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13 Abstract: Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the
14 establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about
15 one-third of infected individuals to cause herpes zoster, often accompanied by neurological
16 complications. The restricted host range of VZV and, until recently, the lack of suitable in vitro
17 models to study VZV latency have seriously hampered molecular studies of viral latency.
18 Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in

19 the discovery of a VZV latency-associated transcript (VLT) and have redefined our understanding
20 of VZV latency and factors that initiate reactivation. Together, these findings pave the way for a

21 new era of research that may finally unravel the precise molecular mechanisms that govern latency.
22 In this review, we will summarize the implications of recent discoveries in the VZV latency field
23 from both a virus and host perspective and provide a roadmap for future studies.

24 Keywords: varicella-zoster virus, latency, reactivation, sensory ganglia, VZV latency-associated
25 transcript, open reading frame 63, RNA-sequencing, epigenetics, immunity.

26

27

28 1. Introduction

29 Most adults worldwide are infected with the neurotropic human alphaherpesvirus

30 varicella-zoster virus (VZV) [1]. VZV is the causative agent of two distinct diseases: a generalized
31 vesicular skin rash referred to as varicella (chickenpox), and a localized dermatomal skin rash
32 referred to as herpes zoster (HZ; shingles) [2]. Although varicella and HZ were known to be related
33 [3], it was not until 1965 that the British general practitioner Dr Robert E. Hope-Simpson suggested
34 that “herpes zoster is a spontaneous manifestation of varicella infection”. This observation was based on a
35  careful examination of ~3,500 patients, including 192 HZ cases, who visited his practice over a
36  16-year period, combined with cautious reading of the available anatomical and epidemiological
37  literature regarding HZ. This led to his famous hypothesis that: “Following the primary infection
38  (chickenpox), virus becomes latent in the sensory ganglia, where it can be reactivated from time to time (herpes
39 zoster)” [4). Eighteen years later, this hypothesis was proven by Dr Donald Gilden’s crucial discovery
40  of VZV DNA in latently infected human ganglia [5]. Although we have learned much about VZV
41  Dbiology in general over the last decades, the mechanisms underlying VZV latency and reactivation
42 have remained enigmatic, at least in part because VZV is a human pathogen that does not cause
43  disease in experimental animal models. However, recent insights into the VZV latency program and

44 newly developed in vitro models using human embryonic stem cell (hESC)-derived neurons for viral
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45  latency and reactivation now set the stage to unravel the molecular mechanisms that regulate VZV
46  latency. In preparing this review we sought to be inclusive of as many view points as possible and to
47  consider only human-derived cell or tissue based systems (animal models utilised for VZV studies
48  are the subject of another review in this issue). At the outset, we therefore limit this review to only
49  include studies of VZV latency in which there is a demonstrable lack of infectious virus production
50  and/or any observable pathology.

51

52 2.Molecular biology of VZV

53 2.1 Structure and genomic organization of VZV

54 VZV particles are pleomorphic to spherical in shape, ~150-200 nm in diameter and
55  composed of a nucleocapsid containing the viral double stranded DNA (dsDNA) genome, which is
56  surrounded by a layer of tegument proteins of both viral and host origin, all contained within an
57  envelope comprising a host-derived lipid bilayer inserted with viral glycoproteins (Figure 1A-B) [6—
58  8]. Upon entry of a VZV virion into the host cell, tegument proteins are released into the newly
59  infected cell, altering the host environment to inhibit antiviral responses and influencing the fate of
60  virus program i.e. a lytic or latent infection (reviewed in [9]). The VZV dsDNA genome is about 125
61  kilo base pairs (kbp) in size, has a G+C content of 46% and is composed of two unique segments,
62  termed unique long (Ui) and unique short (Us), that are flanked by inverted terminal repeat (TR) and
63  internal repeat (IR) structures with high G+C content (68% for the TRi/IRt and 59% for the IRs/TRs)
64  (Figure 1C) [10-19]. The very short (~88 bp) TRr and IRt sequences flank the UL region, while the
65  long (7,319 bp) IRs and TRs sequences flank the Us region. The composite structure generally allows
66  for two isomeric configurations [17] that differ only in whether the Usregion is inverted. The absence
67  of structural isoforms with inverted UL regions is attributed to a unique DNA sequence at the
68  extreme 5 end of Ut region that is required for viral DNA cleavage during packaging [20]. Five
69 regions of the genome contain tandem direct reiterations (R1, R2, R3, R4, and R5) of short repeat
70 sequences, one of which is located in the IRs/TRs. All except R5 are G+C rich, and all are subject to
71 length and structural polymorphisms that vary both within and between strains [21-25]. Three of
72 these reiterative regions (R1, R2, and R3) are located within the coding portion of VZV genes [open
73  reading frame (ORF) 11, ORF14, and ORF20, respectively] and may therefore exert an affect over

74 protein function.

