

1 Article

2

Techno-economic analysis of high-pressure metal 3 hydride compressor systems

4 Claudio Corgnale*, Martin Sulic

5 Greenway Energy, 301 Gateway Drive, Aiken, SC (USA), 29803

6 * Correspondence: claudio.corgnale@greenway-energy.com; Tel.: +1-803-617-9689

7

8 **Abstract:** Traditional high pressure mechanical compressors account for over half of the car station's
9 cost, have insufficient reliability and are not feasible for a large-scale fuel cell market. An alternative
10 technology, employing a two-stage, hybrid system based on electrochemical and metal hydride
11 compression technologies, represents an excellent alternative to conventional compressors. The
12 high-pressure stage, operating at 100-875 bar, is based on a metal hydride thermal system. A techno-
13 economic analysis of the metal hydride system is presented and discussed. A model of the metal
14 hydride system was developed, integrating a lumped parameter mass and energy balance model
15 with an economic model. A novel metal hydride heat exchanger configuration is also presented,
16 based on mini-channel heat transfer systems, allowing for effective high-pressure compression.
17 Several metal hydrides were analyzed and screened, demonstrating that one selected material,
18 namely $(\text{Ti}_{0.97}\text{Zr}_{0.03})_{1.1}\text{Cr}_{1.6}\text{Mn}_{0.4}$, is likely the best candidate material to be employed for high-pressure
19 compressors under the specific conditions. System efficiency and costs were assessed based on the
20 properties of currently available materials at industrial levels. Results show that the system can
21 reach pressures on the order of 875 bar with thermal power provided at approximately 150 °C. The
22 system cost is comparable with the current mechanical compressors and can be reduced in several
23 ways as discussed in the paper.

24 **Keywords:** High pressure hydrogen; Metal hydride-based high pressure compression; Techno-
25 economic analysis; Ti-based AB_2 metal hydrides; Mini-channel heat exchanger

26

27

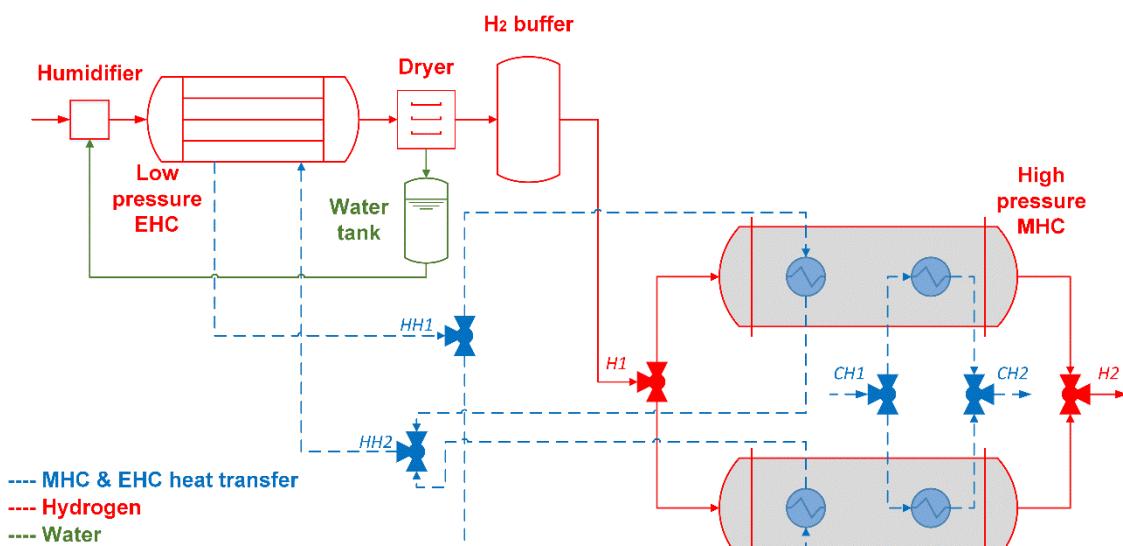
1. Introduction

28 One of the main hurdles to be overcome for a large-scale hydrogen economy is relative to the H_2
29 delivery. The United States Department of Energy (DOE) has essentially identified three approaches
30 to transport and delivery hydrogen at large scale [1]. Each of the scenarios requires the presence of
31 high pressure hydrogen systems. Currently DOE set its fueling pressure targets at approximately 875
32 bar, with inlet hydrogen at about 100 bar, and with flow rates up to 100 kg/h [1]. Among the other
33 targets for hydrogen compression systems, DOE identified the uninstalled cost target for the FY 2020
34 at 275,000 \$, the energy requirement at 1.6 kWh/kg, availability equal to 85% and annual maintenance
35 cost equal to 4% of the uninstalled cost¹ [1]. Currently, mechanical compressors cannot achieve the
36 DOE targets and have several additional drawbacks working at the specified operating conditions.
37 Valid alternative processes are represented by hybrid systems comprised of electrochemical
38 compression (EHC) systems, operating at lower pressures (10-100 bar), integrated with thermal
39 compression systems, operating at pressures on the order of 100-875 bar. One of the main advantages
40 of a hybrid system over other alternative solutions is in the possibility of recovering the available
41 waste heat from the EHC to pressurize and discharge the hydrogen from the thermal compression
42 system, based on metal hydrides. The work presented here focuses on the high-pressure metal
43 hydride-based compression system. Metal hydride materials absorb hydrogen through an

¹ The targets are for: inlet pressure of 100 bar, hydrogen flow rate of 100 kg/h [1]

44 exothermic chemical reaction and release the absorbed hydrogen reversibly, through an endothermic
45 chemical reaction. The chemical reaction equilibrium pressures are direct functions of the operating
46 temperatures. Therefore, hydrogen can be absorbed in the materials at low temperatures and
47 corresponding low pressures. By providing high temperature thermal power, the hydrogen can be
48 released at high pressure without the use of external electric power.

49 A comprehensive review of the available MH materials, heat transfer and pressure vessel
50 concepts, operating at maximum pressures on the order of 600-700 bar, can be found in Reference [2].
51 Currently, available MHs for high pressure hydrogen compression are Ti-based materials (laves
52 phase, or AB_2 phase materials). Depending on the material formulation, MH compressors can achieve
53 pressures on the order of 800-900 bar at temperatures on the order of 120-150 °C without any electric
54 input [3-4]. Recent research and development work focused on the design of high pressure MH-based
55 compression systems, examining the technical performance of the proposed material heat exchanger
56 coupled solutions. Gkanas et al. [5] propose the use of a two-stage metal hydride compression system
57 to achieve maximum pressure ratios of 22, with a maximum delivery pressure of 320 bar at 130 °C.
58 The first stage material is an AB_5 alloy, namely $LaNi_5$, while the second stage material is an AB_2 type
59 material based on Zr-V-Mn-Nb. Karagiorgis et al [6] investigate the use of MH materials to compress
60 hydrogen, using waste heat available at temperatures in the range 10 – 80 °C. Maximum compression
61 ratios of about 32 were achieved, compressing hydrogen between 7 bar and 220 bar. However, the
62 system is comprised of 6 stage metal hydride compressors, using AB_5 and AB_2 materials. Galvis et al.
63 [7] also analyze the use of a three stage MH compressor, comprised of AB_2 type materials (Ti-Zr-Cr-
64 Mn-V), to achieve an overall compression ratio of about 82. The system was designed to reach a
65 pressure of 115 bar, with inlet pressure of 1.4 bar, with maximum desorption temperature of 100 °C.
66 None of the proposed systems was designed for pressures on the order of 875 bar, as required by the
67 DOE targets and, consequently, the techno-economic feasibility of systems achieving very high
68 pressures was never examined.


