

1 *Review*

2 **Strategies to Engage Adolescents in Digital Health** 3 **Interventions for Obesity Prevention and** 4 **Management**

5 **Stephanie R Partridge^{1,2*} and Julie Redfern^{1,3}**

6 ¹ The University of Sydney, Faculty of Medicine and Health, Westmead Applied Research Centre,
7 Westmead, NSW 2145, Australia; stephanie.partridge@sydney.edu.au; julie.redfern@sydney.edu.au

8 ² The University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Prevention
9 Research Collaboration, Charles Perkins Centre, Camperdown, NSW 2006, Australia;
stephanie.partridge@sydney.edu.au

10 ³ The George Institute for Global Health, The University of New South Wales, Camperdown, NSW 2006,
11 Australia; julie.redfern@sydney.edu.au

12 * Correspondence: stephanie.partridge@sydney.edu.au; Tel.: +61-02-8627-1697

14

15 **Abstract:** Obesity is one of the greatest health challenges facing today's adolescents. Dietary
16 interventions are the foundation of obesity prevention and management. As adolescents are digital
17 frontrunners and early adopters of technology, digital health interventions appear the most practical
18 modality for dietary behaviour change interventions. Despite the rapid growth in digital health
19 interventions, effective engagement with adolescents remains a pertinent issue. Key strategies for
20 effective engagement include co-designing interventions with adolescents, personalisation of
21 interventions, and just-in-time adaptation using data from wearable devices. The aim of this paper
22 is to appraise these strategies, which may be used to improve effective engagement and thereby
23 improve the dietary behaviours of adolescents now and in the future.

24 **Keywords:** engagement; adolescents; obesity; diet; prevention; management

25

26

27 **1. Introduction**

28 The burden of obesity and its related comorbidities is one of the most significant health
29 challenges facing today's youngest generation [1]. In 2016, 18% of the global population of children
30 and adolescents were overweight or obese and the prevalence of adolescent (10–19 years) overweight
31 and obesity are increasing [2]. Weight gain during adolescence is associated with cardiovascular
32 disease in later life [3,4]. Adolescents who gain weight and maintain a high body mass index (BMI)
33 into adulthood, have higher odds of developing hypertension and systemic inflammation [3,5,6].
34 Management of obesity during adolescence is challenging as greater than 90% of adolescents with
35 obesity will transition to adulthood remaining overweight or obese [7,8]. This is a significant concern
36 as there are over 1.8 billion young people between the ages of 10 and 24 years, accounting for the
37 largest generation in history [9]. Innovative, contemporary and engaging dietary interventions are
38 needed to prevent and manage overweight and obesity, particularly in adolescents, whose specific
39 needs are often unrecognized by healthcare providers.

40 Dietary interventions are the foundation of obesity prevention and management. Adolescents
41 need engaging interventions, as they are not achieving dietary intake recommendations, which is
42 concerning as poor nutritional behaviors are linked to 1-in-5 deaths, globally [10]. For example, in
43 Australia in 2015, less than 1% of adolescents eat enough vegetables, less than 27% eat enough fruit,

44 and less than 2% eat adequate amounts of high-calcium foods [11]. They were also the highest
45 consumers of convenience foods, such as discretionary foods and sugar-sweetened beverages [12].
46 Adolescents face exposure to an overabundance of highly palatable convenience foods, which can
47 result in excessive energy intake [13]. Such excess energy intake is often in combination with a decline
48 in physical activity and an increase in sedentary behaviors during the transition from childhood to
49 adolescence, thereby reducing their total energy expenditure [14]. The result is positive energy
50 balance and subsequent weight gain. Weight gains of 1–5 kg per year in addition to normal adolescent
51 growth can result from consuming as little as 84–418 kilojoules (kJ) (20–100 kilocalories [kcal]) per
52 day more than expended [15,16]. Despite the debate about optimal macronutrient composition for
53 weight management, national bodies have agreed achieving neutral or negative energy balance is the
54 most critical factor affecting weight maintenance or loss, respectively [17,18]. It is therefore essential
55 dietary interventions for both obesity prevention and management in adolescents are engaging and
56 support sustainable behavioral changes that will result in long-term improvements in dietary
57 behaviors.

58 There has been rapid growth in research using digital technologies for behavior change in the
59 areas of physical activity, sedentary time and diet [19]. Digital behavior change interventions, defined
60 as 'a product or service that uses computer technology to promote behavior change' [20], use various
61 technologies for delivery such as websites, social media, text messages, smartphones apps or
62 wearable devices [20–22]. As adolescents are one of the highest users of technology [23], their online
63 digital environment can be congested. It is, therefore, imperative researchers and clinicians are
64 implementing strategies within the design and delivery of their digital health interventions to engage
65 and capture the attention of adolescents effectively.

