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Abstract: China’s transportation industry has made rapid progress, which has led to a mass of
carbon emissions. However, it is still unclear how the carbon emission from transport sector is
punctuated by shifts in underlying drivers. This paper aims to examine the process of China’s
carbon emissions from transport sector as well as its major driving forces during the period of 2000
to 2015 at the provincial level. We firstly estimate the carbon emissions from transport sector at the
provincial level based on the fuel and electricity consumption using a top-down method. We find
that the carbon emission per capita is steadily increasing across the nation, especially in the
provinces of Chongging and Inner Mongolia. However, the carbon emission intensity is decreasing
in most provinces of China, except in Yunnan, Qinghai, Chongging, Zhejiang, Heilongjiang, Jilin,
Inner Mongolia, Henan and Anhui. We then quantify the effect of socio-economic factors and their
regional variations on the carbon emissions using panel data model. The results show that the
development of secondary industry is the most significant variable in both the entire nation level
and the regional level, while the effects of the other variables vary across regions. Among these
factors, population density is the main motivator of the increasing carbon emissions per capita from
transport sector for both the whole nation and the western region, whereas the consumption level
per capita of residents and the development of tertiary industry are the primary drivers of per capita
carbon emissions for the eastern and central region.
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1. Introduction

Transportation is essential to national economic development, because it provides carriers for
product circulation. With prosperous economic development, the transportation industry has
developed rapidly, with vast quantities of fossil fuel consumption and increasing negative influence
on the environment. Transportation has become the second highest carbon emission industry and
attributed approximately 23% of total carbon emission in 2013 in the world; these proportions will
increase continuously due to higher levels of energy consumption and be projected to reach to 3206
million tons of standard oil equivalents in 2035 [1]. In rapidly developing China, transport sector has
undergone dramatic development. For example, according to China’s National Bureau of Statistics,
China’s freight turnover and passenger turnover increased by average annual rate of 19.7% and 6.8%
over the past 16 years, respectively. The energy consumption and carbon emissions grew with the
boom of transportation. The average annual growth of energy consumption in transport sector is
14.67%, which is more than the total energy consumption growth rate, 12.03%. Furthermore, the
transport carbon emissions increased from 174.7 million metric tons in 2000 to 754.3 million metric
tons in 2015. Based on the forecast of the International Energy Agency and the study of Auffhammer
and Carson [2], China’s transport sector will accounts for more than one-third of the world’s transport
carbon emissions in 2035.
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China has been a pioneer on the path of reducing carbon emissions since the government
announced that China will sharply reduce its carbon emissions before 2020 in the Intended Nationally
Determined Contributions in 2015. China’s government is turning this commitment into effective
action. They presented plans which required that, compared to 2005, carbon intensity must decrease
by 40%~45% in 2020 and 60%~65% in 2030 by effectively controlling industrial carbon emissions. As
a matter of fact, decreasing the carbon emissions from transport sector is the requirement of China’s
sustainable development strategies, and it will accelerate the sustainable development of transport
worldwide. In the literatures, it is commonly acknowledged that the carbon emissions from transport
are likely to grow with socio-economic development. Wang and Liu [3] examines the features and
driving factors of carbon emission from commuter traffic in Beijing from 2000 to 2012, and find the
per capita disposable income, vehicle-use intensity, population and transport capacity effects are the
main drivers that increase carbon emissions. Loo and Li [4] trace the historical evolution and spatial
disparity of carbon emissions from passenger transport in China from 1949 to 2009, and the result
shows that the income growth is the principal factor leading to the growth of passenger transport
carbon emissions and the main factor contributed to carbon emission reduction is the lower emission
intensity supported by policies, although the effect is weak. The impact of freight transportation on
carbon emissions has also attracted attention. By exploring the impacts of factors on the carbon
emissions from road freight transportation in China from 1985 to 2007, Li et al [5] found that the
economic development is the primary driving factor of carbon emissions, whereas the ton-kilometer
per value added of industry and the market concentration level contribute significantly to reduce
carbon emissions. Effects of fossil fuel share, fossil fuel intensity, and road freight transport intensity
are all found responsible for carbon emissions [6]. Researchers have examined the dynamic changes
in total factor carbon emissions performance of China’s transport sector [7], and used the co-
integration method to examine the long-run relationship between carbon emissions and affecting
factors, including urbanization rate, energy intensity, carbon emission intensity and economic
activity in transport sector [8]. Understanding the main driving forces of carbon emissions of
transportation is important since that the transportation is a major source of carbon emissions in
China [9]. However, konwledges on the driving forces of carbon emissions in China’s transport sector
are insufficient for different regions. Particularly, due to China’s imbalanced development, different
regions are facing different challenges, which may lead to different carbon emissions patterns [10].
Therefore, it's necessary to conduct a study of driving factor at the region level so that some control
policies considering local realities can be provided for policymakers.

