

1 *Communication*2

Slight pH Fluctuations in the Gold Nanoparticle 3 Synthesis Process Influence the Performance of the 4 Citrate Reduction Method

5 **Braulio Contreras-Trigo¹, Víctor Díaz-García¹, Enrique Guzmán-Gutierrez², Ignacio Sanhueza³,
6 Pablo Coelho³, Sebastián Godoy³, Sergio Torres³ and Patricio Oyarzún^{1,*}**7 ¹ Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile;
8 bcontrerast@docente.uss.cl (B.C.), Victor.DiazG@uss.cl (V.D.).9 ² Facultad de Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile;
10 enrique.guzman@uss.cl (E.G.).11 ³ Departamento de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de Concepción;
12 ignacio.sanhueza.ruiz@gmail.com (I.S.), pcoelho@udec.cl (P.C.), segodoy@udec.cl (S.G.), sertorre@udec.cl
13 (S.T.).

14 * Correspondence: patricio.oyarzun@uss.cl; Tel.: +56-41-2487962

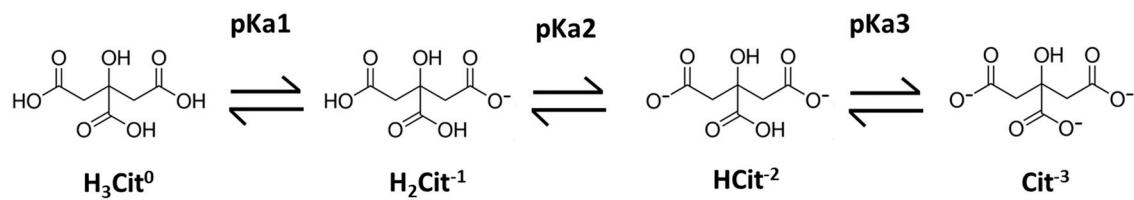
15

16 **Abstract:** Gold nanoparticles (AuNPs) are currently under intense investigation for biomedical and
17 biotechnology applications, thanks to their ease in preparation, stability, biocompatibility, multiple
18 surface functionalities and size-dependent optical properties. The most commonly used method for
19 AuNPs synthesis in aqueous solution is the reduction of tetrachloroauric acid (HAuCl₄) with
20 trisodium citrate. We observed variations in the pH and concentration of the gold colloidal
21 suspension synthesized under standard conditions, verifying a reduction in the reaction yield by
22 around 46% from pH 5.3 (2.4 nM) to pH 4.7 (1.29 nM). Citrate-capped AuNPs were characterized
23 by UV-visible spectroscopy, TEM, EDS and zeta-potential measurements, revealing a linear
24 correlation between pH and the concentration of the generated AuNPs. This result can be attributed
25 to the adverse effect of protons both on citrate oxidation and on citrate adsorption onto the gold
26 surface, which is required to form the stabilization layer. Overall, this study provides insight into
27 the effect of the pH over the synthesis performance of the method, which would be of particular
28 interest from the point of view of large-scale manufacturing processes.29 **Keywords:** Gold nanoparticles; Citrate reduction method; pH-effect; concentration

30

31

1. Introduction


32 Gold nanoparticles (AuNPs) have emerged as a promising platform for a growing number of
33 biomedical and biotechnology applications in the fields of sensing [1], molecular diagnostic [2],
34 therapeutic [3] and imaging [4], owing to their stability, biocompatibility, remarkable
35 physicochemical properties and easy surface functionalization with a wide range of ligands [5, 6]. A
36 prominent optic feature of AuNPs arises from the collective oscillation of the conduction electrons in
37 the presence of an incident light, the so-called surface plasmon resonance (SPR) [7]. This phenomenon
38 causes a sharp and intense absorption band in the visible range, which can be readily tuned by
39 varying the particle size, shape and the surrounding physicochemical environment [8]. Thus, label-
40 free colorimetric sensors based on AuNPs (nanobiosensors) have been widely proposed as a
41 promising analytical for selective binding and detection of chemical and biological targets, including
42 metal ions [9], antibiotics [10], mycotoxins [11], as well as a large number of microorganisms [12].

43

44 As concerns the preparation of the colloidal gold nanoparticles, various chemical routes, including
 45 the use of chemical reductants [13] and several photochemical methods based on UV irradiation [14],
 46 γ -irradiation [15] and laser irradiation [16], have been widely studied for different purposes of
 47 application. However, the classical “citrate reduction method” proposed by Turkevich in 1951 [17],
 48 and latter modified by Frens in 1973 [18], remains the most widely employed synthesis procedure,
 49 since AuNPs can be produced in a straightforward manner to obtain highly stable monodisperse
 50 particles with uniform spherical shape and narrow-size distributions ranging between 10 - 20 nm in
 51 diameter. This method is based on the aqueous-phase reduction of an Au^{3+} precursor (HAuCl_4 ; gold
 52 salt) with sodium citrate near the boiling point of the reaction mixture, which produces a stable
 53 solution of metallic gold nanoparticles (colloidal gold) [19].