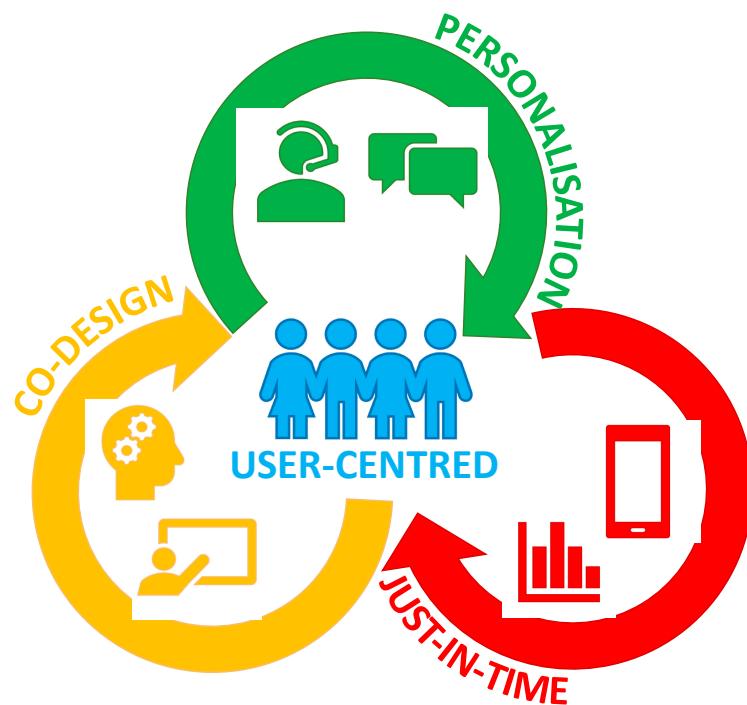
66 Given adolescents are technology frontrunners; digital health interventions appear to be a
67 practical modality for dietary behavior change interventions for the prevention of obesity [24–26]. We
68 acknowledge digital interventions cannot replace the multifaceted treatment approach required
69 for management of obesity in adolescents [27]. However, digital technologies show potential as an
70 additional tool for weight-loss maintenance following obesity management [28–30]. In this paper we
71 review the evidence supporting effective engagement in digital interventions as a critical factor in the
72 adoption of healthy dietary behaviors in adolescents within the current 'digital world' [31]. We then
73 narratively review three key strategies that researchers and clinicians can use to promote engagement
74 and thereby potentially increase the effectiveness of digital dietary interventions for the prevention
75 of obesity and maintenance of weight-loss in adolescents. We selected three strategies, namely, co-
76 design, personalization, and just-in-time adaptation, given the feasibility and practicality of these
77 strategies for both researchers and clinicians working in obesity prevention and management.
78 Finally, we will present two case studies to demonstrate a current application of these strategies in a
79 research setting.

80 **2. Adolescents' and their digital world**

81 Adolescence is the period of transition between childhood and adulthood, characterized by the
82 complex interplay of biological growth, cognitive development and social role transitions [32,33].
83 Puberty is a key event in early adolescence resulting in rapid changes in body composition and
84 subsequently dietary requirements [34]. The World Health Organisation (WHO) defines an
85 adolescent as a person aged between 10–19 years [1]. Given the variability in onset and duration of
86 puberty and the changing social environment, it has been suggested 10–24 years maybe more
87 representative of the adolescent period [35]. Regardless, adolescence is a critical life stage to intervene
88 in for the establishment of healthy dietary behaviors to ensure overall health and lower mortality
89 risks in later life [7,8].

90 Inadequate nutrition, during adolescence, may compromise growth and development with
91 long-term consequences, such as overweight and obesity. Adolescents have different nutritional

92 needs according to their age, gender, stage of physical maturity and level of physical activity,
93 however, requirements for all nutrients increases dramatically during puberty [36]. During
94 adolescence, total energy (kilojoule, kJ), protein and some micronutrient requirements are lower than
95 that of adults. However, per kilogram (kg) relative to their total body size, energy, macronutrients
96 and micronutrients requirements are higher than that of adults [36]. Similarly, per kJ relative to their
97 total energy requirements, macronutrients and micronutrients requirements are also higher than that
98 of adults [36]. For example, boys aged 13 years require 29 milligrams (mg) of calcium per kg of body
99 weight, compared to adult males, who need only 14 mg of calcium per kg of body weight [37]. It
100 is essential during this time of growth adolescents are consuming a nutrient dense diet and are forming
101 healthy dietary behaviors and weight regulation strategies to carry forward into adulthood.


102 Engaging adolescents in obesity prevention or management programs to improve their dietary
103 behaviors remains a crucial challenge. Adolescence is often a busy life stage. Along with school,
104 adolescents' schedules can include additional activities such as study, extracurricular activities, part-
105 time work and social events, all of which can complicate recruitment and engagement efforts. Current
106 attrition rates for obesity management in children and adolescents are highly variable, suggesting
107 between 27% and 73% of participants drop out of interventions [38]. There is emerging evidence
108 suggesting researchers and clinicians need to initially engage adolescents by using positively framed
109 messaging [39,40] with preferred weight terminology [41], as the stigma associated with being
110 overweight or obese is a significant barrier for adolescents to seek out health services. Also, it is
111 important to prioritize accessibility and enjoyment in the design phase of dietary interventions [39].
112 Digital technologies can play a key role in addressing accessibility and enjoyment for adolescents, as
113 well as to widely distribute positive messages to recruit adolescents.

114 The ubiquitous infiltration of technology in the lives of adolescents offers a potential opportunity
115 for capitalising on digital technology as a feasible and acceptable modality for dietary interventions
116 to prevent and manage obesity. The current generation of adolescents ('Generation Z'), i.e. those born
117 after 1995, are creating the most global youth culture in history and most have access to similar digital
118 technologies. In Australia, over 90% of adolescents aged 14-17 years own a mobile phone, and 94%
119 of those own a smartphone [42]. Adolescent smartphone ownership in Australia is higher than that
120 of their counterparts in the United States (73%) and United Kingdom (69%) [42]. In developed
121 countries, 83% of adolescents go online three or more times per day, text messaging is their primary
122 form of mobile phone communication and they are one of the highest users of social media and
123 smartphone applications ('apps') [23]. Digital health interventions for overweight and obesity in
124 adolescents can result in improvements in BMI and lifestyle outcomes, including dietary behaviours,
125 in the short-term (less than 6-months) [43-45]. Thus, adolescents are immersed in a 'digital world'
126 and given the emerging short-term evidence this is likely to offer a further opportunity for
127 incorporating dietary interventions into digital technologies.