75
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76
77 Figure 1. Structure of VZV particles and genome. (A) Electron microscopy image of VZV (obtained from the

78 CDC/Dr Erskine Palmer; B.G. Partin. [26]). (B) Schematic representation of the VZV virion. (C) Schematic
79 representation of the VZV genome structure. (D) VZV transcriptome profile during lytic infection of ARPE-19
80 cells (outer track) and latent infection of human TG (inner track). Circos plots of the VZV genome (grey band;
81 sense and antisense ORFs indicated as blue and red blocks, respectively). Data represent strand-specific
82 VZV-enriched mRNA-sequencing with peaks facing outward from the centre indicating reads mapping to the
83 sense strand, while peaks facing inward originate from the antisense strand. The y axis is scaled to the
&4 maximum read depth per library in all cases. dSDNA, double-stranded DNA; U, unique long; Us, unique short;

&5 TR, terminal repeat; IR, internal repeat; R, reiterative region; Ori, origin of replication; ORF, open reading frame.

86
87 2.2 Coding potential of the VZV genome
88 The VZV genome was originally reported to encode 68 unique viral genes, three of which

89  are located in the duplicated IRs/TRs region [19]. Four additional VZV genes have since been
90  identified including ORFO [27], ORF9A [28], ORF33.5 [29], and the newly discovered VZV
91  latency-associated transcript (VLT) [30] (Figure 1D). An underappreciated feature of VZV is that
92 transcription of several genes (ORF0, ORF42/45, ORF50 and VLT) require host-splicing machinery to
93  remove introns from pre-mRNA and show evidence of alternative splicing, perhaps dependent on
94 host cell type or time after infection, resulting in synthesis of alternative proteins [19,30-33]. It thus
95  seems likely that the full transcriptional potential of VZV remains to be elucidated and we predict
96  that the latest technological advances (e.g. long-read direct sequencing of RNA) will yield further

97  novel discoveries. It is also worth noting that the encoding of additional RNA types, including
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98  microRNAs and small non-coding RNAs, remains an area of active study with contrasting results

99  [30,34,35). How these studies might impact on our understanding of viral latency remains to be seen.
100
101 2.3 VZV gene expression during productive infection
102 Based on limited experimental data [36,37], and by analogy to other alphaherpesviruses,
103 VZV genes are classed as immediate-early (IE) genes, early (E) genes, and late (L) genes, with each
104  ordered wave of expression dependent on the previous classes. Proteins encoded by IE genes act as
105  transcriptional regulators, those produced by E genes are mainly involved in DNA replication, and
106 L genes encode structural proteins that are crucial for virion formation and egress. VZV encodes at
107  least five transcriptional regulatory proteins specified by four IE genes ORF4, ORF61, ORF62 and
108  ORF63, and one L gene, ORF10. All except the ORF61 protein, [E61 are part of the VZV virion [38,39].
109  Our understanding of the transcriptional regulation of VZV genes remains incomplete, in part due
110 to the highly cell-associated nature of VZV that precluded synchronized infections using cell-free
111 virus. VZV IE62 appears to be the major viral transactivator protein that can activate all three kinetic
112 classes of VZV genes in the absence of other viral proteins (reviewed in [40]). Unfortunately, the
113 function of VZV transactivators other than IE62 are ill-defined and additional research is needed to
114  define their effects on virus and host gene expression. Host transcription factors, either by
115  themselves or through interactions with viral transcriptional regulatory proteins, also contribute to
116  viral gene expression (reviewed in [40]). VZV virion proteins delivered into newly infected cells
117 upon entry are not absolutely required to initiate VZV gene expression - evidenced by the resulting
118  VZV replication upon transfection of cells with viral DNA (reviewed in [41]). Notably, near identical
119  VZV transcriptomes are detected during productive infection of diverse cell types, including
120 neurons [30,42-45], suggesting a prominent role for either commonly expressed cellular
121  transcription factors, or viral proteins in coordinating VZV gene expression. Importantly, these
122 findings also imply that viral latency does not result from an intrinsic inability of neurons to support
123 lytic VZV gene expression (Figure 1D) [42,43,45] and produce infectious VZV [46].

124
125 2.4 Stability of the VZV genome
126 Recent advances in the fields of genomics and computational biology have led to an

127  explosion in high-throughput VZV genome sequencing studies [24,47-52], with multiple studies
128  focused on exploring the evolution of VZV [49,53,54]. Perhaps the most pertinent observations made
129 by these studies are that (i) the VZV genome is very stable with over 98% sequence conservation
130  between the most distant strains sequences to date, and (ii) the evolutionary history of VZV, like
131  other herpesviruses, is shaped by extensive recombination [49], the latter requiring that two or more
132 viral genomes occupy the same cell nucleus at some stage in their life cycles. Intriguingly, the
133 live-attenuated nature of the VZV vaccine enabled comparative analyses of vaccine-induced
134 varicella and HZ isolates, showing that the VZV genome remains highly stable during latency
135 [48,51].

