathrm{holds} \; \mathrm{on} \; \mathfrak{T}_{\mathfrak{g}} \; (\Gamma) \times \mathcal{T}_{\mathfrak{g}} \; (\Gamma) \cup \neg \mathcal{T}_{\mathfrak{g}} \; (\Gamma) \times \mathcal{L}_{\mathfrak{g}} [\Gamma] \times \{\subseteq, \supseteq\}.$ But, since $\mathcal{S}_{\mathfrak{g}} \cap \Gamma = \mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}(\Gamma)], \mathcal{O}_{\mathfrak{g}} \cap \Gamma = \mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}(\Gamma), \text{ and } \mathcal{K}_{\mathfrak{g}} \cap \Gamma = \mathcal{K}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g}}(\Gamma)$ $\mathcal{T}_{\mathfrak{g}}\left(\Gamma\right), \text{ it follows that } \mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\left(\Gamma\right)\big] \text{ whenever } \mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\left(\Omega\right)\big], \text{ and the theorem } \mathcal{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-S}\big[\mathfrak{T}_{\mathfrak{g}}\left(\Omega\right)\big]$

DEFINITION 3.24 (Cartesian Product). The Cartesian product of an arbitrary family $\{\Omega_{\nu} \subset \mathfrak{U} : \nu \in I_n^*\}$ of sets is the set of functions $\phi : I_n^* \to \bigcup_{\nu \in I_n^*} \Omega_{\nu}$ such that $\phi: \nu \mapsto \Omega_{\nu}$ for every $\nu \in I_n^*$. It is denoted by $\times_{\nu \in I_n^*} \Omega_{\nu}$ and satisfies the following properties:

- I. $\times_{\nu=\mu} \Omega_{\nu} = \Omega_{\mu} \quad \forall \mu \in I_n^*,$ II. $\times_{\nu \in I_{n+1}^*} \Omega_{\nu} = \left(\times_{\nu \in I_n^*} \Omega_{\nu} \right) \times \Omega_{\mu+1} \quad \forall \mu \in I_{n-1}^*.$

The projection map which gives the projection of the Cartesian product set $\times_{\nu \in I_n^*} \Omega_{\nu}$ onto the μ^{th} factor of $\times_{\nu \in I_n^*} \Omega_{\nu}$ is defined as thus.

DEFINITION 3.25 (Projection). Let $\{\Omega_{\nu} \subset \mathfrak{U} : \nu \in I_n^*\}$ be any class of sets and let $\times_{\nu \in I_n^*} \Omega_{\nu}$ denotes the Cartesian product of these sets. The map

(3.14)
$$\operatorname{proj}_{\mu} : \times_{\nu \in I_{*}^{*}} \Omega_{\nu} \to \Omega_{\mu} \quad \left(\operatorname{proj}_{\mu} \left(\times_{\nu \in I_{*}^{*}} \Omega_{\nu} \right) = \Omega_{\mu} \right)$$

is called the projection of the Cartesian product set $\times_{\nu \in I_n^*} \Omega_{\nu}$ onto the μ^{th} factor of $\times_{\nu \in I_n^*} \Omega_{\nu}$.

To generate all $\mathcal{T}_{\mathfrak{g}}$ -open sets in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, a basis $\mathcal{B}[\mathcal{T}_{\mathfrak{g}}]$ for $\mathfrak{T}_{\mathfrak{g}}$ must be supplied, and the following definition is worth considering.

DEFINITION 3.26 ($\mathcal{T}_{\mathfrak{g}}$ -Basis). A subclass $\mathcal{B}[\mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})] \subseteq \mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})$ of $\mathcal{T}_{\mathfrak{g}}$ -open sets in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}(\Omega_{\mu}) \stackrel{\mathrm{def}}{=} (\Omega_{\mu}, \mathcal{T}_{\mathfrak{g}}(\Omega_{\mu}))$, defined by

$$(3.15) \quad \mathcal{B}\big[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\big] \stackrel{\mathrm{def}}{=} \big\{\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)}: \ (\nu,\mu,\sigma(\nu,\mu)) \in I_{\infty}^{*} \times \big\{\mu\big\} \times I_{\infty}^{*}\big\},$$

is said to be a base for $\mathcal{T}_{\mathfrak{g}}:\mathcal{P}(\Omega_{\mu})\to\mathcal{P}(\Omega_{\mu})$ if and only if

$$\forall \left(\mu, \sigma\left(\mu\right), \mathcal{O}_{\mathfrak{g}, \sigma\left(\mu\right)}\right) \in \left\{\mu\right\} \times I_{\infty}^{*} \times \mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right), \ \exists I_{\sigma\left(\mu\right)} \subseteq I_{\infty}^{*}:$$

$$\mathcal{O}_{\mathfrak{g}, \sigma\left(\mu\right)} = \bigcup_{\nu \in I_{\sigma\left(\mu\right)}^{*}} \mathcal{O}_{\mathfrak{g}, \sigma\left(\nu, \mu\right)}.$$
(3.16)

