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Abstract: Topological indices are numerical parameters of a graph which characterize its topology and
are usually graph invariant. In this paper, bounds for the Randić, general Randić, sum-connectivity,
the general sum-connectivity and harmonic indices for tensor product of graphs are determined by
using the combinatorial inequalities and combinatorial computing.
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1. Introduction and Preliminary Results

In molecular graph, we show, atoms and covalent bonds in the molecule by vertices and edges
respectively. In computational chemistry, molecular graphs are extensively used for analysis of
molecular structures [28]. For correlating and predicting chemical, physical and biological activity
(property) from molecular structure is an important problem in computational ad theoretical chemistry
[26]. The most important step in quantitative structure-property relationships (QSPR) and quantitative
structure-activity relationships (QSAR) is the representation of chemical structures of various molecules
numerically to find out a correlation model between the chemical structures of different chemical
compounds and their biological and chemical activities (properties). We can say that a major task
in QSAR/QSPR researches is the transformation of the chemical formula (or molecular graph) into
numeric form exactly. The topological index is one of the most popular quantification methods
used for the molecular structures, because of its direct application on molecular structures and rapid
computations when number of molecules is very large [1,5,22,31].

Topological index is a tool that transforms the whole molecular graph into a number that
describes the structure and the branching pattern of the molecule [6]. The chemist Harold Wiener
used a topological index for the first time in 1947 [29]. We use Wiener index for finding correlation
between molecular structure of certain hydrocarbon compounds and their physical and chemical
properties . Since 1947, more than hundred topological indices have been defined, from which, Randić
connectivity index is listed among the most useful molecular descriptors in structure-activity and
structure-property relationships studies [23,27,30]. The Randić index [24] of the graph G, also known
as product-connectivity index [21,32] is defined as:

R = R(G) = ∑
uv∈E(G)

1√
degG(u) degG(v)
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It was named as, “ branching index" by Randić himself. Soon after it was re-named as, “connectivity
index" [18] and [19]. Now it is referred as, “Randić index". It is most often applied and most successful
among all the popular topological descriptors [25]. It is the most studied structure descriptor because
it is discussed in hundreds of papers and a few books are also written on it. It was proved suitable for
drug design [13,24].

Bollobás [8] and Amic et al. [3] independently, proposed general Randić index and defined it as:

Rα(G) = ∑
uv∈E(G)

[degG(u) degG(v)]α, where α is a variable parameter.

Its mathematical properties and generalizations have been studied extensively, that are available in
summarized form in the books [14,20]. A number of variants of Randić connectivity index have been
proposed in the mathematical literature. The sum-connectivity index is one of the popular variants. It
was introduced by Zhou, B. and Trinajstić, N. in 2008 [4], [32] and [33]. They defined it as:

X (G) = ∑
uv∈E(G)

1√
degG(u) + degG(v)

.

The general sum-connectivity index was defined as:

Xα(G) = ∑
uv∈E(G)

[degG(u) + degG(v)]α, where α is a variable parameter.

Another degree based topological index, known as harmonic index, denoted by H(G) is defined
as:

H(G) = ∑
uv∈E(G)

2
degG(u) + degG(v)

.

In the whole paper, G is a simple, finite and connected graph. The order of G = |V(G)|, where
V(G) denotes set of vertices of G and size of G = |E(G)|, where E(G) denotes the set of edges of G.
An edge e ∈ E(G) is denoted by uv, where u, v are end vertices of e . Two vertices are called adjacent
if they have an edge between them. The set consisting of all vertices adjacent to a specific vertex u
is known as neighborhood of u that is notified as, NG(u). The degree of u in G, is degG(u) = |NG(u)|.
The distance between u and the vertex farthest from u in G is called the eccentricity of u, denoted by
eccG(u). Radius of G is defined as the minimum eccentricity among the vertices of G and is denoted
by rad(G). The maximum eccentricity is known as its diameter and is denoted as diam(G). We use the
notations from books [9], [10].

Let G and H be simple, finite and connected graphs. The tensor product, G× H of graphs G and
H is the graph having V(G)×V(H) as its set of vertices, two vertices (x, y) and (u, v) are adjacent in
G× H if and only if xu ∈ E(G) and yv ∈ E(H). The tensor product of P4 and P5 is illustrated in Figure
??.