This research distinguishes itself from previous studies in the following four aspects. First,
although some studies used time-series data to examine the factors of carbon emissions from
transport sector in China [8], the data used are stale, and many data for the 20th century are missing.
Second, the previous studies [7] did not divide China into different regions when analyzing the
carbon emissions from transport sector, which may result in bias in the driving patterns of the carbon
emissions. The reason is that China has a wide geographical area, a large population, and a complex
economy, with significant differences between regions. It may lead to a bias conclusion if we don’t
take the regional inequality into account. [11]. Third, many studies ignored the carbon emissions from
transport sector generated by using electricity and instead considered it to be clean energy, but we
must recognize that most electricity in China is produced by thermal power plants, which also emit
carbon dioxide [12]. Fourth, the energy carbon emission intensity used in previous articles refers to
the amount of CO: produced by complete combustion of a unit of fuel, which reflects energy
efficiency. It is influenced by many factors and has gradually increased with the progress of
automobile manufacturing technology. Therefore, the use of a fix value to calculate the carbon
emission intensity of energy may lead to inaccurate results. To overcome these deficiencies, this study
first calculates China's provincial transport carbon emissions generated by fossil fuel and the
electricity consumed by the transport industry over the past fifteen years and then examines the main
driving forces of the carbon emissions, as represented by transport carbon emissions per capita (PCT)
and carbon emission intensity (CI) using panel data models. Moreover, the zoning effects of the
driving pattern are explored by dividing the whole nation into the western (Ningxia, Chongqing,
Guizhou, Shaanxi, Qinghai, Sichuan, Xinjiang, Gansu, Guangxi and Yunnan), central (Shanxi, Inner
Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei and Hunan) and eastern (Beijing, Tianjin,
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Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan) regions to
process the model.
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Figure 1. Zoning of China’s mainland
2. Methodology

2.1. Estimation of carbon emissions from transport sector

Accurately measuring carbon emissions is the basis for analyzing the characteristics of the
carbon emission from transport sector. For a mobile emissions source, there are two main approaches
to calculating the carbon emissions. One is “bottom-up” method, which is an agent-based model
calculating carbon emissions based mainly on the vehicle kilometers traveled, and it is widely used
in the road transport sector [13, 14]. Although the method based on vehicle kilometers traveled can
distinguish carbon emissions sources from different motor types and help clarify the underlying
reason for carbon emissions, it also shows considerable uncertainty, especially in road transportation,
because vehicle types, vehicle mileage, fuel types and road conditions will affect fuel consumption
in different ways. The other one is a top-down method that measures the carbon emissions according
to the consumed fuel. It has a distinct advantage in calculating the carbon emissions from China’s
transport sector [15]. Because the production and supply of fuel in China are a state monopoly, the
official data can be collected completely and conveniently. In conclusion, we use top-down method,
which is a unified standard method published by the Intergovernmental Panel on Climate Change
(IPCC) Guidelines [16-18], to estimate the carbon emissions from China’s transport sector. This
method involves three parameters: energy type, amount of energy consumed and carbon emissions
factor. The average low-order calorific value, average carbon content on an energy basis and carbon
oxidation rates are multiplied to obtain the carbon emission factors of fossil fuel. The formula for
calculating the carbon emissions from fossil fuel is as follows:

44
CF=ZCFi=ZFCixFi=ZFCixALCixCixRixE )
4 £ 4

where CF (kg COz) denotes the carbon emissions from fossil energy consumption; i denotes the
different types of fossil fuel (including coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil,
liquefied gas and natural gas); FC (kg) represents the consumption; and F (kg COz/kg) is the carbon
emissions coefficient; ALC (KJ/kg) is the average low-order calorific value; C (t/T]) is the carbon
content; and R is the carbon oxidation rates.

