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Abstract:  9 

This article addresses the trajectory tracking between two non-identical systems with chaotic 10 
properties. We employ the Rossler chaotic and RCL-shunted Josephson junctions model in similar 11 
phase space to study trajectory tracking. In order to achieve the goal tracking, we afford two stages 12 
to approximate the target tracking. The first stage utilizes the active control technique to transfer 13 
the output signal from the RCLs-J system into the quasi-Rossler system. Then next, the RCLs-J 14 
system employs the proposed the iterative learning control scheme and the control signal from the 15 
drive system to trace the trajectory of Rossler system. The numerical results demonstrate the 16 
proposed method and the tracking system is asymptotically stable. 17 
 18 
Keywords: Trajectory; Chaos; Josephson Junction; RCL-shunted; Iterative Learning Control (ILC). 19 

 20 

1. Introduction 21 

Chaotic phenomenon was found in the rf-base resistive-capacitive shunted Josephson Junction 22 
(RCs-JJ) and the numerical study in three system parameters have been described in [1]. Many 23 
studies exhibit the chaotic behavior in superconducting resistive-capacitive-inductance Josephson 24 
Junction (RCLs-JJ) [2-4]. The homoclinic, heteroclinic, and super-harmonic bifurcations are 25 
respectively excited by parameters has investigated in [5]. The damped pendulum equation can 26 
describe the junction behavior and demonstrate the chaotic strange attractor in phase space [6]. 27 
Synchronization is a significant topic in nonlinear science as the trajectory tracking is essential in 28 
studying the chaotic synchronization. A non-linear controller utilized backstepping technique to 29 
control bifurcation in the RCLs-J junction has investigated in [7]. The chaos synchronization 30 
between two identical systems of RCLs-J junctions investigated in [8-14] in which employ a number 31 
of different techniques to design controller, such as using active control in [8], by a common chaos 32 
to drive RCLs-J junctions approaching synchronization [9], applying the backstepping in [10, 13], 33 
and using time-delay feedback control in [14], respectively. In others, the controller design or 34 
controlled rule is directly determined by Lyapunov function in [11-12] and the RCLs-J junctions 35 
array synchronization in [12]. In most studies, the synchronization systems were described in 36 
identical RCLs-J junction systems. In the classical systems, synchronization is not concerned about a 37 
superconducting system. Accordingly, in the trajectory tracking study is rarely based on the 38 
combination of RCLs-J and classical chaotic systems.  39 
This article regards the trajectory tracking between the Rossler chaotic and the RCLs-J systems as 40 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2018                   doi:10.20944/preprints201806.0003.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Appl. Sci. 2018, 8, 1285; doi:10.3390/app8081285

http://dx.doi.org/10.20944/preprints201806.0003.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/app8081285


 2 of 13 

the classical chaotic system and the mesoscopic system in the Josephson junctions model. They are 41 
almost two different systems to trace trajectory. This paper affords two stages to approximate the 42 
goal of trajectory tracking. The first stage utilizes the active control technique [15] to transfer RCLs-J 43 
system into the quasi-Rossler system. Next, we propose the iterative learning control law which is 44 
the purpose to approach the signals from the identical system by correcting repetition the tolerance 45 
according to preceding output information [12]. The RCLs-J system employs the iterative learning 46 
control procedure and control signal from the drive system to trace Rossler system. Although, most 47 
research of the ILC are designed linear ILC law, few applications are available on two different 48 
systems synchronizing. 49 
The organization of this article follows: next section is the description of Rossler Chaotic and 50 
RCL-Shunted Josephson Junction System. The third section is to demonstrate the simulation results 51 
in figures by designing example and investigating to employ the proposed learning control law into 52 
the RCLs-J system to trace the path of the Rossler system. Finally, this paper points out the 53 
applications in the future and conclusion. 54 

2. The description of Rossler Chaotic and RCL-Shunted Josephson Junction System 55 

2.1. System Description and Transformation 56 

The Rossler chaotic system has initial condition X0 is drive system in general form as 57 