Figure 1: The tensor product P4 × P5
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The tensor product, as an operation on binary relations was introduced by Alfred North
Whitehead and Bertrand Russell in 1912. The tensor product is also known as the direct, categorical,
cardinal, relational, Kronecker, weak direct product or conjunction. It is equivalent to the Kronecker
product of the adjacency matrices of the graphs [15].

The importance of degree based topological indices can not be denied because they play a
significant role in theoretical chemistry and chemical graph theory. For detailed study and outstanding
results on important degree-based, connectivity topological indices of various significant graphs and
products we recommend to consult [7], [11], [16] and [17]. Some explicit computing formulas for the
Randić, sum-connectivity and scond sum-connectivity indices of some significant graphs can be can be
studied from [12,25]. Here we discuss some results from [2] which are related to our work.

Theorem 1. [2] Let G and H be graphs of order n1 and n2 and size m1 and m2, respectively. Then lower bound
for harmonic index of strong product of G and H is:

n1m2+n2m1+m1m2
[n1−diam(G)]+[n2−diam(H)]+[n1−diam(G)][n2−diam(H)]

Theorem 2. [2] Let G and H be graphs of order n1 and n2 and size m1 and m2, respectively. Then lower bound
for sum-connectivity index of strong product of G and H is:

n1m2+n2m1+m1m2√
2
√

[n1−diam(G)]+[n2−diam(H)]+[n1−diam(G)][n2−diam(H)]

Now we state the distinct properties of tensor product of graphs in form of the following lemma.

Lemma 1. Let G and H be graphs of order n1 and n2 and size m1 and m2, respectively. Then we have:
(a) |V(G× H)| = |V(G)| |E(H)| and |E(G× H)| = 2|E(G)| |E(H)|
(b) degG×H(u, v) = degG(u) degH(v)
(c) The tensor product is commutative and associative.
(d) The tensor product of connected nontrivial graphs is connected if and only if at least one of the factor

graphs is non-bipartite.

The calculation of topological indices from the product of graphs is complicated. So, it is very
beneficial and time saving to find out the formulas for product of graphs, in form of their factor graphs.
For this purpose, we presented lower bounds for Randić, sum-connectivity and harmonic indices for
an important product, called tensor product of graphs in form of its factor graphs. We also presented
lower and upper bounds for general Randić and general sum-connectivity indices for the said product
in its factor graphs.

2. Main Results and Discussions

In the present section, we determine bounds for Randić (connectivity), general Randić (general
connectivity), sum-connectivity, general sum-connectivity and harmonic indices of tensor product of
connected graphs in terms of their factor graphs.

In the next theorem we compute the upper and lower bounds for the general Randić (general
connectivity) index of tensor product of connected graphs.

Theorem 3. Let G and H be connected graphs of order n1 and n2 and size m1 and m2, respectively. Then w
have,

(a) For α < 0, Rα(G× H) ≥ 2m1m2[n1 − rad(G)]2α[n2 − rad(H)]2α

(b) For α > 0, Rα(G× H) ≤ 2m1m2[n1 − rad(G)]2α[n2 − rad(H)]2α

(c) For α = 0, Xα(G× H) = 2m1m2.

Proof. (a) Let G and H be the graphs with vertex sets {u1, u2, ..., un1
} and {v1, v2, ..., vn2

} respectively.
Then by definition,
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Rα(G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H)

[degG×H(ui, vj)degG×H(uk, vl)]
α

Rα(G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l

[degG×H(ui, vj)degG×H(uk, vl)]
α (1)

By using Lemma 1 and part (b), we get
degG×H(ui, vj)degG×H(uk, vl) = degG(ui) degH(vj) degG(uk) degH(vl).
Since, for a graph G with n vertices, for all u ∈ V(G)

degG(u) ≤ n− eccG(u) and rad(G) ≤ ecc(G).
Therefore, using these facts, we have
degG×H(ui, vj)degG×H(uk, vl) ≤ [n1 − rad(G)].[n2 − rad(H)].[n1 − rad(G)].[n2 − rad(H)].
Which implies the inequality,

degG×H(ui, vj)degG×H(uk, vl) ≤ [n1 − rad(G)]2.[n2 − rad(H)]2. (2)

By using inequality (2) in equation (1), we have
Rα(G× H) = ∑

(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l
[degG×H(ui, vj) degG×H(uk, vl)]

α

= ∑
uiuk∈E(G)

∑
vjul∈E(H)

[degG×H(ui, vj)degG×H(uk, vl)]
α

≥ 2m1m2[n1 − rad(G)]2α[n2 − rad(H)]2α, since α < 0.