Carbon emission from electricity is calculated using:
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CE = EC X EF (2)

where CE (kg COz) represents the carbon emissions from electricity consumption; EC (kg)
represents the consumption of electricity; and EF (kg COz/kg)is the carbon emissions factors of
electricity.

The total carbon emission from transport sector is calculated as follows:

CT = CF + CE (3)

where CT (kg) represents the total carbon emissions from transport sector in a province.

2.2 Panel data analysis

As an analysis method, the Kaya identical equation [19] is widely applied to investigate the
factors that influence carbon emissions from transport sector by explaining the varying quality of
carbon emissions. It is usually combined with decomposition methods, such as the logarithmic mean
Divisia index (LMDI) methods [10] and the Fisher index method [20], to investigate the influencing
factors. However, the Kaya identical equation is not suitable for explaining the existing quantity of
emissions and instead ignores the historical factors. The Stochastic Impacts by Regression on
Population Affluence and Technology (STIRPAT) model [21], an extension of the Impacts by
Regression on Population Affluence and Technology (IPAT) model [22], is also a popular model for
analyzing transport carbon emissions [10, 23] because it can adopt any variables influencing
environment in the model. There are other methods for investigating the carbon emissions from
transport sector, such as the dynamic Vector Auto Regression Model [9] and the Tobit regression
model [24]. However, the multicollinearity of variables must be considered before using these
regression models. Choosing an appropriate model is important because this choice can affect the
interpretation of results. Panel data analysis is a method of investigating a regression relation in the
spatial and temporal dimensions with many advantages. First, panel data model can reflect the
individual heterogeneity in both dimension of space and time, this advantage prevent the biased
results caused by time series data or cross-section data analysis. Second, panel data can provide more
reliable estimation of parameter because it has more information, a wider range of variability and
weaker multicollinearity. Third, panel data is more suitable for researching the process of dynamic
regulation for it can associate experience and behavior at different times and locations. Fourth, the
unit root test of panel data can solve the problem that nonstandard gradual distribution caused by
the unit root test of time series. Researchers in many fields thus favor using panel data model to
analyze the carbon emissions [25-27]. This study employs the panel data model to explore the factors
that affect carbon emissions related to transport sector. It is difficult to judge the size of a population
when choosing the model types of panel data. Hence, there are two perspectives on choosing a model
type: one is based on the analytical goal. When the analytical goal is to estimate the parameter and
the sample in the model is not very big, the fixed effects model is better. When the error components
of the model are to be analyzed, we choose the random effects model to determine whether there is
a relationship between some explanatory variables and the individual effect in the model. The other
goal is to judge the precondition of the model. The fixed effects model assumes that the heterogeneity
term and the independent variables are correlated. In contrast, the random effects model assumes
that the heterogeneity term and the independent variables are not correlated. In this study, we choose
the latter method. The procedures for setting up the panel data model in this method are as follows:
first, conduct unit root tests to validate the stationarity of variables at the provincial level; second,
perform cointegration tests to judge whether there is a long-term relationship between the variables;
and finally, establish the panel data model.

The panel data models can be divided into three types: pooled, fixed effects and random effects
regression models. The model type is confirmed by the F-test and Hausman test. The process of model
selection is shown in Figure 2. Under a certain significance level, if F<Foos(N-1,NT-N-k), then the
pooled panel model is employed; otherwise, the Hausman test should be conducted to choose the
random effect panel model or the fixed effect panel model. When the probability of the Hausman test
is less than 10%, the fixed effects panel model should be selected; otherwise, we should choose the
random effects regression model [28]. After confirming the model type, Seemingly Unrelated
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Regression method is employed to set up the regression equations, which can eliminate the effect
from the cross sections heteroscedasticity and the autocorrelation of time series [29].
The formula of the F-test is:
_ (SSE, — SSE,)/(N — 1)
~ SSE,/(NT — N —k)
where SSE- and SSE. represent the residual sum of squares of the pooled regression model and fixed
effects regression model, respectively; k is the number of public parameters; and N is the constraint
conditions. Under a certain significance level, if F<Foos(N-1,NT-N-k), then it is better to choose the
pooled regression model; otherwise, the fixed effects regression model should be chosen.

