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Abstract: A critical quality attribute of therapeutic monoclonal antibodies (mAbs) is the terminal 

sugar molecules of the N-linked glycan attached to the fragment crystalizable (Fc) region. There 

exists naturally-occurring heterogeneity in the N-linked glycan structure of mAbs, and such 

heterogeneity has a significant influence on the clinical safety and efficacy of mAb drugs. We 

previously proposed a constraint-based modeling method called glycosylation flux analysis (GFA) 

to characterize the rates (fluxes) of intracellular glycosylation reactions and applied the method to 

examine the N-linked glycosylation of immunoglobulin G (IgG) in fed-batch Chinese hamster ovary 

(CHO) fed-batch cultivations. In this work, we significantly improved the computational efficiency 

of the GFA, and employed the method to analyze the glycosylation of IgG in continuous perfusion 

CHO cultivations. Perfusion cell cultures have several advantages over the traditional (fed-)batch 

operation, including higher productivity per unit volume of reactor and more consistent product 

quality. The GFA showed that as in the fed-batch cultivation, the dynamical changes of IgG glycan 

heterogeneity in the perfusion culture are mainly attributed to alterations in the galactosylation flux 

activity. Furthermore, a regression analysis of the galactosylation flux activity using random forest 

regression linked the dynamics of galactosylation activity with the cell-specific productivity of IgG 

and the extracellular ammonia concentration.  

Keywords: N-linked glycosylation; perfusion cell culture; CHO cells; constraint-based modeling; 

monoclonal antibody  

1. Introduction 

Therapeutic recombinant monoclonal antibodies constitute the most important class of drugs in 

the biopharmaceutical industry, making up approximately half of the total revenue of 

biopharmaceutical products in 2013 [1]. The production of mAb drugs typically employs (fed-)batch 

cultivations of mammalian cells. The state of the art (fed-)batch cell cultures are able to meet the large 

production volume requirement of mAbs with reactors of up to 25,000 L [2]. Nevertheless, the 

increasing number of mAb products entering different stages of clinical trials and the burgeoning 

market of biosimilars driven by impending patent expirations of blockbuster mAb drugs, give strong 

motivation for the development of new production technology that is more robust and cost effective 

[3]. The US Food and Drug Administration (FDA) initiative on quality by design and process 

analytical technology put further stress on implementing quantitative approaches for process 

improvements in biopharmaceutical manufacturing [4,5].  

Continuous manufacturing technology offers an effective and flexible way for large scale and 

robust production of drug compounds [6]. In the biopharmaceutical industry, the application of 

continuous cell culture technology has thus far been limited to the production of unstable products 

that require constant recovery [7]. Nevertheless, continuous perfusion cell cultures have previously 

been demonstrated to be capable of producing antibodies at a volumetric rate that match or exceed 
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that of fed-batch cultures [8]. In addition to the high productivity, the stable steady state operation 

mode in conjunction with the short residence time of perfusion cultures translate to a tight 

maintenance of product quality.  

Among the most important critical quality attribute (CQA) of therapeutic mAbs is the glycan 

structures of the Fc domain [9]. The N-linked glycosylation is a common post-translational 

modification of proteins, a process that occurs in the endoplasmic reticulum (ER) and Golgi 

apparatuses. The Fc glycan structure has been shown to impact protein folding [10], clearance [11], 

bioactivity [12], efficacy [13] as well as immunogenicity [14]. Moreover, there exists naturally-

occurring heterogeneity in the glycosylation of mAbs. Thus, the FDA approval of mAb drugs is given 

for a particular composition of mAb glycoforms [5]. Because of the importance of N-linked 

glycosylation, the majority of recombinant mAb drugs are produced using mammalian host cells in 

order to achieve human-like glycan structures [15]. In particular, CHO cells have become the major 

expression host for the biopharmaceutical production of therapeutic mAbs [16].  