Rα(G× H) ≥ 2m1m2[n1 − rad(G)]2α[n2 − rad(H)]2α, f or α < 0. (3)

Which is required inequality.
(b) To prove the inequality given in part (b), we use inequality (2) and equation (1),
Rα(G× H) = ∑

(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l
[degG×H(ui, vj)degG×H(uk, vl)]

α

= ∑
uiuk∈E(G)

∑
vjul∈E(H)

[degG×H(ui, vj)degG×H(uk, vl)]
α

≤ 2m1m2[n1 − rad(G)]2α[n2 − rad(H)]2α, since α > 0.

Rα(G× H) ≤ 2m1m2[n1 − rad(G)]2α[n2 − rad(H)]2α, f or α > 0. (4)

which is the required inequality.
(c) Now, Rα(G× H) = ∑

(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l
[degG×H(ui, vj)degG×H(uk, vl)]

α

= ∑
uiuk∈E(G)

∑
vjul∈E(H)

[degG×H(ui, vj)degG×H(uk, vl)]
α

putting α = 0, Rα(G× H) = 2m1m2, which completes the proof.

The following theorem shows the lower bound for the Randić (connectivity) index of tensor
product of connected graphs.

Theorem 4. Let G and H be connected graphs of order n1 and n2 and size m1 and m2, respectively. Then we
have

R(G× H) ≥ 2m1m2
[n1−rad(G)][n2−rad(H)]

.

Proof. Let G and H be the graphs with vertex sets {u1, u2, ..., un1
} and {v1, v2, ..., vn2

} respectively.
Then by definition,

R(G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H)

1√
degG×H(ui, vj)degG×H(uk, vl)
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= ∑
(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l

1√
degG×H(ui, vj)degG×H(uk, vl)

R(G× H) = ∑
uiuk∈E(G

∑
vjul∈E(H

1√
degG×H(ui, vj)degG×H(uk, vl)

(5)

Now we use inequality (2) in equation (5) as under,
R(G× H) ≥ 2m1m2√

[n1−rad(G)]2[n2−rad(H)]2

Which leads us to the required result,

R(G× H) ≥ 2m1m2

[n1 − rad(G)][n2 − rad(H)]
. (6)

In the following theorem, we compute the lower and upper bounds for the general
sum-connectivity index of tensor product of connected graphs.

Theorem 5. Let G and H be graphs of order n1 and n2 and size m1 and m2, respectively. Then we have:
(a) For α < 0, Xα(G× H) ≥ 2α+1m1m2(n1 − rad(G))α(n2 − rad(H))α

(b) For α > 0, Xα(G× H) ≤ 2α+1m1m2(n1 − rad(G))α(n2 − rad(H))α

(c) For α = 0, Xα(G× H) = 2m1m2.

Proof. (a) Let G and H be the graphs with vertex sets {u1, u2, ..., un1
} and {v1, v2, ..., vn2

} respectively.
Then by definition,

Xα(G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H)

[degG×H(ui, vj) + degG×H(uk, vl)]
α

Xα(G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l

[degG×H(ui, vj) + degG×H(uk, vl)]
α (7)

By using part (b) of Lemma. 1, we get
degG×H(ui, vj) + degG×H(uk, vl) = degG(ui).degH(vj) + degG(uk).degH(vl).
Since, for a graph G with n vertices, for all u ∈ V(G)

degG(u) ≤ n− eccG(u), diam(G) ≥ ecc(G) and rad(G) ≤ ecc(G).
Therefore,

degG×H(ui, vj) + degG×H(uk, vl) ≤ [n1 − rad(G)].[n2 − rad(H)] + [n1 − rad(G)].[n2 − rad(H)].
Which implies the inequality,

degG×H(ui, vj) + degG×H(uk, vl) ≤ 2[n1 − rad(G)].[n2 − rad(H)]. (8)

By using inequality (8) in equation (7), we have
Xα(G× H) = ∑

(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l
[degG×H(ui, vj) + degG×H(uk, vl)]

α

= ∑
uiuk∈E(G)

∑
vjul∈E(H)

[degG×H(ui, vj) + degG×H(uk, vl)]
α

≥ 2m1m2.2α[n1 − rad(G)]α[n2 − rad(H)]α, since α < 0.