ࢄ̇                        = ࢄ࡭ + ࢈ = ൥
0 −1 −1
1 ܽ 0
0 0 ଵݔ − ܿ

൩ ൥
ଵݔ
ଶݔ
ଷݔ
൩ + ൥

0
0
ܾ
൩                      (1). 58 

The variable ܺ = ଵݔ] ଶݔ  is the state vector. The RCL-shunted Josephson Junction can be 59	ଷ]்ݔ
presented by eq. (2) with initial conditions Y0 = [0 0 0]T as 60 

ࢅ̇																																																					 = ࢅ࡮ + (ଵݕ)߰࢈ +  61 .(2)                                    ,(௞)ࢁ

The parameters in the eq. (2) defined ࢅ = ଵݕ] ଶݕ ்[ଷݕ , and  62 

࡮                         = ቎
0 1 0
0 −೒(೤మ)

ഁ಴
భ
ഁ಴

0 భ
ഁಽ

− భ
ഁಽ

቏ ࢈					, = 	 ൥
0
భ
ഁ಴
0
൩ ((ݐ)ଵݕ)߰						, = ݅ே − sin(ݕଵ).	        (3) 63 

There is a function ݃(ݕଶ) in eq. (3), and given by  64 

(ଶݕ)݃																																																									 = ൜0.366				as				
|ଶݕ| > 2.9

0.061					as			|ݕଶ| ≤ 2.9,	                          (4).  65 

The iterative number k in system (2) is the number to employee the iterative learning control law 66 
(ILC) ܷ(௞) = ଵݑൣ

(௞) ଶݑ
(௞) ଷݑ

(௞)൧
୘. Really, ILC rule is a sequence of control input signal for response 67 

system as ൛ܷ(௞)ൟ௞ୀଵ,ଶ,⋯.  68 
The system (1) and system (2) are almost not identical nonlinear systems from the trajectory of them 69 
in Figure 1. The nonlinear system (2) should be transferred to the quasi-Rossler system to track the 70 
trajectory of the system (1). Therefore, the active control technique [17-18] will be utilized into the 71 
system (2). 72 
According to the active control technique, the description of the system (2) and dynamical 73 
transformation between the drive (1) and response system (2) show respectively as 74 
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ࢠ																																																											 = ൥
௔ݖ
௕ݖ
௖ݖ
൩ = ൥

ଵݕ − ଵݔ
ଶݕ − ଶݔ
ଷݕ − ଷݔ

൩ (5)                                       75 

ࢠ̇	 = ൥
௔ݖ̇
௕ݖ̇
௖ݖ̇
൩ = ൥

ଵݕ̇ − ଵݔ̇
ଶݕ̇ − ଶݔ̇
ଷݕ̇ − ଷݔ̇

൩ =

⎣
⎢
⎢
⎡

௕ݖ + ଶݔ2 + ଷݔ
ିଵ
ఉి
+௕ݖ(ଶݕ)݃

ଵ
ఉ಴
௖ݖ +

ଵ
ఉి
[݅ே − sin(ݕଵ)] − ଵݔ − ቀܽ + ௚(௬మ)

ఉి
ቁݔଶ −

௫య
ఉి

ଵ
ఉై
௕ݖ −

ଵ
ఉై
௖ݖ +

ଵ
ఉై
ଶݔ) − (ଷݔ − ଷݔଵݔ − ଷݔܿ − ܾ ⎦

⎥
⎥
⎤
+ ൥

ୟݒ
ୠݒ
ୡݒ
൩     (6) 76 

The [ݒ௔ ௕ݒ  ௜ 77ݖ ௖]் in eq. (6) is the active control function to eliminate the terms in which have noݒ
for the i = a, b, c. As a result, the active control function can be determined as  78 

																																									൥
௔ݒ
௕ݒ
௖ݒ
൩ =

⎣
⎢
⎢
⎡

ଶݔ2− − ଷݔ
ିଵ
ఉి
[݅ே − sin(ݕଵ)] + ଵݔ + ቀܽ + ௚(௬మ)

ఉి
ቁ ଶݔ +

௫య
ఉి

ିଵ
ఉై
ଶݔ) − (ଷݔ + ଷݔଵݔ + ଷݔܿ + ܾ ⎦

⎥
⎥
⎤
+ ൥

ୟݓ
ୠݓ
ୡݓ
൩                 (7). 79 

The [ݓ௔ ௕ݓ  ௖]் is the error term in active control procedure. Substituting eq. (7) into (6), the 80ݓ
eq. (6) became as 81 