With regards to the terminology employed, $\mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\right]$ is called a $\mathcal{T}_{\mathfrak{g}}$ -basis and its elements, $\mathcal{B}_{\mathcal{T}_{\mathfrak{g}}}$ -open sets, because they are $\mathcal{T}_{\mathfrak{g}}$ -open sets of $\mathcal{T}_{\mathfrak{g}}:\mathcal{P}\left(\Omega_{\mu}\right)\to\mathcal{P}\left(\Omega_{\mu}\right)$. With regards to the definition itself, an immediate consequence follows. By the relation $\mathcal{O}_{\mathfrak{g},\sigma(\mu)}=\bigcup_{\nu\in I_{\sigma(\mu)}^*}\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)}$, is meant, for every $(\nu,\mu,\sigma(\mu),\sigma(\nu,\mu))\in I_{\sigma(\mu)}^*\times I_n^*\times I_\infty^*\times I_\infty^*$, that $\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)}\in\mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\right]$ and $\mathcal{O}_{\mathfrak{g},\sigma(\mu)}\in\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)$ in the relation $\mathcal{O}_{\mathfrak{g},\sigma(\mu)}=\bigcup_{\nu\in I_{\sigma(\mu)}^*}\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)}$, where $\mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\right]$ and $\mathcal{O}_{\mathfrak{g},\sigma(\mu)}\in\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)$ are given by

$$\operatorname{proj}_{\alpha} : \times_{\mu \in I_{n}^{*}} \mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\right] \to \mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\alpha}\right)\right],$$

$$\operatorname{proj}_{\alpha} : \times_{\mu \in I_{n}^{*}} \mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right) \to \mathcal{T}_{\mathfrak{g}}\left(\Omega_{\alpha}\right) \quad \forall \alpha \in I_{n}^{*},$$

respectively. To this end, a Cartesian product topology (Cartesian $\mathcal{T}_{\mathfrak{g}}$ -product) is one that having for $\mathcal{T}_{\mathfrak{g}}$ -basis all $\mathcal{B}_{\mathcal{T}_{\mathfrak{g}}}$ -open sets of the form $\operatorname{proj}_{\mu}^{-1}(\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)})$, where $\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)} \in \mathcal{B}[\mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})]$ for every $(\nu,\mu,\sigma(\nu,\mu)) \in I_{\sigma(\mu)}^* \times I_n^* \times I_\infty^*$. Therefore, in order to define a Cartesian product $\mathcal{T}_{\mathfrak{g}}$ -space, it suffices to take the above descriptions into account and postulate a proper definition on this ground. The following definition presents itself.

DEFINITION 3.27. Let $\{\mathfrak{T}_{\mathfrak{g}}(\Omega_{\mu}) \stackrel{\text{def}}{=} (\Omega_{\mu}, \mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})) : \mu \in I_n^*\}$ be a class of $n \geq 1$ $\mathcal{T}_{\mathfrak{g}}$ -spaces and, for every $\mu \in I_n^*$, let $\mathcal{T}_{\mathfrak{g},\Omega_{\mu}} : \mathcal{P}(\Omega_{\mu}) \to \mathcal{P}(\Omega_{\mu})$ be the \mathfrak{g} -topology for $\mathfrak{T}_{\mathfrak{g}}(\Omega_{\mu})$. The Cartesian $\mathcal{T}_{\mathfrak{g}}$ -product $\stackrel{\text{def}}{=} \times_{\mu \in I_n^*} \mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})$ on the Cartesian product set $\Omega \stackrel{\text{def}}{=} \times_{\mu \in I_n^*} \Omega_{\mu}$ is that having for $\mathcal{T}_{\mathfrak{g}}$ -basis all $\mathcal{B}_{\mathcal{T}_{\mathfrak{g}}}$ -open sets belonging to the following class:

$$\mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega\right)\right] \stackrel{\text{def}}{=} \left\{\operatorname{proj}_{\mu}^{-1}\left(\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)}\right): \ \mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)} \in \mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\right] \right. \\ \left. \forall \left(\nu,\mu,\sigma\left(\nu,\mu\right)\right) \in I_{\sigma(\mu)}^{*} \times I_{n}^{*} \times I_{\infty}^{*}\right\}.$$

The structure $\mathfrak{T}_{\mathfrak{g}}\left(\Omega\right)\stackrel{\mathrm{def}}{=}\left(\Omega,\mathcal{T}_{\mathfrak{g}}\left(\Omega\right)\right)$ is called a "Cartesian product $\mathcal{T}_{\mathfrak{g}}$ -space."

The fact that $\mathcal{O}_{\mathfrak{g},\sigma(\nu,\mu)} \in \mathcal{B}[\mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})]$ and $\mathcal{O}_{\mathfrak{g},\sigma(\mu)} \in \mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})$ hold for every $(\nu,\mu,\sigma(\mu),\sigma(\nu,\mu)) \in I_{\sigma(\mu)}^* \times I_n^* \times I_\infty^* \times I_\infty^*$ makes it reasonable to write

$$(3.19) \times_{\mu \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g}, \sigma(\mu)} \in \times_{\mu \in I_{n}^{*}} \mathcal{T}_{\mathfrak{g}} (\Omega_{\mu}),$$

$$= \bigcup_{\substack{\nu \in I_{n}^{*} \\ \nu \in \times_{\alpha \in I_{n}^{*}} I_{\sigma(\alpha)}^{*}}} (\times_{\alpha \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g}, \sigma(\nu_{\alpha}, \alpha)})$$

$$\in \times_{\mu \in I_{n}^{*}} \mathcal{B}[\mathcal{T}_{\mathfrak{g}} (\Omega_{\mu})],$$

where $\overrightarrow{\nu} \stackrel{\text{def}}{=} (\nu_1, \nu_2, \dots, \nu_n)$ and, for every $\alpha \in I_n^*$, $\nu_\alpha \in I_{\sigma(\alpha)}^*$. An immediate consequence of such relation is contained in the following lemma.