54 Citrate ions play a key role, since they act both as reductant, converting gold ions (Au^{3+}) into gold
 55 atoms (Au^0), and as a protective agent that stabilizes the formed nanoparticles, preventing particle
 56 growth and aggregation via electrostatic repulsion (citrate capped AuNPs) [20]. Thus, at high citrate
 57 concentrations, smaller particles are covered and stabilized by this ion, while at low concentrations
 58 particle growth continues due to incomplete coverage, leading to the formation of AuNPs with larger
 59 particle size. A third role of citrate is as a mediator of the reaction mixture pH, through which it has
 60 a dramatic effect on the size, polydispersity and morphology of the resulting AuNPs [21, 22]. pH
 61 control on the citrate reduction method has been widely explored regarding its relationship with the
 62 size distribution of the AuNPs [23]. However, up to now the correlation of this parameter with the
 63 concentration of the resulting nanoparticles had not been described, which is of particular interest for
 64 citrate mediated synthesis of colloidal AuNPs to meet large scale manufacturing criteria [24].

65 The acid-base behavior of the AuNPs is provided by the citrate layer, which imparts a negative charge
 66 onto the colloidal particle surface. Citrate is a tricarboxylic acid (polyanion) with three pK_a values
 67 ($\text{pK}_a1=3.06$, $\text{pK}_a2=4.74$ and $\text{pK}_a3=5.4$) [25], which participate in the following chemical equilibria:

68

69 In this study we investigated the relationship between typically occurring pH fluctuations of the
 70 colloidal suspension (between 4.5 and 5.3) and the concentration of the gold nanoparticles, providing
 71 valuable information regarding the synthesis performance of the method. AuNPs were characterized
 72 in terms of their concentration (optical density determinations), morphology and surface charge, by
 73 carrying out transmission electron microscopy (TEM) examination, scanning electron microscopy
 74 with energy dispersive X-ray spectroscopy (EDS) and zeta potential analysis.

75 2. Materials and Methods

76 2.1. Preparation of gold nanoparticles (AuNPs)

77 Synthesis of AuNPs was carried out according to the procedures described according to the
 78 citrate reduction method [17, 18]. Briefly, 0.0394 g of tetrachloroauric acid ($\text{HAuCl}_4 \cdot 3\text{H}_2\text{O}$) (Merk,
 79 USA) was dissolved in 100 mL of nanopure water (18 $\text{M}\Omega$ of resistance) in a two-neck round flask (1
 80 mM HAuCl_4). The resulting solution was heated to boiling under stirring and refluxed. Then, 10 mL
 81 of a 38.8 mM trisodium citrate solution was preheated and quickly added to the boiling solution of
 82 HAuCl_4 under vigorous stirring. After the solution turned from pale yellow to black and to deep red,
 83 it was refluxed for additional 30 min and subsequently cooled to room temperature without stirring
 84 for at least 2 h. The formed nanoparticle suspension was filtered through Millipore Nylon filter (0.45

85 μm) and preserved in the dark at 4 °C for subsequent pH determination and characterization of the
86 AuNPs.

87 **2.2. AuNP concentration**

88 The concentration of gold synthesized under different pH conditions was determined by UV-
89 Vis spectroscopy using an Epoch™ Microplate Spectrophotometer (Bio-Tek Instruments, Winooski,
90 VT, USA). 100 μL of each sample were transferred into the microplate wells and the absorption
91 spectra was recorded in the visible region (400 to 700 nm). The absorption maximum at the SPR band
92 (520 nm) was employed to calculate the AuNP concentration according to the Beer-Lambert law, by
93 using an extinction coefficient (ϵ) of $2.01 \times 10^8 \text{ M}^{-1} \text{ cm}^{-1}$ [26].