128 3. Three strategies for effective engagement with digital intervention

129 Effective engagement with digital health interventions is essential for effective behaviour
130 change. The complexity of engagement with digital interventions, which target various health-related
131 behaviours has led to different conceptual models. A recent systematic review by Perski *et al.*, [46],
132 synthesized the literature on engagement and developed a conceptual framework of direct and
133 indirect influences on engagement with digital health interventions. Moreover, in a recent publication
134 by Yardley *et al.*, [47], the authors presented a figure to conceptualise the closely linked and mediating
135 relationship between engagement with digital technology and behaviour change, at both micro and
136 macro levels. In addition, Yardley and colleagues present a range of available methods to measure
137 effective engagement [47]. Despite the current challenges about how to best define and measure
138 engagement with digital health interventions [46,47], experts agree that effective intervention design
139 requires a user-centered and iterative approach [47,48]. As well, researchers have identified
140 behaviour change techniques embedded within adolescent obesity prevention and management

141 interventions which may contribute to effectiveness [40]. Considering this, we will now examine
142 three strategies to increase effective engagement with digital health interventions to improve dietary
143 behaviors. These interacting, user-centered strategies are co-design, personalization, and just-in-time
144 adaptation. We present a conceptual illustration of these three strategies in **Figure 1**.

145

146 **Figure 1.** A conceptual illustration of the interaction between the three user-centred strategies,
147 namely, co-design, personalisation, and just-in-time adaptation

148 *3.1. Co-design*

149 Co-design or participatory design in public health is defined as the systematic co-creation, with
150 those affected by the issues being studied, for the purpose of developing new strategies, programs,
151 policies [49,50]. Co-design is an umbrella term used to describe the array of approaches that can be
152 utilised to engage the end-users (i.e. those affected by the issue being studied) or other stakeholders
153 in the research process [49]. Ideally co-design can be thought of as the 'golden thread' that runs
154 through all stages of research, from design to implementation in real-world settings. It is the collective
155 sum or a framework of these approaches which constitutes co-design, not the use of individual
156 methods in isolation, such as focus groups or interviews [51]. However, given the rapid pace of digital
157 technology development, and short research funding cycles, researchers and clinicians are using
158 commercial apps for adolescent weight management that do not include evidence-based strategies
159 and have not been co-designed with adolescents [52,53]. Considering adolescents are digital
160 frontrunners, their lack of input into technologies to manage their own health and wellbeing is likely
161 to result in ineffective levels of engagement.

162 Available frameworks [51] and findings from co-design research in adolescent mental health
163 and primary care can guide the development of digital health interventions to address effective
164 engagement with adolescent obesity prevention and management interventions. Two recent
165 Australian research studies have described a co-design process to develop apps to improve young
166 people's experience of seeing their general practitioner [54] and for self-monitoring and management
167 mood symptoms in adolescents with depression [55]. A similarity of both studies throughout the co-
168 design process was the identification of contrasting needs, motivations and intentions for the apps

169 between researchers, clinicians, and adolescents [54,55]. However, the co-design method facilitated a
170 process of mutual learning of each group's needs and expectations, with the emphasis on designing
171 from the perspectives of the adolescent ('end user').

172 Two recent studies which utilize co-design approaches for the development of digital
173 technologies to address adolescent overweight and obesity [56,57]. Through a co-design process to
174 develop a smartphone app to support weight and health management, Rivera *et al.*, [56] were able to
175 identify adolescents require personalized assistance with meal planning, including more convenient
176 and efficient ways to plan meals and make healthier food choices throughout the day. This feature is
177 not available in current commercial apps, which predominately focus on self-monitoring and caloric
178 monitoring of food intake [58]. Moreover, Standoli *et al.*, [57] found adolescents were interested in
179 monitoring their daily activities by using wearable devices or clothing. However, the short lifespan
180 of currently available commercial activity trackers was a significant barrier. The researchers and
181 adolescents were able to co-design smart clothing items to monitor daily activities that were
182 acceptable, personalized and met the needs of adolescents. Thus, these examples, albeit limited to
183 smartphone apps, show co-design increases the likelihood of acceptable digital health technologies
184 and subsequently may result in effective engagement in future interventions in both research and
185 real-world settings.

186 3.2. Personalisation

187 Personalisation or tailoring is a common theme that emerges in the co-design process and also
188 is a key component of effective dietary interventions [59,60]. Personalisation in dietary interventions
189 and healthcare in general, goes beyond recommending population-based guidelines to using such
190 guidelines to develop individualised management plans [61]. As alluded to in our introduction,
191 personalisation is a key feature of the multifaceted face-to-face treatment approach required for
192 management of obesity in adolescents [27,62]. At the present time, such personalisation for obesity
193 management is unlikely to be replicated fully in digital interventions. However, semi-personalisation
194 is presently achievable within digital interventions for obesity prevention and weight-loss
195 maintenance following obesity management [63]. Digital interventions, such as text messaging
196 programs, can provide semi-personalised messages to positively change individual lifestyle
197 behaviours [64]. Large populations of people can also be targeted simultaneously, as text messages
198 are a low-cost, convenient, and scalable method of health communication.