Choose Model

~F(N—1,NT —N —k) 4)

F>F(N-1,NT-N-K)? No Pooled model )

No

Pass the Hausman test? Random effect model )

< Yes
e

Yes
C Fixed effect model )

Figure 2. Flowchart of model decision
3. Data and data source

3.1 Data

Table 1 shows the variable of the models. PCT is an important index for precisely describing the
carbon emissions. In addition, to investigate the energy efficiency of the transportation industry, CI
is proposed as an index to describe carbon emission intensity. CI is an explicit value which means
carbon emission in unit output value of transport sector. A smaller PCT or CI value indicates a greater
environmental benefit from unit transportation activity. Thus, the PCT and CI indices are considered
dependent variables for examining the driving patterns. Then, the proportion of secondary and
tertiary industries added value to GDP (SGDP and TGDP), passenger turnover (PT), freight turnover
(FT), road network density (RD), population density (PD), consumption level of residents per capita
(PCC), motor vehicle population (VP) and energy consumption structure (ES) are selected as the
explanatory variables in the panel data models. ES is the ratio of clean fuel consumption to the total
energy consumption, which measures the rationality of energy use in transport sector [30, 31];
electricity, liquefied gas (LPG) and natural gas (CNG) are classified as clean fuels in this study. CI
and PCT are the carbon emissions indexes; SGDP and TGDP are the industry structure indexes; PT,
FT and ES represent the development of transport industry; RD and PD stand for the road facility
and population concentration levels respectively; and PCC and VP show the social development
levels. PCT and CI are calculated by formulas (5) and (6) respectively.

PCT—CT 5
=3 (5)
[ = cr 6
~ GDPT (6)

where P (10,000 people) and GDPT (billion RMB) donate the population and the GDP of transport
industry in certain province, respectively.

Table 1. Variables

Categories Variables Abbreviation Unit

Carbon emissions index ~ Carbon emissions from per

. PCT T
capita transport sector on/per person
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Carbon emission intensity CI Ton/ billion RMB
Industry structure The proportion of secondary SGDP %
industries added value to GDP
The proportion of tertiary
industries added value to TGDP %
GDP
Transport structure Passenger turnover PT Times/billion
person
Freight turnover FT km/ billion ton
Energy consumption ES %
structure
Road facilities level Road network density RD km/m?
Population concentration Population density PD 10000 people/km?
level
Social development level Per capita consumption level PCC RMB /person
of residents
Motor vehicle population VP Million vehicles

3.2 Description of data

For better grasping the geographic distribution features of CI and PCT in different provinces and
regions, all provinces are identified with different colors based on the total change rate in CI and PCT
from 2000 to 2015, with the values of year 2000 as reference. The deeper the color is, the higher the
change rate is. The overall trend is that the CI decrease with the time since the China’s government
decision was announced at the UN climate summit, i.e. to decrease CI by 2020, expect in some
provinces, like Zhejiang, Chongging, Yunnan, Qinghai, Heilongjiang, Jilin, Inner Mongolia, Henan
and Anhui. In addition, we find that most of these provinces are concentrated in central regions
(Figure 3). Across China, the PCT is steadily increasing due to the high rising transport energy
consumption rate and the comparatively low population growth rate, especially in Qinghai,
Chonggqing, Inner Mongolia, Henan, Anhui and Jilin (Figure 4).

The trends of the explanatory variables of the three regions and the whole nation are shown in
Figure 5. The figure indicates that the country shares the same trend in all three regions. From 2000
to 2015, the values of VP, PCC, RD and PD increase monotonically, TGDP and FT increase with
fluctuations, and SGDP rises and then decreases in 2011. This resulted from the Chinese government
implementing an industrial structure adjustment policy since the 1990s, and the intensity of this
structure adjustment has increased gradually, especially since 2000, with the environment receiving
more attention from the public. PT shows the same changed in trend with SGDP, and this change is
caused by the policy allowing citizens to drive on the highway for free during holidays, as
implemented in August 2012. This policy has decreased the number of people who travel by public
transport and increased the number of self-driving tourists. ES has the opposite trend as PT: it
decreases first and then increases because of the increasingly widespread use of new-energy
automobiles and projects that aim to balance regional energy sources, such as the west-to-east gas
transmission project.
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Figure 3. The distribution of the CI change rate from 2000 to 2015
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Figure 4. The distribution of the PCT change rate from 2000 to 2015
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Figure 5. Trends of the explanatory variables