94 **2.3. Electronic microscopy analyses**

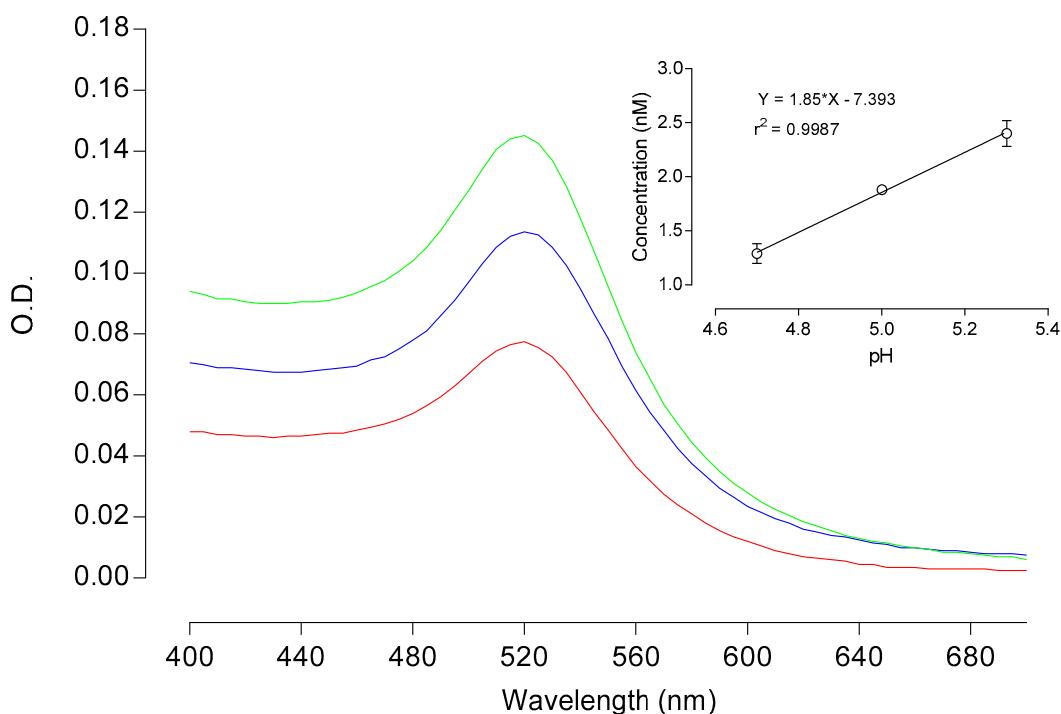
95 The morphology and size of the AuNPs was determined by transmission electron microscopy
96 with 4 Å resolution (TEM; JEOL-JEM 1200EX-II, Tokyo, Japan). Carbon-coated 100 mesh copper grids
97 were dipped into a small drop of each AuNP solution, which were subsequently retracted and
98 allowed to dry in air at room temperature. Particle sizes and frequency histograms were obtained by
99 measuring the diameter of 100 nanoparticles using the ImageJ software [27], while the percentage of
100 spherical particles was determined through visual inspection of 100 nanoparticles. In addition,
101 elemental analysis of the gold colloidal suspensions was carried out by energy-dispersive X-ray
102 analysis (EDS) using scanning electron microscopy (SEM; Etec Autoscan U-1).

103 **2.4. Surface charge characterization (pZ)**

104 Zeta-potential measurements of AuNPs were measured on a zeta-potentiometer (Nano-ZS90,
105 Malvern Instruments, Westboroug) at room temperature and scattering angle of 90°. A diluted
106 suspension of AuNPs (100 μL diluted to 1 mL nanopure water) were employed for the analyses. The
107 Malvern Zetasizer Software version 7.12 was employed to analyze the collected data.

108
109

110 **3. Results and Discussion**


111 **3.1. pH effect on the concentration**

112 Figure 1 presents the absorption spectra of the AuNPs samples synthesized at three pH values (4.7,
113 5.0 and 5.3), showing the typical curve with a characteristic maximum at 520 nm associated to the
114 SPR band. However, differences in the absorbance values at this peak revealed that pH of the
115 synthesis medium had a relevant effect on the resulting concentration of the nanoparticles. The
116 AuNPs concentration varied in a directly proportional manner as a function of the pH (positive
117 correlation), reaching at pH 5.3 about 1.8 fold the concentration (2.4 nM) than that obtained at pH 4.7
118 (1.29 nM) (see Table 1). This correlation is highly linear in the pH range monitored (4.7 - 5.3), with a
119 correlation coefficient (r^2) of 0.9987.

120

121

122

123 **Figure 1.** Absorption spectra of AuNPs obtained by the citrate reduction method at pHs 4.7 (red), 5.0
 124 (blue) and 5.3 (green). At the top right corner a linear correlation curve between pH and AuNP
 125 concentration is presented. O.D.s correspond to mean values calculated from independent
 126 determinations (n=2).