The N-linked glycosylation of mAbs has been shown to depend on the host genetic background 

[17], expression vector [18], media composition [9], media supplements [19], and bioprocess 

parameters [20]. But, the mechanism of the above dependence remains to be established [21]. Toward 

closing this gap, mathematical models of the glycosylation network have previously been developed 

[22–28]. Many of these models have a large number of unknown and system-specific kinetic 

parameters that need to be fitted to experimental data [22–25]. A number of parameter-free models 

have also been proposed to study the N-linked glycosylation process based on the constraint-based 

modeling approach (i.e. stoichiometric models) [26–28]. Recently, we proposed a flux analysis 

method, called glycosylation flux analysis, which provides predictions of the rate or flux of 

intracellular glycosylation reactions using the stoichiometric model of the glycosylation network and 

the cell secretion rates of mAb glycoforms [28]. Similar to the well-known metabolic flux analysis 

(MFA), the GFA is based on the molar balances of glycoforms involved in the glycosylation reaction 

network under the pseudo steady state assumption [29]. The GFA further makes use of the relatively 

small number of enzymes involved in the glycosylation process to reduce the degrees of freedom in 

the flux estimation [30]. More specifically, we assumed that glycosylation fluxes vary with time 

according to a (global) cell-specific factor and a (local) enzyme specific factor. When applied to study 

the IgG production of CHO cells in fed-batch cultivations, GFA was able to give insights on how 

changes in the media affect the glycosylation reactions [28].  

The formulation of the flux estimation in the GFA involves a nonlinear least-square regression, 

which requires computationally intensive global optimizations [28]. In this work, we improved the 

computational efficiency of the GFA by decomposing the flux estimation into two iterative linear 

regression problems. Subsequently, we applied the improved GFA to analyze the N-linked 

glycosylation of IgG in perfusion CHO cell cultures, to elucidate the key controlling factors and to 

identify differences in the IgG glycosylation– if any – between the continuous perfusion and fed-

batch cultivations. 

2. Materials and Methods 

2.1. Continuous perfusion cell cultures 

The detailed procedure of the perfusion cell culture is available elsewhere [31]. Here, we provide 

a brief summary of the experiments. A proprietary CHO cell line expressing IgG1 was cultured using 

a previously developed 1.5 L perfusion cell culture setup [32], as depicted in Figure 1. In total, four 

perfusion cell culture experiments were performed with different viable cell density (VCD) and 

perfusion rate (PR) set-point profiles, as shown in Figure 2. Each of the experiments was inoculated 

following the same procedure. CHO cells were held back in the reactor by a cell retention device so 

that only cell free reaction mixture left through the harvest stream. The feed flowrate (F) of fresh 

media into the reactor and the bleed (B) and harvest (H) flowrates out of the reactor were balanced 
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to keep the reactor volume constant. The perfusion rate (PR) is given by the flowrate through the 

reactor, as follows: 

PR = H + B = F 
(1) 

The perfusion rate represents the rate of fresh media supplied to the cells. We define the cell-specific 

perfusion rate (CSPR) as the rate of fresh media per cell:  

CSPR =
PR

VCD
 

(2) 

During the experiments, there following measurements were collected on a daily basis: cell counts 

and cell viability, concentrations of glucose, lactate and ammonia, IgG titer, and protein glycan 

distribution.   

 

Figure 1. A schematic of perfusion cell culture reactor1. CHO cells are cultivated in suspension in a 

continuous stirred tank reactor with continuous feeding of fresh nutrients. Cell-free spent media is 

constantly collected in the harvest stream, while cells remain in the stirred tank reactor thanks to a 

cell retention device. A bleed stream removes a small fraction of the reactor mixture, including 

biomass, which is used to regulate the viable cell density. 

                                                 

1 Figure adapted from [32] with the permission from the authors. 
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Figure 2. Perfusion cell culture experiments. Four perfusion cell culture experiments were conducted 

with varying VCD and PR given set-points (lines). The experimental VCD and PR are shown as blue 

filled squares and red empty triangles, respectively. 