3.3 Data source

The carbon emission factor of electricity production and fuel consumption are affected by fuel
quentity and consumption technology level, which is relatively stable in a shorter period of time (i.e.,
several years). Besides, the annual data of China’s electricity production and fuel consumption carbon
emissions factor is unavailable. For these reasons, the standard value of carbon emission factor is
employed in this research. Thus, the carbon content of fossil fuel, carbon oxidation rates (Table 2) and
electricity carbon emission factors (Table 3) are derived from the Guidance for Compiling Provincial
Greenhouse Gas Emission Lists (Trial). Fossil fuel consumption data, electricity consumption data
and average low-order calorific values are collected from Energy Statistical Yearbook of China. The
data of population, GDP of the transport industry and explanatory variables can be accessed from
the Statistical Yearbook of China.
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Table 2. Parameters used to calculate the carbon emissions of fossil fuels
The average low-order calorific Carbon Carbon oxidation
Fuel value content rates
(ALC) K]/kg (O) t/T] (R)
Coal 20908 26.37 0.94
Coke 28435 29.5 0.93
Crude oil 41816 20.1 0.98
Gasoline 43070 18.9 0.98
Kerosene 43070 19.6 0.98
Diesel 42652 20.2 0.98
Fuel oil 41816 21.1 0.98
Liquefied gas 44200 17.2 0.98
Natural gas 38931 15.9 0.99

Table 3. Carbon emission factors of electricity in different provinces

Carbon emission factors

Province (kg CO:/ kW - h)
Beijing, Tianjin, Hebei, Shanxi, Shandong, Inner Mongolia 1.246
Liaoning, Jilin, Heilongjiang, 1.096
Shanghai, Jiangsu, Zhejiang, Anhui, Fujian 0.928
Henan, Hubei, Hunan, Jiangxi, Sichuan, Chongqing 0.801
Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 0.977
Guangdong, Guangxi, Yunnan, Guizhou 0.714
Hainan 0.917

4. Empirical results

4.1 Unit root test

To avoid heteroskedasticity and non-stationarity phenomena, a natural logarithm
transformation is conducted for some variables, including PD, PCC, RD, VP, PT and FT, before
implementing the panel data analysis. Then, two different models are built. Model 1 depicts the
relationship between transport carbon emissions and human activity, so we choose PCT as the
dependent variable and PD, PCC, RD, VP and TGDP as independent variables. Model 2 is used to
describe the effect on the carbon emissions from transport sector from the development of transport
industry. Hence, Cl is chosen as the dependent variable, and TGDP, SGDP, PT, FT and ES are chosen
as independent variables.

Model 1:
InPCT;, = Cy + f1InPD;, + BoInPCC; ¢ + B3InRD;, + B4InVP; . + BsTGDP; . + &, @)
Model 2:

InCl;; = Co + 6,TGDP;, + 5,SGDP,, + 83InPT;, + 8,InFT;, + 85ES; ,+¢;, (8)
where i=1,..., N for each province in the panel and #=1,..., 16 refers to the time period from 2000 to
2015. Cy and ¢;; denote the constant terms and white noise respectively.

The prerequisite for Pedroni cointegration is that all variables in the models must be integrated
of the order one. The IPS unit root test is conducted to confirm this state, and the results are reported
in Table 4. The results show that except for the ES of the entire nation, all variables accept the null
hypothesis of non-stationarity at a less than 10% level of significance at the original series. However,
for the first-order differences, all variables are stationary at the 1% significance level. Based on this
finding, we conclude that all variables are integrated with first-order differences, other than the ES
of the entire nation.
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Table 4. Results of the IPS unit root test

Whole nation Eastern region Central region Western region

Original ~ Firstorder Original Firstorder Original Firstorder Original First order

series  differences  series  differences  series  differences  series  differences