199 As text messaging remains a primary form of communication between adolescents, semi-
200 personalized text messages, constructed carefully in collaboration with adolescents, have been shown
201 to be a feasible and acceptable form of communication for obesity interventions [63,65,66]. High-
202 quality evidence for the effect of text messages on BMI in both overweight and obesity adolescent
203 populations is lacking [24,26]. The findings from two randomized controlled trials in young adults at
204 risk of obesity and adults with heart disease provide insights about the role of semi-personalized text
205 messages can play in changing dietary behaviors and subsequently reducing in BMI. The
206 multicomponent mobile health study in young adults by Allman-Farinelli *et al.* [67,68], used eight
207 weekly motivational text messages based on the Transtheoretical model of behavior change, whereby
208 messages matched the stage-of-change for each lifestyle behavior at baseline. Text messages were
209 delivered in conjunction with health coaching calls, a website and smartphone apps. Young adults in
210 the intervention group weighed 3.7 kg [95% confidence interval (CI) -6.1, -1.3] less at 3-months, and
211 4.7 kg (95% CI -6.9, -1.8) less at 9-months [67] compared to their control counterparts. Further,
212 intervention participants consumed more vegetables ($p = 0.009$), fewer sugary soft drinks ($p = 0.002$),
213 and fewer energy-dense takeout meals ($p = 0.001$) compared to controls [68]. The process evaluation
214 from the study found intervention participants valued the text messages and found the text messages
215 increased their overall engagement with the program [69]. The study by Chow *et al.* used a multistep,
216 iterative, mixed methods process with heart disease patients to develop text messages that provide
217 semi-personalized information, motivation, and support to meet national guidelines for heart

218 disease. Intervention participants significantly reduced their BMI at 6-months (-1.3 kg m⁻² (95% CI -
219 1.6, -0.9, $p < 0.001$) [22]. Moreover, a significantly higher proportion of intervention participants
220 adhered to greater than four dietary guideline recommendations compared to the control group (93%
221 vs. 75%, $p < 0.001$) [70]. Patients reported the semi-personalized text messages increased engagement
222 and supported their behavior change [21]. Further research is required to see if the two semi-
223 personalized text messages examples presented here can be applied to prevention of obesity or for
224 weight-loss maintenance following obesity management in adolescent populations.

225 **3.3. Just-in-Time-Adaptation**

226 Just-in-time adaptive interventions are a form of personalized interventions that provide
227 support relevant to an individual's changing behaviors and contexts over time [71]. The overall goal
228 is to provide instantaneous contextual support for the targeted behaviors when the individual is most
229 likely to be receptive. Just-in-time adaptive interventions use sensory data, e.g., a smartphone or
230 smartwatch and momentary information directly from participants, e.g., ecological momentary
231 assessments (EMAs), to send personalized feedback on targeted behaviors [72]. In these
232 interventions, text messages commonly communicate the behavioral feedback. A recent systematic
233 literature review of just-in-time-interventions found behavioral feedback that was always available,
234 personalized, and practical resulted in significant positive behavioral changes [73].

235 Only a few studies have been conducted, which describing the potential role of interactive digital
236 health interventions for adolescents [72,74]. One example is the KNOWME study, by Spruijt-Metz
237 and colleagues, which demonstrated the feasibility and acceptability of a just-in-time adaptive
238 intervention for overweight adolescents [72,75]. KNOWME study aimed to reduce sedentary
239 behavior and promote physical activity. The pilot study showed adolescents decreased their
240 sedentary time by 170.8 minutes per week compared to baseline ($p < 0.01$) and physical activity levels
241 measured via accelerometers were found to be significantly higher after receiving text messages with
242 feedback from the research team ($p < 0.01$) [72]. Pilot research by Garcia et al. [76] developed a feasible
243 youth EMAs via a two-way text message system to collect information on daily activities, behaviors,
244 and attitudes among adolescents. Adolescents live in an instantaneous and fast-paced digital
245 environment. Therefore, such interventions show significant potential.

246 **4. Two relevant case studies: Youth AdvisorY (YAY!) and Text message Behavioural Intervention
247 for Teens on Eating, physical activity, and Social wellbeing (TEXTBITES)**

248 The YAY! and TEXTBITES studies are both currently underway and provide examples in a
249 research setting of the utilization of the three engagement strategies discussed above. YAY! is a youth
250 advisory group which will comprise of 50 adolescents (13-18 years) to enable co-design of digital
251 health promotion programs. The group will be recruited for a period of 12-months and will be active
252 in co-designing technology-focused obesity prevention programs, including the bank of text
253 messages for the TEXTBITES study. Through co-design, we aim to optimize the quality of the digital
254 health promotion services on offer to adolescents. The TEXTBITES study is a single-center, single-
255 blind randomized controlled trial involving 150 participants with 12 months follow-up. In this trial,
256 we aim to test the effectiveness of a semi-personalized text message healthy lifestyle program, with
257 optional health counseling, compared to usual care in improving BMI and lifestyle outcomes in
258 adolescents who are overweight. We will utilize two-way text message EMAs to provide further
259 contextual and real-time behavioral feedback to adolescents. These two examples demonstrate how
260 engagement strategies can be used to facilitate contemporary delivery of health care and ultimately,
261 how these strategies can potentially improve dietary behaviors and help prevent the early onset of
262 obesity in adolescents.