136

137 3. Location of latent VZV

138 3.1 Sites of VZV latency

139 During primary infection, VZV infects and establishes lifelong latency in sensory neurons

140  located in dorsal root ganglia (DRG) and trigeminal ganglia (TG), and most likely enteric ganglia.


http://dx.doi.org/10.20944/preprints201806.0036.v1
http://dx.doi.org/10.3390/v10070349

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 d0i:10.20944/preprints201806.0036.v1

5 of 28

141  Specifically, while VZV DNA has been detected in various sensory ganglia (DRG, TG, geniculate,
142 vestibular and spiral ganglia) [5,55-57] and autonomic ganglia (nodose, enteric and thoracic
143 sympathetic ganglia) [58-60] of individuals latently infected with VZV, it remains unclear whether
144 the virus can establish latency and reactivate from all of these sites. The only confirmed sites of VZV
145  latency are the DRG and TG, where the latent viral DNA is maintained as a circular episome in ~1-
146  10% of sensory neurons at approximately 5-7 genome copies per neuron [30,61-66]. Additionally,
147  VZV DNA and a restricted number of viral transcripts are detected in intestine biopsies of naturally
148 infected and vaccinated individuals [58,67-69]. Although in situ demonstration of VZV DNA or
149  RNA in human enteric neurons is lacking, clinical evidence suggests that VZV reactivation from the
150  enteric nervous system could be associated with gastrointestinal dysfunction [70-72].

151

152 3.2 Entry of VZV into the peripheral nervous system

153 Two non-mutually exclusive routes have been proposed by which VZV infects sensory
154  ganglion neurons (Figure 2A). First, VZV could enter nerve endings innervating the epidermis at
155  sites of cutaneous lesions and gain access to ganglia by retrograde axonal transport. This route is
156  supported by the detection of viral antigens in Schwann cells and peripheral nerve axons in the
157 dermis of varicella patients [73], and observations that HZ occurs at the site of varicella vaccine
158 inoculation [74], or sites most affected by varicella [4]. More recently, VZV infection of axons and
159  retrograde axonal transport to neuronal cell bodies was formally demonstrated in cell culture
160 [75,76], possibly involving fusion between VZV-infected non-neuronal cells and neuronal axons [77].
161  Notably, nerve endings are located in close proximity to the cutaneous vasculature at the
162  dermal-epidermal junction and hair follicles [78], supporting a model in which VZV may
163 concurrently infect epidermal or hair follicle keratinocytes and neurons via local cell-to-cell spread.
164  Second, VZV-infected lymphocytes, most likely T-cells, could disseminate virus to ganglia during
165  varicella-associated viremia. This is supported by detection of VZV DNA in ganglia obtained at
166  autopsy from patients in the prodromal stage of varicella [7]. Moreover, localized injection of
167  live-attenuated VZV vaccine virus results in establishment of viral latency in bilateral DRGs and
168  enteric ganglia [67]. VZV infects T-cells, prolongs their survival via STAT3 phosphorylation and
169  induction of survivin [79], and modulates their phenotype to induce an activated skin-tropic
170 memory T-cell [80-82]. While the prerequisites for T-cell entry into ganglia are unknown,
171  intravenously injected VZV-infected tonsillar T-cells transfer virus to human foetal DRG xenografts
172 implanted under the kidney capsule of severe combined immunodeficiency (SCID) mice [83].
173 Moreover, T-cells infected with simian varicella virus (SVV), the closest relative to VZV and natural
174 cause of varicella and HZ in nonhuman primates, are detected in ganglia of nonhuman primates
175  during primary infection [84]. Thus, the definitive route(s) by which VZV infects ganglionic neurons

176  with or without cutaneous innervation needs to be investigated in future studies.

177


http://dx.doi.org/10.20944/preprints201806.0036.v1
http://dx.doi.org/10.3390/v10070349

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 d0i:10.20944/preprints201806.0036.v1

6 of 28
A B
@T—cell 1 {:I
2. :
vzv e »
: s a® » . {)’-{} ANEE @¥
e v Bl N o M, e .
. m/% @@ e - :C ) e _@{9
& IF (& aSeme=a= s % % s S ®
Axons @ ~ g,
@® (;\® b i o A%° et
% 3 w o
Skin DRG Spinal cord Skin DRG Spinal cord
C
VLT ORF63
« ‘L i
£ 65 ef ;
VZV DNA 8) ® { \
[

Qg:%b@c:ﬁ?@ < :o ® v ‘l

@

Y ® \,;\@

3

i\
178 -

179 Figure 2. Schematic representation of establishment of and reactivation from VZV latency in sensory neurons.
180 (A) VZV gains access to sensory ganglion neurons via infection of nerve endings in skin and retrograde axonal
181 transport to the neuronal cell body (1) or direct infection of cell bodies via VZV-infected T-cells. (B) VZV
182 reactivation results in virus replication and spread in the cell body (1), followed by transaxonal spread to the
183 skin to cause HZ (2), possibly involving concordant virus spread to the spinal cord (3). (C) VZV latently infected
184 sensory neurons contain viral episomal DNA in their nucleus and express VLT and/or ORF63 RNA, as shown
185 by RNA in situ hybridization on human TG (red signal).

186

187 4. Transcriptional repression of latent VZV genomes

188 In the absence of robust animal models, VZV latency studies have been dominated by the
189  use of naturally VZV-infected cadaveric human ganglia, whether snap frozen at autopsy [85] or
190  explanted into short term cultures (reviewed in [86]). More recently, the use of in vitro hESC-derived
191  neurons has provided a more accessible approach to latency studies [44,87].