In(PCT) 4.279 -13.328***  1.533 -6.751%% 4.232 -7.076*** 1.815 -9.2827%**
In(CI) 1.920 -13.909**  0.939 -8.903*** 0.786 -7.458*** 0.162 -8.888***
SGDpP -1.044  -7.954*** -0.421 -5.835*** -1.175 -2.657*** -0.242 -5.152%**
TGDP 4583  -11.040***  5.389 -6.213*** 1.171 -5.470%** 1.162 -7.410%%
In(PD) 1.371 -5.333*** -0.831 -3.864*** 2.234 -2.222%%* 1.167 -3.074***
In(PCC) 8.947 -10.001***  4.302 -4.3007%** 4.882 -5.860*** 6.37 -7.249%%%
In(VP) 7375  -6.336*** 0.688 -3.541%% 5.309 -3.336*** 6.891 -4.095%**
In(PT) 0327 -12.910**  -0.314 -8.743*** 0.215 -6.060*** 0.695 -7.452%**
In(FT) 2479  -9.273%* 0.701 -5.081*** 1.836 -5.610%** 1.854 -5.424***
In(RD) -0.412  -15.085***  -0.102 -8.748*** -0.177  -7.376*** -0.439 -9.955%**
ES -2.709% - -0.982 -3.561%** 0.192 -4.081*** 0.04 -2.796***

! The unit root tests of each variable are carried out with individual intercept.
20 % and ** denote significance at 1%, 5% and 10%, respectively.

4.2 Pedroni cointegration test

The Pedroni cointegration test is used to estimate the long-run relationship of the independent
variables because all variables are stationary for the first-order difference. Table 5 shows the results
of the seven test methods; of them, three accept the null hypothesis of no cointegration, and four
reject it. In addition, the significance levels are different for these variables. According to the panel
ADF-statistics, we further find that the independent variables of Model 1 and Model 2 all reject the
null hypothesis of no cointegration at the 1% and 5% significance levels. The results of the Pedroni
cointegration test obviously prove that regardless of the regions or models considered, the
explanatory variables maintain a long-run relationship with the explained variable during the study
period.

4.3 Driving patterns and zoning effects based on panel models

Model 1 and Model 2 are employed to estimate the driving patterns for both the entire nation
and the three regions, respectively. The estimated results are given in Table 6 to Table 8. The null
hypothesis of the F-test is that all models are based on pooled effects. As shown in Table 6, all of the
F-values are higher than the critical value of the F-test at the 5% significance level, thus rejecting the
null hypothesis of the pooled effects method. In addition, as indicated in Table 7, which shows the
results of Hausman test, all of the P-values are less than the critical value at the 5% and 10%
significance level, except for the western region in Model 2. This result indicates that the random
effect model should be used for the western region in Model 2 and that the fixed effect model should
be employed for the other Models.

Table 8 shows the regression results of Model 1, for which the fixed effect regression model is
selected, and the R2 values are all greater than 0.9, which indicates good fitting. Further, it can be
observed that the zoning effect of the carbon emissions from transport sector is prominent in China,
which indicates that the factors have different effects on the carbon emissions from transport sector
in different regions. Among the variables of Model 1, PD, PCC and TGDP have positive effects on
PCT in all regions, but VP exerts a negative effect. In addition, the impacts of RD on PCT vary from
region to region: it plays a driving role in the eastern region, plays a opposite role in the both entire
nation and the western region, and has no significant influence in the central region.
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Table 5. Results of Pedroni panel cointegration test

Whole Eastern Central Western
nation region region region
Model1 Within-dimension
Panel v-Statistic -4.312 -0.566 -2.973 -1.724
Panel rho-Statistic 4.635 2.773 2.931 2.25
Panel PP-Statistic -6.820%** -3.740%** -3.954%** -4.464%**
Panel ADF-Statistic =~ -4.441*** -3.237%** -2.698%** -4.486%**
Between-dimension
Group rho-Statistic ~ 6.561 3.852 4.265 3.277
Group PP-Statistic -9.341*** -5.526*** -3.746%** -6.829%**
Group ADF-Statistic  -2.422*** -3.027%** -2.140%* -5.200%**
Model 2  Within-dimension

Panel v-Statistic -1.586 -1.365 -1.853 -1.622
Panel rho-Statistic 2.276 2.621 2.003 2.592
Panel PP-Statistic -5.020%** -1.427% -1.789%* -2.741%**
Panel ADF-Statistic ~ -4.870*** -3.817%** -2.105%* -3.976%**
Between-dimension
Group rho-Statistic ~ 4.791 3.696 3.559 3.225
Group PP-Statistic -6.723%** -2.075%* -1.925%* -4.457%**
Group ADF-Statistic  -5.246*** -3.600%** -1.935** -4,080%**

! There are only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT.
2% ** and * indicate significance at 1%, 5% and 10%, respectively.