ࢠ̇																																												 = ൥
௔ݖ̇
௕ݖ̇
௖ݖ̇
൩ = ൦

௕ݖ
ିଵ
ఉి
−௕ݖ(ଶݕ)݃

ଵ
ఉ಴
௖ݖ

ଵ
ఉై
௕ݖ −

ଵ
ఉై
௖ݖ

൪ + ൥
௔ݓ
௕ݓ
௖ݓ
൩                                 (8) 82 

The matrix form of eq. (8) is rewritten as 83 

ࢠ̇																																														 = ൥
௔ݖ̇
௕ݖ̇
௖ݖ̇
൩ = ࡭ ൥

௔ݖ
௕ݖ
௖ݖ
൩ + ൥

ୟݓ
ୠݓ
ୡݓ
൩                                            (9) 84 

Suppose the matrix A has eigenvalues ൫ߣ௔ , ௖൯ߣ	,௕ߣ = (−1,−1, −1), the characteristic equations of A 85 
are demonstrated as  86 

																																																	൦

−1 −1 0
0 −1 + ଵ

ఉి
(ଶݕ)݃

ଵ
ఉి

0 ିଵ
ఉై

−1+ ଵ
ఉై

൪ ൥
௔ݖ
௕ݖ
௖ݖ
൩ = ൥

௔ݓ
௕ݓ
௖ݓ
൩                          (10) 87 

The solution of [ݓ௔ ௕ݓ  ௖]் is 88ݓ

																																																൥
௔ݓ
௕ݓ
௖ݓ
൩ =

⎣
⎢
⎢
⎡
௔ݖ− ௕ݖ− 0
0 −(1 − ଵ
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௕ݖ((ଶݕ)݃

ଵ
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௖ݖ

0 ିଵ
ఉై
௕ݖ (1 + ଵ

ఉై
⎦௖ݖ(

⎥
⎥
⎤
                        (11) 89 

The equation (8) employed eq. (11) and became [̇ݖ௔ ௕ݖ̇ ்[௖ݖ̇ =	 ௔ݖ−] ௕ݖ−  ௖]். Substituting eq. 90ݖ−
(11) and (7) into the RCLs-Josephson Junctions eq. (2) with iterative learning control rule and 91 
changing the variable x to y, the system became as 92 

ࢅ̇																																	 = ൥
ଶݕ− − ଷݕ − ௔ݖ
ଵݕ + ଶݕܽ − ௕ݖ
ଷݔଵݕ − ଷݕܿ − ௖ݖ

൩ + (௞)ࢁ = ൥
0 −1 −1
1 ܽ 0
0 0 ଵݕ − ܿ

൩ ൥
ଵݕ
ଶݕ
ଷݕ
൩ + ൥

0
0
ܾ
൩ − ൥

௔ݖ
௕ݖ
௖ݖ
൩ + ൦

ଵݑ
(௞)

ଶݑ
(௞)

ଷݑ
(௞)

൪      (12) 93 
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After the active control procedure, the RCLs-Josephson Junctions system became a quasi-Rossler 94 
chaotic system such that the trace of trajectory between different systems became identical systems. 95 

2.2. Trajectory tracking between of Systems via Iterative Learning Control 96 

The RCLs-Josephson Junctions system has now been transferred to the quasi-Rossler chaotical 97 
system. The ILC procedure and controll signal from the drive system will be utilized into the 98 
response system to track the drive system. When an appropriated ൛ܷ(௞)ൟ௞ୀଵ,ଶ,⋯ is found, and the 99 
iteration number k is enough, the tracked error dynamical system should be equal to zero, that is  100 
݁̇(௞)(ݐ) = lim

௞→∞
หܺ̇(ݐ) − ห(ݐ)ܻ̇ = 0. The situation of tracking trajectory has changed to two similar systems.  101 

In many studies, the synchronization between identical systems employ the control signal from 102 
drive system has been studied in [19-21]. Accordingly, The RCLsJ system in eq. (2) utilizing the 103 
controlled signals from drive system, x1 and x3, is rewritten as 104 