192

193 4.1 VZV transcription in human ganglia

194 The difficulty of obtaining and working with post-mortem human ganglia resulted in
195  discrepant numbers and identities of viral transcripts, and in some cases the corresponding proteins,
196 detected [88-92]. The latter was confounded by the use of ascites-derived murine and rabbit
197  antibodies that also contained endogenous antibodies shown to react with human blood type A
198  antigens expressed by sensory neurons [93,94]. Consequently, VZV protein expression in human
199  ganglia appears to be absent or extremely rare, most likely associated with virus reactivation [88,90].
200  The role of cellular dysregulation following death is undoubtedly a major influence [95], evidenced
201 by post-mortem interval (PMI) being a major factor in determining the number and identities of viral
202  transcripts present [96]. Most recently, unbiased virus nucleotide-enriched ultra-deep
203  RNA-sequencing confirmed that viral transcription in short-PMI human ganglia is highly restricted
204  and limited to VLT, frequently accompanied by co-expression of ORF63 RNA, albeit at lower
205  quantities than VLT [30] (Figure 2C). Although both VLT and ORF63 RNA retain the potential to be
206  translated during latency, we were not able to detect these viral proteins in latently infected human

207  ganglia by immunohistochemistry [30]. However, given the very low abundance of VLT and ORF63
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208  RNAg, alternative approaches with higher sensitivity, such as screening for the loading of VLT and
209  ORF63 RNA onto polysomes, combined with targeted enrichment for viral RNAs, could provide
210  conclusive data. Thus, VZV latency in naturally infected human ganglia is characterized by the
211  exclusive expression of VLT and often ORF63.

212

213 4.2 Comparison of VZV latency in vivo and in vitro

214 Although naturally VZV-infected short-PMI human cadaveric ganglia most closely
215  resemble in vivo VZV latency, these individuals are likely to have been latently infected for many
216  decades. By contrast, latency is usually profiled within 14 days using in vitro hESC-derived neuronal
217  models. Although transcriptome-wide profiling by RNA-sequencing of in vitro “latent” VZV
218  infections reveals a marked reduction in viral gene expression, all viral genes are detectably
219  expressed in the absence of detectable levels of viral proteins [44,87]. No particular enrichment for
220  classical VZV latency-associated ORF63 RNA was observed and VLT was not yet investigated
221  [44,87). This has led to the introduction of new terminology such as non-productive or quiescent
222 infections, and questions over the relative merits of in vitro models. As a counterpoint, these models
223  may in fact be highly informative of early events during VZV infection of neurons and the
224  establishment of latency. Moreover, in vitro models remain the only system in which the
225  establishment of latency and subsequent reactivation can be studied and these studies as a whole are
226  benefitting from continual improvements in culture longevity and axonal infection protocols.

227

228 4.3 Epigenetic silencing of the latent VZV genome

229 The molecular mechanisms by which VZV latency is established are largely unknown and
230  much of what is assumed is actually informed by studies of the related herpes simplex virus type 1
231  (HSV-1). Here, the key idea is that during traversal of neuronal axons, the genome-containing
232 nucleocapsid is delivered to the nucleus in the absence of functional tegument proteins for IE gene
233 transcription (i.e. VZV ORF10 - the homolog of HSV-1 virion protein 16 [VP16]) and this allows
234  loading and maintenance of repressive chromatin upon the viral episome which inhibits viral
235 transcription ([97] and reviewed in [98]). Whether this is a rapid or slow process is not known and
236  data from VZV in vitro models may provide evidence for the latter, i.e. viral transcription in newly
237  infected neurons is gradually suppressed over time, eventually leading to the transcriptional profile
238  we correlate with latency in human ganglia (i.e. expression of VLT and, frequently, ORF63 RNA).
239  Either way, the remarkable switch between lytic and latent transcriptional states is best explained by
240  the assembly of repressive chromatin upon the viral episome. Indeed, studies using late-PMI
241  VZV-latently infected human ganglia demonstrated euchromatic (H3K9ac) chromatin modifications
242 on promotors of latency-associated ORF63 and ORF62, a gene frequently expressed in post-mortem
243 deregulated ganglia [99]. By contrast, promotors of viral genes ORF14 and ORF36, which are not
244  expressed during latency nor detected in late-PMI ganglia, were not associated with H3K9ac [99].
245  The observation of increased viral transcription following increased post-mortem intervals suggests
246  these studies bear extending to shorter PMI and a genome-wide analysis. Indeed, one would
247  speculate that all but VLT and ORF63 loci would be bound by repressive chromatin and it will be
248  important to determine whether the VLT locus remains active due to the presence of flanking
249  chromatin insulators such as CCCTC-binding factor (CTCF), as has been observed for HSV-1 [100].
250
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251  5.The varicella zoster virus latency-associated transcripts: VLT and ORF63

252 The identification of VLT represents a major advance in studies of VZV latency. VLT is
253  encoded antisense to the ORF61 and it is remarkable to note that all known alphaherpesvirus
254  latency-associated transcripts (LATs) originate from genomic regions encoding infected cell
255  polypeptide 0 (ICP0) homologs (Figure 3). This is indicative of significant evolutionary conservation,
256  although the encoding of LATs and ICP0 homologs antisense to each other makes it harder to assess
257  their individual contributions to maintaining this locus. Notably, VZV is the only alphaherpesvirus
258  analysed in detail to date that expresses an additional latency transcript, ORF63.