LEMMA 3.28. If $\mathcal{T}_{\mathfrak{g}}: \mathcal{Q}(\Omega) \to \mathcal{Q}(\Omega)$ is a one-valued map on the Cartesian product set $\Omega = \times_{\mu \in I_{\mathfrak{g}}^*} \Omega_{\mu}$, where

$$\mathcal{Q}(\Omega) \stackrel{\mathrm{def}}{=} \bigg\{ \mathcal{O}_{\mathfrak{g},\sigma} = \bigcup_{\stackrel{\rightarrow}{\nu} \in \mathop{\textstyle \times_{\alpha \in I^*}I^*_{\sigma(\alpha)}}} \left(\mathop{\textstyle \times_{\alpha \in I^*_n}} \mathcal{O}_{\mathfrak{g},\sigma(\nu_\alpha,\alpha)} \right) :$$

(3.20)
$$\mathcal{O}_{\mathfrak{g},\sigma} \in \times_{\mu \in I_n^*} \mathcal{B}\left[\mathcal{T}_{\mathfrak{g}}\left(\Omega_{\mu}\right)\right] \right\},$$

then $\mathcal{T}_{\mathfrak{g}}:\mathcal{Q}(\Omega)\to\mathcal{Q}(\Omega)$ is a \mathfrak{g} -topology on the Cartesian product set $\times_{\mu\in I_n^*}\Omega_{\mu}$.

PROOF. Let $\mathcal{O}_{\mathfrak{g},\sigma} = \bigcup_{\overrightarrow{\nu} \in X_{\alpha} \in I_n^* I_{\sigma(\alpha)}^*} (X_{\alpha \in I_n^*} \mathcal{O}_{\mathfrak{g},\sigma(\nu_{\alpha},\alpha)})$. Since $\mathcal{O}_{\mathfrak{g},\sigma(\nu_{\alpha},\alpha)} \in \mathcal{T}_{\mathfrak{g}}(\Omega_{\mu})$ for every $(\nu_{\alpha}, \alpha, \sigma(\nu_{\alpha}, \alpha)) \in I_{\sigma(\alpha)}^* \times I_n^* \times I_{\infty}^*$, it is evident that $\mathcal{O}_{\mathfrak{g},\sigma} = \emptyset$ only if, for every $(\nu_{\alpha}, \alpha, \sigma(\nu_{\alpha}, \alpha)) \in I_{\sigma(\alpha)}^* \times I_n^* \times I_{\infty}^*$, $\mathcal{O}_{\mathfrak{g},\sigma(\nu_{\alpha},\alpha)} = \emptyset$. Thus, $\mathcal{T}_{\mathfrak{g}}(\emptyset) = \emptyset$.

Let $\mathcal{O}_{\mathfrak{g},\sigma} = \bigcup_{\overrightarrow{\nu} \in \mathsf{X}_{\alpha \in I_n^*} I_{\sigma(\alpha)}^*} (\mathsf{X}_{\alpha \in I_n^*} \mathcal{O}_{\mathfrak{g},\sigma(\nu_{\alpha},\alpha)})$. Then, since $\mathcal{Q}(\Omega) \subseteq \mathcal{Q}(\Omega)$, it follows that $\mathcal{O}_{\mathfrak{g},\sigma}$ is a superset of $\mathcal{T}_{\mathfrak{g}}(\Omega)$. Thus, $\mathcal{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\sigma}) \subseteq \mathcal{O}_{\mathfrak{g},\sigma}$.

Let
$$\overrightarrow{\nu} = (\nu_1, \dots, \nu_n)$$
 and $\overrightarrow{\kappa} = (\kappa_1, \dots, \kappa_n)$, and consider

$$\mathcal{O}_{\mathfrak{g},\sigma} = \bigcup_{\overrightarrow{\nu} \in \times_{\alpha \in I_n^*} I_{\sigma(\alpha)}^*} (\times_{\alpha \in I_n^*} \mathcal{O}_{\mathfrak{g},\sigma(\nu_{\alpha},\alpha)}).$$

$$\mathcal{O}_{\mathfrak{g},\tau} = \bigcup_{\substack{\overrightarrow{\kappa} \in \mathsf{X}_{\beta} \in I_n^* I_{\tau(\beta)}^*}} (\mathsf{X}_{\beta \in I_n^*} \mathcal{O}_{\mathfrak{g},\tau(\kappa_{\beta},\beta)}).$$

Further, let us assume that $\overset{\Rightarrow}{\eta} = (\nu_1, \dots, \nu_n, \kappa_1, \dots, \kappa_n)$, $\mathbb{I}_{\sigma(\alpha)}^* \overset{\text{def}}{=} \times_{\alpha \in I_n^*} I_{\sigma(\alpha)}^*$, and $\mathbb{I}_{\sigma(\beta)}^* \overset{\text{def}}{=} \times_{\beta \in I_n^*} I_{\tau(\beta)}^*$. Then

$$\mathcal{O}_{\mathfrak{g},\sigma} \cup \mathcal{O}_{\mathfrak{g},\tau} = \bigcup_{\substack{\overrightarrow{\eta} \in \mathbb{I}_{\sigma(\alpha)}^* \times \mathbb{I}_{\sigma(\beta)}^*}} \left(\underset{\mu \in I_n^*}{\times} \mathcal{O}_{\mathfrak{g},\sigma(\nu_\alpha,\alpha)} \right) \cup \left(\underset{\beta \in I_n^*}{\times} \mathcal{O}_{\mathfrak{g},\sigma(\kappa_\beta,\beta)} \right)$$

Thus, $\mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\cup\mathcal{O}_{\mathfrak{g},\tau}\right)\subseteq\mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\sigma}\right)\cup\mathcal{T}_{\mathfrak{g}}\left(\mathcal{O}_{\mathfrak{g},\tau}\right)$. This completes the proof of the theorem. Q.E.D.

Theorem 3.29. Let $\mathfrak{T}_{\mathfrak{g},1}(\Omega)$, $\mathfrak{T}_{\mathfrak{g},2}(\Omega)$, ..., $\mathfrak{T}_{\mathfrak{g},n}(\Omega)$ be $n \geq 1$ $\mathcal{T}_{\mathfrak{g}}$ -spaces and let $\mathfrak{T}_{\mathfrak{g}}(\Omega) \stackrel{\mathrm{def}}{=} \times_{\nu \in I_n^*} \mathfrak{T}_{\mathfrak{g},\nu}(\Omega)$ be the $\mathcal{T}_{\mathfrak{g}}$ -space product. If the relation $(\mathcal{S}_{\mathfrak{g},1},\ldots,\mathcal{S}_{\mathfrak{g},n}) \in \times_{\nu \in I_n^*} \mathfrak{g}$ -S $[\mathfrak{T}_{\mathfrak{g},\nu}]$ holds, then $\times_{\nu \in I_n^*} \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}$ -S $[\times_{\nu \in I_n^*} \mathfrak{T}_{\mathfrak{g},\nu}(\Omega)]$.