2.2 Estimation of IgG glycoforms secretion fluxes 

As inputs to the GFA, the cell-specific secretion flux of each IgG glycoform (𝑣E,𝑖) was determined 

based on the molar balance in the reactor, as follows 

𝑉
𝑑𝑐E,𝑖(𝑡)

𝑑𝑡
= 𝑉𝑣E,𝑖(𝑡)VCD(𝑡) − (H(𝑡) + B(𝑡))𝑐E,𝑖(𝑡) 

(3) 

where 𝑐E,𝑖 denotes the concentration of the i-th IgG glycoform and V denotes the reactor volume. 

Since the reactor volume is kept (approximately) constant, Equation (3) can be rearranged to give: 

𝑣E,𝑖(𝑡) =
(
𝑑𝑐E,𝑖(𝑡)

𝑑𝑡
+ (h(𝑡) + b(𝑡))𝑐E,𝑖(𝑡))

VCD(𝑡)
 

(4) 

The variables h(t) =
H(t)

V
 and b(t) =

B(t)

V
 represent the specific harvest and bleed rate, respectively. 

The concentration of the IgG glycoform (cE,i) was calculated as the product of the measured glycoform 

fraction (fi) and the IgG titer (T) according to: 

cE,𝑖(𝑡𝑘) = f𝑖(𝑡𝑘)T(𝑡𝑘) (5) 

where 𝑡𝑘  denotes the k-th measurement time point. For the estimation of the secretion fluxes in 

Equation (4), the computed concentration of IgG glycoforms cE,𝑖(𝑡𝑘) was first smoothened (as a 

function of time) using spline fitting. The time derivative 
𝑑𝑐E,𝑖(𝑡)

𝑑𝑡
  was then evaluated by taking the 

first order derivative of the spline curve.  

2.3 Glycosylation Flux Analysis  
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The glycosylation flux analysis is based on a constraint-based modeling of the protein 

glycosylation reaction network to evaluate the intracellular glycosylation fluxes using the secretion 

rates of mAb glycoforms. Like the MFA, the GFA uses a pseudo steady state assumption to derive 

the stoichiometric model of the glycosylation process, as follows: 

𝑑𝐜I(𝑡)

𝑑𝑡
= 𝐒𝐯I(𝑡) − 𝐯E(𝑡) = 0 

(6) 

where 𝐜I denotes the vector of m intracellular IgG glycoform concentrations, 𝐯I denotes the vector 

of n intracellular IgG glycosylation reaction fluxes (rates), 𝐯E denotes the vector of secretion fluxes 

of IgG glycoforms estimated above, and S denotes the 𝑚 × 𝑛  stoichiometric matrix. The (i,j)-th 

element of S gives the number of the i-th glycoform molecule produced (if positive) or consumed (if 

negative) by the j-th glycosylation reaction. Since the number of reaction fluxes (i.e. the number of 

unknowns) typically exceeds that of glycoforms (i.e. the number of equations), the estimation of 𝐯I 

from 𝐯E in Equation (6) is underdetermined.  

To address the issue of underdetermined regression, in the GFA each glycosylation flux vI,𝑗(𝑡) 

is computed as the product of a reference flux value vI,𝑗
ref, an enzyme specific factor 𝛼𝐽(𝑡) and a 

cell-specific factor 𝛽(𝑡), as follows: 

vI,𝑗(𝑡) = 𝛼𝐽(𝑡)𝛽(𝑡)vI,𝑗
ref (7) 

The variables 𝛼𝐽(𝑡)  and 𝛽(𝑡)  represent the fold-change amplification or attenuation, and can 

therefore be normalized to 1 at a chosen reference time point 𝑡ref . The cell-specific factor 𝛽(𝑡) 

captures the (global) influence of the cell metabolism on the glycosylation process, more specifically 

the total amount of mAb entering/leaving the glycosylation network. For this reason, 𝛽(𝑡)  is 

represented by the ratio of the cell-specific productivity (qmAb) between time t and the reference time 