259
260 5.1 Comparison of VLT and LATSs of related alphaherpesviruses
261 VLT is a poly-adenylated RNA comprising at least five distinct exons and is encoded

262  antisense to VZV ORF61, a homolog of the alphaherpesvirus RL2 gene (encoding ICP0). During
263  latency, a single isoform is expressed by neurons of virtually all analysed VZV-infected human TGs
264  [30]. Notably, VLT appears to be strikingly more complex compared to LATs of HSV-1,
265  pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1), which are composed of only two exons
266  and a single intron (Figure 3). The possible exception is the closest relative of VZV, the nonhuman
267  primate SVV, which expresses a transcript mapping to the same region as VLT during latency
268 [101,102], although more detailed studies are needed to define the exact location and structure of the
269  SVV VLT homolog. Unlike the stable LAT introns of HSV-1 that accumulate to high abundancies in
270  latently infected human TG [30,103], VLT appears to be expressed at relatively few copies per
271 neuron [30]. Furthermore, while LATs of HSV-1, PRV and BHV1 encode viral miRNAs [104-106], we
272 did not find evidence for VZV miRNA expression within VLT - or expressed anywhere else in the
273 VZV genomes - in latently-infected human ganglia [30]. Thus, while all alphaherpesviruses express

274  LATs, their size, coding potential, functions and mechanisms of action may vary.

275
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277 Figure 3. Comparison of latency-associated transcripts among alphaherpesviruses. All alphaherpesvirus
278 latency-associated transcripts (LATs) are located antisense to the ICPO locus, encoding a conserved major
279  immediate-early transactivator (ICPO or homologs). (A) VZV latency transcript (VLT) is a 496-nucleotide
280 multi-exon mRNA and partially antisense to ORF61 coding region via exon 3 and 4. (B) Transcripts mapping
281 antisense to simian varicella virus ORF61 are expressed during latency, but their identity has not yet been
282 defined. (C) Bovine herpesvirus 1 encodes a 2.2 kb latency related (LR) RNA and encodes two miRNAs in exon
283 1 (D) The pseudorabies virus large latency transcript (LLT) is the largest characterized alphaherpesvirus latency
284 transcript and encodes eleven distinct miRNAs within the spliced intron. (E) The 8.2 kb herpes simplex virus
285 type 1 (HSV-1) LAT undergoes splicing that yields two highly stable intron lariats approximately 1.5 and 2.0 kb
286 in size (shown as circles). Note that latency transcripts are shown as grey arrows, immediate early viral

287 transactivators as dark red arrows, and encoded miRNAs as short vertical lines. Scaling across all schematics is

288 equal.
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289

290 Although VLT is the predominant transcript expressed during latency, its expression is not
291  restricted to the latent phase. During VZV lytic infections of epithelial cell or melanoma cell cultures,
292 multiple alternatively spliced VLT isoforms were identified [30]. Termed VLTiy, these lytic isoforms
293 are more complex than the ‘core’ latent VLT isoform detected during latency. Exon skipping, intron
294  retention and additional upstream exons are all features of VLTiy, with most variation apparently
295  occurring between ‘core’ exons 3 and 4. Notably, the core latent VLT isoform has never been
296  observed in lytic infections which may suggest the core isoform is driven by a cell type (i.e neuron)
297  specific promoter and/or the expression of the core VLT decides the fate of infection program, lytic
298  or latent. During productive infections, VLTl is transcribed with true-late kinetics, defined as being
299  absolutely dependent on viral replication, and translated into protein (pVLT) in cell cultures and
300  zoster skin lesions [30]. Although the expression and function of LATs during lytic alphaherpesvirus
301  infection is incompletely understood, above features of VLT fit the general picture that emerges.
302  During lytic infection LATs appear to be expressed with late kinetics [30,107], alternative LAT
303  isoforms are produced using different transcription start sites or alternative splicing [30,108,109],
304  and some LATs encode proteins [30,110]. Given that hESC neuronal models support both lytic and
305  quiescent VZV infections [44,87], these could be particularly useful to investigate regulation of lytic
306  and latent isoforms of VLT in the same cell type.

307
308 5.2 Function(s) of VLT
309 Functional characterisation of VLT, during lytic and latent stages, is now a priority. Early

310  investigations using transfection assays showed that VLT selectively represses ORF61 transcription
311  when co-expressed with multiple VZV coding IE genes (ORF61, ORF62 and ORF63) in ARPE-19
312 epithelial cell cultures, resulting in diminished expression of ORF61 protein, IE61 [30]. This effect is
313 not pVLT-specific as mutation of the initiating ATG start codon (to ATA) showed a similar effect —
314 suggesting this effect is mediated at by the RNA itself. Whether this observation translates into other
315  experimental systems is now an area of active study. While the specific functions and requirements
316  of VLT and VLTyy isoforms during lytic and latent infections remain unknown, these data allow us to
317  speculate that VLT may function to maintain latency by repressing transcription of ORF61, a

318  promiscuous transcriptional regulator during lytic infections.

