Review

When polyphenols meet sphingolipids: cancer prevention and therapy

Michele Dei Cas and Riccardo Ghidoni

Department of Health Sciences, University of Milan, Milan, Italy

Correspondence to: riccardo.ghidoni@unimi.it, tel.: +39 02 50323250

Abstract: The latest scientific literature outlines a resilient interconnection between cancer modulation and dietary polyphenols by sphingolipid-mediated mechanisms, usually correlated with a modification of their metabolism. We aim to extensively survey this relation to show how it could be advantageous in cancer treatment or prevention by nutrients.

Keywords: sphingolipids; ceramide; flavonoids; resveratrol; genistein; curcumin, nutrients; nutraceuticals; chemotherapeutics

1. Polyphenols

1.1 Polyphenols: chemical classification

Polyphenols are one of the biggest class of phytochemical (more than 8000 compounds) and are easily found in many plant-based products [1]. Polyphenols are chemically characterized by common polyhydroxylated phenolic structures.

They could be divided into two main classes: flavonoids and non-flavonoids (Table 1). Flavonoids generally contain two phenolic rings (A and B rings) connected by three carbon chain or, more commonly, by an O-ring (C ring) becoming similar to a phenylbenzopyran structure. Based on the respective position of the B and C ring, functional groups and presence of unsaturation in the C ring, they have been separated into subclasses: flavones, isoflavones, flavanones, flavonols, anthocyanidins, chalcones and flavanols, containing catechins and tannins. Within each subclass, individual compounds are characterized by specific hydroxylation and conjugation patterns. In nature, polyphenols (flavanols are an exception) exist as glycosides or other conjugates increasing the complexity of the whole groups. Many of these are polymerized into large molecules as tannins, able to bind and precipitate proteins. The most important subclasses of tannins are proanthocyanidins, derived tannins and hydrolysable tannins. Proanthocyanidins consist of monomeric units of flavans linked through carbon-carbon and ether linkages. They also may contain gallates. Relevant proanthocyanidins are procyanidins (epicatechin polymers), prodelphidinidins (epigallocatechin polymers) and propelargonidins (epigallocatechin). A second class of tannins comprises tannins formed primarily under oxidative enzymatic and atmospheric conditions during the manipulation of plants and subsequent processing into foods (oolong and black teas, red wines and coffee). They are quite difficult to find in healthy tissue. Important members of these subclass are theaflavins and thearubigins, easily found in tea. The last subclass of tannins comprises hydrolysable tannins namely esters of gallic acid (gallotannins) or ellagic acid (ellagitannins) with a non-aromatic polyol [2].
Non-flavonoid polyphenols are divided into three main classes: phenolic acids (benzoic acid derivatives and cinnamic acid derivatives), stilbenoids and other polyphenols. Phenolic acids could be further divided into two subclasses: benzoic acid derivatives and cinnamic acid derivatives depending on the number of carbons: seven for benzoic acids and nine for cinnamic ones. In fruits and vegetables, they are in a free form whereas in grains and seeds they are in a conjugated form, that could be hydrolyzed by acid, alkaline or enzyme catalysis [1]. Stilbenoids class includes basic stilbenes, bibenzyls or dihydrostilbenes, bis(bibenzyls), phenanthrenes, 9,10-dihydrophenanthrenes and related compounds derived from the phenylpropanoid pathway. Stilbenes are structurally identified by a 1,2-diphenylethylene nucleus. They exist as both monomers and complex oligomers. The common monomeric skeleton consists of two aromatic rings linked by an ethylene bridge, commonly in trans configuration. The oligomers are basically formed by stilbene units (resveratrol-oxeryresveratrol, resveratrol-piceatannol, resveratrol-isorhapontigenin, oxyresveratrol-isorhapontigenin and piceatannol-isorhapontigenin) linked by either C-C or C-O-C bonds with two, four, six or eight linkage points [3]. Figure 1 shows the chemical structures of polyphenols considered in this review article.

Table 1: Polyphenols classes and examples of more relevant compounds

<table>
<thead>
<tr>
<th>FLAVONOID POLYPHENOLS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavones</td>
<td>apigenin, chrysir, diosmin, luteolin, baicalein</td>
<td></td>
</tr>
<tr>
<td>Isoflavones</td>
<td>daidzein, daidzin, genistein</td>
<td></td>
</tr>
<tr>
<td>Flavanones</td>
<td>hesperetin, narigenin</td>
<td></td>
</tr>
<tr>
<td>Flavonols</td>
<td>kaempferol, quercetin, rutine, myricetin, morin</td>
<td></td>
</tr>
<tr>
<td>Anthocyanidins</td>
<td>cyanidin, daphinidin, malvidin, pelargonidin, peonidin</td>
<td></td>
</tr>
<tr>
<td>Chalcones</td>
<td>butein, curcumin, xanthohumol</td>
<td></td>
</tr>
<tr>
<td>Flavanols</td>
<td>catechins, tannins</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NON-FLAVONOID POLYPHENOLS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acids</td>
<td>vanillic acid, gallic acid, syringic acid</td>
<td></td>
</tr>
<tr>
<td>Cinnamic acids</td>
<td>caffeeic acid, chlorogenic acid, CAPE, tannic acid</td>
<td></td>
</tr>
<tr>
<td>Stilbenes</td>
<td>resveratrol, piceatannol, isorhapontigenin, oxyresveratrol</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Distribution of polyphenols in food

Many plants and herbs consumed by humans are known to contain relevant amounts of polyphenols, which are increased in popularity for their complex and wide beneficial effects (anti-inflammatory, antibiotic, antiseptic, antitumor, anti-allergic, cardioprotective and other pharmacological activities). They are ubiquitous in plant foods such as vegetables, cereals, legumes, fruits, nuts and beverage such as wine, cider, beer, tea, cocoa. Their levels are largely influenced by genetic factors, environmental conditions, variety, cultivars, processing and storage [4]. Specifically, the greatest dietary sources of flavonoids are tea (Camellia sinensis), onions (Allium cepa), apples (Malus domestica), citrus fruit (Citrus spp.), berries (blackberry Rubus ulmifolius, blueberry Vaccinium spp., elderberry Sambucus spp., raspberry Rubus spp., strawberry Fragaria × ananassa), legumes (Fabaceae spp.) and red wine (Vitis vinifera). Human flavonoid intake was estimated in the USA to be approximately 170 mg/day and in Netherlands 23 mg/day (both expressed as aglycones) using the content of only five flavonoids (quercetin, kaempferol, myricetin, luteolin and apigenin). Consequently the intake may be much higher [5]. The dietary consumption of polyphenols consists principally of 80% flavonols, 8% for flavonoids, 6% for flavanones, 5% for anthocyanidins, and less than 1% for iso-flavonoids and flavones [6]. The major dietary sources of stilbenes are grapes and red wine (Vitis vinifera). Within this family, resveratrol (Res) derivatives predominate, with several patterns of oligomerization and glycosylation [3]. For benzoic acid derivatives, the dietary sources were especially acai oil (obtained from the fruit of Euterpe oleracea) [7], wine and vinegar [8]. For cinnamic acid compounds the food distribution was abundantly widespread: cereal grains, rice
(Oryza sativa), wheat bran, coffee (Coffea Arabica), sweet potato (Ipomoea batatas), artichoke (Cynara cardunculus), cinnamon (Cinnamomum cassia), citrus fruits (Citrus spp.), grape (Vitis vinifera), tea (Camellia sinensis), cocoa (Theobroma cacao), spinach (Spinacia oleracea), celery (Apium graveolens), brassicas vegetables (Brassicaceae spp.), peanuts (Arachis hypogaea), basil (Ocimum basilicum) and garlic (Allium sativum) [9].

Figure 1 Chemical structure of polyphenols that are connected with a sphingolipid-based mechanism for cancer prevention and treatment

1.3 Bioavailability, absorption and metabolism of polyphenols

The absorption and metabolism of polyphenols are consequent to their chemical structure, degree of glycosylation/acylation, molecular size, degree of polymerization and solubility. Polyphenolic compounds could be distinguished into extractable and non-extractable according to their molecular weight and solubility: extractable polyphenols have low-medium molecular mass and can be extracted using different solvents, whereas non-extractable polyphenols have high molecular weight or complex phenols structure (phenols bound to protein or fiber), thus remaining insoluble in common solvents. Non-extractable polyphenols were highly recovered in feces, confirming the lack of absorption/digestion. Concerning their metabolism, aglycones and simple monomeric polyphenols could be absorbed through the intestinal mucosa. On the other hand, glycosides cannot be absorbed. Mammals lack in the proper \(\beta \)-glycosidases so they are not hydrolysed to their corresponding aglycones. However, some glycosides could be partially absorbed by the intervention of an enzyme present in the gastrointestinal microbiota. Polyphenols undergo a liver-mediated metabolism: methylation and/or conjugation with glucuronic acid or sulfate. Metabolites were secreted in the urine or in the bile, according to their lipophilic nature. In bile, some of them could be deconjugated and reabsorbed for many times (enterohepatic cycle). Still not clear is the level of absorbed polyphenols in the body and consequently their potential physiologic effect [10].