𝑡ref, as follows: 

𝛽(𝑡) =
qmAb(𝑡)

qmAb(𝑡
ref)

  
(8) 

Meanwhile, the factor 𝛼𝐽(𝑡) describes the (local) influence of enzymatic processing capacity, 

which captures the dependence of glycosylation on factors such as enzyme expression and activity, 

as well as co-factor and nucleotide sugar availability. Note that the number of enzymes involved in 

the glycosylation network is typically much smaller than the number of reactions, as an enzyme 

catalyzes multiple reactions. Thus, the estimation of 𝐯I(𝑡) can be reformulated to fitting 𝛼𝐽(𝑡) and 

vI,𝑗
ref to the secretion fluxes, as follows: 

min
𝛼𝐽(𝑡),vI,𝑗

ref
Φ = ‖𝐒𝐯I(𝑡) − 𝐯E(𝑡)‖𝟐

𝟐 (9) 

For a more detailed derivation of the GFA, we refer the interested readers to the original publication 

[28]. 

The formulation in Equation (9) is a nonlinear programming problem that requires a global 

optimization algorithm to solve. In the following, we describe an alternative and more 

computationally efficient procedure for solving the regression problem in the GFA. The procedure is 

based on decomposing the nonlinear least square regression above into two linear regression 

problems. First, for a given reference flux vector 𝐯I
ref , one can formulate the following linear 

regression problem to obtain the least square estimate of 𝛼𝐽: 
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𝐯E(𝑡𝑘) = 𝛽(𝑡𝑘)𝐒𝚿I𝛼(𝑡𝑘) = 𝛽(𝑡𝑘)𝐒

[
 
 
 
 
 
 
 
 
vI,1

ref

⋮ 0
vI,𝑛𝐽1

ref

vI,𝑛𝐽1+1

ref 0

0 ⋮
vI,𝑛𝐽1+𝐽2

ref

⋱ ]
 
 
 
 
 
 
 
 

[

𝛼𝐽1(𝑡𝑘)

𝛼𝐽2(𝑡𝑘)

⋮

] (10) 

where 𝚿I is an 𝑛 × 𝑒 matrix with e being the number of enzymes involved in the glycosylation 

network, and 𝑛𝐽𝑙
 is the number of fluxes catalyzed by the enzyme 𝐽𝑙. 𝚿I is constructed by grouping 

the reference fluxes (vI,𝑗
ref) according the enzyme that catalyzes the reactions, and stacking each group 

(block-)diagonally. In this manner, each vI,𝑗
ref is multiplied with the corresponding enzyme specific 

factor (𝛼𝐽). On the other hand, given 𝛼𝐽(𝑡𝑘), one can obtain the least square values of vI,𝑗
ref using 

the following linear regression problem:  

𝐯E(𝑡𝑘) = 𝛽(𝑡𝑘)𝐒𝛀(𝑡𝑘)vI,𝑗
ref = 𝛽(𝑡𝑘)𝐒

[
 
 
 
 
 
 
 
𝛼𝐽1(𝑡𝑘)

⋱
𝛼𝐽1(𝑡𝑘) 0

𝛼𝐽2(𝑡𝑘)

⋱
0 𝛼𝐽2(𝑡𝑘)

⋱ ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

vI,1
ref

⋮
vI,𝑛𝐽1

ref

vI,𝑛𝐽1+1
ref

⋮
vI,𝑛𝐽1+𝑛𝐽2

ref

⋮ ]
 
 
 
 
 
 
 

 (11) 

where 𝛀 is an 𝑛 × 𝑛 diagonal matrix with the enzyme specific factor (𝛼𝐽) as its diagonal elements. 