319
320 5.3 Function(s) of ORF63
321 Intriguingly, VZV expresses two latency-associated transcripts: VLT and ORF63 RNA. We

322 showed that VLT and ORF63 RNA levels correlate significantly in human TG, independent of latent
323 viral DNA load [30], suggesting that expression of both transcripts is linked. It is unclear whether
324 VLT and ORF63 RNA are produced by the same or distinct populations of neurons, and how this
325  may influence the ability of the virus to reactivate. ORF63 is essential for VZV replication [111] and
326  its encoded protein, IE63 functions not only as a transcriptional regulator activating E genes [112]
327  but also modifies neuronal susceptibility to apoptosis and functions as a immunoevasin that blocks
328  type I interferon (IFN) signalling [113-115]. As such, we speculate that ORF63, once translated as
329  IE63, could be more important for the initiation of reactivation, which is supported by the correlation
330  between ORF63 RNA abundance and PMI [96]. The observation that IE61 is required for nuclear
331  entry of IE63 in guinea pig enteric neurons [116], suggests that VLT-mediated repression of ORF61
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332 transcription and translation may also function to retain IE63 in the cytoplasm, if expressed, and

333 prevent transactivation of lytic viral promotors (Figure 4A).

334
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336  Figure 4. Model of VZV latency and reactivation. (A) Hypothesized roles for VLT and ORF63 during VZV
337 latency and reactivation. i) During latency VLT and ORF63 RNA are expressed, and VLT represses expression
338 of ORF61. ii) Upon initiation of reactivation we hypothesize that VLT expression levels are reduced, enabling
339 low-level ORF61 expression (1), and ORF63 transcription is increased, enabling low-level ORF63 protein
340 expression (IE63). However, in the absence of IE61, VZV IE63 is retained in the cytoplasm. iii) At later stages of
341 reactivation even lower levels of VLT allow for more ORF61 expression (1), resulting in IE61 production (2) and
342 nuclear translocation of IE63 (3). Nuclear IE63 is anticipated to contribute to VZV reactivation e.g. by regulating
343 viral and host transcription and modifying the neuron’s susceptibility to apoptosis and interferon
344 responsiveness. (B) Schematic representation of the regulation of VZV latency and reactivation. Activation of
345 neuronal signaling pathways in response to stimuli at the periphery (2), and possibly within the spinal cord (3),
346 may induce VZV reactivation. At the same time, adaptive T-cell-mediated immune responses in skin (1) and
347 ganglia (4), and local ganglionic innate immunity provided by neuron-interacting satellite glial cells (SGC) are
348 believed to prevent symptomatic VZV reactivation.

349

350 6. VZV reactivation: restarting lytic gene expression

351 Symptomatic VZV reactivation, which leads to HZ and/or associated pathologies, typically
352 occursjust once or twice in an infected individual’s lifetime. By contrast, asymptomatic reactivation
353  is thought to occur more frequently [2,117]. Possibly, the phase of intra-ganglionic virus replication
354  thatis presumed to occur upon VZV reactivation [118,119] (Figure 2B) before virus descends down
355  sensory axons to the skin, provides the host immune system more time to control most reactivation
356  events before becoming symptomatic. The environmental factors and molecular mechanisms that
357  underpin VZV reactivation in humans remain poorly understood. Clinical observations of HZ after

358  trauma [120] or neurosurgical treatments [121,122] suggest that signalling events from the periphery
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359  may induce VZV reactivation in the soma of sensory neurons. Two main signalling pathways have
360  been implicated in VZV reactivation: the phosphatidylinositol-3 kinase (PI3K)-Akt pathway and the
361  mitogen-activated protein kinase (MAPK) pathway. The nerve growth factor (NGF) receptor, TrkA,
362  is expressed by a subpopulation of sensory neurons and signals via the PI3K-Akt and MAPK
363  pathways [123]. Depletion of NGF using anti-NGF antibody treatment of VZV-latently infected
364  neurons leads to the reactivation of VZV in an in vitro latency system [44]. The role of NGF signalling
365  in contributing to the maintenance of VZV latency was subsequently confirmed in VZV-latently
366  infected human TG removed within 24 hours after death [124]. Intriguingly, the effect of chemical
367  PI3K blockade on VZV reactivation appears to be dependent on the experimental conditions, as
368  PI3K inhibition did not reactivate VZV in ex vivo cultures of naturally infected human TG neurons
369  [124] and variable effects are obtained in hESC-derived neurons [44,87]. More recently, NGF
370  depletion was shown to result in phosphorylation and activation of the MAPK family member c-Jun
371 N-terminal kinase (JNK), which was critical for efficient VZV replication in hESC neurons. Selective
372  JNK inhibition limits VZV reactivation in the in vitro VZV latency system, suggesting JNK signalling
373  plays important role for VZV reactivation in neurons [125].