69 The present work describes a techno-economic model applied to candidate high pressure metal
70 hydride materials for high pressure hydrogen compression. The model includes lumped parameter
71 steady state mass and energy balance equations, integrated with an economic model. The technical
72 performance of the overall material-heat exchanger system was assessed and discussed, proposing a
73 novel heat transfer system model, based on mini-channel cylindrical tubes heat exchangers. The
74 potential of available materials to meet the targets is also discussed, with proposed solutions to
75 enhance the economic performance.

76 2. The hybrid hydrogen compressor concept

77 A two-stage hybrid compressor system is proposed, as an alternative to conventional mechanical
78 compressors, for efficient and low cost high-pressure hydrogen compression systems. A simplified
79 schematic of the proposed concept is shown in Figure 1. The first stage is based on an electrochemical
80 system, referred to as 'Low pressure EHC'. The second stage is a pure thermal compression system,
81 based on metal hydride materials, referred to as 'High pressure MHC'.

82 The EHC stage operates at manometric compression ratios on the order of 10, compressing the
83 hydrogen from an inlet pressure of 10 bar up to approximately 100 bar. Molecular hydrogen is
84 oxidized at the anode of an electrochemical system producing protons and electrons. The protons are
85 driven through a proton exchange membrane and combined with electrons at the cathode to deliver
86 high-pressure hydrogen. The outlet pressure is maintained at relatively low values (100 bar) in order
87 to minimize hydrogen back diffusion across the membrane. The inlet hydrogen flow needs to be
88 humidified to operate the electrochemical compression effectively using traditional Nafion®
89 membranes. A dryer unit at the exit of the first stage compressor separates the compressed gas from
90 the water, which is collected in a liquid tank unit. The water is recirculated in the humidification unit
91 to assure the right level of humidity in the electrochemical system. The hydrogen at the exit of the
92 first stage is stored in a buffer tank to assure a continuous flow in the thermal stage of the system.
93 The second stage (MHC stage) of the hybrid system operates at higher pressures with the objective
94 of achieving pressures on the order of 875 bar as required by the DOE targets. This stage is comprised

95 of a thermal compression system, based on MH materials. Such materials absorb hydrogen through
 96 an exothermic chemical reaction and release the absorbed hydrogen reversibly, through an
 97 endothermic chemical reaction. The equilibrium pressures for the chemical reactions are a direct
 98 function of their operating temperatures. Therefore, hydrogen can be absorbed at low temperatures
 99 and pressures and, by providing higher temperature thermal power during the desorption process,
 100 the hydrogen pressure can be increased without the use of any external electric power.
 101

102
 103

104 **Figure 1.** Hybrid EHC/MHC system concept.
 105

106 Each metal hydride unit intrinsically operates in a batch (or discontinuous) mode, either in
 107 hydrogen charging mode or in hydrogen release mode. Therefore, to assure steady hydrogen flow,
 108 at least two parallel metal hydride units need to be coupled in series with the electrochemical unit
 109 (Figure 1). One of the main advantages of the proposed solution over competing approaches (e.g.
 110 pure thermal compressor or pure electrochemical system) is the possibility of recovering the EHC
 111 waste heat to feed the thermal MH system during hydrogen desorption, as shown in Figure 1. This
 112 substantially increases the overall system efficiency [3]. The point HH1 identifies the inlet condition
 113 of the hot utility (i.e. from the EHC) heat transfer fluid, while the HH2 point represents the
 114 corresponding outlet condition, after hydrogen desorption in the MHC unit. The waste heat from the
 115 EHC unit is available at temperatures on the order of 150-160 °C. The hydrogen is charged in the
 116 MHC system using external cold utility (i.e. water at temperature on the order of 10-15 °C) heat
 117 transfer. The points CH1 and CH2 in Figure 1 represent the inlet and outlet points of the cold utility
 118 fluid, respectively. Depending on the EHC membrane selection and on the MHC material choice, the
 119 system has the potential to achieve a complete EHC waste heat recovery without the need for external
 120 thermal power input [3].

121 More information on the overall system and on the EHC stage characteristics, especially relative
 122 to the energy integration with the MHC stage, can be found elsewhere [3]. The attention of the work
 123 discussed in the current document was paid on the high pressure thermal compression unit,
 124 examining the techno-economic performance of the MH systems.

125 3. The techno-economic analysis model

126 A simplified lumped parameter techno-economic model was developed to assess the
 127 performance of the high-pressure MH compression system.

128 3.1. Metal hydride compressor system technical performance model

129 The metal hydride system model includes steady state lumped parameters mass and energy
 130 balance equations. With reference to Figure 1, the mass balance equation of the MHC stage is
 131 expressed as:

$$\dot{m}_{H1} = \dot{m}_{H2} \quad (1)$$

132 Equation 1 is valid assuming continuity of operation and represents the steady state balance of
 133 mass for the MHC system. The hydrogen flow is split between the two parallel metal hydride units.

134 The lumped parameter steady state energy balance equation is expressed as:

$$\begin{aligned} \dot{m}_{H2}h_{H2} - \dot{m}_{H1}h_{H1} &= \frac{(M_{MH}\overline{C_{PMH}} + M_W\overline{C_{PW}})(T_{des} - T_{abs})}{\Delta t_{des}} + \dot{m}_{H2}\Delta H_{des} \\ &- \frac{(M_{MH}\overline{C_{PMH}} + M_W\overline{C_{PW}})(T_{des} - T_{abs})}{\Delta t_{abs}} + \dot{m}_{H1}\Delta H_{abs} \end{aligned} \quad (2)$$

135 with h being the hydrogen specific enthalpy (kJ/kg), M_{MH} and M_W being the mass of each metal
 136 hydride material and of the tubing walls (kg), $\overline{C_{PMH}}$ and $\overline{C_{PW}}$ being the specific heat of the metal
 137 hydride and of the tubing wall respectively (kJ/kg-K), averaged between the absorption temperature
 138 and the desorption temperature and ΔH being the metal hydride chemical reaction enthalpy (kJ/kg)
 139 during absorption and desorption. The absorption and desorption times are indicated as Δt_{abs} (s) and
 140 Δt_{des} (s) respectively.

141 Equation 2 has been derived making the following assumptions. The heat capacity of the
 142 hydrogen absorbed and desorbed in the MH has been assumed negligible compared to the heat
 143 capacity of the materials (metal hydride and tubing walls). This is due to the low weight capacity of
 144 the materials adopted for the current compression systems, which is typically on the order of 1-2 wt%
 145 [Ref]. In addition, the system heat losses have been assumed negligible compared to the other thermal
 146 power terms.