Given the two linear regressions in Equations (10) and (11), we estimated 𝜶𝑱  and 𝐯𝐈
𝐫𝐞𝐟 

following an iterative procedure as follows:  

(1) generate a uniformly distributed random vector of 𝐯I
ref within a biologically feasible range 

(vI,𝑗
ref ∈ [0, 25pg/Cell/day]),  

(2) given 𝐯𝐈
𝐫𝐞𝐟 from (1), solve for or update 𝜶𝑱 using Equation (10),  

(3) given 𝜶𝑱 from (2), solve for or update 𝐯𝐈
𝐫𝐞𝐟 using Equation (11), and  

(4) repeat step (2) and (3) until the change of Φ as described in Equation (9) becomes smaller 

than a threshold (10−10).  

Equations (10) and (11) were solved using the MATLAB subroutine lsqlin constraining 𝜶𝑱  to 

values between 0 and 20 and 𝐯𝐈
𝐫𝐞𝐟 to be positive. In order to improve the chance of obtaining the 

global minimum Φ , we adopted a multi-start strategy and ran the aforementioned iterative 

estimation for multiple random initial vectors of 𝐯I
ref. Among the results of the multi-start runs, we 

took the best 𝜶𝑱 and 𝐯𝐈
𝐫𝐞𝐟 values that correspond to the minimum value of Φ. Note that the multi-

start strategy above is embarrassingly parallel, and can be easily implemented on a multiprocessor 

or cluster computing platform.   

We compared the computational speed of the iterative GFA above with that of the original 

formulation in analyzing the perfusion cell culture datasets. On a test computer (3.33GHz Intel Xeon 

W3680, 18GB RAM), the original formulation of GFA using the global optimization toolbox MEIGO 

[32] required at least 42 minutes to converge, and only 1 out 10 repeated runs of the original GFA 

converged to an optimal solution with the same minimum Φ value as the iterative GFA. Meanwhile, 

the iterative GFA converged to the optimal solution within 5 minutes using 250 random starting 

points. Of note, among the 250 random starts, 40% converged to the final minimum Φ  value, 

implying that 100 runs would have been sufficient in this particular analysis.  

2.4 Random forest for regression 
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For identifying explanatory variables of the dynamical changes in the galatosyltransferase 

activity 𝛼𝐽,GalT, we formulated a regression problem using the change in GalT enzyme-specific factors 

over time 𝑑𝛼𝐽,GalT 𝑑𝑡⁄  as the response variable, and experimental parameters of perfusion cell 

cultures as predictor variables. More specifically, we are interested the following regression problem: 

𝑑𝛼𝐽,GalT

𝑑𝑡
= 𝑔(𝑡, 𝛼𝐽,GalT, 𝐩) 

(12) 

which describes the dynamic change in 𝛼𝐽,GalT using the function 𝑔(𝑡, 𝛼𝐽,GalT, 𝐩) that depends on 

time, 𝛼𝐽,GalT, and process parameters p. Note that the function 𝑔(𝑡, 𝛼𝐽,GalT, 𝐩) is likely nonlinear in 

nature. Here, we employed Random Forest (RF) [34] to build the above regression model using data 

from all four perfusion cell culture experiments. RF regression involves building an ensemble of 

unpruned regression trees, in which each regression tree is created using a bootstrap sample of the 

original dataset. At each node of a tree, a subset of predictors is selected randomly to determine the 

best decision split of the samples. The final prediction of the regression trees in RF is obtained by 

averaging the predictions of the entire ensemble. Notably, RF regression is able to capture nonlinear 

dependencies of the response variable on the predictors.  

In our work, we applied RF using normalized data of each variable, in which the data were 

centered and divided by the standard deviation. We created a RF regression model using an ensemble 

of 100 trees and employed one third of the total predictors for the decision split at each node. 

Predictor variables (features) were subsequently ranked based on their average impurity gain over 

all splits and all trees. Predictor variables with higher impurity gains contribute more to the 

variability in the prediction of the response variable, and hence are considered more important. 