2. Sphingolipids

2.1 Sphingolipid classification

Sphingolipids are a complex family of amino alcohols compounds sharing a common structure: a sphingoid base backbone that is synthesized \textit{de novo} from serine and acyl-CoA. Sphingolipids could be divided into several different classes: sphingoid bases, ceramides, phosphosphingolipids, phosphonosphingolipids, neutral glycosphingolipids, acidic glycosphingolipids, including gangliosides, basic glycosphingolipids, amphoteric glycosphingolipids, arsenosphingolipids and others. The major sphingoid base of mammals is commonly referred to as sphingosine (Sph), that is...
(2S, 3R, 4E)-2-amino-octadec-4-ene-1,3-diol. Sphingoid bases found in nature could diverge in alkyl chain length and branching, the number and positions of unsaturation, the presence of additional hydroxyl groups, and other features. The structural variation has functional significance: for example, sphingoid bases in the dermis have additional hydroxyls at position 4, 6 or ω (phytoceramides). Thus, interaction with nearby molecules strengthens the permeability barrier of the skin. In addition, a large number of organisms, such as fungi and sponges, produces compounds with structural similarity to sphingoid bases, some of which (such as myricolin and the fumonisins) are potent inhibitors of enzymes of sphingolipid metabolism. Ceramides (Cer) or N-acyl-sphingoid bases are a major subclass of sphingoid base derivatives with an amide-linked fatty acid. The fatty acids are typically saturated or monounsaturated with chain lengths from 14 to 26 carbon atoms. Cers are generally saturated and monounsaturated with chain lengths from 14 to 26 carbon atoms. Cers are generally

higher in SM. The whole production of glycospingolipids mainly occurs in the Golgi. Endoperoxides (DHCD). The attachment of polar head groups to ceramides is mediated by two enzymes, SM synthases (CerS1–CerS6), each using specific acyl chains, typically with saturated or mono-unsaturated fatty acids with 14 to 26 carbons, forming dihydroceramides (DHcer). DHcers are subsequently dehydrogenated to Cers by DH Cer desaturase (DHCD). The attachment of polar head groups to Cer by forming SM and a vast array of complex glycosphingolipids mainly occurs in the Golgi. Endoplasmic reticulum to Golgi transport of Cer is mediated by Cer transfer protein for SM synthesis, or by vesicular transport for GlcCer synthesis. Cers can also be phosphorylated in the Golgi by Cer kinase (CerK) to form Cer-1-phosphate (Cer-1P), a rare species. Glycosphingolipid synthesis requires the transfer of GlcCer to the trans-Golgi network by four-phosphate adaptor protein 2, which also regulates vesicular trafficking from the Golgi to the plasma membrane [13]. SM is synthesized through the transfer of the phosphocholine head group of phosphatidylcholine to Cer by two enzymes: SM synthase 1 (SMS1) and 2 (SMS2). SMS1 is responsible for the de novo synthesis of SM whereas SMS2 probably resynthesizes SM from Cer generated by the catabolism of SM. The whole production of glycosphingolipids starts from two direct derivatives of Cer, galactosylceramide (GalCer) and GlcCer. From the latter it is produced lactosylceramide (LacCer), that is the precursor of the neolacto-, lacto-, globo-, asialo-ganglio- and ganglio- series of glycosphingolipids [14]. Sphingolipids have a rapid turnover and their levels are
constantly in change between synthesis and degradation. They are degraded in lysosomes by glycosidases or acid sphingomyelinases (aSMase), removing the head groups to form Cers. Decacylation of Cer by ceramidases (CDase) is the only pathway known to generate Sph, that can be recycled back to Cer. Sph could also be phosphorylated by Sph kinases (SphK1 and SphK2) forming Sph-1-phosphate (Sph-1P). Sph-1P could either be dephosphorylated by phosphatases (SPPase1 and SPPase2) or degraded by Sph-1P lyase (SPL) to ethanolamine-1-phosphate and trans-hexadecenal.

Sphingomyelinase (SMase) cleaves SM to Cer and phosphatidylcholine by a reversible reaction. Five types of SMase have been described, and classified on their cation dependence and pH optima of action. The more relevant are Mg-dependent neutral sphingomyelinase (nSMase) and lysosomal aSMase [13]. An overview of sphingolipids’ metabolism and chemical structure of the principal ones is shown in Figure 2.

![Figure 2 Sphingolipid metabolism and their chemical structure. Lc3: GlcNAcβ1-3Galβ1-4Glcβ-Cer for others see the abbreviation list.](image)

2.3 Sphingolipids modulation of cellular functions

The structural diversity of sphingolipids reflects a correspondent diversification in pathophysiological functions: regulation of apoptosis, proliferation, differentiation, autophagy, invasiveness, modification of signaling cascade and mediation of inflammatory responses by cytokines.

Cer promotes cell-type specific apoptosis by: i) activating both protein kinases such as protein kinase C (PKC) and protein phosphatases 1 and 2 and proteases, including caspases and cathepsin D, ii) formation of pores in mitochondrial membrane and modulation of pro-apoptotic Bcl-2-family proteins. Also, Sph via PKC upholds apoptosis.

In contrast to Cer, that is predominantly pro-apoptotic, Sph-1P is mainly an anti-apoptotic messenger by stimulating G-protein-coupled receptors activating RAS, RAC, phosphatidylinositol 3-kinases (PI3K), protein kinase B (AKT), phospholipase C (PLC) and Rho kinase. The regulation of signaling cascade mediated by Sph-1P includes modulation in mitogenesis, cell migration, cytoskeletal rearrangement and angiogenesis. Sphingolipids could also be correlated with pro-
inflammatory cytokines through different mechanisms. Sph-1P stimulate inflammation by either upregulation of cyclooxygenase 2 (COX-2) with overproduction of prostaglandin E2 and activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In the same way Cer-1P, through activation of cytosolic phospholipases A2 (cPLA2), enhances the production of pro-inflammatory arachidonic acid [15].

2.4 Sphingolipids and cancer

Sphingolipids have emerged as mediators of cell proliferation in cancer and as potential chemotherapeutics (Table 2). In general, Cer regulates anti-cancer cellular fate whereas Sph-1P is pro- oncogenic and pro-metastatic.

Cer normally mediates antiproliferative responses, such as cell growth inhibition, apoptosis induction, senescence modulation, endoplasmic reticulum stress response and autophagy. Interestingly, recent studies [16], [17] suggest that de novo-generated Cers present an ambivalent role in the promotion/suppression of tumors reliant to their fatty acid chain lengths, subcellular localization and direct downstream targets. In a study [18] on head and neck squamous cell carcinoma (HNSCC) decreased levels of C18 Cer are correlated with lymphovascular invasion and nodal metastasis. Conversely, overexpression of CerS1 and increased levels of de novo synthesized C16 Cer show a reduction of tumoral cell growth by inhibition of telomerase activity. Overexpression of de novo synthesized C16 Cer was associated with tumor proliferation whereas downregulation of de novo synthesized C16 Cer induce ER stress and apoptosis of HSNCC cells by activating ATF6/CHOP pathway. In addition, elevated C16 Cer, CerS2 and CerS6 were associated with breast cancer cancerogenesis. Moreover, interaction of Cer with cathepsin D, PKC, I2PP2A, caspas and telomerase leads to apoptosis, growth suppression and senescence.

Cer-1P has been shown to induce release of arachidonic acid in cancer cells leading to an inflammatory condition [19].

SM contributes to release diacylglycerol from phosphatidylcholine, a well-known activator of PKC thus promoting cellular proliferation. GlcCer indeed leads to drug resistance. Sph-1P induces anti-apoptosis processes, engaging with Sph-1P receptors 1-5 (S1PR1-5), thus Sph-1P being a tumor promoting molecule and elevated levels have been observed in different cancer and tumor tissues [20],[21].