374 To reactivate from latency, the latent viral episome needs to be de-repressed and viral gene
375  expression has to occur as downstream events of PI3K-Akt and/or JNK pathways. The mechanisms
376  underlying reversal of repressive chromatin on the VZV genome and the viral gene expression
377  machinery required for VZV reactivation are poorly understood. Unlike HSV-1, inhibition of histone
378  deacetylases did not reactivate VZV from latently infected hESC neurons [44]. Possibly, additional
379  chromatin modifications like methylation of histone H3 lysine 4 (H3K4) or demethylation of H3K9
380  need to take place before VZV reactivation can occur [126]. Alternatively, JNK signalling may induce
381  a methyl/phospho switch on promoters of VZV lytic genes to facilitating their expression and virus
382  reactivation [127]. Clearly, additional environmental factors and neuronal signalling pathways are
383  involved, and the overall outcome of VZV infection will be determined by the combined integration
384  of all these pathways.

385

386 7. Intrinsic, innate and adaptive immunity to VZV infection in ganglia.

387 The intrinsic properties of neurons and innate and adaptive immune responses mounted by
388  ganglion-resident or infiltrating cells that contribute to control VZV replication in ganglia are largely
389  unknown. VZV infection of human foetal DRG xenografts in SCID mice produces transient virus
390  replication and spread, followed by a persistent lower levels of viral DNA and limited viral
391  transcription after 4-8 weeks [83], suggesting that adaptive immune responses are not essential to
392 control VZV replication in ganglia. Intrinsic differences in neuronal subpopulations affect the
393  outcome of VZV infection, as virus replication is blocked in neurons expressing the
394  mechanoreceptive marker RT97, but not in neurons expressing the nociceptive marker peripherin
395  [128]. Furthermore, neurons may restrict VZV replication by sequestering nucleocapsids in
396  promyelocytic leukaemia protein nuclear bodies [129], and/or, by analogy to HSV-1, use autophagy
397  toinhibit virus replication [130].

398

399 7.1 Satellite glial cells and innate immunity

400  Although sensory neurons produce little type I IFNs «/B, neurons are sensitive to IFN-a/p signalling

401  as exposure to IFN-a/ at nerve endings prevents retrograde axonal transport of alphaherpesvirus


http://dx.doi.org/10.20944/preprints201806.0036.v1
http://dx.doi.org/10.3390/v10070349

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 d0i:10.20944/preprints201806.0036.v1

13 of 28

402  virions [131]. Notably, various cytokines/chemokines are produced in VZV-infected foetal DRG,
403  including IFN-¢, interleukin 1 alpha (IL-1a), IL-6, CXCL10 and transforming growth factor beta
404  [128]. While the cellular source of these cytokines is unknown, satellite glial cells (SGC) are a prime
405  candidate. SGC are a specialized ganglionic cell type that shares phenotypic and functional features
406  with professional antigen presenting cells like macrophages and dendritic cells [132,133]. SGC
407  completely enwrap the neuronal cell body and provide physical and nutritional support to the
408  neuron, but also function as tissue-resident innate immune cells that express pattern recognition
409  receptors (e.g., Toll-like receptors), phagocytose, produce inflammatory mediators and potentially
410  regulate local T-cell responses [132-134]. Moreover, SGC surrounding HSV-1 infected neurons
411 produce IL-6 and tumour necrosis factor a [135], and we have shown that SGC are activated in
412 response to primary SVV infection in monkeys [136]. However, more detailed studies on the role of
413 SGC in response to ganglionic VZV infected are warranted.

414

415 7.2 T-cell immunity

416  VZV reactivation, clinically presenting as HZ, is associated with waning of systemic VZV-specific
417  T-cell immunity, but not humoral immunity, suggesting a critical role of VZV-specific T-cell
418  memory in preventing virus reactivation [137,138]. However, a large fraction of pathogen-specific
419  memory T-cells are retained in organs, referred to as tissue-resident memory T-cells (Trv), and
420  provide swift protective immunity upon pathogen re-exposure [139,140]. By analogy to HSV-1
421 mouse models [141,142] and human TG [143], VZV-specific Trv are expected to home to sites of
422  latency and reactivation: ganglia and skin. Indeed, recent studies showed VZV-specific Tru cells
423  persist in healthy skin of latently VZV-infected adults decades after primary infection [144].
424  Profound T-cell responses detected in ganglia of HZ patients hint at the presence of VZV-specific
425  Trw in ganglia [145,146]. While we previously could not detect VZV-specific T-cells in latently
426  infected human TG, this study analysed only a restricted panel of VZV proteins (IE4, ORF29p, IE62
427  and IE63) [147]. Thus, more detailed studies are needed to determine the presence, specificity and
428  function of VZV-specific Trm in latently VZV-infected human ganglia in contribution for VZV
429  latency and reactivation control.