263 **5. Conclusion**

264 Engagement with digital health interventions is an important mediating factor to improve
265 dietary behaviours and prevent and manage obesity in adolescents. The rapid development and
266 diffusion of digital health interventions for adolescents has resulted in few interventions that are co-
267 designed with end-users, personalised, and provide real-time feedback. Incorporating such strategies
268 may optimise the levels of engagement adolescents have with digital health interventions to improve
269 their dietary behaviours. Strategies to increase engagement are not limited to those discussed in this
270 narrative review. There are several other strategies that have the potential to increase engagement
271 with digital interventions in other populations with different needs. Given the emerging body of
272 evidence suggesting effective engagement with digital health interventions can mediate positive
273 behavioural change, research efforts should be focused on incorporating engagement strategies
274 throughout the research process and as well in real-world digital health interventions and programs.

275 **Acknowledgments:** No funding was received to support the preparation of this manuscript. JR is funded by a
276 National Health and Medical Research Council Career Development Fellowship.

277 **Author Contributions:** SRP conceived the idea for the review and wrote the manuscript. JR provided
278 supervision and mentoring in the form of discussions about the content and order of the review, as well as key
279 ideas on areas of literature and case studies to include.

280 **Conflicts of Interest:** The authors report no conflicts of interest in this work.

281 References

- 282 1. World Health Organization. Health for the world's adolescents: A second chance in the second
283 decade. <http://apps.who.int/adolescent/second-decade/> (12-12-2017),
- 284 2. Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.;
285 Biryukov, S.; Abbafati, C.; Abera, S.F., *et al.* Global, regional, and national prevalence of
286 overweight and obesity in children and adults during 1980–2013: A systematic analysis for the
287 global burden of disease study 2013. *The Lancet* **2014**, *384*, 766–781.
- 288 3. Attard, S.M.; Herring, A.H.; Howard, A.G.; Gordon-Larsen, P. Longitudinal trajectories of bmi
289 and cardiovascular disease risk: The national longitudinal study of adolescent health. *Obesity*
290 (*Silver Spring, Md.*) **2013**, *21*, 2180–2188.
- 291 4. Doak, C.M.; Visscher, T.L.; Renders, C.M.; Seidell, J.C. The prevention of overweight and obesity
292 in children and adolescents: A review of interventions and programmes. *Obesity reviews : an official*
293 *journal of the International Association for the Study of Obesity* **2006**, *7*, 111–136.
- 294 5. Adams, K.F.; Leitzmann, M.F.; Ballard-Barbash, R.; Albanes, D.; Harris, T.B.; Hollenbeck, A.;
295 Kipnis, V. Body mass and weight change in adults in relation to mortality risk. *American journal*
296 *of epidemiology* **2014**, *179*, 135–144.
- 297 6. Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu,
298 F.B. Associations of weight gain from early to middle adulthood with major health outcomes later
299 in life. *Jama* **2017**, *318*, 255–269.
- 300 7. Gordon-Larsen, P.; Adair, L.S.; Nelson, M.C.; Popkin, B.M. Five-year obesity incidence in the
301 transition period between adolescence and adulthood: The national longitudinal study of
302 adolescent health. *The American journal of clinical nutrition* **2004**, *80*, 569–575.
- 303 8. Patton, G.C.; Coffey, C.; Sawyer, S.M.; Viner, R.M.; Haller, D.M.; Bose, K.; Vos, T.; Ferguson, J.;
304 Mathers, C.D. Global patterns of mortality in young people: A systematic analysis of population
305 health data. *The Lancet* **2009**, *374*, 881–892.
- 306 9. UNFPA. *The power of 1·8 billion—adolescents, youth, and the transformation of the future*; The United
307 Nations Population Fund: New York, 2014.

308 10. Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.;
309 Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A., *et al.* Global, regional, and national comparative
310 risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or
311 clusters of risks in 188 countries, 1990-2013: A systematic analysis for the global burden of disease
312 study 2013. *Lancet (London, England)* **2015**, *386*, 2287-2323.

313 11. Australian Bureau of Statistics. 4324.0.55.002 - microdata: Australian health survey: Nutrition and
314 physical activity. <http://bit.ly/2jkRRZO> (01-04-2017),

315 12. Hardy LL; Mihrshahi S; Drayton BA; Bauman, A. *Nsw schools physical activity and nutrition survey*
316 (*spans*) 2015: *Full report*; NSW Department of Health: Sydney, 2016.

317 13. Powell, L.M.; Szczyplka, G.; Chaloupka, F.J. Trends in exposure to television food advertisements
318 among children and adolescents in the united states. *Archives of pediatrics & adolescent medicine*
319 **2010**, *164*, 794-802.

320 14. Pearson, N.; Braithwaite, R.E.; Biddle, S.J.H.; van Sluijs, E.M.F.; Atkin, A.J. Associations between
321 sedentary behaviour and physical activity in children and adolescents: A meta-analysis. *Obesity*
322 *Reviews* **2014**, *15*, 666-675.

323 15. Vandevijvere, S.; Chow, C.C.; Hall, K.D.; Umali, E.; Swinburn, B.A. Increased food energy supply
324 as a major driver of the obesity epidemic: A global analysis. *Bull World Health Organ* **2015**, *93*, 446-
325 456.

326 16. Hill, J.O. Can a small-changes approach help address the obesity epidemic? A report of the joint
327 task force of the american society for nutrition, institute of food technologists, and international
328 food information council. *The American journal of clinical nutrition* **2009**, *89*, 477-484.

329 17. Seagle, H.M.; Strain, G.W.; Makris, A.; Reeves, R.S. Position of the american dietetic association:
330 Weight management. *Journal of the American Dietetic Association* **2009**, *109*, 330-346.