PROOF. For every $\sigma \in I_n^*$, let

$$\mathbf{op}_{\mathfrak{g},12\cdots\sigma}\left(\cdot\right) = \left(\mathrm{op}_{\mathfrak{g},12\cdots\sigma}\left(\cdot\right),\neg\,\mathrm{op}_{\mathfrak{g},12\cdots\sigma}\left(\cdot\right)\right) \in \mathcal{L}_{\mathfrak{g},12\cdots\sigma}\left[\Omega\right]$$

denotes the \mathfrak{g} -operator in $\times_{\nu \in I_{\sigma}^*} \mathfrak{T}_{\mathfrak{g},\nu}(\Omega)$ and, for every $\nu \in I_n^*$, let $(\mathcal{S}_{\mathfrak{g},\nu}, \mathcal{O}_{\mathfrak{g},\nu}, \mathcal{K}_{\mathfrak{g},\nu}) \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g},\nu}] \times \mathcal{T}_{\mathfrak{g},\nu} \times \neg \mathcal{T}_{\mathfrak{g},\nu}$. Then,

$$\begin{aligned}
\operatorname{op}_{\mathfrak{g},12\cdots n} \left(\times_{\nu \in I_n^*} \mathcal{O}_{\mathfrak{g},\nu} \right) &= \times_{\nu \in I_n^*} \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\nu} \right), \\
\neg \operatorname{op}_{\mathfrak{g},12\cdots n} \left(\times_{\nu \in I_n^*} \mathcal{K}_{\mathfrak{g},\nu} \right) &= \times_{\nu \in I_n^*} \neg \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{K}_{\mathfrak{g},\nu} \right).
\end{aligned}$$

On the other hand, for every $\nu \in I_n^*$, the logical statement

$$\left(\mathcal{S}_{\mathfrak{g},\nu}\subseteq\operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{O}_{\mathfrak{g},\nu}\right)\right)\vee\left(\mathcal{S}_{\mathfrak{g},\nu}\supseteq\neg\operatorname{op}_{\mathfrak{g},\nu}\left(\mathcal{K}_{\mathfrak{g},\nu}\right)\right)$$

holds in $\mathfrak{T}_{\mathfrak{g},\nu}$. Consequently,

$$\times_{\nu \in I_{n}^{*}} \left(\left(\mathcal{S}_{\mathfrak{g},\nu} \subseteq \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\nu} \right) \right) \right)$$

$$\Rightarrow \left(\left(\times_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \subseteq \times_{\nu \in I_{n}^{*}} \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\times_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \supseteq \times_{\nu \in I_{n}^{*}} \neg \operatorname{op}_{\mathfrak{g},\nu} \left(\mathcal{K}_{\mathfrak{g},\nu} \right) \right) \right)$$

$$\Rightarrow \left(\left(\times_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \subseteq \operatorname{op}_{\mathfrak{g},12\cdots n} \left(\times_{\nu \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g},\nu} \right) \right) \vee \left(\times_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu} \supseteq \neg \operatorname{op}_{\mathfrak{g},12\cdots n} \left(\times_{\nu \in I_{n}^{*}} \mathcal{K}_{\mathfrak{g},\nu} \right) \right) \right).$$

Therefore, the Boolean-valued functions

$$P_{\mathfrak{g}}(X_{\nu \in I_{n}^{*}} \mathcal{S}_{\mathfrak{g},\nu}, X_{\nu \in I_{n}^{*}} \mathcal{O}_{\mathfrak{g},\nu}, X_{\nu \in I_{n}^{*}} \mathcal{K}_{\mathfrak{g},\nu}; \mathbf{op}_{\mathfrak{g},12\cdots n}(\cdot); \subseteq, \supseteq)$$

holds on \mathfrak{g} -S[$\mathfrak{T}_{\mathfrak{g}}$] $\times \mathcal{T}_{\mathfrak{g}} \times \neg \mathcal{T}_{\mathfrak{g}} \times \mathcal{L}_{\mathfrak{g},12\cdots n}[\Omega] \times \{\subseteq,\supseteq\}$ and, hence, it follows that $\times_{\nu \in I_n^*} \mathcal{S}_{\mathfrak{g},\nu} \in \mathfrak{g}$ -G[$\times_{\nu \in I_n^*} \mathcal{T}_{\mathfrak{g},\nu}(\Omega)$], which completes the proof. Q.E.D. Q.E.D.

The categorical classifications of \mathfrak{T} -sets and \mathfrak{g} - \mathfrak{T} -sets in the \mathcal{T} -space $\mathfrak{T} \subset \mathfrak{T}_{\mathfrak{g}}$ and, $\mathfrak{T}_{\mathfrak{g}}$ -sets and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ are discussed and diagrammed on this ground in the next sections.

4. Discussion

4.1. CATEGORICAL CLASSIFICATIONS. Having adopted a categorical approach in the classifications of $\mathfrak{g-T_g}$ -sets in the $\mathcal{T_g}$ -space $\mathfrak{T_g}$, the twofold purposes here are to establish the various relationships between the classes of $\mathfrak{T_g}$ -open and $\mathfrak{T_g}$ -closed sets and the classes of $\mathfrak{g-T_g}$ -open and $\mathfrak{g-T_g}$ -closed sets in the $\mathcal{T_g}$ -space $\mathfrak{T_g}$, and to illustrate them through diagrams.