430

431 8. Future perspectives

432 VZV evolved the ability to establish lifelong latent infection in neurons, enabling the virus to
433 reactivate later in life and cause recrudescent disease accompanied by VZV spread to naive
434  individuals. Throughout these decades of latency, the virus must ensure survival of the infected
435  neuron, avoid irreversible silencing of the viral episome and prevent elimination by host immune
436  responses. Although the mechanisms that coordinate the interplay between virus and host remain
437  largely unknown, the many recent exciting advances in the field provide us with the questions to be
438  addressed and tools (ex vivo and in vitro latency models) that can be used to answer them. Thirty-five
439  years on from the discovery of latent VZV residing in sensory ganglia [5], the identification of VLT
440  and the latent VZV transcriptome in naturally infected short-PMI TG provides us with an updated
441  perspective on VZV latency [30]. With this advancement, we would also propose to enhance the
442  definition of VZV latency by requiring: i) the presence of the viral genome as an episome in the

443 nucleus of host cells without production of infectious progeny, ii) the capacity of latent VZV to


http://dx.doi.org/10.20944/preprints201806.0036.v1
http://dx.doi.org/10.3390/v10070349

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 d0i:10.20944/preprints201806.0036.v1

14 of 28

444  reactivate and produce infectious virus, and iii) a distinct and restricted pattern of viral gene
445  transcription, i.e. exclusive expression of VLT and/or ORF63 RNA.

446 It is now critical to determine the roles of (and potential interplay between) VLT and ORF63
447  RNA in latently infected short-PMI human TG [96], and to analyse their function in the
448  establishment of quiescence in human pluripotent stem cell (hPSC; hESC/hiPSC)-derived neuronal
449 models [44,46,87,148] or reactivation from latency using these same models and/or ex vivo cultures of
450  dissociated naturally VZV-infected human ganglia [124]. Human TG are composed of diverse
451  subtypes of neurons [149] and not all neuronal subpopulations may be equally susceptible to VZV
452  infection [128], as shown for HSV-1 [150,151]. Therefore, in situ analyses are required to determine
453  whether VLT and ORF63 RNA are co-expressed by the same or distinct neurons, and define the
454  subtypes of neurons harbouring the latent VZV genome. Recent developments in the generation of
455  recombinant VZV (reviewed in [41]) will facilitate functional analysis of VLT/pVLT and ORF63
456  RNA/IE63 using hPSC-derived neuronal systems. Current evidence suggests that both pVLT and
457  IE63 are not expressed, or expressed below detectable levels, in latently infected ganglia [30,93,94].
458  While we have identified one possible function of the VLT RNA [30], no functions are currently
459  attributed to ORF63 RNA or pVLT.

460 Transcriptional regulation of VZV gene expression during lytic and latent infection is poorly
461  defined. By analogy to HSV-1 [152], reactivation of latent VZV is presumed to follow a regulated
462  cascade of gene expression and more detailed analyses of lytic VZV transcriptional regulation is
463  warranted to provide insights into the requirements of VZV reactivation. Recent developments in
464  next-generation sequencing facilitate detection of low-abundant VZV genomes in latently infected
465  human TG [47,48], and will open up new avenues to unravel epigenetic modifications of latent VZV
466  genomes using chromatin immunoprecipitation sequencing (ChIP-seq) for histone modifications or
467  CTCF binding. Furthermore, in vitro quiescence models could be used to prospectively map
468  epigenetic chromatin modifications on the VZV genome during quiescent and reactivated stages of
469  infection. Of particular interest will also be the relative expression levels of VLT and ORF63 RNA,
470  and IE63 and IE61 during the initiation of virus reactivation (Figure 4A).

471 The factors triggering and barriers restricting VZV reactivation are poorly understood, and
472  will be of great interest for future research. The infrequent clinical reactivation of latent VZV
473 suggests that either virus reactivation is rare or that most reactivation events are cleared before HZ
474  can develop. Local immune responses mediated by VZV-specific Trv in skin [144,153] or ganglion,
475  or neuron-interacting SGC [133,134] are likely to be pivotal factors controlling VZV reactivation, e.g.
476 by secreting IFNs to block early reactivation attempts [154]. The recently developed in vitro and ex
477  vivo models to study VZV reactivation [44,46,87,124,148] facilitate systematic analysis of signalling
478  pathways modulating viral latency, and could be used to investigate roles of non-neuronal cells and
479  their secreted antiviral factors in this process.

480 Post-mortem acquired human samples are extremely informative, if handled precisely,
481  especially for investigating human-restricted pathogens like VZV, but are also restrictive in that the
482  resulting datasets only represent a ‘snapshot’ of latency. To overcome this, we hope that
483  technological advances in specific subtypic differentiation methodology for human
484  sensory/sympathetic neurons or organoid culture system from hPSC, combined with single cell

485  sequencing methodologies targeting transcriptomes and epigenomes, will provide novel ways to
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486  examine the dynamics of VZV latency and provide new insights into the molecular mechanisms that
487  control this.

488 Finally, the discovery of VLT and its potential role in governing VZV latency and/or
489  reactivation also opens up the tantalising possibility re-engineering current VZV vaccines within a
490  view to eventually eradicating VZV entirely. While a significant amount of work is required to get
491  from here to there, not least determining whether VLT is truly required for latency and/or

492  reactivation, pursuing this long term goal gives new impetus to the VZV research field.
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