SphK1 expression has been found to be upregulated in a number of solid tumors; high SphK1 expression in glioblastoma, gastric and breast cancers has been correlated with poor survival of patients. Consequently, anticancer regimens have been shown to down-regulate SphK1 activity in various cancer cell and animal models, suggesting that SphK1 may act as a “sensor” to anticancer therapies, whereas its enforced expression protects cancer cells from apoptosis. In prostate cancer cells and animal models, the SphK1/Sph-1P pathway is associated with resistance to chemotherapy and radiotherapy as well as progression toward a hormone-refractory state. In addition, both SphK1 activity and expression are significantly increased in patient tumor samples (as compared with normal counterparts) and correlate with markers such as prostate-specific antigen, neuroendocrine biomarkers, and tumor grade as well as with the clinical outcome after prostatectomy [22].

Table 2: Role of sphingolipids in cancer

<table>
<thead>
<tr>
<th>Sphingolipids</th>
<th>Biological target</th>
<th>Effect in cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cer</td>
<td>PKC, I2PP2A, cathepsin D, caspas, telomerase</td>
<td>Apoptosis, growth arrest, senescence</td>
</tr>
<tr>
<td>Cer-1P</td>
<td>cPLA2</td>
<td>Release of arachidonic acid and activation of inflammatory cascade</td>
</tr>
<tr>
<td>DAG (from SM)</td>
<td>PKC</td>
<td>Cellular proliferation</td>
</tr>
<tr>
<td>Sph-1P</td>
<td>NFKB, COX-2, ERK</td>
<td>Malignant transformation, anti-apoptosis, angiogenesis, survival, metastatization</td>
</tr>
</tbody>
</table>
3. Focus on cancer: dietary polyphenols and sphingolipids

3.1 Apigenin

Apigenin (4’,5,7-trihydroxyflavone), a flavone from fruits, vegetables and other plants, counteracts inflammation, oxidative stress and development of cancer. Major apigenin-containing food sources include thyme (Thymus vulgaris), cherries (Prunus avium), tea (Camellia sinensis), olives (Olea europaea), broccoli (Brassica oleracea), celery (Apium graveolens), and legumes (Fabaceae spp.); with the most abundant sources being the leafy herb parsley (Petroselinum crispum) and dried flowers of chamomile (Matricaria chamomilla) [23]. The protective effect of apigenin against tumor growth is at least partially due to induction of apoptosis albeit some studies support the idea that apigenin may protect against apoptosis. The apoptosis stimulating effect is at least partially due to influence of apigenin on mitochondria and on gene expression. Apigenin is also partially effective through targeting of the JAK/STAT pathway [24].

Moussavi et al. [25] investigated the effect of apigenin as dietary component in colon cancer, by testing its relationship with cell death, mediated alternately by Cer and ROS. Apigenin elevates Cer generation and apoptosis in colon cancer cells (HCT116) in a concentration- and time-dependent manner, but independently on the de novo synthesis pathway.

3.2 Caffeic acid

Caffeic acid (3,4-dihydroxycinnamic acid) is a widespread hydroxycinnamic acid, naturally found in many plant species as a secondary metabolite of shikimate pathway. It displays the classical framework of phenylpropanoids (C6-C3) with a 3,4-dihydroxylated aromatic ring connected to a carboxylic acid moiety by a trans-ethylene ether. It is the most abundant hydroxycinnamic acid and the diet sources are argan oil (Argania spinosa), oats (Avena nuda), wheat (Triticum spp.), rice (Oryza sativa), olive oil (Olea europaea), and narrow-leaved purple coneflower (Echinacea angustifolia), berries (blackberry Rubus ulmifolius, blueberry Vaccinium spp., elderberry Sambucus spp., raspberry Rubus spp., strawberry Fragaria × ananassa). Other dietary sources include potatoes (Solanum tuberosum), carrots (Daucus carota) and artichokes (Cynara cardunculus) and obviously coffee (Coffea arabica) [26], [27]. The average phenolic acids intake in humans is in the order of 210 mg/day within a large range, depending on nutritional habits. Caffeic acid has been reported to account for up to 90% of total phenolic acids intake [28]. The wide spectrum of biological effects induced by caffeic acid includes enzyme activity inhibition (5- and 12-lipoxygenases, glutathione S-transferase, xanthine oxidase), antitumor activity, anti-inflammatory properties, modulation of cellular response to ROS and inhibition of HIV replication.

Nardini et al. [29] reported that caffeic acid significantly inhibits Cer-induced activation of NF-κB in human mononcytic U937 cells, with consequent suppression of acute inflammation, septic shock, HIV replication, acute phase response, viral replication, radiation damage, atherogenesis and possibly some neoplastic degeneration. The NF-κB inhibition mechanisms may be different: countering the changes of the intracellular redox status induced by Cer, inhibition of 5 and 12 lipoxygenases activities or PKC and PKA activity arrest. Additionally, some data indicate that caffeic acid inhibits protein tyrosine kinase activity. This ability, rather than its antioxidant properties, may be the mechanism responsible for the inhibition of Cer-induced apoptotic response, in agreement with the observation that all other tested antioxidants do not inhibit DNA fragmentation, and therefore apoptosis. The action of caffeic acid is two-faced: it shows pro-apoptotic effects at high concentration (> 200 μM) and antiapoptotic ones at lower levels explaining a conflicted range of activities. At low concentration, close to those expected in vivo, it mediates a double inhibition mechanism on Cer-induced NF-κB activation and Cer-induced apoptosis by protein tyrosine kinase.

Under this perspective, caffeic acid could not be used as a coadjuvant to chemotherapy in low concentration since it reduces Cer-mediated apoptosis.
3.3 CAPE

Caffeic acid phenethyl ester (CAPE) or 2-phenylethyl (2E)-3-(3,4-dihydroxyphenyl)acrylate is a natural bioactive compound. It occurs in many plants and the main human source is propolis, a resinous mixture that honey bees produce by mixing saliva, beeswax and exudate gathered from tree buds, sap flows, or other botanical sources. CAPE is a cinnamic acid polyphenol with hydroxyl groups within the catechol ring which is responsible for its crucial role in many biological activities: against various pathologies such as infections, oxidative stress, inflammation, cancer, diabetes, neurodegeneration and anxiety [30].

Tseng et al. [31] demonstrated that CAPE-induced apoptosis involves nSMase activation and subsequently accumulation of Cer in C6 glioma cells. CAPE modulates two parallel signaling pathways both leading to activation of caspase 3 as ultimate effector of apoptosis. On one hand CAPE decreases nSMase activity triggering the activation of ERK/NGFR/NGF/JNK pathway and on the other hand it causes an accumulation of Cer, which initiates the p38 MAPK/p53/BAX signaling path. In addition to the apoptotic potential of CAPE in cancer cells, a coherent manipulation of Cer levels may improve the efficacy of chemotherapy agents.

3.4 Catechin

The catechin family presents two benzene rings and a 3-OH-dihydropyran heterocycle with two chiral centers on C2 and C3. Thus, it has four diastereoisomers: two in trans configuration called catechin and two in cis configuration called epicatechin. In plants they are usually conjugated with gallic acid.

(-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin (4.7–10.4%, dry basis) in green tea and the most active antioxidant among its homologues. Moreover, (-)-EGCG is the catechin naturally occurring only in tea species, whereas other catechins can be found in some fruits and vegetables. The main green tea catechins have been identified as epicatechins, including (-)-epigallocatechin, (-)-epigallocatechin gallate, (-)-epicatechin gallate, and (-)-epicatechin. These cis compounds can convert to their epimers: (-)-gallocatechin, (-)-gallocatechin gallate, (-)-catechin gallate and (-)-catechin respectively. This epimerization between pair catechins is reversible [32].

High concentrations of catechin can be found in fresh tea leaves (Camellia sinensis), red wine, broad beans (Vicia faba), black grapes, apricots (Prunus armeniaca) and strawberries (Fragaria × ananassa) nevertheless epicatechin could be found in high concentrations in apples (Malus domestica), blackberries, broad beans (Vicia faba), cherries (Prunus cerasus), black grapes, pears (Pyrus spp.), raspberries (Rubus spp.), and chocolate (Theobroma cacao). In vitro studies of catechins show protection against degenerative diseases and a strong inverse relation between the intake of catechins and risk of mortality by cardiovascular heart diseases. It has been reported that catechins have antimicrobial activity (gram positive more than gram negative) and inhibit carcinogenesis of the skin, lung, esophagus, stomach, liver, small intestine, colon, bladder, prostate, and mammary glands. EGCG has been described to have many potential targets for action against carcinogens and among them also sphingolipids [33].