We have seen that, $S[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}]$. But, $S[\mathfrak{T}_{\mathfrak{g}}] = O[\mathfrak{T}_{\mathfrak{g}}] \cup K[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}] = \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \cup \mathfrak{g}\text{-}K[\mathfrak{T}_{\mathfrak{g}}]$. Consequently, $O[\mathfrak{T}_{\mathfrak{g}}]$, $K[\mathfrak{T}_{\mathfrak{g}}] \subseteq S[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}]$, $\mathfrak{g}\text{-}K[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}]$; $O[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}]$ and $K[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}K[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}]$. In Fig. 1, we present the relationships between the class $S[\mathfrak{T}_{\mathfrak{g}}] = O[\mathfrak{T}_{\mathfrak{g}}] \cup K[\mathfrak{T}_{\mathfrak{g}}]$ of $\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{T}_{\mathfrak{g}}$ -closed sets and the class $\mathfrak{g}\text{-}S[\mathfrak{T}_{\mathfrak{g}}] = \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \cup \mathfrak{g}\text{-}K[\mathfrak{T}_{\mathfrak{g}}]$ of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closed sets in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$.

It is plain that $\mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}] \subseteq \mathfrak{g}\text{-}O[\mathfrak{T}]$ and $\mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}] \subseteq \mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}]$ for every $\nu \in I_3^0$. Moreover, it is also clear that, $\mathfrak{g}\text{-}2\text{-}O[\mathfrak{T}] \subseteq \mathfrak{g}\text{-}3\text{-}O[\mathfrak{T}]$ and $\mathfrak{g}\text{-}0\text{-}O[\mathfrak{T}] \subseteq \mathfrak{g}\text{-}3\text{-}O[\mathfrak{T}]$, and $\mathfrak{g}\text{-}2\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}3\text{-}O[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathfrak{g}\text{-}0\text{-}O[\mathfrak{T}_{\mathfrak{g}}] \subseteq \mathfrak{g}\text{-}3\text{-}O[\mathfrak{T}_{\mathfrak{g}}]$

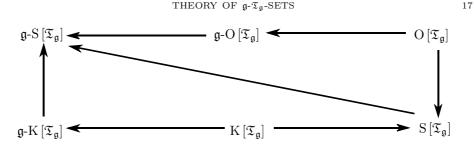


Figure 1. Relationships: classes of $\mathfrak{T}_{\mathfrak{g}}$ -sets and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets.

 $\begin{array}{l} \mathfrak{g}\text{-}1\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big]\subseteq\mathfrak{g}\text{-}3\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big]. \text{ In fact, for every } \mathfrak{T}_{\mathfrak{g}}\text{-set }\mathcal{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g}}, \text{ the relation int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)\subseteq \\ \mathrm{cl}_{\mathfrak{g}}\circ\mathrm{int}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)\subseteq\mathrm{cl}_{\mathfrak{g}}\circ\mathrm{int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right)\supseteq\mathrm{int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\left(\mathcal{S}_{\mathfrak{g}}\right) \text{ holds. Consequently,} \end{array}$

$$(4.1) \quad \operatorname{op}_{\mathfrak{g},0}(\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{op}_{\mathfrak{g},1}(\mathcal{S}_{\mathfrak{g}}) \subseteq \operatorname{op}_{\mathfrak{g},3}(\mathcal{S}_{\mathfrak{g}}) \supseteq \operatorname{op}_{\mathfrak{g},2}(\mathcal{S}_{\mathfrak{g}}) \quad \forall \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}.$$

In Fig. 2, we present the relationships between the class \mathfrak{g} -O[$\mathfrak{T}_{\mathfrak{g}}$] = $\bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -O[$\mathfrak{T}_{\mathfrak{g}}$] of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open sets of categories 0, 1, 2 and 3 in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, and the class \mathfrak{g} -O[\mathfrak{T}] = $\bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -O[\mathfrak{T}] of \mathfrak{g} - \mathfrak{T} -open sets of categories 0, 1, 2 and 3 in the \mathcal{T} -space $\mathfrak{T} \subset \mathfrak{T}_{\mathfrak{g}}$.

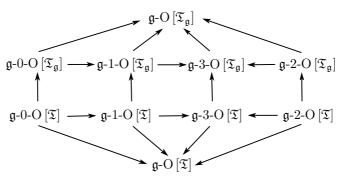


Figure 2. Relationships: classes of $\mathfrak{g-T}\text{-}\mathrm{open}$ sets and $\mathfrak{g-T}_{\mathfrak{g}}\text{-}\mathrm{open}$ sets.

It is plain that, $\mathfrak{g}\text{-}\nu\text{-}\mathrm{K}[\mathfrak{T}]\subseteq\mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}]$ and $\mathfrak{g}\text{-}\nu\text{-}\mathrm{K}[\mathfrak{T}]\subseteq\mathfrak{g}\text{-}\nu\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]\subseteq\mathfrak{g}\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]$ for every $\nu\in I_3^0$. Moreover, it is also clear that, $\mathfrak{g}\text{-}2\text{-}\mathrm{K}[\mathfrak{T}]\subseteq\mathfrak{g}\text{-}3\text{-}\mathrm{K}[\mathfrak{T}]$ and $\mathfrak{g}\text{-}0\text{-}\mathrm{K}[\mathfrak{T}]\subseteq\mathfrak{g}\text{-}1\text{-}\mathrm{K}[\mathfrak{T}]\subseteq\mathfrak{g}\text{-}3\text{-}\mathrm{K}[\mathfrak{T}]$, and $\mathfrak{g}\text{-}2\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]\subseteq\mathfrak{g}\text{-}3\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathfrak{g}\text{-}0\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]\subseteq\mathfrak{g}\text{-}3\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{g}}]$. Because, for every $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathcal{S}_{\mathfrak{g}}\subset\mathfrak{T}_{\mathfrak{g}}$, the relations $\mathrm{cl}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})\supseteq\mathrm{int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\circ\mathrm{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})\supseteq\mathrm{int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\circ\mathrm{int}_{\mathfrak{g}}(\mathcal{S}_{\mathfrak{g}})$ holds. Consequently,