3. Results 

3.1 Perfusion cell culture experiments  

We performed four perfusion cell cultures (Experiment A, B, C and D) using different VCD and 

PR set-point profiles, as illustrated in Figure 2. In Experiments A and B, we kept the VCD set-point 

constant for the entire duration of the cell cultures but shifted the PR set-point between day 9 and 10 

(down in Experiment A and up in Experiment B). In Experiment C, we changed the VCD and PR set-

points in a manner that maintained the CSPR at the same value. Finally, in Experiment D, we varied 

the VCD set-point while leaving the PR set-point constant. Figure 2 shows that the actual VCD and 

PR follow the set-points very well with only minor deviations (also see Table S1). As the control of 

VCD was done only by bleeding (i.e., removal of cells), the VCD unsurprisingly tracked a decrease 

in the set-points better than an increase. Supplementary Figures S1-4 give a summary of the cell 

culture parameters, including VCD, PR, CSPR, the concentrations of glucose (Glc), lactose (Lac), 

ammonia (Amm) and IgG, and the cell-specific growth rate (𝜇), for Experiments A to D. As shown in 

Figure 3, the cell-specific productivities of IgG, i.e. the secretion rate of IgG divided by the VCD, in 

all experiments follow a decreasing trend over the course of the cell cultivation. Correspondingly, the 

estimated secretion rates of the IgG glycoforms decrease with time (see Figure 4 and Supplementary 

Figure S5). 
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Figure 3. Cell-specific productivity. The cell-specific productivity generally decreases over the course 

of the perfusion cell cultures.  

 

Figure 4. Secretion fluxes of the main IgG glycoforms. The solid symbols show the measured secretion 

fluxes (Experiment A: black squares, Experiment B: blue circles, Experiment C: green triangle, 

Experiment D: red diamonds) and the lines show the fitted secretion fluxes by the GFA. 
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3.2. Glycosylation flux analysis 

For the GFA, we employed the IgG glycosylation reaction network depicted in Figure 5, which 

consists of 19 IgG glycoforms and 25 glycosylation reactions. The glycosylation reaction network was 

based on a previously published network [35], where we omitted glycosylation reactions and 

molecules corresponding to IgG glycoforms that are not detected in our experiments and do not 

participate as intermediate species. Since each perfusion cell culture was started in the same manner, 

we used the same reference glycosylation flux vector 𝐯I
ref  in the GFA of all experiments, more 

specifically using day 1 of experiment A as the reference time sample point (i.e. 𝐯I
ref of day 1 in 

Experimental A is set to the vector of 1s). Figure 4 shows the GFA data fitting of secretion fluxes for 

the major IgG glycoforms (see Supplementary Figure S5 for other IgG glycoforms).  

 

Figure 5. Glycosylation network for the GFA of immunoglobulin G in CHO-S. The enzyme names are 

abbreviated as follows: α-Mannosidase I and II (Man I/II), N-Acetylglucosaminyltransferase I and II 

(GnT I/II) and Fucosyltransferase (FucT), Galactosyltransferase (GalT) and Sialyltransferase (SiaT). 

The glycan labels are provided in Supplementary Table S2. 

Figure 6 gives the time profiles of the enzyme specific factors 𝛼𝐽(𝑡) for each of the enzymes in 

the glycosylation network. Most of the enzyme specific factors, particularly those of α-Mannosidase 

I and II (Man I/II), N-Acetylglucosaminyltransferase I and II (GnT I/II) and Fucosyltransferase (FucT), 

maintain a constant activity level throughout the cell cultivation (i.e. 𝛼𝐽(𝑡)  ≈ 1). Meanwhile, the 

galactosyltransferase (GalT) specific factor decreases during the beginning of the four experiments 

and varies with changes in the VCD and PR set-points. Since the fluxes catalyzed by sialyltransferase 

(SiaT) are close to zero, the estimate of the corresponding 𝛼𝐽(𝑡) becomes unreliable due to high 

sensitivity to experimental noise and thus is omitted from further analysis. 
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Figure 6. Predicted enzyme specific factors. The activity of fluxes catalyzed by Man I (black), Man II 

(grey), GnT I (red), GnT II (orange) and FucT (green) remain relatively constant in all experiments. 