Brizuela et al. [22] reported for the first time that green tea polyphenols (EGCG and PPE a mixture of polyphenon E) inhibit SphK1 activity, via a novel ERK/PLD-dependent mechanism in prostate cancer cells (C4-2B hormone-responsive and PC-3 hormone-refractory). The treatment with EGCG and PPE in both PC-3 and C4-2B cell lineages showed an interesting inhibition of cell growth by altering the sphingolipid balance correlated with SphK1 inhibition and increment of pro-apoptotic Cer. The mechanisms underlying SphK1 inhibition by green tea extract are dependent on the down-regulation of the ERK1/2 and consequently with PLD/PA signaling pathway. In vivo studies, confirmed the data obtained in vitro, suggesting that animals with SphK1 overexpressing PC-3 cells implanted in subcutaneous district develop larger tumors and resistance to green tea due to disruption of sphingolipid equilibrium. In conjunction, EGCG and PPE diet is also associated with a significant metastasis reduction in the orthotopic PC-3 model. Preventive approaches [34], [35] using catechins have been show to effectively inhibit other cancers as the colon one. Hence, combination of green tea polyphenols and chemotherapeutic agents or radiation therapy would be promising.
Another mechanism of Cer-mediated apoptosis proposed by Wu et al. [36] involves ENOX2 (tNOX) inhibition by EGCG. Inhibition of ENOX family commonly brings to an accumulation of cytosolic NADH at the inner leaflet of the plasma membrane. NADH has the ability to modulate two key enzymes in sphingolipid metabolism: SphK is inhibited and SMase is stimulated. Thus, the amount of Sph-1P and Cer are respectively decreased and increased disrupting the sphingolipid rheostat, which is clearly involved in growth and regulation of apoptosis. A Sph-1P decrease coupled with an increment of Cer clearly promotes apoptosis.

3.5 Chlorogenic acid

Chlorogenic acid, a non-flavonoid polyphenol, is a quinic acid conjugate of caffeic acid found in high levels in coffee beans (*Coffee arabica*). An average coffee drinker tends to consume 0.5-1 g of chlorogenic acids daily. It could be found also in apples (*Malus domestica*), pears (*Pyrus spp.*), eggplants (*Solanum melongena*), tomatoes (*Solanum lycopersicum*), blueberries (*Vaccinium myrtillus*), strawberries (*Fragaria × ananassa*), bamboo (*Bambuseae spp.*) and potatoes (*Solanum tuberosum*) [37], [38]. It has various biological activities such as anti-inflammatory, anti-diabetic, anti-tumorogenic, antioxidative, anti-gout and anti-obesity.

Lee et al. [39] demonstrated that the inhibition of Hypoxia-Inducible factor-1α (HIF-1α) by chlorogenic acid involves the SphK-1 pathway under hypoxia in the DU145 human prostate cancer cell line. Hypoxia is a common condition in solid tumor enhancing his roughly development. HIF-1α is a transcription factor that regulates cancer progression such as angiogenesis, metastasis, anti-apoptosis, cell proliferations whereby imparts resistance to chemotherapy. SphK-1 regulates and stabilizes HIF-1α through the AKT/GSK-3 leading to his accumulation. It was shown that, under hypoxia, chlorogenic acid significantly decreases HIF-1α and SphK-1 activity. Besides, it prevents phosphorylation of AKT and GSK-3β, which are involved in stabilization of HIF-1α by SphK. In summary, chlorogenic acid decreases cancer cell growth by: i) inhibition of SphK-1 and reduction of HIF-1α; ii) decrement of phosphorylation of HIF-1α stabilizing agent and iii) decrease of VEGF (vascular endothelial growth factor) and angiogenesis.

Additionally, according to Belkaid et al. [40], chlorogenic acid possesses anticancer properties in highly invasive U-87 glioblastoma cells. A competitive inhibition of ER-glucose-6-phosphate transport was shown causing a consequent downregulation of Sph-1P-induced cell migration and a hindrance on Sph-1P-induced ERK phosphorylation. Sph-1P is present at high levels in brain tissue acting as a potent mitogen for glioblastoma multiform cells, triggering intracellular signaling by MAPK pathway and causing the release of intracellular calcium pools.

3.6 Chrysin

Chrysin is a naturally occurring flavone found in human diet products such as *Passiflora caerulea*, *Passiflora incarnata* infuse, *Oroxylum indicum* and mushroom, *Pleurotus ostreatus* [41]. *Oroxylum indicum* use in Europe or America is very limited. It is a small tree growing in southern China, South and Southeast Asia. The seed of this plant, a traditional Chinese medicine, has been widely used in the treatment of cough, acute or chronic bronchitis, pharyngitis, pertussis and other respiratory disorders. The young leaves and flowers, raw or cooked, and immature boiled fruits are commonly eaten in Thailand and in Laos. Three flavonoids isolated from its stem bark namely baicalein, oroxylin A and chrysin have been reported to inhibit activity of proprotein convertases, which play an important role in cancer, viral and bacterial infections [42]. It has been shown to have a broad range of pharmacological effects, including anti-oxidation, anti-viral, anti-inflammatory properties and anti-cancer properties on breast cancer cells.

Hong et al. [43] evaluated the effects of chrysin treatment on human estrogen receptor (ER)-negative breast cancer cells (MDA-MB-231). This study provides mechanistic evidence that chrysin treatment inhibits the cancer cell growth with a direct or indirect increased expression of PPARα mRNA. Since PPARs activation can result in intracellular accumulation of Cer, which mediates down-stream effects such as apoptosis. Cer accumulation is assumed to be dependent on a modulation on arachidonic acid [44].

9 of 26

[36] Wu et al. [36] evaluated the effects of chrysin treatment on human estrogen receptor (ER)-negative breast cancer cells (MDA-MB-231). This study provides mechanistic evidence that chrysin treatment inhibits the cancer cell growth with a direct or indirect increased expression of PPARα mRNA. Since PPARs activation can result in intracellular accumulation of Cer, which mediates down-stream effects such as apoptosis. Cer accumulation is assumed to be dependent on a modulation on arachidonic acid [44].
Figure 3 Mechanism of modulation on sphingolipids by apigenin, caffeic acid, CAPE, catechin and chlorogenic acid. It is depicted with an asterisk (*) enzymatic pathway, with plus (+) red-regulated pathway and with minus (-) down-regulation ones.

3.7 Curcumin

Curcumin is one of the main substances found in the rhizome of turmeric (Curcuma longa) and other Curcuma spp. Commercially curcumin contains about 77% besides two other related compounds demethoxycurcumin and bis-demethoxycurcumin. These compounds belong to the group of diarylheptanoids. Together, these three compounds are called curcuminoids [45].

Curcumin inhibits cell proliferation and stimulates apoptosis by affecting various key targets in signal transduction pathways, including Akt, cyclooxygenase, NF-kB, c-myc, Bcl-2, c-Jun N-terminal kinase (JNK), and epithelial growth factor (EGF) receptor.

Cheng et al. [46] demonstrated that curcumin inhibits cell growth and induces apoptosis in colon cancer cells (Caco-2 cells) affecting aSMase activity. It reduces the hydrolytic capacity of the enzyme associated with a slight increase of cellular SM. No modification of alkaline, nSMase and phospholipase D was found after curcumin treatment. Reduction of aSMase activity was not due to a direct inhibitory effect of curcumin on the enzyme, but rather to inhibition of the enzyme biosynthesis. These effects are also cell-specific and more potent against the monolayer Caco-2 cells than polarised ones. However, the causative link between aSMase reduction and cell growth inhibition remains elusive: the importance of aSMase in cancer development is probably related to the changed SM levels but not to the Cer ones. A SM increment leads to an increment in the formation of lysophosphatidylcholine and lysophosphatidic acid, that are key molecules for colon cancer metastasis.

In contrast Moussavi et al. [47] found that curcumin significantly increased the Cer levels in colon cancer HCT 116 cells, without detectable changes of aSMase and nSMase. Cer generation by curcumin occurred through de novo synthesis since cell death could be reversed by myriocin, an inhibitor of serine palmitoyl transferase. Colon cancer cell apoptosis by curcumin was strongly related with JNK activation mediated principally by ROS generation and to a minor extent via a parallel Cer-associated pathway.

Another study on anti-colorectal cancer effects by curcumin was conducted by Chen et al. [48]. They showed that co-administration of curcumin and perifosine, an orally bioactive alkylphospholipid, increases colorectal cancer cell apoptosis by modulating multiple signaling pathways (inactivation of Akt and NF-kβ, activation of c-Jun, downregulation of Bcl-2 and cyclin D1,
increment in intracellular levels of ROS and Cer). Furthermore, they suggested that ROS/Cer production after co-administration of curcumin and perifosine and ER stress response were independent on Akt inhibition and Bcl-2/cyclin D1 downregulation.