ࢅ̇																							          = ൥
ଵݕ̇
ଶݕ̇
ଷݕ̇
൩ = ൦

ଶݔ
ଵ
ఉి
[݅ே − ଶݔ(ଶݕ)݃ − sin(ݕଵ) − [ଷݔ

ଵ
ఉై
ଶݔ) − (ଷݔ

൪ +  105 .(13)                  (௞)ࢁ

The controlled signals from the Rossler system in eq. (13) is similar to the quasi-Ross system in (12) 106 
and the iterative learning control law ࢁ(௞) which is defined by the error dynamics. The dynamical 107 
error system between the Rossler system in (1) and the quasi-Rossler system in (12) exhibit as 108 

ࢋ̇												 = ൥
−݁ଵ − ݁ଶ
݁ଵ + ݁ଶ

ଷ݁ଵݔ − ܿ݁ଷ
൩ − ൥

௔ݖ
௕ݖ
௖ݖ
൩ + ൦

ଵݑ
(௞)

ଶݑ
(௞)

ଷݑ
(௞)

൪ = ൥
0 −1 −1
1 ܽ 0
0 0 −ܿ

൩ ൥
݁ଵ
݁ଶ
݁ଷ
൩ ௜ݔ)ࡹ+ , (ࢋ)ࡳ(୨ݕ − ൥

௔ݖ
௕ݖ
௖ݖ
൩ + ൦

ଵݑ
(௞)

ଶݑ
(௞)

ଷݑ
(௞)

൪      (14) 109 

The iterative learning control rule (ILC) in [16, 21] ࢁ(௞) is defined as  110 

(௞)ࢁ																																									 = ૛∆(௞)࡮  111 (15)                                           (௞ିଵ)ࢁ૚࡮	+

where the matrix 	࡮૚ = ௠(ࡹ) ∗ ≥௡ with appropriated 0ି((૛࡮)݈݃݅݁ܽ݁ݎ) ݉ ≤1, and 1 ≤ ݊ < ݇. The ࡮૛ 112 
is the coefficient matrix of ∆(݇)= [݁ଵ ݁ଶ ݁ଷ]்	in (14) and	݈݃݅݁ܽ݁ݎ(࡮૛) is the real part of eigenvalue of ࡮૛. 113 
When the ݖ௜ୀ௔,௕,௖ = ௝݁ୀଵ,ଶ,ଷ, the term ݔ)ࡹ௜ , ௔ݖ] in eq.14 can absorb the (ࢋ)ࡳ(୨ݕ ௕ݖ  ௖]் to choose 114ݖ
the appropriate matrix M    115 
By induction, the expansion of ࢁ(௞) in eq. (15) wrote as 116 

(࢑)ࢁ																			 = (૙)ࢁ࢑(૚࡮) ૛∆(૚)࡮࢑ି૚(૚࡮)	+ + ૛∆(૛)࡮࢑ି૛(૚࡮) (࢑ି૚)∆૛࡮૚࡮+⋯+ +  117 .(16)       (࢑)∆૛࡮

2.3. Lyapunov Stability of Systems 118 

The equation (6) can be the dynamical error system in the active control procedure. Hence, the 119 
Lyapunov function is defined as 120 

ࢂ																																												 = ૚
૛
(࢙૚ࢇࢠ૛ + ࢙૛࢈ࢠ૛ + ࢙૜ࢉࢠ૛).                                           (17) 121 

The ݏ௝	ୀଵ,ଶ,ଷ		are constant such that	ܸ̇ < 0. 122 

Theorem 1.  The Lyapunov function in active control procedure to transfer the RCLs-J system 123 
(2) to the quasi-Rossler system (12) can be defined as in eq. (17). 124 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2018                   doi:10.20944/preprints201806.0003.v1

Peer-reviewed version available at Appl. Sci. 2018, 8, 1285; doi:10.3390/app8081285

http://dx.doi.org/10.20944/preprints201806.0003.v1
http://dx.doi.org/10.3390/app8081285


 5 of 13 

Proof: 125 
The equation (17) should be proved the first derivative is negative and the dynamical system is 126 
stable at the equilibrium (0, 0, 0). The first derivative of the Lyapunov function is 127 

ࢂ̇																																											 = (࢙૚̇ࢇࢠࢇࢠ + ࢙૛̇࢈ࢠ࢈ࢠ + ࢙૜̇128 (18)                                      (ࢉࢠࢉࢠ 