$$(4.2) \neg \operatorname{op}_{\mathfrak{g},0}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \operatorname{op}_{\mathfrak{g},1}\left(\mathcal{S}_{\mathfrak{g}}\right) \supseteq \neg \operatorname{op}_{\mathfrak{g},3}\left(\mathcal{S}_{\mathfrak{g}}\right) \subseteq \neg \operatorname{op}_{\mathfrak{g},2}\left(\mathcal{S}_{\mathfrak{g}}\right) \ \forall \mathcal{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}.$$

In Fig. 3, we present the relations between the class \mathfrak{g} -K $[\mathfrak{T}_{\mathfrak{g}}] = \bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -K $[\mathfrak{T}_{\mathfrak{g}}]$ of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets of categories 0, 1, 2 and 3 in the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, and the class \mathfrak{g} -K $[\mathfrak{T}] = \bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -K $[\mathfrak{T}]$ of \mathfrak{g} - \mathfrak{T} -closed sets of categories 0, 1, 2 and 3 in the \mathcal{T} -space $\mathfrak{T} \subset \mathfrak{T}_{\mathfrak{g}}$.

As in the papers of [7], [16], [25], and [41], among others, the manner we have positioned the arrows is solely to stress that, in general, none of the implications in Figs 1, 2 and 3 is reversible.

At this stage, a nice application is worth considering, and is presented in the following section.

KHODABOCUS M. I. AND SOOKIA N. U. H

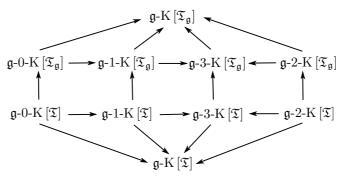


FIGURE 3. Relationships: classes of $\mathfrak{g}\text{-}\mathfrak{T}\text{-closed}$ sets and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}$ closed sets.

4.2. A NICE APPLICATION. Concentrating on fundamental concepts from the standpoint of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets, we shall now present a nice application. Let $\Omega = \{\xi_{\nu} : \nu \in I_5^*\}$ denotes the underlying set and consider the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathcal{T}_{\mathfrak{g}})$, where

$$\mathcal{T}_{\mathfrak{g}}(\Omega) = \{\emptyset, \{\xi_{1}\}, \{\xi_{3}, \xi_{4}\}, \{\xi_{1}, \xi_{3}, \xi_{4}\}\} \\
= \{\mathcal{O}_{\mathfrak{g},1}, \mathcal{O}_{\mathfrak{g},2}, \mathcal{O}_{\mathfrak{g},3}, \mathcal{O}_{\mathfrak{g},4}\}, \\
\neg \mathcal{T}_{\mathfrak{g}}(\Omega) = \{\Omega, \{\xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\}, \{\xi_{1}, \xi_{2}, \xi_{5}\}, \{\xi_{2}, \xi_{5}\}\} \\
= \{\mathcal{K}_{\mathfrak{g},1}, \mathcal{K}_{\mathfrak{g},2}, \mathcal{K}_{\mathfrak{g},3}, \mathcal{K}_{\mathfrak{g},4}\}, \\$$
(4.4)

respectively, stand for the classes of $\mathcal{T}_{\mathfrak{g}}$ -open and $\mathcal{T}_{\mathfrak{g}}$ -closed sets. Since conditions $\mathcal{T}_{\mathfrak{g}}(\emptyset) = \emptyset$, $\mathcal{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu}) \subseteq \mathcal{O}_{\mathfrak{g},\nu}$ for every $\nu \in I_4^*$, and $\mathcal{T}_{\mathfrak{g}}(\bigcup_{\nu \in I_4^*} \mathcal{O}_{\mathfrak{g},\nu}) = \bigcup_{\nu \in I_4^*} \mathcal{T}_{\mathfrak{g}}(\mathcal{O}_{\mathfrak{g},\nu})$ are satisfied, it is clear that the one-valued map $\mathcal{T}_{\mathfrak{g}} : \mathcal{P}(\Omega) \to \mathcal{P}(\{\xi_{\nu} : \nu \in I_5^*\})$ is a \mathfrak{g} -topology. Furthermore, it is easily checked that, $\mathcal{O}_{\mathfrak{g},\mu} \in \mathfrak{g}$ - ν -O[\mathfrak{T}] for every $(\nu,\mu) \in I_3^0 \times I_4^*$. Hence, the $\mathcal{T}_{\mathfrak{g}}$ -open sets forming the \mathfrak{g} -topology $\mathcal{T}_{\mathfrak{g}} : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$ of the $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathcal{T}_{\mathfrak{g}})$ are \mathfrak{g} - \mathfrak{T} -open sets relative to the \mathcal{T} -space $\mathfrak{T} = (\Omega, \mathcal{T})$.