Xα(G× H) ≥ 21+αm1m2[n1 − rad(G)]α[n2 − rad(H)]α, f or α < 0. (9)

Hence proof of part (a) is completed.
(b) To prove the inequality given in part (b), we use inequality (8) and equation (7) and get
Xα(G× H) = ∑

(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l
[degG×H(ui, vj) + degG×H(uk, vl)]

α
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= ∑
uiuk∈E(G

∑
vjul∈E(H

[degG×H(ui, vj) + degG×H(uk, vl)]
α

≤ 2m1m2.2α[n1 − rad(G)]α[n2 − rad(H)]α, since α > 0.

Xα(G× H) ≤ 21+αm1m2[n1 − rad(G)]α[n2 − rad(H)]α, f or α > 0. (10)

Hence proof of part (b) is completed.
(c) Now, Xα(G× H) = ∑

(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l
[degG×H(ui, vj) + degG×H(uk, vl)]

α

= ∑
uiuk∈E(G)

∑
vjul∈E(H)

[degG×H(ui, vj) + degG×H(uk, vl)]
α

putting α = 0, Xα(G× H) = 2m1m2, completes the proof.

In the following theorem, we compute the lower bound for the general connectivity index of
tensor product of graphs.

Theorem 6. Let G and H be graphs of order n1 and n2 and size m1 and m2, respectively. Then we have

X (G× H) ≥
√

2m1m2√
[n1−rad(G)][n2−rad(H)]

Proof. Let G and H be the graphs with vertex sets {u1, u2, ..., un1
} and {v1, v2, ..., vn2

} respectively.

X (G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H)

1√
degG×H(ui, vj) + degG×H(uk, vl)

= ∑
(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l

1√
degG×H(ui, vj) + degG×H(uk, vl)

X (G× H) = ∑
uiuk∈E(G

∑
vjul∈E(H

1√
degG×H(ui, vj) + degG×H(uk, vl)

(11)

By using inequality (8) in equation (11), we have
X (G× H) ≥ 2m1m2√

2[n1−rad(G)][n2−rad(H)]

Which leads us to the required result,

X (G× H) ≥
√

2m1m2√
[n1 − rad(G)][n2 − rad(H)]

. (12)

In the following theorem, we compute the lower bound for the harmonic index of tensor product
of graphs.

Theorem 7. Let G and H be graphs of order n1 and n2 and size m1 and m2, respectively. Then we have
H(G× H) ≥ 2m1m2

[n1−rad(G)][n2−rad(H)]

Proof. Let G and H be the graphs with vertex sets {u1, u2, ..., un1
} and {v1, v2, ..., vn2

} respectively.

H(G× H) = ∑
(ui ,vj)(uk ,vl)∈E(G×H)

2
dG×H(ui, vj) + dG×H(uk, vl)

= ∑
(ui ,vj)(uk ,vl)∈E(G×H),i 6=k,j 6=l

2
dG×H(ui, vj) + dG×H(uk, vl)

H(G× H) = ∑
uiuk∈E(G

∑
vjul∈E(H

2
dG×H(ui, vj) + dG×H(uk, vl)

(13)

By using inequality (8) in equation (13), we have
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H(G× H) ≥ 2×2m1m2
2[n1−rad(G)][n2−rad(H)]

Which leads us to the required result,

H(G× H) ≥ 2m1m2

[n1 − rad(G)][n2 − rad(H)]
. (14)

3. Conclusions

In this paper, we conducted the study of product-connectivity, sum-connectivity and harmonic
indices of tensor product of graphs. We presented the exact formulas for lower and upper bounds of
Randić, general Randić, sum-connectivity, general sum-connectivity and harmonic indices of tensor
product of connected graphs in form of its factor graphs, for the first time. Some other products and
topological indices can be considered for future study.
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