Yu et al. [49] showed that curcumin-induced cell growth inhibition and apoptosis in melanoma cell lines (WM-115 and B16) could be facilitated by PDMP (DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol). PDMP is a well-known inhibitor of sphingolipid biosynthesis especially directed to the formation of GlcCer, thus resulting in an accumulation of its endogenous precursor, Cer. Combination of PDMP and curcumin may be used as a new therapeutic intervention against melanoma. Curcumin induces an early increase of Cer (12h), that melanoma cells could remove, after long term (24h), by glycosylation. Upon incubation on PDMP, Cer levels remain elevated causing further cell death and apoptosis. In addition, exogenous cell-permeable C6-Cer sensitizes melanoma cell lines to curcumin-induced apoptosis.

Curcumin effect was investigated in clinical trials of patients with multiforme glioblastoma, ideally as a second line therapy after failure of radiation and temozolomide [50]. The optimal method should be setting curcumin in combination with an established cytotoxic chemotherapy agent such as carmustine or lomustine. A progression of this aggressive brain cancer is related to a decrease in Cer levels: curcumin has been shown to enhance Cer production influencing Cer synthase activity.

According to Thayyullathil et al. [51] curcumin has been shown to be a pro-autophagic drug in malignant gliomas. Malignant glioma cells are likely responding to therapy better via autophagy than apoptosis but, for apoptosis-resistant glioblastoma patients, a pro-autophagic drug could be extremely advantageous. Curcumin induces autophagy by Par-4 (prostate apoptosis response-4) upregulation and Cer generation via ROS-dependent mechanism. Cer generation was correlated to nSMase pathway in U87MG malignant glioma cells since GW4869, an inhibitor of nSMase, significantly blocked curcumin-induced Cer generation and autophagy.

Hilchie et al. [52] determined the mechanism by which curcumin induces cytotoxicity in prostate cancer cells (PC3). This treatment caused time- and dose-dependent apoptosis and depletion of cellular reduced glutathione, Cer accumulation, activation of p38, JNK and release of different caspases and cytochrome c. The authors conclude that apoptosis in prostate cancer is due principally to Cer accumulation causing mitochondrial membrane integrity damage, consequent release of cytochrome c and apoptosis inducing factor. By contrast, clinical trials have confirmed that curcumin is poorly absorbed in the gastrointestinal tract, most likely owing to the efficient efflux of monoglutationyl curcumin conjugates from intestinal epithelial cells into the lumen. Achieving a useful plasma concentration to trigger apoptosis is the major obstacle to the clinical application of curcumin-based therapy. Combination of curcumin and piperine or more stable analogues of curcumin may overcome these pharmacokinetics problems.

Kizhakkaayil et al. [53] investigated more deeply the glutathione decline as a mechanism by which curcumin acts on human leukemic cells. A decrease of intracellular glutathione regulates caspase-dependent inhibition of SMS activity and Cer generation, and thus apoptosis. Curcumin-induced Cer generation and apoptosis were inhibited by extracellular supplementation of glutathione, N-acetylcyisteine and caspase inhibitor z-VAD-fmk, supporting these findings. In particular, an important role in Cer generation was found to be related to the regulation of the SMS cycle and not to the de novo pathway.

Scharstuhl et al. [54] revealed that curcumin induces apoptosis, in a totally caspase-independent way: a concerted action of Cers, VDAC and BAX was correlated to the formation of channels in the outer mitochondrial membranes and to the release of apoptosis-inducing factor. Nevertheless, inhibition of the de novo synthesis and inhibition of SMase did not significantly block curcumin-induced apoptosis, indicating that Cers are partially involved.

Shakor et al. [55] examined curcumin-induced apoptosis in human leukemia HL60 cells and their HL60/VCR multidrug-resistant counterparts. The molecular mechanism of curcumin action consists in a biphasic Cer accumulation in the cells firstly by rapid activation of nSMase2 and then by inhibition of SMS, accompanied in the drug resistant cells by glucosylceramide synthase (the enzyme involved in GlcCer synthesis from Cer) inhibition. Once generated, the Cer triggers apoptosis with
modulation of BAX, Bcl-2 and caspase-3 levels. It has been established that the activity of GlcS
potentiates multidrug resistance of cancer cells and the resistance can be induced by its
overexpression. The down-regulation of this Golgi enzyme seems to be related with P-gp inhibition.
P-gp functions as a flipase which translocates GlcCer across the membrane in an ATP-dependent
manner. It has been found that targeting P-gp by antagonists (cyclosporine A or tamoxifen) can be
an alternative to modulate GlcCer activity to enhance the cytotoxicity of Cer. Moreover, molecular
modelling studies confirmed that curcumin binds to P-gp in its substrate binding site possibly
competing with GlcCer binding. A glutathione depletion and ROS generation after curcumin
treatments were linked to Cer increase and apoptosis activation pathway.

Another study by Shakor et al. [56] indicated a complex crosstalk among Bcl-2, Bcl-xL, caspases
and glutathione during curcumin-induced apoptosis and point to the superior role of caspase-8
activity, Bcl-xL down-regulation and glutathione depletion in the pro-apoptotic cascade leading to
nSMase activation and hence generation of Cer. The signaling cascade controlling Cer-mediated
apoptosis in curcumin-treated cells was: caspase-8 activation, Bcl-xL degradation, glutathione
depletion, nSMase activation and Cer accumulation. Caspase-3 activation and Bcl-2 degradation,
both regulated by glutathione levels and reciprocally interconnected, are also co-involved in SMase
initiation. SMS degradation was indeed regulated only by caspase-3 activation.

Yang et al. [57] analyzed the impact of SphK1 inhibitor on Cer production, particularly as a
potential curcumin chemo-sensitizer in ovarian cancer cells (CaOV3). Inhibition of SphK1, by
pharmacological tools as SKI-II (2-(p-Hydroxyanilino)-4-(p-chlorophenyl)thiazole) or by RNA
interference, dramatically enhanced curcumin-induced apoptosis and growth inhibition in ovarian
cancer cells via Cer production and p38 activation and Akt inhibition.

Further supplement to curcumin treatment (Qui et al. [58]) was the addition of exogenous cell-
permeable short-chain, C6-Cer. It sensitizes melanoma cells (B16 and WM-115) to curcumin-mediated
apoptosis. This was due to the augment of the mitochondrial apoptosis pathway, especially through
the cleavage of caspases 3 and 9 and the downregulation of anti-apoptosis protein Bcl-xL and X-IAP.

3.8 Genistein

The well-known sources of genistein are soy-based foods, such as soy cheese or soy drinks. The
content of genistein in mature soybeans ranges from 5.6 to 276 mg/100 g, and an average content of
81 mg/100 g is often described for comparative purposes. In addition to genistein, soy foods contain
another major isoflavone, daidzein, which differs from genistein by the lack of the hydroxyl group
on position 5. Both isoflavones may exist in their aglycone or glycoside forms. The most common
glycoside forms of genistein and daidzein are Oβ-D-glucoside derivatives at position 7 in both
compounds. Because numerous traditional Asian foods are made from soybeans, the average dietary
isoflavone intake in Asian countries is in the range of 25-50 mg/d, whereas in Western countries the
estimated intake is as low as 2 mg/d. Legumes are considered the second most important source of
genistein, at 0.2 to 0.6 mg/100 g, which is present together with the other related isoflavone, daidzein.
The genus Lupinus (commonly known as lupin) represents a typical example of the legume that is
now widely cultivated for its seeds, which possess a nutritional value similar to soy-bean. Other
important legumes rich in genistein are broad beans (Vicia faba) and chick peas (Cicer arietinum). The
content of genistein in fruit, nuts, and vegetables can vary considerably, ranging being from 0.03 to
0.2 mg/100 g [59].

This soybean isoflavone exerts many cellular effects, namely apoptosis activation, and protein-
tyrosine kinase activity and angiogenesis inhibition. It is important to note that genistein affects in a
dose-dependent manner, both positively and negatively tumorigenesis.