127

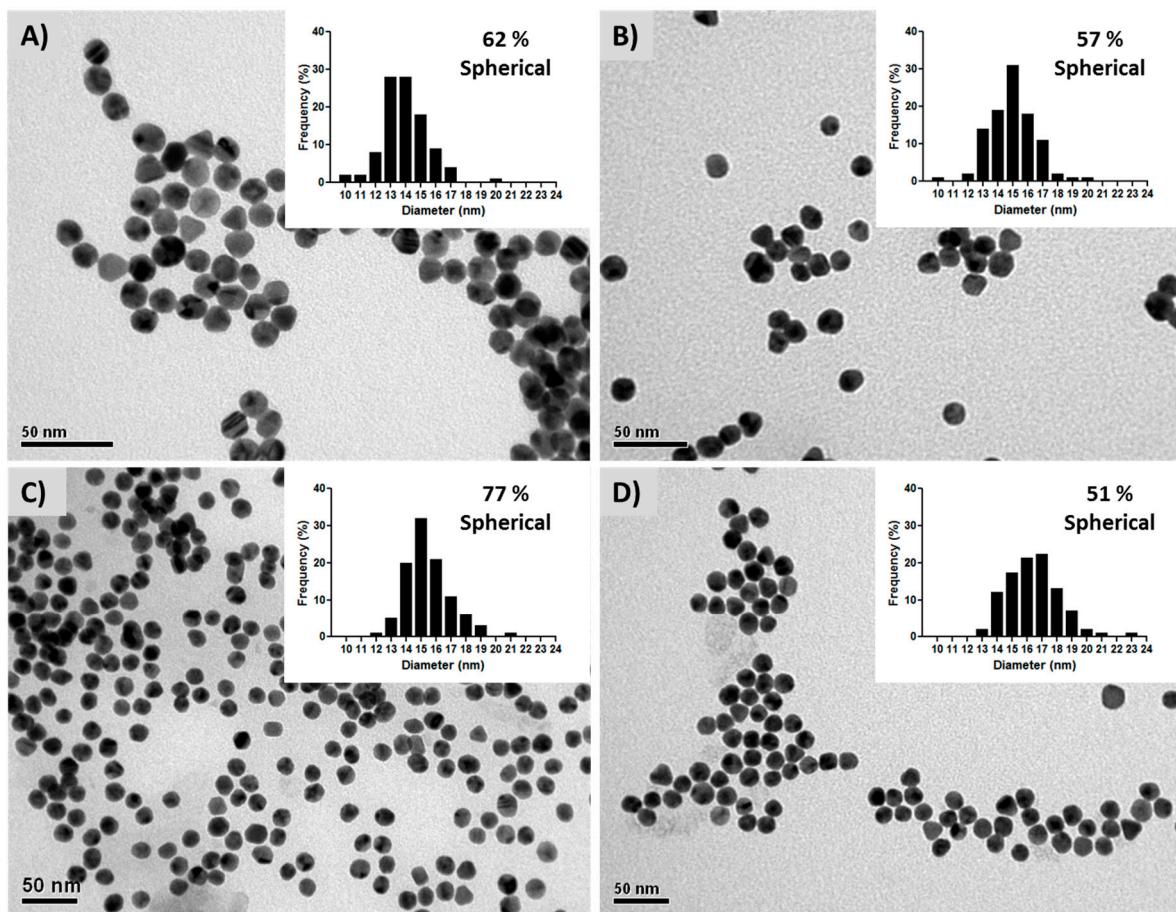
128 *3.2. AuNPs characterization*

129 TEM analysis of the AuNPs samples proved the nanoparticles have comparable diameters between
 130 13.9–15.5 nm for the three monitored pH values, with similar morphology distribution (Figure 2; Table
 131 1). The percentage of spherical nanoparticles was slightly higher at pH 5.3 (77%), in comparison with
 132 that at pH 5.0 (57%) and pH 4.7 (62%), which would favor shape homogeneity of the nanoparticles.
 133 By contrast, commercial AuNPs showed the least sphericity (51%). These observations are consistent
 134 with the similar optical behavior exhibited by the nanoparticle suspensions, which share identical
 135 wavelength associated to the SPR peak (UV-Vis spectrograms, Figure 1).

136

137

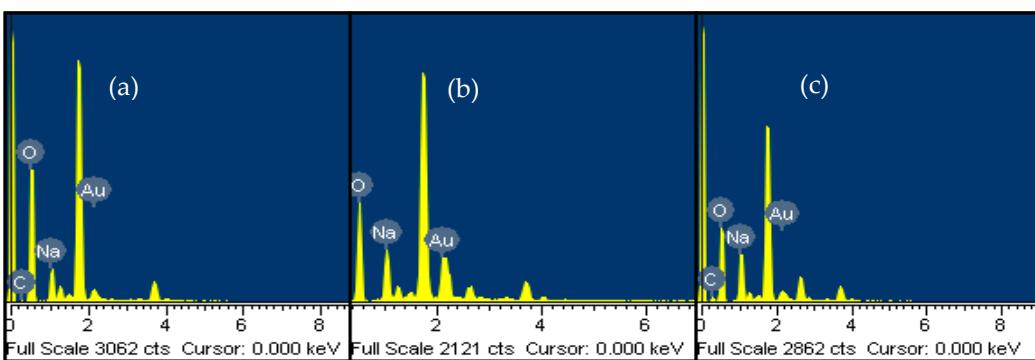
138


139

140

141

142


143

144

145 **Figure 2.** Transmission electron microphotographs of AuNPs at pH 4.7 (a), 5.0 (b) and 5.3 (c), and
 146 commercial AuNPs (pH 5.0) with an average diameter of 16.42 ± 1.76 nm (d). Histograms with the
 147 respective particle size distributions are included within each microphotography, showing on top
 148 right corner the percentage of spherical nanoparticles.