After calculations, the classes \mathfrak{g} - ν -O[$\mathfrak{T}_{\mathfrak{g}}$] and \mathfrak{g} - ν -K[$\mathfrak{T}_{\mathfrak{g}}$], respectively, of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets of categories $\nu \in \{0,2\}$ then take the following forms:

$$\mathfrak{g}\text{-}\nu\text{-}O\big[\mathfrak{T}_{\mathfrak{g}}\big] = \mathcal{T}_{\mathfrak{g}} \cup \big\{\big\{\xi_{3}\big\}, \big\{\xi_{4}\big\}, \big\{\xi_{1}, \xi_{3}\big\}, \big\{\xi_{1}, \xi_{4}\big\}\big\};
\mathfrak{g}\text{-}\nu\text{-}K\big[\mathfrak{T}_{\mathfrak{g}}\big] = \neg \mathcal{T}_{\mathfrak{g}} \cup \big\{\big\{\xi_{2}, \xi_{4}, \xi_{5}\big\}, \big\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{5}\big\},
\big\{\xi_{1}, \xi_{2}, \xi_{4}, \xi_{5}\big\}, \big\{\xi_{2}, \xi_{3}, \xi_{5}\big\}\big\} \quad \forall \nu \in \{0, 2\}.$$
(4.5)

On the other hand, those of categories $\nu \in \{1,3\}$ take the following forms:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \mathcal{T}_{\mathfrak{g}} \cup \big\{\mathcal{O}_{\mathfrak{g}}: \mathcal{O}_{\mathfrak{g}} \in \mathcal{P}(\Omega) \setminus \mathcal{T}_{\mathfrak{g}}\big\};$$

$$(4.6) \qquad \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] = \neg \mathcal{T}_{\mathfrak{g}} \cup \big\{\mathcal{K}_{\mathfrak{g}}: \mathcal{K}_{\mathfrak{g}} \in \mathcal{P}(\Omega) \setminus \neg \mathcal{T}_{\mathfrak{g}}\big\} \quad \forall \nu \in \big\{1,3\big\}.$$

The discussions carried out in the preceding sections can be easily verified from this nice application. The next section provides concluding remarks and future directions of the theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets discussed in the preceding sections.

18

4.3. Concluding Remarks. In this chapter, we developed a new theory, called Theory of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -Sets. In its own rights, the proposed theory has several advantages. The very first advantage is that the theory holds equally well when $(\Omega, \mathcal{T}_{\mathfrak{g}}) = (\Omega, \mathcal{T})$ and other features adapted on this basis, in which case it might be called Theory of \mathfrak{g} - \mathfrak{T} -Sets. Hence, in a $\mathcal{T}_{\mathfrak{g}}$ -space the theoretical framework categorises such pairs of concepts as \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closed sets, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -semi-open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -semi-preclosed sets as \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -sets of categories 0, 1, 2, and 3, respectively, and theorises the concepts in a unified way; in a \mathcal{T} -space it categorises such pairs of concepts as \mathfrak{g} - \mathfrak{T} -open and \mathfrak{g} - \mathfrak{T} -closed sets, \mathfrak{g} - \mathfrak{T} -semi-open and \mathfrak{g} - \mathfrak{T} -semi-closed sets, \mathfrak{g} - \mathfrak{T} -preclosed sets, and \mathfrak{g} - \mathfrak{T} -semi-preclosed sets, \mathfrak{g} - \mathfrak{T} -semi-preclosed sets as \mathfrak{g} - \mathfrak{T} -sets of categories 0, 1, 2, and 3, respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to develop the theory of $\mathfrak{g-T_g}$ -sets of mixed categories. More precisely, for some pair $(\nu,\mu)\in I_3^0\times I_3^0$ such that $\nu\neq\mu$, to develop the theory of $\mathfrak{g-T_g}$ -open sets belonging to the class $\{\mathcal{O}_{\mathfrak{g}}=\mathcal{O}_{\mathfrak{g},\nu}\cup\mathcal{O}_{\mathfrak{g},\mu}: (\mathcal{O}_{\mathfrak{g},\nu},\mathcal{O}_{\mathfrak{g},\mu})\in\mathfrak{g-\nu-O}[\mathfrak{T}_{\mathfrak{g}}]\times\mathfrak{g-\mu-O}[\mathfrak{T}_{\mathfrak{g}}]\}$ and the theory of $\mathfrak{g-T_g}$ -closed sets belonging to the class $\{\mathcal{K}_{\mathfrak{g}}=\mathcal{K}_{\mathfrak{g},\nu}\cup\mathcal{K}_{\mathfrak{g},\mu}: (\mathcal{K}_{\mathfrak{g},\nu},\mathcal{K}_{\mathfrak{g},\mu})\in\mathfrak{g-\nu-K}[\mathfrak{T}_{\mathfrak{g}}]\times\mathfrak{g-\mu-K}[\mathfrak{T}_{\mathfrak{g}}]\}$ in a $\mathcal{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, as [2] and [6] developed the theory of b-open and b-closed sets in a \mathcal{T} -space \mathfrak{T} . Such two theories are what we thought would certainly be worth considering, and the discussion of this chapter ends here.

References

- 1. D. Andrijević, Semi-Preopen Sets, mat. vesnik, vol. 38 (1), pp. 24–32, 1986.
- 2. _____, On b-Open Sets, mat. vesnik, vol. 48, pp. 59-64, 1996.
- S. Bayhan, A. Kanibir, and I. L. Reilly, On Functions between Generalized Topological Spaces, appl. gen. topol., vol. 14 (2), pp. 195–203, 2013.
- P. Bhattacharyya and B.K. Lahiri, Semi-Generalized Closed Sets in Topology, indian j. math., vol. 29, pp. 376–382, 1987.
- C. Boonpok, On Generalized Continuous Maps in Čech Closure Spaces, general mathematics, vol. 19 (3), pp. 3–10, 2011.
- M. Caldas and S. Jafari, On Some Applications of b-Open Sets in Topological Spaces, kochi j. math., vol. 2, pp. 11–19, 2007.
- M. Caldas, S. Jafari, and R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, bulletin of the iranian mathematical society, vol. 31 (2), pp. 37–52, 2005.
- 8. J. Cao, M. Ganster, and I. Reilly, On Generalized Closed sets, topology and its applications, vol. 123 (1), pp. 37–46, 2002.
- 9. Á. Császár, Generalized Open Sets, acta math. hungar., vol. 75 (1-2), pp. 65-87, 1997.
- 10. _____, Generalized Topology, Generalized Continuity, acta math. hungar., vol. 96 (4), pp. 351–357, 2002.
- 11. _____, Generalized Open Sets in Generalized Topologies, acta math. hungar., vol. 106 (1-2), pp. 53–66, 2005.
- 12. _____, Further Remarks on the Formula for γ -Interior, acta math. hungar., vol. 113 (4), pp. 325–332, 2006.
- 13. ______, Remarks on Quasi-Topologies, acta math. hungar., vol. 119 (1-2), pp. 197–200, 2008.
- 14. A. Danabalan and C. Santhi, A Class of Separation Axioms in Generalized Topology, mathematical journal of interdisciplinary sciences, vol. 4 (2), pp. 151–159, 2016.
- J. Dontchev, On Generalizing Semi-Preopen Sets, mem. fac sci. kochi. univ. ser. a. math., vol. 16, pp. 35–48, 1995.
- Comparison of the control of the cont
- 17. J. Dontchev and T. Noiri, Quasi-Normal Spaces and π g-Closed Sets, acta math. hungar., vol. 89 (3), pp. 211–219, 2000.