147 The thermal power exchanged between the heat transfer fluid (e.g. pressurized water) and the
 148 materials, during absorption and desorption, is expressed as follows. During hydrogen desorption
 149 the heating power, available from the EHC system, is provided at (inlet) temperatures of T_{HH1} and is
 150 expressed as:

$$\dot{m}_{HH}\overline{C_{PHH}}(T_{HH1} - T_{HH2}) = \frac{(M_{MH}\overline{C_{PMH}} + M_W\overline{C_{PW}})(T_{des} - T_{abs})}{\Delta t_{des}} + \dot{m}_{H2}\Delta H_{des} \quad (3)$$

151 It is also assumed the mass continuity of the hot utility heat transfer fluid flowing in/out the
 152 EHC. Therefore, $\dot{m}_{HH} = \dot{m}_{HH1} = \dot{m}_{HH2}$

153 During hydrogen absorption the cooling power is provided at (inlet) temperatures of T_{CH1} and is
 154 expressed as:

$$\dot{m}_{CH}\overline{C_{PCH}}(T_{CH2} - T_{CH1}) = \frac{(M_{MH}\overline{C_{PMH}} + M_W\overline{C_{PW}})(T_{des} - T_{abs})}{\Delta t_{abs}} + \dot{m}_{H1}\Delta H_{abs} \quad (4)$$

155 It was also assumed the mass continuity of the cold utility heat transfer fluid. Therefore, $\dot{m}_{CH} =$
 156 $\dot{m}_{CH1} = \dot{m}_{CH2}$

157 The mass of each MH material can be estimated as:

$$M_{MH} = (\dot{m}_{H1}\Delta t)/\eta_v \quad (5)$$

158 with $\Delta t = \Delta t_{abs} = \Delta t_{des}$, assuming that the absorption time is equal to the desorption time. The
 159 volumetric efficiency factor accounts for the void fraction in the bulk material and for the expansion
 160 and contraction of the MH during absorption and desorption respectively.

161 The values of T_{abs} and T_{des} are assessed as the temperature values corresponding to the
 162 equilibrium pressures during absorption and desorption. Their values are estimated using the van't
 163 Hoff equation (Equation 6), which is derived from the Gibbs energy expression:
 164

$$P_{abs} = \exp \left(\frac{\Delta H_{abs}}{RT_{abs}} - \frac{\Delta S_{abs}}{R} \right) \quad (6)$$

$$P_{des} = \exp \left(\frac{\Delta H_{des}}{RT_{des}} - \frac{\Delta S_{des}}{R} \right)$$

165 with $p_{abs/des}$ being the equilibrium pressure (bar) values for absorption and desorption. To carry
 166 out a techno-economic feasibility study and compare the material performance, the following
 167 assumptions were made: (1) the material hysteresis is assumed negligible, thus implying that $\Delta H_{abs} =$
 168 ΔH_{des} and $\Delta S_{abs} = \Delta S_{des}$ and (2) pressure is used in the van't Hoff expression rather than fugacity,
 169 assuming an acceptable error at high pressures as well.

170 A first conceptual design of the MHC heat transfer system was also carried out. A novel heat
 171 transfer system configuration was identified and adopted for the high-pressure scenario. It is
 172 comprised of a series of MH material filled tubes. Finned mini-channel cylindrical tubes, located
 173 inside the MH tube, provide the required cooling/heating power to charge/discharge the hydrogen.
 174 The frontal 2D view of a single tube is shown in Figure 2. The proposed system has several
 175 advantages over more traditional heat transfer systems with the heat transfer fluid flowing in the
 176 shell side of the component. The wall of the MH tube, in general, can be very thick, given the current
 177 operating pressure conditions of 875 bar. Therefore, including an insulation layer between the MH
 178 tube and the vessel wall, the proposed solution allows a direct heat exchange between the fluid and
 179 the MH material. This avoids the presence of additional relevant thermal inertia represented by the
 180 MH tube wall.

181

182
183

184 **Figure 2.** Single tube MH material heat transfer coupled system, showing: (a) Simplified external
 185 view of a single MH tube; (b) 2D frontal view of the single tube with 4 fin internal mini-channel heat
 186 transfer tube; (c) zoomed view of the internal finned minichannel heat transfer fluid tube.

187

188 The steady state heat transfer energy balance equation during hydrogen absorption, using the
 189 Log Mean Temperature Difference (LMTD) approach, is expressed as:

$$\dot{m}_{CH} \overline{C_{PCH}} (T_{CH2} - T_{CH1}) = h S_{abs} \frac{T_{CH2} - T_{CH1}}{\ln \left(\frac{T_{CH2} - T_{abs}}{T_{CH1} - T_{abs}} \right)} \quad (7)$$

190
191

The steady state heat transfer energy balance equation during hydrogen desorption, using the
 LMTD approach, is expressed as:

$$\dot{m}_{HH} \overline{C_{PHH}} (T_{HH1} - T_{HH2}) = h S_{des} \frac{T_{HH1} - T_{HH2}}{\ln \left(\frac{T_{HH1} - T_{des}}{T_{HH2} - T_{des}} \right)} \quad (8)$$

192 Constant steady state temperatures during absorption and desorption were assumed. The heat
 193 transfer coefficient, accounts for the conductive heat transfer process inside the MH material and the
 194 convective laminar heat transfer in the fluid. The overall heat transfer coefficient under laminar
 195 conditions can be assessed from Equation 9:

$$\frac{1}{h} = \frac{d \ln \left(\frac{D_t}{d} \right)}{2 k_{MH}} + \frac{d}{4.66 k_{HF}} \quad (9)$$

196 with k_{HF} and k_{MH} (W/m-K) being the thermal conductivity of the heat transfer fluid and of the
 197 metal hydride material respectively.

198 Equation 9 was derived assuming that the thickness of the heat transfer tubes (t) is negligible
 199 and that $Nu = 4.66$ for the heat transfer fluid under laminar flow conditions [8].

200 The heat transfer surface area of the heat exchanger is:

$$S = \max(S_{abs}, S_{des}) \quad (10)$$

201 The mass of the tubing walls is estimated based on the adopted heat transfer configuration as
 202 well as on the operating conditions, as discussed in the next sections.

203 The conceptual design of the material heat exchanger coupled system was carried out based on
 204 the geometrical constraints, defined by the heat transfer requirements and the volume occupied by
 205 the MH material. The required heat transfer surface area (S) and the volume (V) occupied by the MH
 206 material are expressed in Equations 11 and 12:

$$S = N_T (\pi d L + n_f L_f L) \quad (11)$$

$$V = \frac{M_{MH}}{\rho_{bulk}} = N_T \left(\pi \frac{D_t^2}{4} L - \pi \frac{d^2}{4} L \right) \quad (12)$$

207 with N_T and n_f being the overall number of tubes and the number of fins per tube, respectively.

208 Equations 11 and 12 were derived assuming the thickness of the internal heat transfer tubes (t)
 209 and of the fins (t_f) are reasonably negligible compared to the other dimensions.