However, the fluxes catalyzed by GalT (purple) shows significant variation over the course of the 

perfusion cell cultures. 

3.3. Effects of process parameters on glycosylation 

As mentioned above, the enzyme-specific factor of IgG galactosylation displays the most 

dynamical change during the perfusion cell culture. However, the relationship between the changes 

in the enzyme-specific factor 𝛼𝐺𝑎𝑙𝑇(𝑡) and the other process parameters is difficult to discern by a 

simple observation of the experimental data. For this reason, we employed a random forest 

regression analysis using the change of galactosyltransferase specific factor over time 
d𝛼𝐺𝑎𝑙𝑇(𝑡)

d𝑡
 as the 

response variable and using 14 process parameters as the predictor variables (see Materials and 

Methods). A RF regression model is able to capture nonlinear dependencies between the response 

and predictor variables. Here, we considered the following predictors: 𝛼𝐺𝑎𝑙𝑇(𝑡), VCD, PR, B, CSPR, 

time and the concentrations of IgG, Glc, Lac and Amm, and the specific productivities of IgG, Glc, 

Lac and Amm (i.e. qIgG, qGlc, qLac and qAmm, respectively). Furthermore, we excluded data from the 

startup period of the cell culture (i.e. days 1 to 3 of each experiment), as we were more interested in 

the regulation of IgG glycosylation during the steady state operations of perfusion cell culture. 

Finally, we ranked the predictor variables in decreasing magnitudes of the impurity gains. A higher 

impurity gain points to a predictor variable with higher importance in explaining the response 

variable.   

Figure 7 gives the ranking of the predictor variables in decreasing impurity gains. The specific 

productivity of IgG (qIgG) and the concentration of ammonia (Amm) are the two most important 

predictors of the dynamical changes in the galactosyltransferase specific activity. Indeed, when we 

repeated the RF regression using only qIgG and Amm as the predictor variables, we observed a similar 

quality of data fitting to the response variables (see Supplementary Figure S6). Kolmogorov-Smirnov 

(KS) test and Wilcoxon rank sum test further confirmed that the residuals of the RF regression models 
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using all 14 predictors and those using only qIgG and Amm, are not statistically different (KS test p-

value = 0.857; Wilcoxon rank sum test p-value = 0.824).  

 

Figure 7. Ranking of predictors based on importance. The predictors are sorted in decreasing 

magnitude of the impurity gains.  

4. Discussion 

In this work, we improved the computational efficiency of the GFA and applied the GFA to 

analyze the IgG glycosylation of four perfusion CHO cell culture experiments. The GFA uses a 

stoichiometric model of the IgG glycosylation network to estimate intracellular glycosylation reaction 

fluxes using secretion fluxes of IgG glycoforms. The GFA is based on the assumption that the 

intracellular IgG glycosylation fluxes vary with time in proportion to 𝛼𝐽 and 𝛽𝐽. The enzyme-specific 

factor 𝛼𝐽 represents the relative change of the fraction of IgG that can processed by a specific enzyme, 

while the cell-specific factor 𝛽𝐽  describes the relative change of the amount of IgG entering the 

glycosylation network. Note that the GFA requires data for computing the secretion fluxes of 

different glycoforms over time, which include viable cell density, IgG titer and glycoform fractions.  

The four perfusion cell cultures in this study differed among each other in the VCD and PR set-

point profiles, which were designed with the goal of understanding how IgG productivity and 

glycosylation vary with these set-points during steady-state operations. The process conditions (i.e. 

media composition, seeding density, pH, temperature) of the four experiments were kept to be as 

similar as possible, so that the effect of changes in operating set-points VCD and PR on the 

glycosylation process could be examined.  