Substituting eq. (11) into eq. (8) and taking ݏଵ = ଶݏ = ଷݏ = 1, it is easy to show that 	 129 

ࢂ̇																																													 = ૛ࢇࢠ)− + ૛࢈ࢠ + (૛ࢉࢠ ≤ ૙                                         (19) 130 

□ 131 

Theorem 2.  Let the	(࢑)ࢁ is in the eq. (15), the Lyapunov function is defined in the iterative 132 
control stage to trace the trajectory of Rossler system as  133 

ࢂ                     = ૚
૛
(࢘૚ࢋ૚૛ + ࢘૛ࢋ૛૛ + ࢘૜ࢋ૜૛)                                          (20) 134 

Proof: 135 
Let ࢁ(࢑ି૚) be defined as 136 

(௞ିଵ)ࢁ																							      = ૛∆(௞ିଵ)࡮ ௜ݔ൫ࡹ+ ,  137 (21)                                        (ࢋ)ࡳ୨൯ݕ

Applying −ࢁ(௞ିଵ) to the eq. (14), we can obtain the error dynamics as ̇ࢋ = ௔ݖ−] ௕ݖ−  ௖]். Let 138ݖ−
௜ୀ௔,௕,௖ݖ = ௝݁ୀଵ,ଶ,ଷ and ݎ௝ୀଵ,ଶ,ଷ= 1. The Lyapunov function should be as 139 

ࢂ̇                     = −(݁ଵଶ + ݁ଶଶ + ݁ଷଶ) ≤ ૙                                         (22) 140 

which implies eq. (14) employs the iterative learning control law is asymptotical stable at 141 
equilibrium. 142 

□ 143 

3. Demonstrating Results by example and discussion 144 

To verify the proposed the iterative learning control law, we utilize an example to demonstrate 145 
the tracing error and trajectory between the Rossler dynamical system as in (1) with initial state (x10, 146 
x20, x30) = (0.2, 0.4, 0.1) and the RCLSJ system in (2) with initial state (y10, y20, y30) = (0, 0, 0), 147 
respectively. 148 

3.1. Deciding Iterative Control Learning Law by Example 149 

The Rossler system in (1) is given as: 150 

ࢄ̇																												 = +ࢄ࡭ ࢇ = ൥
0 −1 −1
1 0.2 0
0 0 ଷݔ − 5.7

൩ ൥
ଵݔ
ଶݔ
ଷݔ
൩ + ൥

0
0
0.2

൩,														ݔ଴ = ൥
0.2
0.4
0.1

൩.           (23) 151 

The RCL-shunted Josephson Junction model in (2) is given by: 152 

ࢅ̇																															 = ࢅ࡮ + (ଵݕ)߰࢈ + ૙ࢅ           	,(௞)ࢁ = ൥
0
0
0
൩                         (24) 153 

where the parameters in eq. (24) have defined in eq. (3) and (4) in which the values of entries in 154 
matrix B are βL = 2.6, βc = 0.707 and the iN = 1.132 is in function ߰(ݕଵ) = 1.132 − sin(ݕଵ), respectively. 155 
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The ࢁ(௞) = ଵݑൣ
(௞) ଶݑ

(௞) ଷݑ
(௞)൧

୘
	in the system (24) is ILC rule and defined in eq. (15) to achieve enough 156 

small tracking error between the Rossler system and RCLs-J system. The matrices ࡹ൫ݔ௜ ,  ୨൯ of eq. 157ݕ
(14) and ࡮૛ of eq. (15), respectively alternate as 158 

௜ݔ൫ࡹ           , ୨൯ݕ = ൥
1 0 0
0 1 0
ଵݔ 0 1

൩ and ࡮૛ = ൥
0 1 1
−1 −0.2 0
−1 0 5.7

൩                           (25) 159 

where the ݔଵ is from Rossler system and matrix ࡮૛ is the decomposition of matrix A in eq. (1). 160 
The time interval of simulation is from 0 to 300 sec and the minimum time step is 0.01sec. The 161 
results and figures in this article utilize the MATLAB to investigate trajectory tracking by the ILC 162 
law in eq. (16) in which used program of the Euler method. In the active control procedure, 163 
transferring the RCLs-J system to Rossler system employs the Simulink in MATLAB. 164 