149 In addition, energy dispersive X-ray spectrometry (EDS) elemental analysis confirmed the presence
 150 of Au, C, O and Na forming part of the citrate layer adsorbed on the AuNPs (Figure 3). Sodium ions
 151 play an important role in stabilizing high coverages of the gold surface by carboxylate anions [28].

152

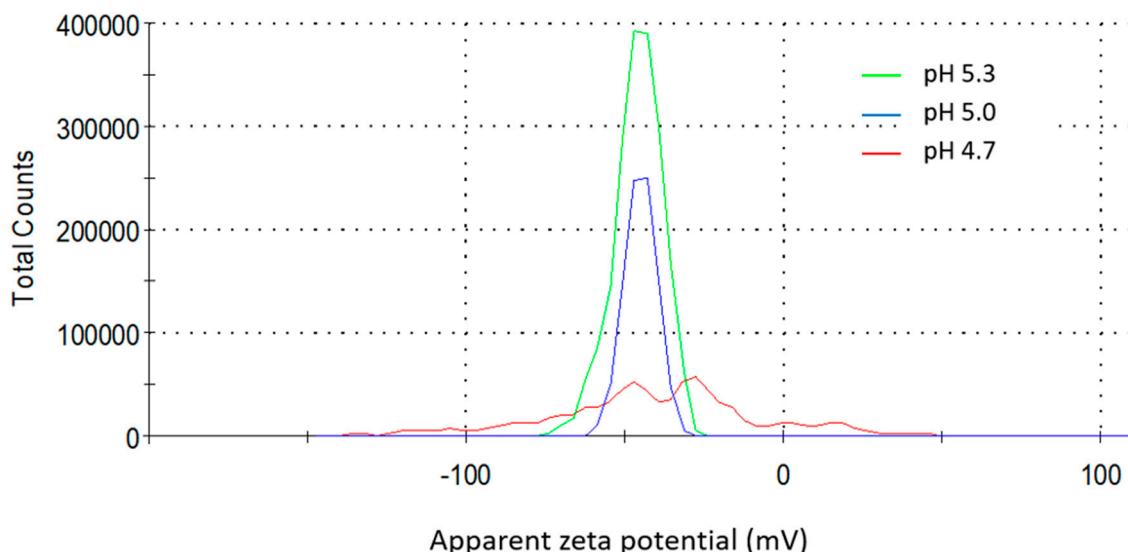
153 **Figure 3.** EDS spectra of gold colloidal suspensions at pH 4.7 (a), 5.0 (b) and 5.3 (c). Higher peaks
 154 correspond to the silicon from the glass supports.

155

156

157 3.3 Surface charge analysis

158 Under standard experimental conditions employed in the present study the binding of citrate ions
 159 onto the surface of AuNPs occurs electrostatically through negative oxygen atoms of carboxylic
 160 groups (oxyanions) at the ends of the citrate molecule [28]. Thus, at pH 4.7 (close to pKa2) similar
 161 amounts of H_2Cit^1 and $HCit^2$ implies a lesser availability of deprotonated carboxylic groups, while
 162 at pH 5.3 (close to pKa3) the dominant species $HCit^2$ and Cit^3 would determine a greater capability
 163 of citrate anions to coordinate to the metal surface.

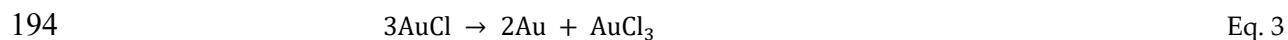
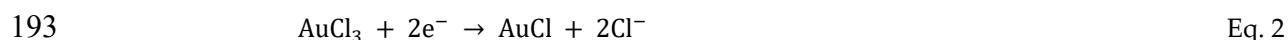
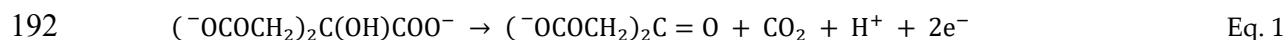

164 The negative charge of citrate-stabilized AuNPs was confirmed through zeta potential analysis (pZ),
 165 revealing the influence of pH on the surface charge from the distribution of the pZ values (Figure 4).
 166 Thus, as the monitored pH fluctuated from 4.7 to 5.3, the shape of the curves reveals a progressive
 167 narrowing on the dispersion of the pZ values of the AuNPs, which accounts for a greater stabilization
 168 of the nanoparticles as a consequence of the presence of mostly deprotonated citrate anions.