Engel et al. [60] reported the influence of phytoestrogens, such as genistein, on the metabolome
of breast cancer cells comparing either MCF-7, positive for ERα and ERβ, and MCF-12A, a non-
tumorigenic epithelial breast cell line. Regarding sphingolipidomics, three metabolites were analyzed
in details: Sph, DHSPh and ethanolamine-phosphate were elevated in MCF-7, under control
conditions and genistein treatment normalizes their levels. Whereas their amounts, in MCF-12A,
were not affected. By contrast DHSPh was not normalized by genistein treatment in MCF-7 to gain
the level of MCF-12A under control conditions. Western blotting-coupled immunofluorescence experiments revealed a significant decrease in the amount of SphK1 and SphK2 enzyme in MCF-7 after genistein exposure, in a concentration-dependent manner. In MCF-12A phytoestrogen exposure revealed boosted SphK1 amounts and undetectable expression of SphK2. These findings suggested that SphK1 is expressed in cancerous as well as non-tumorigenic cells while Sphk2 is overexpressed in cancer line. SPL expression was also investigated. MCF-7 has a weaker expression than MCF-12A but after exposure with genistein the SPL amount increases dramatically. To conclude: exposure to phytoestrogens in higher concentration (10 μM of genistein) decreased tumor progression signaling via sphingolipids pathway and enhanced the reaction of the SPL causing a higher conversion of Sph-1P to sphingoethanolamine.

Lucki et al. [61] showed that nanomolar concentration of genistein induces aCDase transcription in MCF-7 breast cancer cells via ERK1/2 dependent mechanism. The proliferative properties of genistein are mostly due to its ability to activate multiple genomic and non-genomic estrogenic pathways by binding ERα and GPR30, a transmembrane G-protein-coupled receptor that binds most ER ligands triggering estrogenic signaling and proliferation. aCDase is a lipid hydrolase, that degrades Cer to Sph and a free fatty acid, thus playing a key role in cellular homeostasis regulation by controlling the Cer/Sph/Sph-1P balance within the cell. Activation of this pathway promotes histone acetylation and recruitment of the phospho-estrogen receptor α and Sp1 transcription factor to the aCDase promoter, culminating in increased enzymatic activity, which results in increased Sph-1P production. Nanomolar concentration of genistein stimulates ER-positive breast cancer cells growth by modulating expression of aCDase and producing two synergic but different events: an increment of Sph-1P levels, that activates proliferative pathways by binding to cell surface receptors and a modulation of cyclin B2 expression, driving mitotic progression and cell growth.

Another study by Engel et al. [62] showed that high doses of genistein promote the growth of bone cancer cells. They explored the co-administration of genistein and calcitriol in order to inhibit immature osteosarcoma cells MG-63. The malignant proliferation induced by 100 μM genistein could be normalized to control levels after simultaneous exposure to 10 nM calcitriol. This synergistic effect may be consistent to an overexpression of ERβ, a reduction of extracellular acidification and respiration rates and an increased ethanolamine production by the overexpression of SPL.

The use of genistein as an anti-cancer compound is usually limited because a relative high concentration is necessary. Ji et al. [63] counteracted this limitation by adding exogenous cell-permeable short-chain Cers to enhance genistein activity. In this study, melanoma cell line (B16, WM451, MeWo) were sensitized to genistein by increasing cellular level of Cers, both exogenously and endogenously. Genistein treatment caused only a moderate increase of intracellular Cers levels in B16 melanoma cells, which may be not enough to result in a significant cell apoptosis. Co-administration of PDMP, a Cer glucosylation inhibitor, or SKI-II facilitated Cers accumulation and significantly enhanced genistein-induced melanoma cell apoptosis. Moreover, adding to genistein some exogenous cell-permeable short-chain Cers (C2, C4 and C6) had a greater cytotoxicity and apoptosis (especially C6), leading to a major anti-melanoma effects. This mechanism could be explained by the JNK activation of and Akt inhibition.

Tiper et al. [64] showed that VEGF and ganglioside GD3 production by ovarian cancers suppresses NKT-mediated anti-tumor response. Escape from the host’s immune system is crucial for cancer growth and development of metastasis. Previous reports [65], [66] showed that the ganglioside and VEGF levels in ovarian cancer ascites (OV-CAR-3 and SK-OV-3) are much higher than in ascite associated with other solid tumors. They proposed that VEGF and ganglioside synthesis pathway might be linked, working in tandem to suppress immune responses. The data proposed suggest that VEGF could modulate ganglioside GD3 expression confirming that ovarian cancer associated GD3 is responsible for suppressing CD1d-mediated NKT cell activation. This malignant overproduction of immunodepressive ganglioside could be reduced after 72h of genistein treatment.

Phenoxodiol is a sterically modified version of genistein, with a higher bioavailability, a lower rate of metabolism and increased antitumor potency. According to Gamble et al. [67] phenoxodiol...
may be an effective anticancer drug, targeting the proliferation of the tumor cells and the angiogenic
and inflammatory stimulation of the vasculature. These findings involve different enzymatic
pathways, one of them concerning sphingolipids. It inhibited SphK which has been recently
correlated with endothelial cell activation, angiogenesis and oncogenesis. Hence, the inhibitory effect
of phenoxodiol on pro-survival signals such as SphK, and its downstream product Sph-1P, might
contribute to arrest mitosis, to reduce angiogenesis and to promote apoptosis.

Figure 4 Mechanism of modulation on sphingolipids by chrysin, curcumin and genistein.
It is depicted with an asterisk (*) enzymatic pathway, with plus (+) red-regulated pathway and with
minus (-) down-regulation ones.

3.9 Luteolin

Luteolin (3’,4’,5,7-tetrahydroxyflavone) is a naturally occurring flavone, another subtype of
flavonoid, found in food sources such as broccoli (*Brassica oleracea*), green chili (*Capsicum* spp.), onion
leaf (*Allium unifolium*), French bean (*Phaseolus vulgaris*), carrot (*Daucus carota*), white radish (*Raphanus sativus var. longipinnatus*) and in infusion of clover blossom (*Trifolium pratense*) [41].

Luteolin anti-carcinogenic properties expand over a wide range of malignancies and are associated
to multiple effects, such as inhibition of cell proliferation, angiogenesis, metastasis, induction of
apoptosis, and sensitization to chemotherapy. Nevertheless, the molecular mechanisms underlying
luteolin actions, and particularly those related to its chemotherapeutic potential, remain largely
unclear.

Hadi et al. [68] conducted an important research aimed to demonstrate a connection between
luteolin and apoptosis in colon cancer cells. First, luteolin elevates Cer levels, followed by apoptotic
death of colon cancer cells, but not in differentiated enterocytes. Second, luteolin impaired the ER-
Golgi transport through a vesicle-mediated route of Cer prompt to a dysregulation of
Cer/sphingolipid ratio: Cer elevation was accompanied by a significant reduction of both SM and
glycosphingolipids. This effect may be correlated with the inhibition of AKT phosphorylation which
emerges as a key mechanism affecting this vesicles route. Third, inhibits the production of Sph-1P by
a SphK2 hindrance. Moreover, luteolin was proven to unbalance the sphingolipid rheostat by
bending it to apoptosis, in colon cancer cells.
3.10 Morin

Morin (3, 5, 7, 2′, 4′-pentahydroxyflavone) is a flavonoid polyphenol of the class of flavonols. It is a yellow pigment that could be isolated from non-edible Osage orange (Maclura pomifera) and old fustic (Maclura tinctoria). Morin is also present in dietary infusions of white mulberry leaves (Morus alba), in figs (Ficus carica), in almond (Prunus dulcis), guava (Psidium guajava) and wine [69]. Morin is a flavonol that exhibits antiproliferative, antitumor, and anti-inflammatory effects through a mechanism that is not well understood.

Manna et al. [70] proposed that morin mediates its effects by modulating transcription factor nuclear factor-κB (NF-κB) in the control of cell survival, proliferation, and tumorigenesis. NF-κB is a heterodimeric protein complex of members of the Rel protein family. NF-κB morin-mediated transcription can be promoted by a wide variety of inflammatory stimuli, including Cer.

3.11 Quercetin

Quercetin is a naturally occurring flavonol found in high concentrations in red onions (Allium cepa), citrus fruits (Citrus spp.), apples (Malus domestica), red wine, and sour cherry seeds (Prunus cerasus) [41].

A study done by Ferrer et al. [71] showed that intravenous administration of quercetin prevents metastatic growth of highly malignant B16 melanoma F10 cells, by enhancing NO release from the vascular endothelium through an increment of eNOS expression. The raise of NO promotes cytotoxicity and an activation of nSMase, thus increasing Cer and apoptosis.

Torres et al. [72] reported that the derivative of quercetin THDF (5,7,3′-trihydroxy-3,4′-dimethoxyflavone) inhibits cell proliferation and induces apoptosis in human leukemia cells (HL-60 and U937) by a disruption of tubulin polymerization and an activation of aSMase-dependent generation of Cer correlated with cell death.