331 18. National Health and Medical Research Council. *Clinical practice guidelines for the management of*
332 *overweight and obesity in adults, adolescents and children in australia*; Melbourne, 2013.

333 19. Müller, A.M.; Maher, C.A.; Vandelanotte, C.; Hingle, M.; Middelweerd, A.; Lopez, M.L.; DeSmet,
334 A.; Short, C.E.; Nathan, N.; Hutchesson, M.J., *et al.* Physical activity, sedentary behavior, and diet-
335 related ehealth and mhealth research: Bibliometric analysis. *Journal of medical Internet research*
336 **2018**, *20*, e122.

337 20. Michie, S.; Yardley, L.; West, R.; Patrick, K.; Greaves, F. Developing and evaluating digital
338 interventions to promote behavior change in health and health care: Recommendations resulting
339 from an international workshop. *Journal of medical Internet research* **2017**, *19*, e232.

340 21. Redfern, J.; Santo, K.; Coorey, G.; Thakkar, J.; Hackett, M.; Thiagalingam, A.; Chow, C.K. Factors
341 influencing engagement, perceived usefulness and behavioral mechanisms associated with a text
342 message support program. *PLOS ONE* **2016**, *11*, e0163929.

343 22. Chow, C.K.; Redfern, J.; Hillis, G.S.; Thakkar, J.; Santo, K.; Hackett, M.L.; Jan, S.; Graves, N.; de
344 Keizer, L.; Barry, T., *et al.* Effect of lifestyle-focused text messaging on risk factor modification in
345 patients with coronary heart disease: A randomized clinical trial. *Jama* **2015**, *314*, 1255-1263.

346 23. Lenhart A; Duggan M; Perrin A; Stepler R; K., P. Teens, social media & technology overview.
347 <http://www.pewinternet.org/2015/04/09/teens-social-media-technology-2015/#> (6-12-2017),

348 24. Rose, T.; Barker, M.; Maria Jacob, C.; Morrison, L.; Lawrence, W.; Strommer, S.; Vogel, C.; Woods-
349 Townsend, K.; Farrell, D.; Inskip, H., *et al.* A systematic review of digital interventions for

350 improving the diet and physical activity behaviors of adolescents. *The Journal of adolescent health : official publication of the Society for Adolescent Medicine* 2017.

351

352 25. Miller M.; Damarell R.; Bell L.; Moores C.; Miller J.; L., M. *Community-based approaches to adolescent obesity; An Evidence Check rapid review brokered by the Sax Institute* (www.saxinstitute.org.au)

353 for the NSW Office of Preventive Health, 2017.

354

355 26. Keating, S.R.; McCurry, M.K. Systematic review of text messaging as an intervention for adolescent obesity. *Journal of the American Association of Nurse Practitioners* 2015, 27, 714-720.

356

357 27. Steinbeck, K.S.; Lister, N.B.; Gow, M.L.; Baur, L.A. Treatment of adolescent obesity. *Nature Reviews Endocrinology* 2018, 14, 331-344.

358

359 28. Lee, J.; Piao, M.; Byun, A.; Kim, J. A systematic review and meta-analysis of intervention for pediatric obesity using mobile technology. *Studies in health technology and informatics* 2016, 225, 491-494.

360

361 29. Chaplain, E.; Naughton, G.; Thivel, D.; Courteix, D.; Greene, D. Smartphone interventions for weight treatment and behavioral change in pediatric obesity: A systematic review. *Telemed J E Health* 2015, 21, 822-830.

362

363 30. Wickham, C.A.; Carbone, E.T. Who's calling for weight loss? A systematic review of mobile phone weight loss programs for adolescents. *Nutrition reviews* 2015, 73, 386-398.

364

365 31. Gibson, A.A.; Sainsbury, A. Strategies to improve adherence to dietary weight loss interventions in research and real-world settings. *Behavioral sciences (Basel, Switzerland)* 2017, 7.

366

367 32. Ahmed, S.P.; Bittencourt-Hewitt, A.; Sebastian, C.L. Neurocognitive bases of emotion regulation development in adolescence. *Developmental Cognitive Neuroscience* 2015, 15, 11-25.

368

369 33. Peper, J.S.; Dahl, R.E. Surging hormones: Brain-behavior interactions during puberty. *Current directions in psychological science* 2013, 22, 134-139.

370

371 34. Patton, G.C.; Viner, R. Pubertal transitions in health. *Lancet (London, England)* 2007, 369, 1130-1139.

372

373 35. Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. *The Lancet Child & Adolescent Health* 2018, 2, 223-228.

374

375 36. National Health Medical Research Council (NHMRC). *Australian dietary guidelines*; Canberra: NHMRC 2013.

376

377 37. National Health and Medical Research Council. *Nutrient reference values for australia and new zealand including recommended dietary intakes* Commonwealth of Australia: Canberra, Australia, 2006.

378

379 38. Skelton, J.A.; Beech, B.M. Attrition in paediatric weight management: A review of the literature and new directions. *Obesity reviews : an official journal of the International Association for the Study of Obesity* 2011, 12, e273-281.

380

381 39. Smith, K.L.; Straker, L.M.; McManus, A.; Fenner, A.A. Barriers and enablers for participation in healthy lifestyle programs by adolescents who are overweight: A qualitative study of the opinions of adolescents, their parents and community stakeholders. *BMC pediatrics* 2014, 14, 53.

382

383 40. Martin, J.; Chater, A.; Lorencatto, F. Effective behaviour change techniques in the prevention and management of childhood obesity. *International journal of obesity (2005)* 2013, 37, 1287-1294.