169 **Table 1.** Zeta potential, concentration and diameter of AuNPs at pHs 4.7, 5.0 and 5.3.

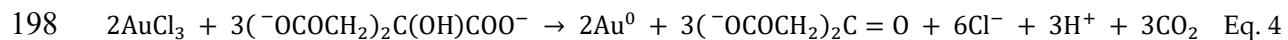
170

pH	Zeta Potential mean (mV)	Peak 1 (mV)	Peak 2 (mV)	Peak 3 (mV)	Concentration (nM)	Diameter (nm)
4.7	-42.2 ± 35.1	-58.5 ± 15.2	-26.7 ± 8.2	16.8 ± 7.1	1.29 ± 0.09	13.92 ± 1.45
5.0	-44.9 ± 5.1	-44.9 ± 5.1	---	---	1.88 ± 0.03	14.94 ± 1.53
5.3	-45.7 ± 7.6	-45.7 ± 7.6	---	---	2.40 ± 0.12	15.50 ± 1.51

171




172

173 **Figure 4.** Zeta potential distribution (mV) of citrate-capped AuNPs synthesized at pHs 4.7 (red), 5.0
 174 (blue) and 5.3 (green).


175 The lowest dispersion values were determined at pHs 5.0 and 5.3 (-44.9 ± 5.1 mV and -45.7 ± 7.6 mV,
 176 respectively), with curves showing single and narrow peaks. Similarly, a recent study showed that a
 177 pH value of 5 was optimal to produce gold nanoparticles that are highly monodisperse and spherical
 178 in shape, with a detrimental effect on the size polydispersity at lower pH values [29]. By contrast, the
 179 highest pZ dispersion was observed at pH 4.7 (-42.2 ± 35.1 mV), showing a flat distribution curve
 180 with three minor peaks that accounts for different populations of citrate-capped AuNPs having a
 181 wide range of surface charges. Importantly, the right tail of this curve mostly falls into the region of

182 positive surface charge values (minor peak at 16.87 ± 7.1 mV), revealing a loss on the citrate coverage
183 of the gold surface. Therefore, these results provide support to an expected lesser tendency of
184 partially protonated citrate ionic species to coordinate with the AuNPs at pH 4.7.

185 In order to understand the effect of pH on the reaction, the role of citrate (and protons) must be
186 considered both in terms of the redox reaction forming AuNPs (citrate as oxidizer), as well as from
187 the point of view of its protectant role (citrate as stabilizer). First, looking at the standard reaction
188 mechanism, the initial step of this multiple-step process is the oxidation of citrate yielding dicarboxy
189 acetone (Eq. 1). The second step consist of reduction of auric salt (Au^{3+}) to aurous salt the (Au^{1+}) by
190 accepting the electrons from the citrate oxidation reaction (Eq. 2), and the final step is the
191 disproportionation of aurous species to gold atoms (Au^0) (Eq. 3).

195 The formation of an intermediate pentacoordinate complex of Au^{3+} species with
196 dicarboxyacetone,has been proposed, which subsequently decarboxylates to give Au^+ species [28].
197 However, the overall stoichiometry of the reduction reaction can be represented as:

199 In accordance with Le Chatelier's principle, as the concentration of protons increases in the solution,
200 the tendency of citrate to oxidize decreases, as well as the availability of electron to reduce the
201 gold(III) chloride and to form AuNPs. In the second place, coordination bondings between the gold
202 surface and adsorbed molecules of citrate consist of carboxyl oxygens that contribute the electron
203 pairs forming covalent bonds [28]. The complexity of the structural arrangement of the citrate layers
204 on AuNPs has been analyzed in several recent studies, showing that citrate could coordinate to the
205 gold through several different binding modes (geometries) that are mostly dictated by one or two of
206 the terminus carboxyl groups [30-32]. However, to promote the intermolecular interactions it is
207 required for citrate to diffuse on the gold surface in a preferential fully deprotonated form, since
208 protonated carboxylate groups does not readily adsorb on gold due to electrochemical impediments
209 [33]. Accordingly, the protonation of citrate terminus sites is considered to discourage citrate binding
210 to the gold surface [31], in agreement with our observation of the detrimental effect of pH fluctuations
211 on coverage, stabilization and production of the AuNPs.