210 3.2. Metal hydride compressor system economic model

211 The installed cost of the MH system was assessed adopting a traditional factored methodology.
 212 By this approach the installed cost can be evaluated as the Free on Board (FOB) component cost with
 213 additional installation costs, computed using installation factors, as expressed in Equation 13:

$$C_{inst} = f_{inst} C_{FOB} \quad (13)$$

214 The installation factor (f_{inst}) accounts for the cost of connecting tubing and piping, external
 215 insulation, painting, electrical and control equipment, labor, concrete, etc. It also accounts for the
 216 high-pressure distribution plates for hydrogen and low-pressure connections for the heat transfer
 217 fluid. The values were assessed adopting traditional equipment databases and process modeling
 218 programs, namely ASPEN In plant Cost Estimator® [9].

219 The component FOB cost is expressed as follows:

$$C_{FOB} = C_{MH} + C_{HEPV} \quad (14)$$

220 The first term (C_{MH}) represents the FOB cost of the MH material. It includes the cost of the raw
 221 material, the manufacturing, processing and heat treatment cost and the cost for handling and
 222 locating the material inside the tank. This term was assessed based on industrial material data from
 223 JMC Alloy [10], for the different selected alloys. The second term (C_{HEPV}) is the FOB cost of the MH
 224 tubes and heat exchanger tubing (i.e. finned tubes cost) placed inside the MH tube. The cost of the
 225 internal heat transfer tubes was assessed based on industrial tubing values [11], with Al considered

226 as the constitutive material of the heat transfer tubes. The cost of the MH tubes was assessed based
 227 on industrial Swagelok 'Super Duplex' tubing catalogs and from personal communications with
 228 Swagelok [12], with SS2507 considered as the constitutive material of MH tubes, operating in a
 229 hydrogen environment up to pressures of 900 bar.

230 **4. Results**

231 The techno-economic model was applied to different MH, which were then downselected based
 232 upon constraints and initial degrees of freedom assumed on the basis of the compressor configuration
 233 and operating conditions. The performance of the selected MHC systems was assessed and
 234 compared, showing the potential of selected materials to achieve the required operating conditions.

235 *4.1. Initial downselected materials*

236 To carry out the techno-economic analysis the following assumptions were made. The hydrogen
 237 flow rate is between 1 kg/h (for smaller scale applications) and 100 kg/h (for large scale scenarios)
 238 based on the DOE targets [1]. With reference to Figure 1, the inlet hydrogen pressure (P_{H1}) is equal to
 239 100 bar, achieved at the exit of the electrochemical stage [3]. The MHC system operates with a
 240 compression ratio of 8.75, compressing the hydrogen up to 875 bar, as required by the DOE targets.
 241 The MHC system is also assumed to be comprised of a single stage MH compressor, in order to
 242 reduce the investment cost and the plant management complexity required by two or multiple stage
 243 MH compressors. The MH heating power, required to desorb the hydrogen, is assumed to be
 244 provided as waste heat from the EHC at $T_{HH1} = 155$ °C. The MH cooling power, required to absorb the
 245 hydrogen, is assumed to be provided by a cooling source at $T_{CH1} = 15$ °C. Each of the two MHC system
 246 lines (operating in opposite charging/discharging phase) was assumed to be comprised of two MH
 247 units operating in parallel, to assure continuity of exercise during possible maintenance or failure of
 248 one unit. Some of the degrees of freedom of the problem were assumed *ab initio* limiting the number
 249 of the unknowns of the overall problem. The charging/discharging time of the MHC was assumed
 250 equal to 10 min (i.e. 20 min per each complete cycle), with absence of material weight capacity
 251 degradation for (at least) 35,000 cycles. Existing AB_2 MH materials have the right characteristics to
 252 achieve the required cycling time (i.e. fast kinetics) and degradation performance [13]. Depending on
 253 the formulation, the AB_2 MH material operating pressures can range between 10 bar and over 1000
 254 bar. A comprehensive list of existing AB_2 materials for hydrogen compression applications, both for
 255 low and high pressures, can be found in Reference [2]. However, the temperature constraint of the
 256 proposed scenario limits the available existing AB_2 metal hydrides to only a few possible candidates.
 257 A first screening of the existing AB_2 materials was carried out, based on the available databases and
 258 literature data [14,2] and depending on the operating conditions (temperatures and pressures). Four
 259 candidate materials were preliminary screened, with their thermodynamic and physical and
 260 chemical properties shown in Tables 1-2.

261 The thermodynamic and weight capacity data for the HP1 material ($TiCr_{1.9}$) were collected from
 262 References [15,16]. The corresponding equilibrium operating conditions were estimated using the
 263 van't Hoff equation.

264 **Table 1.** Thermodynamic properties, weight capacity and equilibrium conditions of the four
 265 downselected high pressure metal hydrides (HP1, HP2, HP3, HP4).

Material	$\Delta H_{abs}/\Delta H_{des}$ (kJ/mol _{H2})	$\Delta S_{abs}/\Delta S_{des}$ (kJ/mol _{H2})	wt (%)	Equilibrium P (bar)/ T (°C)
HP1: $TiCr_{1.9}$	26.2	122.0	1.4	100/40 - 875/125
HP2: $(Ti_{0.97}Zr_{0.03})_{1.1}Cr_{1.6}Mn_{0.4}$	23.4	115.0	1.7	100/32 - 875/125
HP3: $Ti_{1.1}CrMn$	22.9	114.7	1.5	100/27 - 875/119
HP4: $TiCrMn_{0.4}Fe_{0.4}V_{0.2}$	20.2/22.0	103.0/109.0	1.9	100/39 - 875/145

267
268**Table 2.** Chemical and physical properties of the four downselected high pressure metal hydrides
(HP1, HP2, HP3, HP4).

Material	ρ_{bulk} (kg/m ³)	k_{MH} (W/m·K)	$C_{p\text{MH}}$ (J/kg·K)
HP1: TiCr _{1.9}	3130	8.0	486
HP2: (Ti _{0.97} Zr _{0.03}) _{1.1} Cr _{1.6} Mn _{0.4}	3140	8.0	485
HP3: Ti _{1.1} CrMn	3170	8.0	493
HP4: TiCrMn _{0.4} Fe _{0.4} V _{0.2}	3170	8.0	491

269

The HP1 material is characterized by significant hysteresis and sloped plateaus at the temperature and pressure range of interest [15,3,17]. Even if the material is characterized by excellent operating pressures and temperatures, it cannot be adopted for an effective high-pressure hydrogen compression system. However, the material was still included as possible candidate material, accounting for possible future material development and modifications to achieve enhanced performance. The HP2 material ((Ti_{0.97}Zr_{0.03})_{1.1}Cr_{1.6}Mn_{0.4}) is characterized by flatter plateau profiles and reduced material hysteresis [18]. The thermodynamic and weight capacity data for the HP2 material have been collected from Reference [18], with the corresponding equilibrium operating T and P estimated using the van't Hoff equation. Likewise, the HP3 material (Ti_{1.1}CrMn) properties have been assessed based on the data available in Reference [19]. The main limit of the HP3 material is the absorption temperature, required to be on the order of 27 °C for 100 bar. The reduced temperature differences in the heat transfer cooling system makes the design of the heat exchanger more challenging, requiring additional finned structures and higher heat transfer fluid flow rates. The HP4 material thermodynamic properties and weight capacity were collected from Reference [20]. The HP4 material was still included as potential candidate, but is characterized by an operating temperature (145 °C) very close to the hot utility temperature (155 °C), with an overall temperature difference of only 10 °C.