384

385 41. Puhl, R.M.; Himmelstein, M.S. Adolescent preferences for weight terminology used by health care providers. *Pediatric obesity* 2018, 0.

386

387 42. Roy Morgan Research. Media release: 9 in 10 aussie teens now have a mobile. <http://bit.ly/2bbuoAX> (20-09-2017),

388

389

390

391

392

393 43. Chen, J.L.; Wilkosz, M.E. Efficacy of technology-based interventions for obesity prevention in
394 adolescents: A systematic review. *Adolescent health, medicine and therapeutics* **2014**, *5*, 159-170.

395 44. Turner-McGrievy, G.M.; Beets, M.W.; Moore, J.B.; Kaczynski, A.T.; Barr-Anderson, D.J.; Tate, D.F.
396 Comparison of traditional versus mobile app self-monitoring of physical activity and dietary
397 intake among overweight adults participating in an mhealth weight loss program. *Journal of the
398 American Medical Informatics Association* **2013**, *20*, 513-518.

399 45. Brannon, E.E.; Cushing, C.C. A systematic review: Is there an app for that? Translational science
400 of pediatric behavior change for physical activity and dietary interventions. *Journal of Pediatric
401 Psychology* **2015**, *40*, 373-384.

402 46. Perski, O.; Blandford, A.; West, R.; Michie, S. Conceptualising engagement with digital behaviour
403 change interventions: A systematic review using principles from critical interpretive synthesis.
404 *Transl Behav Med* **2017**, *7*, 254-267.

405 47. Yardley, L.; Spring, B.J.; Riper, H.; Morrison, L.G.; Crane, D.H.; Curtis, K.; Merchant, G.C.;
406 Naughton, F.; Blandford, A. Understanding and promoting effective engagement with digital
407 behavior change interventions. *Am J Prev Med* **2016**, *51*, 833-842.

408 48. Redfern, J.; Thiagalingam, A.; Jan, S.; Whittaker, R.; Hackett, M.L.; Mooney, J.; De Keizer, L.;
409 Hillis, G.S.; Chow, C.K. Development of a set of mobile phone text messages designed for
410 prevention of recurrent cardiovascular events. *European journal of preventive cardiology* **2014**, *21*,
411 492-499.

412 49. Cargo, M.; Mercer, S.L. The value and challenges of participatory research: Strengthening its
413 practice. *Annual review of public health* **2008**, *29*, 325-350.

414 50. Andersson, N. Community-led trials: Intervention co-design in a cluster randomised controlled
415 trial. *BMC Public Health* **2017**, *17*, 397.

416 51. Hagen P.; Collin P.; Metcalf A.; Nicholas M.; Rahilly K.; N., S. *Participatory design of evidence-based
417 online youth mental health promotion, prevention, early intervention and treatment*; Melbourne, 2012.

418 52. Rivera, J.; McPherson, A.; Hamilton, J.; Birken, C.; Coons, M.; Iyer, S.; Agarwal, A.; Laloo, C.;
419 Stinson, J. Mobile apps for weight management: A scoping review. *JMIR mHealth and uHealth*
420 **2016**, *4*, e87.

421 53. Schoffman, D.E.; Turner-McGrievy, G.; Jones, S.J.; Wilcox, S. Mobile apps for pediatric obesity
422 prevention and treatment, healthy eating, and physical activity promotion: Just fun and games?
423 *Transl Behav Med* **2013**, *3*, 320-325.

424 54. Webb, M.J.; Wadley, G.; Sanci, L.A. Improving patient-centered care for young people in general
425 practice with a codesigned screening app: Mixed methods study. *JMIR mHealth and uHealth* **2017**,
426 *5*, e118.

427 55. Hetrick, S.E.; Robinson, J.; Burge, E.; Blandon, R.; Mobilio, B.; Rice, S.M.; Simmons, M.B.; Alvarez-
428 Jimenez, M.; Goodrich, S.; Davey, C.G. Youth codesign of a mobile phone app to facilitate self-
429 monitoring and management of mood symptoms in young people with major depression,
430 suicidal ideation, and self-harm. *JMIR Mental Health* **2018**, *5*, e9.

431 56. Rivera, J.; McPherson, A.C.; Hamilton, J.; Birken, C.; Coons, M.; Peters, M.; Iyer, S.; George, T.;
432 Nguyen, C.; Stinson, J. User-centered design of a mobile app for weight and health management
433 in adolescents with complex health needs: Qualitative study. *JMIR Formative Res* **2018**, *2*, e7.

434 57. Standoli, C.; Guarneri, M.; Perego, P.; Mazzola, M.; Mazzola, A.; Andreoni, G. A smart wearable
435 sensor system for counter-fighting overweight in teenagers. *Sensors* **2016**, *16*, 1220.

436 58. Chen, J.; Cade, J.E.; Allman-Farinelli, M. The most popular smartphone apps for weight loss: A
437 quality assessment. *JMIR mHealth and uHealth* **2015**, *3*, e104.

438 59. Adamson, A.J.; Mathers, J.C. Effecting dietary change. *The Proceedings of the Nutrition Society* **2004**,
439 *63*, 537-547.

440 60. Eyles, H.C.; Mhurchu, C.N. Does tailoring make a difference? A systematic review of the long-
441 term effectiveness of tailored nutrition education for adults. *Nutrition reviews* **2009**, *67*, 464-480.

442 61. de Roos, B.; Brennan, L. Personalised interventions-a precision approach for the next generation
443 of dietary intervention studies. *Nutrients* **2017**, *9*.