212 **4. Conclusions**

213 We demonstrated that under standard experimental conditions of the citrate reduction method, gold
214 nanoparticles are produced in variable concentrations, showing a pH-dependent linear correlation in
215 the range monitored between pH 4.7 and 5.3 (typical pH fluctuation). The AuNP synthesis
216 performance reduced by 46% from 2.4 nM (pH 5.3) to 1.29 nM (pH 4.7), without alteration of size and
217 morphology. The physical characterization of the nanoparticles suggests that slight fluctuations of
218 pH during synthesis can have an adverse effect on citrate oxidation, as well as on the availability of
219 negative charges from carboxylate groups required for an optimal coverage, stabilization and
220 production of the nanoparticles. Overall, these results provide insight into the effect of the pH over
221 the AuNP synthesis performance of the method, which would be of particular interest for further
222 studies optimizing the reaction conditions in large-scale manufacturing processes.

223

224 **Acknowledgments:** This study was supported by The Scientific and Technological Development Support Fund
225 of Chile (FONDEF ID16I10221) and Dirección General de Investigación Universidad San Sebastián, Chile.

226

227 **Author Contributions:** B.C., V.D., E.G. and P.O. conceived and designed the experiments; B.C. and V.D.
228 performed the experiments; B.C., V.D., E.G., I.S., P.C., S.G., S.T. and P.O. analyzed the data; B.C., V.D., E.G. and
229 P.O. wrote the paper.

230

231 **Conflicts of Interest:** The authors declare no conflict of interest.

232

233 **References**

- 234 1. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological
235 sensing. *Chem. Rev.* **2012**, *112*, 2739-2779.
- 236 2. Radwan, S.H.; Azzazy, H.M. Gold nanoparticles for molecular diagnostics. *Expert. Rev. Mol.*
237 *Diagn.* **2009**, *9*, 511-524.
- 238 3. Akhter, S.; Ahmad, M.Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Gold nanoparticles in theranostic
239 oncology: Current state-of-the-art. *Expert Opin Drug Deliv* **2012**, *9*, 1225-1243.
- 240 4. Kim, D.; Oh, N.; Kim, K.; Lee, S.; Pack, C.G.; Park, J.H.; Park, Y. Label-free high-resolution 3-D
241 imaging of gold nanoparticles inside live cells using optical diffraction tomography. *Methods*
242 **2017**, *136*, 160-167.
- 243 5. Zhang, J.; Liu, B.; Liu, H.; Zhang, X.; Tan, W. Aptamer-conjugated gold nanoparticles for
244 bioanalysis. *Nanomedicine (Lond)* **2013**, *8*, 983-993.
- 245 6. Jacobs, M.; Panneer Selvam, A.; Craven, J.E.; Prasad, S. Antibody-conjugated gold nanoparticle-
246 based immunosensor for ultra-sensitive detection of troponin-T. *J Lab Autom* **2014**, *19*, 546-554.
- 247 7. Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iati, M.A. Surface plasmon resonance in
248 gold nanoparticles: a review. *J Phys Condens Matter* **2017**, *29*.
- 249 8. Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles:
250 the influence of size, shape, and dielectric environment. *J Phys Chem B* **2003**, *107*, 668-677.
- 251 9. Priyadarshini, E.; Pradhan, N., Metal-induced aggregation of valine capped gold nanoparticles:
252 An efficient and rapid approach for colorimetric detection of Pb²⁺ ions. *Sci Rep* **2017**, *7*.
- 253 10. Kim, Y.S.; Kim, J.H.; Kim, I.A.; Lee, S.J.; Jurng, J.; Gu, M.B. A novel colorimetric aptasensor using
254 gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. *Biosens*
255 *Bioelectron* **2010**, *26*, 1644-1649.
- 256 11. Luan, Y.; Chen, Z.; Xie, G.; Chen, J.; Lu, A.; Li, C.; Fu, H.; Ma, Z.; Wang, J. Rapid visual detection
257 of aflatoxin B1 by label-free aptasensor using unmodified gold nanoparticles. *J Nanosci*
258 *Nanotechnol* **2015**, *15*, 1357-1361.
- 259 12. Li, B.; Li, X.; Dong, Y.; Wang, B.; Li, D.; Shi, Y.; Wu, Y. Colorimetric sensor array based on gold
260 nanoparticles with diverse surface charges for microorganisms identification. *Anal Chem* **2017**,
261 *89*, 10639-10643.
- 262 13. Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. *Coordination Chemistry*
263 *Reviews* **2013**, *257*, 638-665.
- 264 14. Yang, S.; Wang, Y.; Wang, Q.; Zhang, R.; Ding, B., UV irradiation induced formation of Au
265 nanoparticles at room temperature: The case of pH values. *Colloids and Surfaces A: Physicochem.*
266 *Eng. Aspects* **2007**, *301*, 174-183.
- 267 15. Li, T.; Park, H.G.; Choi, S.H. γ -Irradiation-induced preparation of Ag and Au nanoparticles and
268 their characterizations. *Mater Chem Phys* **2007**, *105*, 325-230.
- 269 16. Sadrolhosseini, A.R.; Abdul Rashid, S.; Zakaria, A. Synthesis of gold nanoparticles dispersed in
270 palm oil using laser ablation technique. *Journal of Nanomaterials* **2017**, *2017*.
- 271 17. Turkevich, J.; Stevenson, P.; Hillier, J. A study of the nucleation and growth process in the
272 synthesis of colloidal gold. *Discuss. Faraday Soc* **1951**, *11*, 55-75.
- 273 18. Frens, G. Controlled nucleation for regulation of particle size in monodisperse gold suspensions.
274 *Nature Physical Science* **1973**, *241*, 20-22.
- 275 19. Sivaraman, S. K.; Kumar, S.; Santhanam, V. Monodisperse sub-10 nm gold nanoparticles by
276 reversing the order of addition in Turkevich method--the role of chloroauric acid. *J Colloid*
277 *Interface Sci* **2011**, *361*, 543-547.
- 278 20. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold
279 nanoparticle synthesis revisited. *J Phys Chem B* **2006**, *110*, 15700-15707.
- 280 21. Patungwasa, W.; Hodak, J. pH tunable morphology of the gold nanoparticles produced by
281 citrate reduction. *Materials Chemistry and Physics* **2008**, *108*, 45-54.
- 282 22. Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size control of gold nanocrystals in citrate
283 reduction: the third role of citrate. *J Am Chem Soc* **2007**, *129*, 13939-13948.