The bulk density was estimated based on the crystal density and assuming a void fraction of 50%. Expansion and contraction of the material during absorption and desorption was assumed equal to 15% of the initial volume under totally desorbed state [2]. The thermal conductivity value was assessed based on the data and information available in References [21-23]. Thermal conductivity values on the order of 5-10 W/m·K are reported when expanded natural graphite is mixed with the material in quantities on the order of about 10wt%. The specific heat values were estimated based on the material formulation, resulting in values on the order of 500 J/kg·K for each material.

294

4.2. Technical analysis results

295
296

The technical feasibility and the corresponding performance of the MH systems comprised of the four downselected alloys are described and discussed in the following sections.

297
298
299
300
301
302
303
304
305
306

The technical analysis was carried out under the following assumptions. Two scenarios were analyzed: the first scenario saw the adoption of MH compressors for small scale applications (1 kg_{H2}/h, with pressures 100-875 bar), the second scenario was for large scale applications (100 kg_{H2}/h, with pressures 100-875 bar). Given the high-pressure range, only small diameter metal tubes are currently available. The MH tube diameter (D_t) was assumed equal to 1.3 cm, which is the available diameter from Swagelok catalogs, with SS2507 as the constitutive material. The corresponding wall thickness (t_t) was estimated equal to 2.1 mm. This confirms that the optimal heat transfer solution is to include minichannel tubes internally in the MH tubes. Finned aluminum tubes were adopted to transfer the cooling/heating power, with diameter (d) of 2.4 mm. Pressurized water (at pressures of 7.5 bar) was assumed as the heat transfer fluid.

307
308
309
310

Results in Tables 3 highlight the heating/cooling power required to desorb/absorb hydrogen for 100 kg/h. The contributions of sensible heating/cooling, to vary the operating temperature of the MH bed, and latent heating/cooling required by the chemical reaction (i.e. desorption and absorption respectively) are also shown in the table.

311
312**Table 3.** Heating and cooling power duty of the four downselected high pressure metal hydrides
(HP1, HP2, HP3, HP4) processing 100 kg/h.

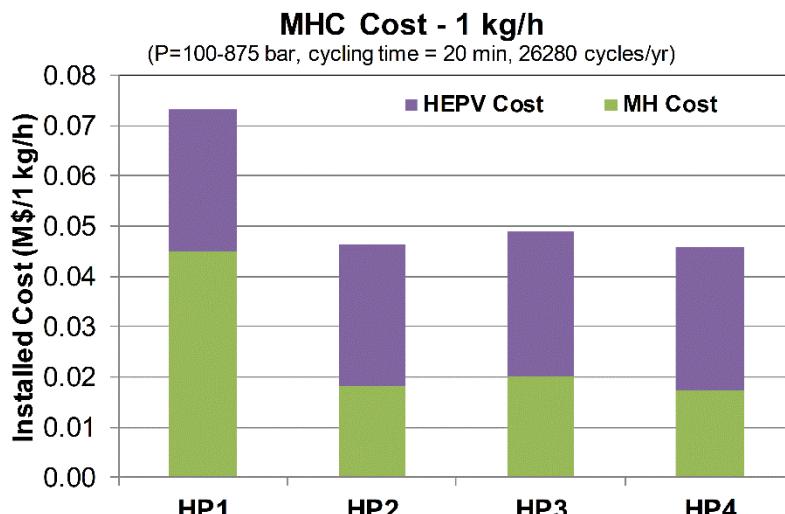
Material	Sensible power (kW) [100 kg _{H2} /h]	Reaction power (kW) [100 kg _{H2} /h]	Total power (kW) [100 kg _{H2} /h]
HP1: TiCr _{1.9}	130.8	366.8	497.6
HP2: (Ti _{0.97} Zr _{0.03}) _{1.1} Cr _{1.6} Mn _{0.4}	117.4	327.6	445.0
HP3: Ti _{1.1} CrMn	139.2	320.6	459.8
HP4: TiCrMn _{0.4} Fe _{0.4} V _{0.2}	127.5 ¹	308.0 ¹	435.5 ¹

313 ¹ The values refer to the desorption phase, which is the most challenging due to the reduced
314 LMTD.

315

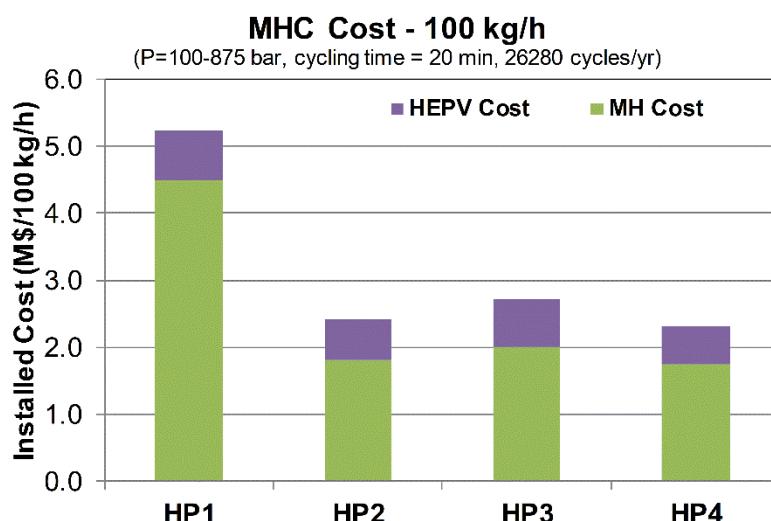
316 Table 4 shows the results of a first conceptual design of the 4 selected systems.

317 **Table 4.** Conceptual design results of the four downselected high pressure metal hydrides (HP1,
318 HP2, HP3, HP4) processing 1 kg/h and 100 kg/h. Each system is comprised of 4 parallel units


Material	Number of tubes ¹ [1 kg/h - 100 kg/h]	Number of fins ² [1 kg/h - 100 kg/h]	Length, L ¹ (m) [1 kg/h - 100 kg/h]	Water flow ¹ (g/s) [1 kg/h - 100 kg/h]
HP1: TiCr _{1.9}	15 - 1474	4 - 4	1.60 - 1.55	28.7 - 2866
HP2: (Ti _{0.97} Zr _{0.03}) _{1.1} Cr _{1.6} Mn _{0.4}	16 - 1550	4 - 4	1.20 - 1.20	51.3 - 5127
HP3: Ti _{1.1} CrMn	14 - 1444	8 - 8	1.60 - 1.50	53.0 - 5297
HP4: TiCrMn _{0.4} Fe _{0.4} V _{0.2}	14 - 1565	10 - 10	1.30 - 1.20	62.7 - 6271