444 62. Steinbeck, K.; Baur, L.; Cowell, C.; Pietrobelli, A. Clinical research in adolescents: Challenges and
445 opportunities using obesity as a model. *Int J Obes* **2008**, *33*, 2-7.

446 63. Nguyen, B.; Shrewsbury, V.A.; O'Connor, J.; Steinbeck, K.S.; Hill, A.J.; Shah, S.; Kohn, M.R.;
447 Torvaldsen, S.; Baur, L.A. Two-year outcomes of an adjunctive telephone coaching and electronic
448 contact intervention for adolescent weight-loss maintenance: The loozit randomized controlled
449 trial. *International journal of obesity (2005)* **2013**, *37*, 468-472.

450 64. Armanasco, A.A.; Miller, Y.D.; Fjeldsoe, B.S.; Marshall, A.L. Preventive health behavior change
451 text message interventions: A meta-analysis. *Am J Prev Med* **2017**, *52*, 391-402.

452 65. Woolford, S.J.; Barr, K.L.; Derry, H.A.; Jepson, C.M.; Clark, S.J.; Strecher, V.J.; Resnicow, K. Omg
453 do not say lol: Obese adolescents' perspectives on the content of text messages to enhance weight
454 loss efforts. *Obesity* **2011**, *19*, 2382-2387.

455 66. Woolford, S.J.; Clark, S.J.; Strecher, V.J.; Resnicow, K. Tailored mobile phone text messages as an
456 adjunct to obesity treatment for adolescents. *Journal of telemedicine and telecare* **2010**, *16*, 458-461.

457 67. Allman-Farinelli, M.; Partridge, S.R.; McGeechan, K.; Balestracci, K.; Hebden, L.; Wong, A.;
458 Phongsavan, P.; Denney-Wilson, E.; Harris, M.F.; Bauman, A. A mobile health lifestyle program
459 for prevention of weight gain in young adults (txt2bfit): Nine-month outcomes of a randomized
460 controlled trial. *JMIR mHealth and uHealth* **2016**, *4*, e78.

461 68. Partridge, S.R.; McGeechan, K.; Hebden, L.; Balestracci, K.; Wong, A.T.; Denney-Wilson, E.;
462 Harris, M.F.; Phongsavan, P.; Bauman, A.; Allman-Farinelli, M. Effectiveness of a mhealth
463 lifestyle program with telephone support (txt2bfit) to prevent unhealthy weight gain in young
464 adults: Randomized controlled trial. *JMIR mHealth and uHealth* **2015**, *3*, e66.

465 69. Partridge, S.R.; Allman-Farinelli, M.; McGeechan, K.; Balestracci, K.; Wong, A.T.; Hebden, L.;
466 Harris, M.F.; Bauman, A.; Phongsavan, P. Process evaluation of txt2bfit: A multi-component
467 mhealth randomised controlled trial to prevent weight gain in young adults. *The international
468 journal of behavioral nutrition and physical activity* **2016**, *13*, 7.

469 70. Santo, K.; Hyun, K.; de Keizer, L.; Thiagalingam, A.; Hillis, G.S.; Chalmers, J.; Redfern, J.; Chow,
470 C.K. The effects of a lifestyle-focused text-messaging intervention on adherence to dietary
471 guideline recommendations in patients with coronary heart disease: An analysis of the text me
472 study. *International Journal of Behavioral Nutrition and Physical Activity* **2018**, *15*, 45.

473 71. Nahum-Shani, I.; Smith, S.N.; Spring, B.J.; Collins, L.M.; Witkiewitz, K.; Tewari, A.; Murphy, S.A.
474 Just-in-time adaptive interventions (jitaits) in mobile health: Key components and design
475 principles for ongoing health behavior support. *Annals of behavioral medicine : a publication of the
476 Society of Behavioral Medicine* **2018**, *52*, 446-462.

477 72. Spruijt-Metz, D.; Wen, C.K.; O'Reilly, G.; Li, M.; Lee, S.; Emken, B.A.; Mitra, U.; Annavaram, M.;
478 Ragusa, G.; Narayanan, S. Innovations in the use of interactive technology to support weight
479 management. *Curr Obes Rep* 2015, 4, 510-519.

480 73. Schembre, S.M.; Liao, Y.; Robertson, M.C.; Dunton, G.F.; Kerr, J.; Haffey, M.E.; Burnett, T.; Basen-
481 Engquist, K.; Hicklen, R.S. Just-in-time feedback in diet and physical activity interventions:
482 Systematic review and practical design framework. *Journal of medical Internet research* 2018, 20,
483 e106.

484 74. Turner, T.; Spruijt-Metz, D.; Wen, C.K.; Hingle, M.D. Prevention and treatment of pediatric
485 obesity using mobile and wireless technologies: A systematic review. *Pediatric obesity* 2015, 10,
486 403-409.

487 75. Emken, B.A.; Li, M.; Thatte, G.; Lee, S.; Annavaram, M.; Mitra, U.; Narayanan, S.; Spruijt-Metz,
488 D. Recognition of physical activities in overweight hispanic youth using knowme networks.
489 *Journal of physical activity & health* 2012, 9, 432-441.

490 76. Garcia, C.; Hardeman, R.R.; Kwon, G.; Lando-King, E.; Zhang, L.; Genis, T.; Brady, S.S.; Kinder,
491 E. Teenagers and texting: Use of a youth ecological momentary assessment system in trajectory
492 health research with latina adolescents. *JMIR mHealth and uHealth* 2014, 2, e3.