Table 6. F-test result for Model 1 and Model 2

Model 1 Model 2
Nationwide Fo05(29,444)<46.708 Fo.05(29,445)<425.690
Eastern Fo05(10,160)<43.358 Fo.0s5(10,160)<2.973
Central Fo.05(8,130)<18.663 Fo.0s(8,130)<32.057
Western Fo.05(9,145)<34.506 Fo.05(9,145)<267.057

! There is only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT.

Table 7. Hausman test result for Model 1 and Model 2

Model 1 Model 2
Chi-Sq statistic P values Chi-Sq statistic P values
Nationwide 89.766 0.000 11.605 0.021
Eastern 32.654 0.000 9.822 0.080
Central 19.929 0.001 18.204 0.003
Western 116.026 0.000 1.934 0.858

! There is only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT.

As expected, PD exerts a significantly positive influence on PCT, especially in the western
region, with a coefficient of 5.468. The PD has continuously increased over the past sixteen years in
China, which has put substantial pressure on both transportation and the PCT. The study of Wang et
al [32] showed that for an increase of one inhabitant, the number of day trips will increase 2.64 person-
times. The western region is a vast territory with a sparse population which led to low transport
intensity. Thus, the increasing demand of living material transportation and long-distance travel
transportation with the expanded population scale will result in higher levels of carbon emissions.
Therefore, it is unsurprising that growth in PD will lead to a corresponding increase in PCT.

PCCis found to have a positive influence on PCT in all three regions. Since 2000, with the overall
increase of the consumption level in China, there has been an increasing tendency for high-end
consumption, which represents choosing a high-energy-consumption trip mode, such as traveling by
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airplane, as the primary long distance trip mode. In developed regions, such as the eastern region, or
in road- or railway-network-sparse regions, such as the western region, airplane travel is a superior
choice. This explanation can be confirmed indirectly by data from the Statistical Bulletin for the
Development of the civil aviation industry in 2016, which indicate that the handling capacity of
airport passengers is highest (551 million people) in the eastern region, followed by the western
region (301 million people).

TGDP is also found to contribute a positive effect on PCT. A booming tertiary industry leads to
more demand on business and tourist transportation, particularly in road and air passenger
transport. In terms of energy efficiency, rail and water transport are more efficient than road transport
and air transport [4], thereby generating further growth in PCT. Furthermore, the central region has
intensive road network while also having a less intensive high-speed railway than the eastern region,
so travelers prefer road passenger transportation, which has led to higher carbon emissions due to
the development of tertiary industry in the central region.

VP shows an inhibitory effect on PCT. With the rapid process of urbanization, more polycentric
cities have appeared in China [33-35]. Such a smart growth mode with a higher degree of mixed land-
use and an intensive road network would significantly shorten the commuting distance [36].
Furthermore, the vehicle oil consumption has been improved as the development of the technology.
According to China’s standard document named Fuel Consumption Limits for Heavy-duty
Commercial Vehicle, the average fuel consumption of heavy-duty commercial vehicle produce in
2020 should decrease 15% than the same kind vehicle produced in 2015. As a result, an increasing VP
contributes to some inhibitors in relation to PCT. A more stringent vehicle emission control policy
and the polycentric urban development mode have caused the eastern region to have a superior
ability to confront increasing VP compared with those of the other regions. Hence, the coefficient of
the central region is the highest among the three regions.

RD influences PCT differently in various regions, but for the whole nation, it has an inhibitory
action on PCT. The development of transportation infrastructure positively affects the carbon
emissions in mega-cities, which are mainly concentrated in eastern China, but it has negative effects
in medium-small cities [37]. Road construction plays a vital role in national economic as a kind of
traffic infrastructure, and the economic significantly influences PCT [5]. The unbalanced
development of transportation infrastructure ultimately results in different PCT in different regions.