![Diagram of modulation on sphingolipids](image)

Figure 5 Mechanism of modulation on sphingolipids by luteolin, morin and quercetin. It is depicted with an asterisk (*) enzimatic pathway, with plus (+) red-regulated pathway and with minus (-) down-regulation ones.

3.12 Resveratrol

Res (3,5,4′-trihydroxy-trans-stilbene) is a natural stilbene found in several plants including blueberries (Vaccinium sect. Cyanococcus), mulberries (Morus spp.), cranberries (Vaccinium subgenus Oxycoccus), peanuts (Arachis hypogaea), grapes (Vitis spp.), rhubarb (Rheum spp.) and wine. It has been reported to have anti-cancer, anti-inflammatory, anti-cardiovascular disease and blood-sugar lowering properties [73], [74]. It has been classified as phytoalexin for being synthesized in spermatophytes in response to injury, UV irradiation and fungal attack. It exists in both trans and cis isomeric forms, the trans isomer being more frequent. In plants, Res is generally found in glycosylated forms, known as 3-O-β-D-glucosides, and called piceids. Other natural Res analogues contain pterostilbene and piceatannol [75]. Anticancer properties of Res are quite complex, comprehensive of different mechanisms. It can affect the processes underlying all three stages of carcinogenesis (tumor
initiation, promotion and progression), angiogenesis and metastasis. Its activity against cancer appear to be closely associated with mutational activation of Ras, deregulation of myc, overexpression of AP-1, amplification of cell cycle regulator cyclins D/E and Cdk5, mutation of Fas and Bax, deletion of p53, disruption of DNA-damage response regulators Chk1/2 and ATM/ATR, overexpression of survival kinase AKT1, mutation of cell cycle inhibitors and traslocation of anti-apoptotic Bcl-2 [76]. We focus here the several Res anticancer properties triggered by modulation of sphingolipid metabolism.

Shin et al. [78] established that Res leads to the accumulation of endogenous Cers and significantly increases DHCers especially DH Cer-C24:0 (containing lignoceric acid) in SNU-1 gastric cancer cells and HT-29 colon adenocarcinoma cells. The accumulation of DH Cer with different fatty acid chain lengths (C24:0 > C16:0 > C24:1 > C22:0) was powerfully associated with Res- induced cell cytotoxicity although the inhibition of DHCD was not found as a critical mechanism but only a partial one. The effect of Res was drastically increased by dimethylsphingosine, a non-specific SphK inhibitor, and by retinamide (4-HPR), a non-specific DHCD inhibitor, but not by GT-11, a specific DHCD inhibitor. The Res cytotoxic effect is cell-specific: SNU-1 and HT-29 are highly sensible in contrast with SNU-668.

According to Lin et al. [79] Res and Cer could be used in sequence or in combination for chemoprevention and cancer treatment due to their similarities in transduction pathways to induce apoptosis in human ovarian cancer OVCAR-3 cells. Cer and Res utilize an endocytic- and activated ERK1/2 dependent pathway to induces apoptosis in human ovarian cancer cells. Additionally, exposure to these compounds induces expression and nuclear accumulation of COX-2 without affecting COX-1, Ser-15 phosphorylation of p53 and accumulation of Bcl-xS. By contrast only Cer utilizes both p38 kinase-dependent pathway and ERK 1/2-dependent pathway whereas Res only the latter one. However, the relationship of COX-2 protein on cancer is not easy to establish: some studies reported an expression of COX-2 in cells associated with tumor cell growth, metastasis, enhanced cellular adhesion and inhibition of apoptosis [80] whereas others suggested a pro-apoptotic activity [81].

Lim et al. [82] showed that Res and its dimers (ampelopsin A and balanocarpol) could perturb SphK 1-mediated signaling in MCF-7 breast cancer cells. Ampelopsin A and balanocarpol are dimers of Res formed by the fusion of cis- and trans-isomers and they could be extracted and isolated from plants in the Dipterocarpaceae family such as Hopea dryobalanoides and Hopea odorata, but their use as food products is very limited. In this study, Res was found to be a competitive inhibitor of SphK1 and balanocarpol is about twice as potent as Res on kinase inhibition because of its binding to two catalytic sites simultaneously. The mechanism of down-regulation of SphK1 expression might involve changes in its protein turnover by ubiquitin-proteasomal or modification in lysosomal-cathepsin B proteolysis or alterations in gene promoter activity.

In agreement to [82], Tiang et al. [83] proposed Res to be an apoptotic agent in myelogenous leukemia cell line K562 by modulation of SphK1, by translocation of the enzyme from the membrane to the cytosol. The kinase activity is, indeed, clearly repressed granting a restoration of sphingolipid balance. Sph-1P level decreases whereas Cer level increases.

Cakir et al. [84] showed that Res induces apoptosis through concurrent increase of de novo Cer and decrease of anti-apoptotic Sph-1P and GlcCer. Not only, targeting Cer metabolism increased chemosensitivity of acute myeloid leukemia cells to Res.

Kartal’s study [85] was also focused on the relationship between the sphingolipid pathway, Res and human K562 chronic myeloid leukemia cells. A synergistic anti-proliferative effect was observed with Res in combination with Cer-C8 (a cell-permeable analogue of natural Cer which increases intracellular Cer levels significantly inducing de novo generation), with PDMP, an inhibitor of GlcS, and with PF-543, a SphK1 inhibitor. As they increment the intracellular concentration of Cer by application of exogenous Cer (Cer-C8), by disrupting the conversion of Cers to GlcCer or by
interrupting the activity of SphK1, the sensitivity of K562 cells to Res increased synergistically. Moreover, they showed that Res triggers apoptosis through raising expression of longevity assurance genes (LASS2, LASS4, LASS5, LASS6) correlate with down-regulation of GlcS and SphK 1.

Chow et al. [86] reported an abnormal accumulation of Cer via activation of SPT resulting in an ER dilation/expansion and thus ER stress. ER stress is, indeed, firmly associated with cell apoptosis by mechanisms involving direct activation of ER-associate caspases (3, 9 and 12) and CHOP, a common downstream pro-apoptotic molecule of unfolded protein response.

Wang et al. [87] described two divergent mechanisms of Res in melanoma B16 cells. They showed an inhibition of B16 cells growth via induction of mitochondrial apoptosis and contemporary inducing protective autophagy, through Cer accumulation and AKT/mTOR pathway inhibition. Interruption of the autophagy program leads to an improvement of the efficacy of Res cytotoxicity and apoptosis. It was the first study revealing that Res-induced accumulation of Cer conferred protection of B16 cells against apoptosis, inducing protective autophagy.

Another mechanism was proposed according to Mizutani et al. [88]. Inhibition in K562 (a human leukemia cell line) and HTC16 (a human colon cancer cell line) by Res was correlated to up-regulation of Cer and aSMase expression and down regulation of Sph-1P. This study suggested a possible relationship between Res-induced cell growth inhibition and the sphingolipid metabolism modulation.

As previous mentioned, cathechin and Res synergically inhibit SphK1 activity, via a novel ERK/PLD-dependent mechanism in prostate cancer cells (C4-2B hormone-responsive and PC-3 hormone-refractory) acting as a possible anti-cancer effectors [22].

According to Scarlatti et al. [89] activation of the de novo Cer synthesis by Res is the mechanism underlying its growth inhibitory effect on the metastatic, drug-resistant and highly invasive breast cancer cell line MDA-MB-231. This accumulation derives from both de novo Cer synthesis and SM hydrolysis by activation respectively of SPT and nSMase.

Scarlatti et al. [90] presented that pretreatment with Res enhances tumor cell killing and inhibits the clonogenic survival in resistant irradiated-DU145 prostate cancer cells, affecting synergistically the cellular response to ionizing radiation. This event was mediated by an increase in cellular de novo Cer levels.

Dolfini et al. [91] demonstrated that targeting Cer signaling with Res might offer a potential strategy to prevent the growth of hormone-independent breast cancer. Res exerts a drastic growth inhibitory effect on MDA-MB-231 cells grown both in vitro and in vivo. It affects the aggregation properties of MDA-MB-231 cells into multicellular tumor spheroids, in association with induction of de novo synthesis of ceramide.

Minutolo et al. [92] showed that a synthesized derivative of Res [5-(6-hydroxynaphthalen-2-yl)benzene-1,3-diol] is more effective in triggering apoptosis, coupled to the induction of endogenous Cer in human cancer cells MDA-MB-231. Since the Res biological activity in cancer cells is limited by its photosensitivity and metabolic instability, the authors replaced the 3,5-hydroxy groups with more stable methoxy groups, thus obtaining compound with increased anti-proliferative activity.