284 23. Li, C.; Li, D.; Wan, G.; Xu, J.; Hou, W. Facile synthesis of concentrated gold nanoparticles with
285 low size-distribution in water: temperature and pH controls. *Nanoscale Res Lett* **2011**, *6*, 440.

286 24. Manimegalai, S.; Sridharan, T.; Rameshpathy, M.; Devi Rajeswari, V. Recent trends and
287 methodologies in gold nanoparticle synthesis-a prospective review on drug delivery aspect.
288 *OpenNano* **2017**, *2*, 37-46.

289 25. Weston, A.; Brown, P. HPLC and CE: Principles and Practice; Academic Press: San Diego, CA,
290 USA, 1997.

291 26. Maye, M.; Han, L.; Kariuki, N.; Ly, N.; Chan, W.; Luo, J.; Zhong, C. Gold and alloy nanoparticles
292 in solution and thin film assembly: spectrophotometric determination of molar absorptivity.
293 *Anal. Chem. Acta* **2003**, *496*, 17-27.

294 27. Rasband, W., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA,
295 <https://imagej.nih.gov/ij/> (accessed on 17 March 2018).

296 28. Al-Johani, H.; Abou-Hamad, E.; Jedidi, A.; Widdifield, C. M.; Viger-Gravel, J.; Sangaru, S. S.;
297 Gajan, D.; Anjum, D. H.; Ould-Chikh, S.; Hedhili, M. N.; Gurinov, A.; Kelly, M. J.; El Eter, M.;
298 Cavallo, L.; Emsley, L.; Basset, J. M. The structure and binding mode of citrate in the stabilization
299 of gold nanoparticles. *Nat Chem* **2017**, *9*, 890-895.

300 29. Tyagi, H.; Kushwaha, A.; Kumar, A.; Aslam, M. A Facile pH controlled citrate-based reduction
301 method for gold nanoparticle synthesis at room temperature. *Nanoscale Res Lett* **2016**, *11*, 362.

302 30. Park, J.W.; Shumaker-Parry J.S. Structural study of citrate layers on gold nanoparticles: Role of
303 intermolecular interactions in stabilizing nanoparticles. *J Am Chem Soc* **2014**, *136*, 1907-1921.

304 31. Monti, S.; Barcaro, G.; Sementa, L.; Carravetta, V.; Ågren, H. Characterization of the adsorption
305 dynamics of trisodium citrate on gold in water solution. *RSC Adv* **2017**, *7*, 49655-49663.

306 32. Park, J.W.; Shumaker-Parry, J.S. Structural study of citrate layers on gold nanoparticles: Role of
307 intermolecular interactions in stabilizing nanoparticles. *J. Am. Chem. Soc.* **2014**, *136*, 1907-1921.
308 Paik, W.; Han S.; Shin, W.; nd Kim, Y. Adsorption of carboxylic acids on gold by anodic reaction.
309 *Langmuir* **2003**, *19*, 4211-4216.