319 ¹ per each unit (the system has 4 units)320 ² per each tube

321

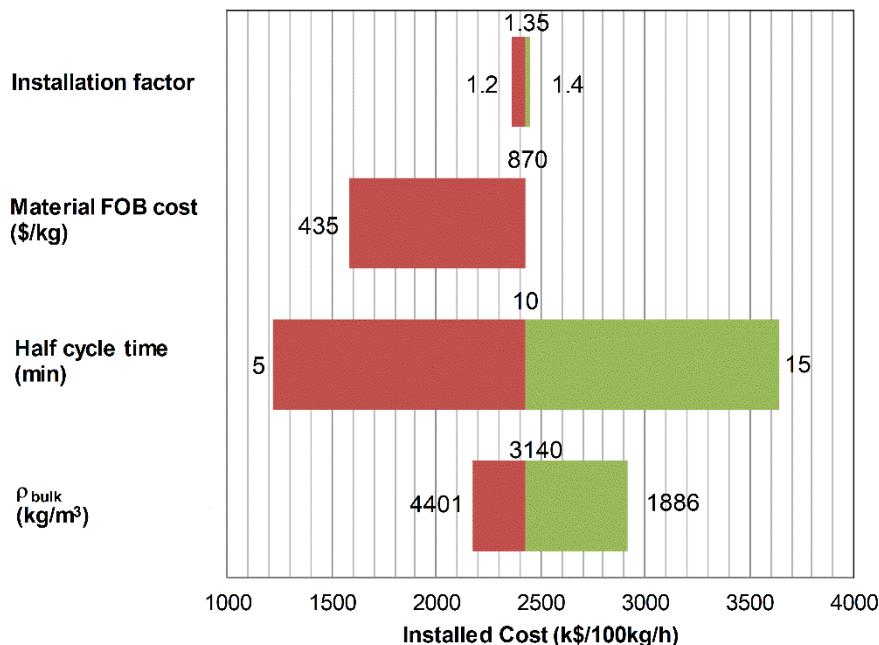

322 The system design essentially follows a linear relationship with the hydrogen flow rate, from 1
323 kg/h to 100 kg/h. The sensible heating/cooling power required to increase/decrease the operating
324 temperature plays an important role in the technical performance of the MHC system, contributing
325 for about 26-30% of the overall required thermal power. The reduced temperature differences in the
326 HP4 compressor between the MH and the heat transfer fluid, during the desorption phase (LMTD =
327 6 °C) results in increased heat transfer surface area (i.e. increase of the number of fins required to
328 transfer the heat during the desorption). Even if the HP4 system requires the lowest heating power
329 (approximately 2% lower than the HP2 material), the reduced LMTD value has also the effect of
330 requiring higher water flow rates (about 22% higher than the corresponding HP2 system) to maintain
331 the heat exchange feasible (temperature pinch point equal to 2 °C).332 *4.3. Economic analysis results*333 The economic feasibility and performance of the proposed compression systems are described
334 below. The analysis was carried out using Year 2017 US \$. The installation factor, described in Section
335 3, was estimated adopting ASPEN In Plant Cost Estimator and including additional feasible
336 estimations for the distribution plates. The installation factor values were equal to 1.35 for the large-
337 scale scenario (100 kg/h) and 7.0 for the small-scale scenario (1kg/h).338 Results of the small-scale (1 kg/h) and large-scale scenarios (100 kg/h) are shown in Figures 3-4,
339 respectively, highlighting the influence of the MH material cost and the heat exchanger and tubing
340 cost.

341

342
343
344

Figure 3. Installed cost of the MHC system for small scale scenarios (i.e. 1 kg_{H2}/h)

345
346
347

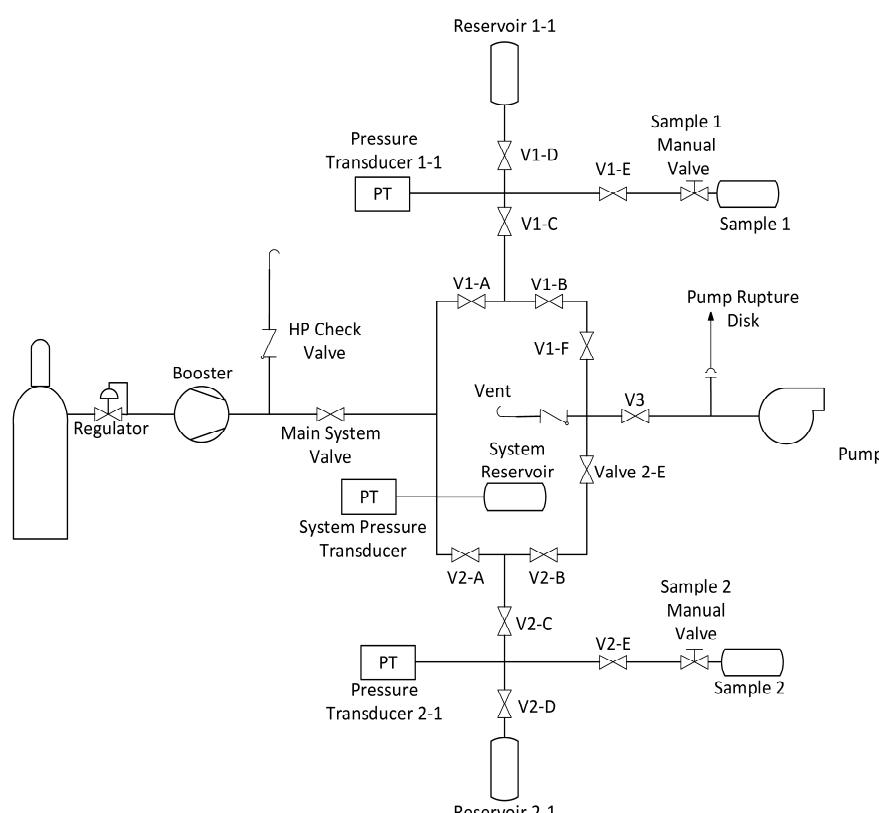

Figure 4. Installed cost of the MHC system for large scale scenarios (i.e. 100 kg_{H2}/h)

348
349
350
351
352
353
354
355
356
357
358
359
360

The cost of the MH material is directly proportional with the hydrogen flow rate, as for each modular system. The heat exchanger and tubing cost, along with the additional installation costs, follows a power law with regard to the hydrogen flow rate. The HP1 is the most expensive system, mainly due to the MH material cost. For the small-scale scenario, the material cost accounts for about 60% of the overall installed cost. This contribution goes up to about 86% for the large-scale scenario. The HP2 material represents the best option among the selected materials adopted in high pressure systems. For the small-scale scenario the HP2 material cost accounts for about 39% of the overall installed cost, achieving about 75% for the large-scale scenario. The HP3 and HP4 systems have similar performance with the HP2 compressor. The HP3 material cost accounts for about 40% of the overall installed cost for small scale conditions, reaching about 74% for the corresponding large-scale scenario. The HP4 system shows an economic performance essentially identical with the HP2 material. The HP4 material cost influence on the overall small-scale scenario cost is about 40%, reaching values of almost 76% for large scale scenarios.

361
362
363
364

Cost sensitivity analyses were also carried out for the best candidate material (HP2) at large scale scenarios. The sensitivity analysis 'tornado chart' is shown in Figure 5. Four techno-economic parameters (density, cycle time, material cost and installation cost) were chosen as the most significant quantities.