In our previous study using the same CHO cells, we reported that the cell-specific productivity 

of IgG in fed-batch cultivations increases with time, and that such an increase is associated with lower 

𝛼𝐽s for the upstream enzymes ManI/II, GnTI/II and FucT [28]. We attributed the decreasing 𝛼𝐽s to the 

inability of these enzymes to process the increasing amount of IgG entering the intracellular 

glycosylation network, beyond the processing capacity of each enzyme. In contrast to fed-batch 

cultivations, the cell-specific productivity of IgG generally decreases over the course of the perfusion 

cell culture, as shown in Figure 3. The GFA shows that the enzyme-specific factors of the 

aforementioned upstream enzymes stay approximately constant at roughly 1 throughout the 

experiments. With 𝛼𝐽  staying near 1, the intracellular glycosylation fluxes associated with these 
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enzymes thus vary proportionally with the cell-specific productivity 𝛽(𝑡) . This trend is not 

surprising in consideration that the amount of IgG that needs to be processed decreases over time.   

The enzyme-specific factor with the most dynamical changes in the perfusion cell cultures 

corresponds to the galactosyltransferase (GalT), which parallels that in the fed-batch cultivations [28]. 

A random forest regression analysis further points to the specific productivity of IgG and the 

concentration of ammonia as the two variables with the highest importance in explaining the 

dynamic changes of IgG galactosylation (see Figure 7). The accumulation of ammonia and its 

inhibitory activity on GalT have previously been reported as one of the main reasons for decreasing 

IgG galactosylation in fed-batch cultivations [28,36]. Unlike ammonia, the connection between the 

IgG specific productivity and galactosylation is not immediately clear. The partial correlation 

between 
d𝛼𝐺𝑎𝑙𝑇(𝑡)

d𝑡
 and qIgG is small and negative (partial correlation = −0.037), suggesting that the 

relationship between the two variables as revealed by RF analysis is likely to be nonlinear. The 

negative partial correlation further implies that keeping all other process parameters the same, a 

higher qIgG is concomitant with decreasing 𝛼𝐺𝑎𝑙𝑇 with time. Such a trend is in general agreement with 

how 𝛼𝐽 of the upstream enzymes vary with the cell-specific productivity of IgG as explained earlier.  

Taken together, the key process variables that are associated with IgG galactosylation and the 

relationship among them in the perfusion cell culture resemble those in the fed-batch cultivation. 

Extensive data and knowledge from traditional (fed-)batch production may thus prove to be 

informative for understanding IgG glycosylation in continuous perfusion cell cultures. More 

specifically, the above finding suggests the possibility of predicting IgG glycosylation dynamics in 

perfusion cell cultures, for example by creating a (soft) sensor based on fed-batch data, which is a 

topic of great interest and importance in continuous biomanufacturing.  

5. Conclusion 

The application of glycosylation flux analysis to IgG production data from four perfusion CHO 

cell culture experiments shed light on the possible controlling factors of IgG glycosylation. The 

activity of galactosyltransferase and thus intracellular IgG galactosylation fluxes displayed the most 

time-varying changes during the perfusion cell cultivation. The GFA, coupled with a random forest 

regression analysis, pointed to the cell-specific productivity of IgG and the concentration of ammonia 

in the media as the most important process parameters for explaining the dynamical alterations in 

GalT activity. These observations parallel our previous report on IgG glycosylation in fed-batch 

production. The similarity between fed-batch and perfusion cell culture, especially in how IgG 

galactosylation flux activity varies with the cell culture parameters, suggests the possibility of using 

extensive data and knowledge from (fed-)batch production to predict the dynamics of IgG 

glycosylation in the continuous perfusion cell cultures.  

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1. Summary of the 

reactor set points and the corresponding measured values, Table S2. Glycan structures in glycosylation network, 

Figure S1. Process measurements of Experiment A, Figure S2. Process measurements of Experiment B, Figure 

S3. Process measurements of Experiment C, Figure S4. Process measurements of Experiment D, Figure S5. 

Secretion flux fitting of other IgG glycoforms, Figure S6. Residuals of random forest regression.  
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