3.2. Exhibiting Simulation Results and Discussion 165 

The fig. 1 and fig. 2 show the time response of state and phase portrait of two distinct systems 166 
in which are Rossler and the RCL-shunted Josephson Junctions systems with different initial states, 167 
respectively. In fig. 1, the trajectory error between them should be enormous in each state. The fig. 2 168 
displays two non-identical phase portraits of two systems and the chaotic behavior of RCLs-J shows 169 
in fig. 2(d). To overcome the non-identical trajectory between two systems, the first stage employs 170 
the active control to change RCLs-J systems into the quasi-Rossler system form Eq. (5) to Eq. (12).  171 
After utilizing the active control technique, the phase portraits of two systems show in the fig. 3 (a), 172 
(b), and (c). The new phase portraits of RCLs-J are almost not belonged to original phase portraits 173 
and closed to the Rossler system; therefore, we call the new system is the quasi-Rossler system. The 174 
time response of each component in the two systems indicated in the fig. 3 (d), (e), (f) in which the 175 
paths of Rossler and RCLs_J systems, respectively, are not close to each other. 176 
The fig.4 is the tracking error between the Rossler and the quasi-Rossler system which transfers 177 
from RCLs-J systems. The vibration of the tracking error has many large amplitudes in the second 178 
(y2-x2) and third (y3 -x3) components at the specific moment.  179 
The fig. 5 demonstrates the phase portrait of the x1 (y1) and x2 (y2) by utilizing the ILC to track the 180 
trajectory. Two trajectories are almost overlapping in fig. 5 in which the phenomena of tracking 181 
errors in fig. 6 are also validated. The tracking errors oscillation in fig. 6 are between 0.1408 and 182 
-0.1959 for the first tracking error, second one among 0.1434 and -0.4217, and the third tracking 183 
error between 0.4784 and -0.8344, respectively.  184 
The fig. 7 exhibits the tracking error which is the most different ingredient after using the ILC law 185 
and compares the fig. 1 to each other. The lager vibration will always happen at a particular 186 
moment such as ti because that the tracking error between two systems became larger at some 187 
moments ti. Comparing between fig. 4 and fig. 6, the tracking errors are successful to be suppressed 188 
between 0.2 and -0.2 for the first two components and the error of the third component between 0.5 189 
and -0.8 by proposing ILC law, and the error is asymptotically stable. 190 

4. Conclusions 191 

This article has proposed a learning control law to trace the trajectory between two non-identical nonlinear 192 
systems and successfully utilized a two-stage approach of combining active control technique and iterative 193 
learning control law significantly to inhibit and improve the tracking errors in the numerical results. The 194 
simulation example helps to infer the trajectory tracking process and assert the proposed ILC rule. The critical 195 
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work of ILC in the future would be error convergent between multiple non-identical systems and employed 196 
encryption and decryption, signal tracking of bio-system, and AI arm. 197 

 198 
Fig. 1 The time response of Rossler system and RCLs-J system 199 

  

(a) Rossler System x1, x2 (d) RCLs-J System y1, y2 
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(b) Rossler System x2, x3 (e) RCLs-J System y2, y3 

  

(c) Rossler System x1, x3 (f) RCLs-J System y1, y3 
Fig.2, Original trajectories of Rossoler having initial condition with [ݔଵ଴ ଶ଴ݔ ்[ଷ଴ݔ =200 
	[0.2 0.4 0.1]்and RCL-shunted Josephson Junctions with initial condition at original. 201 
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(a) Phase portrait x1 (y1), x2 (y2) (d) Time response of state x1-blue, 
y1-black 
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(b) Phase portrait x2 (y2), x3 (y3) (e) Time response of state x2-blue, y2-black 

  

(c) Phase portrait x1 (y1), x3 (y3) (f) Time response of state x3-blue, y3-black 
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 206 
Fig. 4 The tracking error between Rossler and RCLs-J system via active control procedure 207 

 208 
Fig. 5 The phase portrait of x1 (y1) and x2 (y2) via ILC rule 209 
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211 
Fig. 6 The tracking error between Rossler and RCLs-J system utilizing ILC rule 212 

 213 
Fig. 7 The time response of x3 for Rossler system and y3 for RCLs-J via ILC rule 214 
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