365
366 **Figure 5.** Tornado chart cost sensitivity for the large scale (100 kg/h) HP2 system
367

368 Each parameter was varied maintaining constant the other quantities. The heat exchanger
369 system geometry was a fixed parameter for the current sensitivity analysis. The material intrinsic
370 properties (e.g. reaction enthalpy, weight capacity, specific heat, overall thermal conductivity) were
371 also assumed fixed, since their variation would require additional material development and
372 analysis. The bulk material density varied between 30% of the crystal density (i.e. 1886 kg/m³) and
373 70% of the crystal density (i.e. 4401 kg/m³), assuming a different degree of compaction. The baseline
374 bulk density is equal to 3140 kg/m³, or 50% of the crystal density. The corresponding system cost saw
375 a variation of + 34% with the decrease of the bulk density of about 40% compared to the baseline
376 value. This is also due to presence of additional void space, which reduces the volumetric efficiency
377 of the compressor, resulting in additional metal hydride material to be included in the system. The
378 cycling time is the quantity that showed the highest influence on the overall system cost. A variation
379 of the cycle time of $\pm 50\%$ results in a corresponding cost variation of $\pm 50\%$, reaching values of about
380 \$3.6M for a cycling time of 30 min. A relevant influence on the system cost was also noticed for the
381 MH FOB cost. A reduction of the FOB cost of 50% (i.e. equal to 435 \$/kg) resulted in a reduction of
382 the system cost of almost 35%, reaching a value of about \$1.6M. The influence of the installation factor
383 on the installed cost was very limited compared to the sensitivity of the other quantities. A reduction
384 of the installation factor from 1.35 (baseline value) to 1.2 resulted in a reduction of the installed cost
385 of approximately 2.7%. The cost of heat exchanger, pressure vessel, distribution plates and
386 installation plays a more relevant role in the small scale scenario (1 kg/h), influencing the overall
387 installed cost for more than 50%.

388 5. Discussion and future work

389 Given the stringent constraints dictated by the operating conditions and the need for reduced
390 investment costs, only a few existing MH materials could be downselected as candidates for high
391 pressure MH compressors. Among the four downselected materials only one candidate (HP2
392 material) has high potential for application in the actual system. The HP1 material is limited by its
393 high slope of the two-phase region and relevant hysteresis, making the hydride not the best candidate
394 for compression applications. In addition, the limited weight capacity and high material cost of the
395 HP1 material result in significant increase of the investment cost compared with the other candidate
396 materials. The HP3 and HP4 materials suffer from the heat transfer management required to achieve
397 pressures between 100 bar and 875 bar. The HP3 hydride requires temperatures lower than 27 °C to

398 absorb hydrogen at 100 bar making the heat transfer with external cold utility fluid (at 15 °C)
 399 challenging. The HP4 material requires temperatures close to 150 °C to desorb hydrogen at 875 bar
 400 making the recovery of the available waste heat from the EHC system challenging. The HP2 material
 401 will be verified in terms of operating pressures and temperatures at industrial level.
 402 To experimentally evaluate the candidate materials a high-pressure Sieverts' apparatus, reaching
 403 pressures > 900 bar, would be designed and built (Figure 6). The system will employ a 2-channel
 404 design as to optimize MH characterization. All components will be rated at pressures >1000 bar with
 405 minimal volume tubing used to ensure limited dead volume existed between reservoirs and sample
 406 holders. The system would be controlled by pneumatically driven valves and regulator allowing for
 407 the availability of full automation, thereby, permitting data collection of isothermal, kinetic and
 408 cycling measurements. Laboratory cylinder hydrogen would be fed to a flammable gas compressor
 409 allowing for the necessary pressures to be achieved for testing. The system would store the
 410 compressed hydrogen in a 60-70 ml high-pressure storage container in preparation for aliquots of gas
 411 to be absorbed by the sample. The storage reservoir, as well as the channels' reservoirs, would be
 412 contained within a temperature-controlled frame. The sample holders would be external from the
 413 flame and could be heated or chilled to temperatures ranging from less than -10 to greater than 150
 414 °C. The sample holders chosen would allow for amounts of material >25 g to be tested at a time.
 415 Designing the system around large quantities of samples to be measured permits the examination of
 416 a prototype-scale level of characterization.
 417

418
 419 **Figure 6.** Schematic rendering of a 2-channel high-pressure Sieverts' apparatus for characterization
 420 of prototype-scale metal hydride materials.

421 6. Conclusions

422 A novel techno-economic analysis model was developed, including steady state mass and
 423 energy balance equations, and applied to high-pressure MH thermal compressors. Technical and
 424 economic performance of MH systems, compressing hydrogen from 100 bar to 875 bar with heating
 425 power provided at temperatures on the order of 150 °C, was assessed. The system was assumed to
 426 be coupled with an electrochemical system, which provides the heating power (waste heat from the
 427 electrochemical component) required to desorb hydrogen from the metal hydride system. A novel

428 heat transfer system is also proposed to exchange the heating and cooling power with the metal
429 hydride material. The configuration sees the adoption of finned minichannel heat transfer tubes
430 placed inside the MH material tubes, allowing for enhanced technical performance compared to
431 traditional shell and tube solutions. Only a few metal hydride materials could be initially
432 downselected, being able to achieve the required operating conditions (pressures and temperatures).
433 Results showed that the novel heat transfer system allowed all the downselected materials to
434 potentially achieve the operating pressure (875 bar) at temperatures lower than 150 °C. However only
435 one of the selected alloys, namely $(\text{Ti}_{0.97}\text{Zr}_{0.03})_{1.1}\text{Cr}_{1.6}\text{Mn}_{0.4}$ showed more realistic temperature
436 differences in the heat transfer process, making it the best candidate for the proposed application.
437 Cost results, obtained for currently available materials at industrial level for quantities on the order
438 of 10-50 kg, showed the economic feasibility of the proposed system. Economic sensitivity analyses
439 were also carried out, showing different approaches to enhance the economic performance. The
440 overall system cost can be reduced up to about 50% of the initial cost with a reduction of the material
441 cost of 50% and an increase of the bulk density up to 70% of the crystal density.
442

443 **Author Contributions:** The authors contributed as follows: Conceptualization, methodology and results C.C.;
444 Future work, Writing-Review & Editing, M.S.

445 **Funding:** The work was carried out under the U.S. Department of Energy Award Number DE-EE0007648.

446 **Acknowledgments:** The authors wish to acknowledge Drs. Neha Rustagi, James Vickers and Eric Miller, who
447 are the U.S. Department of Energy managers, for financial support as well as for providing useful comments
448 and direction during the current work. The authors also wish to thank Dr. Robert Bowman Jr. for his insights,
449 help and discussions.

450 The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United
451 States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor
452 any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or
453 responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
454 disclosed, or represents that its use would not infringe privately owned rights.

455 **Conflicts of Interest:** The authors declare no conflict of interest.