Moreover, the stabilization of the stilbene double bond of Res by a naphthalene ring increases the molecular rigidity improving dramatically the biological activity via a Cer-mediated pro-apoptotic mechanism, coupled to cleavage of PARP.

3.13 Silibinin

Silibinin is the most active and major component (60-70%) of silymarin, a standardized extract from the seeds of the milk thistle seeds (Silybum marianum). Other flavonolignans consist in silibinin, isosilibinin, silychristin, isosilychristin and silydianin. Silibinin is a mixture of two diastereomers, silybin A and silybin B, in approximately equimolar ratio [93]. It has been used in the prevention and treatment of viral hepatitis, cirrhosis caused by alcohol abuse, liver damage caused by medications or industrial toxins in traditional and modern medicine. Silibinin effects are due to different mechanisms, namely free radical trapping, prevention of lipid
peroxidation, increment of proapoptotic protein (Bax, p53), decrement of anti-apoptotic proteins (Bcl-2 and Bcl-xL) and anti-cancer activity.

Boojara et al. [94] investigated the effects of four silibinin derivatives (silibin A, silibin B, 3-O-galloyl-silybin A and 3-O-galloyl-silybin B) on cell viability, caspase assessment, total Cer levels and Cer-metabolizing enzyme in Hep G2 hepatocarcinoma cell line. Exposure to silibinin isomers and gallate derivatives to human liver carcinoma cells resulted in an increase of total cellular Cer levels. Gallate derivatives had a stronger ability in Cer content elevation in comparison with silybin A and B. The activity of αCDase (the enzyme involved in catabolism of Cer to Sph) was markedly inhibited by silybin B, 3-O-galloyl-silybin A and 3-O-galloyl-silybin B. The activity of nSMase was increased by treatment with silybin A, silybin B and 3-O-galloyl-silybin A and 3-O-galloyl-silybin B.

3.14 Xanthohumol

Xanthohumol (3′-3,3-dimethyl allyl)-2′,4′,4′-tri hydroxy-6′-methoxychalcone) is the principal prenylated chalcone of the female inflorescences of the hop plant (Humulus lupulus), the principal ingredient of beer, used to add bitterness and flavor. Thus, the main dietary source of xanthohumol and related prenylflavonoids is beer. Although the thermal isomerization of chalcones into flavanones during the brewing process lower their concentration, relatively high levels of xanthohumol in beer are due to a second addition of hops to the boiling wort.

Xanthohumol has been shown to elicit anti-inflammatory, antiangiogenic, anticancer, antibacterial, antifungal, antimalarial and antiviral effects. It favorably influences also sleep disorders and menopausal symptoms in women, acting as an estrogen by its metabolites isoxanthohumol and 8-prenylnaringenin. According to Xuan et al. [95] xanthohumol stimulates αSMase in dendritic cells, derived from mouse bone marrow, leading to Cer formation and caspase activation. The sequence of events postulated was: i) translocation of αSMase onto cell surface; ii) formation of Cer; iii) autocatalysis of caspase 8; iv) activation of caspase 3; v) DNA fragmentation and proteolysis of intracellular proteins.

Figure 6 Mechanism of modulation on sphingolipids by silibinin, xanthohumol and Res. It is depicted with an asterisk (*) enzymatic pathway, with plus (+) red-regulated pathway and with minus (-) down-regulation ones.
4. Conclusions

Cancer treatment and cancer prevention are a perpetual challenge for clinicians and for the whole scientific community. Nutrients on their own appear a good strategy in prevention more than in cancer therapy. However, chemotherapy has gradually transitioned from monotherapy to multidrug therapy. It is believed that a combination of classical chemotherapy with nutrients and especially with polyphenols dietary sources may improve efficacy and diminish negative side effects of antineoplastic drug. In this multifaceted scenario sphingolipids play a pivotal role as bioactive molecules, controlling several aspects of cancer from cell growth, proliferation to anti-cancer therapeutics. Further research on the crosstalk between polyphenols and sphingolipids could lead to better understand their reciprocal roles and to develop new therapeutical strategies against cancer.

Acknowledgments: MDC is supported by the PhD program in Molecular and Translational Medicine of the University of Milan, Italy.

Conflicts of Interest: “The authors declare no conflict of interest.”

List of abbreviation

- 3-KDS: 3-keto dihydrosphingosine
- 4-HPR: retinamide
- aCDase: acid ceramidase
- AIF: apoptosis inducing factor
- AKT: protein kinase B
- AP-1: activator protein 1
- aSMase: lysosomal acidic sphingomyelinase
- ATF6: activating transcription factor-6
- ATM: ataxia-telangiectasia mutated kinase
- ATR: serine/threonine-protein kinase ATR or ataxia telangiectasia and Rad3-related protein
- BAX: apoptosis regulator BAX
- Bcl-2: B-cell lymphoma 2
- Bcl-xL: B-cell lymphoma-extra large
- Bcl-xS: B-cell lymphoma-xS
- BCR/ABL: Philadelphia chromosome
- c-FOS: cellular DNA-binding proteins encoded by the c-fos genes
- CAPE: caffeic acid phenethyl ester
- CDase: ceramidase
- Cdc25C: gene for M-phase inducer phosphatase 3
- Cdk1: cyclin-dependent kinase 1
- Cer: ceramide
- Cer-1P: ceramide-1-phosphate
- CerK: ceramide kinase
- CerS1-CerS6: ceramide synthases
- CERT: ceramide transfer protein
- cGMP: cyclic guanosine monophosphate
- Chk1/2: checkpoint kinase ½
- CHOP: C/EBP homology protein
- CHOP: transcription factor CCAAT-enhancer-binding protein homologous protein
- COX: cyclooxygenase
- COX-2: cyclooxygenase 2
- cPLA2: cytosolic phospholipases A2
- CREB: cAMP response element-binding protein
- DHCD: dihydroceramide desaturase
- DHCer: dihydroceramides
- DHSph: dihydrosphingosine or sphinganine
- EGCG: epigallocatechin-3-gallate
EGF epithelial growth factor
ELISA enzyme-linked immunosorbent assay
ENOX Ecto-NOX disulfide-thiol exchanger
ENSA electrophoretic mobility shift assay
ER estrogen receptor
ER endoplasmic reticulum
ERK extracellular signal regulated kinase
FACS fluorescence activated cell sorted
Fas first apoptosis signal receptor
FITC fluorescein isothiocyanate
GalCer galactosylceramide
GC/MS gas chromatography tandem mass spectrometry
GD3 ganglioside GD3 or disialosyllactosylceramide
GlcCer glucosylceramide
GlcS glucosylceramide synthase
GPR30 G protein-coupled receptor for estrogen
GSK-3 glycogen synthase kinase 3
GT-11 N-((1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl)octanamide
GW4869 N,N′-Bis[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]-3,3′-p-phenylene-bis-acrylamide
HIF-1α hypoxia-inducible factor-1α
HNSCC head and neck squamous cell carcinoma
HPLC high performance liquid chromatography
HPTLC high performance thin layer chromatography
I2PP2A protein phosphatase 2A inhibitor 2
IKK lIκBα kinase
IκBα inhibitory subunit of NF-κB
JAK janus kinase
JNK c-jun N-terminal kinase
KDSR 3-ketodihydrosphingosine reductase
LacCer lactosylceramide
LASS longevity assurance genes
Lc3:GlcNAcβ1-3Galβ1-4Glcβ-Cer
LPS lipopolysaccharides
MAPK mitogen activated protein kinase
MPM-2 mitotic protein monoclonal 2
mTOR mammalian target of rapamycin
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NADH reduced form of Nicotinamide adenine dinucleotide
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NGF nerve growth factor
NGFR nerve growth factor receptor
nSMase neutral sphingomyelinase Mg-dependent
P-gp permeability glycoprotein
p38 MAPK p38 mitogen activated protein kinase
p53 tumor protein p53
p75NTR low-affinity nerve growth factor receptor or p75 neurotrophin receptor
PA phosphatidic acid
Par-4 prostate apoptosis response 4
PARP poly (ADP-ribose) polymerase
PDMP DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol
PI3K phosphatidylinositol 3-kinases
PKC/PKA protein kinase C/protein kinase A
PLC phospholipase C
PLD phospholipase D
References

25. Moussavi, M. Insight into the mechanisms by which apigenin, curcumin and sulforaphane induce apoptosis in colon cancer cells 2003.