- S. Ersoy, M. Bilgin, and İ. İnce, Generalized Closed Set in Topological Spaces, mathematica moravica, vol. 19 (1), pp. 49–56, 2015.
- S. Al Ghour and W. Zareer, Omega Open Sets in Generalized Topological Spaces, j. nonlinear sci. appl., vol. 9, pp. 3010–3017, 2016.
- 20. Y. Gnanambal, On Generalized Preregular Closed Sets in Topological Spaces, *indian j. pure appl. math.*, vol. 28, pp. 351–360, 1997.
- 21. A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, *math. appl.*, vol. 6, pp. 11–20, 2017.
- R. A. Hosny and D. Al-Kadi, Types of Generalized Sets with Ideal, international journal of computer applications, vol. 80 (4), pp. 11–14, 2013.
- 23. P. Jeyanthi, P. Nalayini, and M. Mocanu, $g^*\lambda_{\mu}$ -Closed Sets and Generalized Topological Spaces, bol. soc. paran. mat., vol. 34 (1), pp. 203–212, 2016.
- 24. P. Jeyanthi, P. Nalayini, and T. Noiri, Δ_{μ} -Sets and ∇_{μ} -Sets in Generalized Topological Spaces, georgian mathematical journal, vol. 24 (3), pp. 403–407, 2016.
- Y. B. Jun, S. W. Jeong, H. J. Lee, and J. W. Lee, Applications of Pre-Open Sets, applied general topology, universidad politécnica de valencia, vol. 9 (2), pp. 213–228, 2008.
- M. K. R. S. Veera Kumar, Between Closed Sets and g-Closed Sets, mem. fac sci. kochi. univ. (math), vol. 21, pp. 1–19, 2000.
- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, amer. math. monthly, vol. 70, pp. 19–41, 1963.
- 28. _____, Generalized Closed Set in Topological Spaces, rend. circ. mat. palermo, vol. 19, pp. 89–96, 1970.
- 29. L. L. Lusanta and H. M. Rara, Generalized Star α b-Separation Axioms in Bigeneralized Topological Spaces, applied mathematical sciences, vol. 9 (75), pp. 3725–3737, 2015.
- 30. H. Maki, R. Devi, and K. Balachandran, Generalized α -Closed Sets in Topology, bull. fukuoka univ. ed. part iii, vol. 42, pp. 13–21, 1993.
- 31. ______, Associated Topologies of Generalized α -Closed Sets and α -Generalized Closed Sets, mem. sci. kochi. univ. ser. a. math., vol. 15, pp. 51–63, 1994.
- 32. A. S. Mashhour, I. A. Hasanein, and S. N. E. Deeb, α -Continuous and α -Open Mappings, acta. math. hungar., vol. 41 (3-4), pp. 213–218, 1983.
- 33. O. Njåstad, On Some Classes of Nearly Open Sets, pacific j. of math., vol. 15 (3), pp. 961–970,
- H. Ogata, Operations on Topological Spaces and Associated Topology, math. japonica, vol. 36, pp. 175–184, 1991.
- V. Pavlović and A. S. Cvetković, On Generalized Topologies arising from Mappings, vesnik, vol. 38 (3), pp. 553–565, 2012.
- K. Rajeshwari, T. D. Rayanagoudar, and S. M. Patil, On Semi Generalized ω-Closed Sets in Topological Spaces, global journal of pure and applied mathematics, vol. 13 (9), pp. 5491–5503, 2017.
- 37. I. Reilly, Generalized Closed Sets: A Survey of Recent Works, general and geometric topology and its applications, vol. 1248, pp. 1–11, 2002.
- B. Roy, On a Type of Generalized Open Sets, applied general topology, vol. 12 (2), pp. 163–173, 2011.
- D. Saravanakumar, N. Kalaivani, and G. S. S. Krishnan, On μ̃-Open Sets in Generalized Topological Spaces, malaya j. mat., vol. 3 (3), pp. 268–276, 2015.
- P. Sundaram and M. Sheik John, On w-Closed Sets in Topology, acta ciencia indica, vol. 4, pp. 389–392, 2000.
- 41. B. K. Tyagi and Harsh V. S. Chauhan, On Generalized Closed Sets in a Generalized Topological Spaces, *cubo a mathematical journal*, vol. 18 (01), pp. 27–45, 2016.

DR.MOHAMMAD IRSHAD KHODABOCUS

Current address: Department of Mathematics, Faculty of Science, University of Mauritius E-mail address: ikhodabo@gmail.com

Dr. Noor-Ul-Hacq SOOKIA

Current address: Department of Mathematics, Faculty of Science, University of Mauritius E-mail address: sookianQuom.ac.mu