456 References

- 457 1. U.S. Department of Energy Fuel Cell Technologies Office Multi-Year Research, Development and
458 Demonstration Plan - 3.2 Hydrogen Delivery, 2015.
459 https://www.energy.gov/sites/prod/files/2015/08/f25/fcto_myrrd_delivery.pdf (Accessed March
460 2018).
- 461 2. Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C. Metal hydride hydrogen compressors: A
462 review. *Int J Hydrogen Energy* 2014, 39(11), 5818-5851.
- 463 3. Corgnale, C.; Greenway, S.; Motyka, T.; Sulic, M.; Hardy, B.; Molter, T. et al. Technical performance
464 of a hybrid thermo-electrochemical system for high pressure hydrogen compression. *ECS
465 Transactions* 2017, 80(10), 41-54.
- 466 4. Hattrick-Simpers, J.; Choudhary, K.; Corgnale, C. A simple constrained machine learning model
467 for predicting high-pressure-hydrogen-compressor materials. *Mol Syst Des Eng* 2018,
468 10.1039/C8ME00005K, Advance article.
- 469 5. Gkanas, E.I.; Grant, D.M.; Stuart, A.D.; Eastwick, C.N.; Book, D.; Nayebossadri, S.; et al. Numerical
470 Study on a Two-Stage Metal Hydride Hydrogen Compression System. *J Alloy Compd* 2015, 645(1),
471 S18-S22.
- 472 6. Karagiorgis, G.; Christodoulou, C.N.; von Storch, H.; Tzamalis, G.; Deligiannis, K.; Hadjipetrou,
473 D.; et al. Design, development, construction and operation of a novel metal hydride compressor. *Int
474 J Hydrogen Energy* 2017, 42(17), 12364-12374.
- 475 7. Galvis, A.R.; Leardini, F.; Ares, J.R.; Cuevas, F.; Fernandez, J.F. Simulation and design of a three-
476 stage metal hydride hydrogen compressor based on experimental thermodynamic data. *Int J
477 Hydrogen Energy* 2018, 43, 6666-6676.

478 8. Shah, R.K.; London, A.L. Laminar Flow Forced Convection in Ducts, Supplement 1 to Advances in
479 Heat Transfer; Academic, New York, 1978.

480 9. Aspen In Plant Cost Estimator. ASPEN Tech Manual. Available at
481 <https://www.aspentechn.com/en/products/pages/aspen-in-plant-cost-estimator> (Accessed May 2018) .

482 10. JMC Alloy. Personal Communication. 2017.

483 11. Grainger catalog. Available at <https://www.grainger.com/category/aluminum-tubing/tubing/piping-tubing-and-fittings/plumbing/ecatalog/N-qwo> (Accessed May 2018).

484 12. Swagelok catalog. Available at <https://www.swagelok.com/downloads/webcatalogs/EN/MS-01-174.PDF> (Accessed May 2018).

485 13. Friedlmeier, G.; Manthey, A.; Wanner, M.; Groll, M. Cyclic stability of various application-relevant metal hydrides. *J Alloy Compd* 1995, 231(1-2), 880-887.

486 14. Hydrogen Storage Materials Database <http://hydrogenmaterialssearch.govtools.us/search.aspx> (Accessed March 2018).

487 15. Johnson, J.R.; Reilly, J.J.; Reidinger, F.; Corliss, L.M.; Hastings, J.M. On the existence of f.c.c. TiCr1.8H5.3. *Journal of the Less Common Metals* 1982, 88(1), 107-114.

488 16. Beeri, O.; Cohen, D.; Gavra, Z.; Mintz, M.H. Sites occupation and thermodynamic properties of the TiCr2-xMnx-H2 (0≤x≤1) system: Statistical thermodynamics analysis. *J Alloy Compd* 2003, 1-2, 111-122.

489 17. Cognale, C.; Hattrick-Simpers, J.; Sulic, M.; Weidner, J.; Lopata, J. Experimental assessment of thin film high pressure metal hydride material properties. *Int J Hydrogen Energy* 2018, under review.

490 18. Wang, X.; Chen, R.; Zhang, Y.; Chen, C.; Wang, Q. Hydrogen storage alloys for high-pressure suprapure hydrogen compressor. *J Alloy Compd* 2006, 420, 322-325.

491 19. Cao, Z.; Ouyang, L.; Wang, H.; Liu, J.; Sun, D.; Zhang, Q. Advanced high-pressure metal hydride fabricated via Ti-Cr-Mn alloys for hybrid tank. *Int J Hydrogen Energy* 2015, 40, 2717-2728.

492 20. Vanhanen, J.P.; Hagstrom, M.T.; Lund, P.D. Combined hydrogen compressing and heat transforming through metal hydrides. *Int J Hydrogen Energy* 1999, 24, 441-448.

493 21. Pasini, J.M.; Cognale, C.; van Hassel, B.; Motyka, T.; Kumar, S.; Simmons, K. Metal hydride material requirements for automotive hydrogen storage systems. *Int J Hydrogen Energy* 2013, 38, 9755-9765.

494 22. Cognale, C.; Hardy, B.J.; Tamburello, D.A.; Garrison, S.L.; Anton, D.L. Acceptability envelope for metal hydride-based hydrogen storage systems. *Int J Hydrogen Energy* 2012, 37(3), 2812-2824.

495 23. Cognale, C.; Motyka, T.; Greenway, S.; Perez-Berrios, J.; Nakano, A.; Ito, I. Metal hydride bed system model for renewable source driven Regenerative Fuel Cell. *J Alloy Compd* 2013, 580(1), S406-S409.

496 24. Guo, X.; Wang, S.; Liu, X.; Li, Z.; Lu, F.; Mi, J. et al. Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors. *Rare Metals* 2011, 30(3), 227-231.

514 Nomenclature

515 C	Cost (\$)
516 C_{inst}	Installed cost (\$)
517 C_p	Specific heat (kJ/kg-K)
518 DOE	U.S. Department of Energy
519 EHC	Electrochemical hydrogen compressor
520 f_{inst}	Cost installation factor
521 FOB	Free on board
522 h	Specific enthalpy (kJ/kg), or heat transfer coefficient (W/m ² -K)
523 k	Thermal conductivity (W/m-K)
524 LMTD	Log mean temperature difference
525 \dot{m}	Mass flow rate (kg/s)
526 M	Mass (kg)
527 MH	Metal hydride
528 MHC	Metal hydride hydrogen compressor
529 n_f	Number of fins per tube

530	N_T	Number of tubes
531	P	Equilibrium pressure (bar)
532	R	Gas constant (8.314 J/mol-K)
533	S	Heat transfer surface area (m ²)
534	V	Volume (m ³)
535	wt	Weight capacity (kg _{H2} /kg _{MH})
536		
537		Greek letters
538	ΔH	Reaction enthalpy (kJ/mol _{H2} or kJ/kg _{H2})
539	ΔS	Reaction enthalpy (kJ/mol _{H2} -K or kJ/kg _{H2} -K)
540	Δt	Time (s)
541	η_v	Volumetric efficiency
542	ρ	Density (kg/m ³)
543		
544		Subscript
545	abs	Absorption
546	bulk	Bulk
547	CH	Cold utility
548	des	Desorption
549	HEPV	Heat exchanger and pressure vessel
550	HF	Heat transfer fluid
551	HH	Hot utility
552	MH	Metal hydride
553		