Table 8 also shows the regression results of Model 2. There are only four independent variables
in Model 2 for the whole nation: TGDP, SGDP, PT and FT, ES is not adopted because it rejects the
null hypothesis of non-stationarity at 1% at the original series. Our result is in line with the studies
of Guo et al [10]and Fan and Lei[20], which indicated that the ES has a great impact on the carbon
emissions from transport sector. We also find that it is an important indicator for the carbon emissions
from transport sector in both the eastern and central regions, with statistical significance at the 1%
level. The individual fixed effects regression model is used for entire nation and for the central and
eastern regions, but the random effects model is used for western region with an R2 value of the
regression results of only 0.170. Nevertheless, some of the variables still have remarkable effects on
the explained variable. In addition, the zoning effect also obviously exists. For example, except for
the SGDP always significantly increasing the value of CI, the other variables affect CI differently in
various regions.
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Table 8. Estimation parameters of the panel data models

Variables Model 1 Model 2
Whole nation  Easternregion  Central region Western region = Whole nation  Easternregion  Central region Western region
Constant -1.919*** -2.146*** -1.628*** 0.222 9.735%** 7.182%** 11.3885*** 9.7763***
(0.072) (0.101) (0.108) (0.621) (0.249) (0.160) (0.170) (0.496)
In(PD) 0.551*** 0.657*** 0.137* 5.468%**
(0.092) (0.067) (0.072) (0.313)
In(PCC) 0.411*** 0.665*** 0.382*** 0.898***
(0.061) (0.017) (0.041) (0.131)
In(RD) -0.029 0.190*** -0.009 -0.498***
(0.019) (0.013) (0.013) (0.066)
In(VP) -0.114** -0.369*** -0.122%** -0.279***
(0.037) (0.016) (0.030) (0.092)
TGDP 0.236** 0.375%** 0.745*** 0.443** -0.635*** 0.541%** -0.057 0.031
(0.110) (0.050) (0.076) (0.215) (0.252) (0.149) (0.124) (0.551)
SGDP 0.762** 4.576*** 0.247*** 1.338**
(0.235) (0.169) (0.122) (0.675)
In(PT) 0.030 -0.394*** -0.433*** 0.369***
(0.051) (0.022) (0.046) (0.103)
In(FT) -0.238*** 0.028*** -0.127*** -0.375***
(0.022) (0.008) (0.020) (0.068)
ES - -0.291** -2.766*** 0.33
- (0.132) (0.120) (0.317)
Observations 480 176 144 160 480 176 144 160
Individuals 30 11 9 10 30 11 9 10
Model types Fixed effects Fixed effects Fixed effects Fixed effects Fixed effects Fixed effects Fixed effects Random
model model model model model model model effects model
Adjusted R? 0.909 0.994 0.962 0.961 0.988 0.984 0.965 0.17
F-statistic 142.149%** 2044.865*** 283.135*** 282.770%** 1162.886*** 653.192%** 300.736*** 7.520%**
DW statistic 0.439 1.796 1.695 1.536 0.74 1.817 1.632 0.743

! Numbers in the parentheses are standard errors.

2There are only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT.

3% ** and * denote significance at 1%, 5% and 10% level of significance respectively.
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5 From Table 8, we find that the impact of tertiary industries on the CI is positive only for the
6  eastern region; it is negactive for the whole nation and is statistically non-significant for the central
7 and western regions. Tertiary industry, which provides services for production and consumption,
8  exists on a larger scale in the eastern region of China than in other regions. The flourishing tourism,
9  catering, culture and sport industries strongly stimulate passenger transportation demand, drive the
10  development of transport industry and generate more carbon emissions. However, compared with
11  the impact of secondary industry development on transport CI, tertiary industry development has
12 much less influence in the eastern region and is even an inhibiting factor for the entire nation.
13 Secondary industry development maintains a significant positive role in relation to CI across China.
14 The eastern region is in the late industrial stage [38], so the transportation mode is also developing a
15  more convenient and higher CI, with the transformation of the product from bulky and low value-
16  added to light-weight, deep processing and high value-added. In contrast, the other two region are
17  in the early-middle industrial stage, so the transportation mode is quite different from that of the
18  eastern region. Hence, the coefficient of SGDP of the eastern region is much higher than those of the
19  other regions.
20 As shown in the results, PT is found to have inhibitory action on CI in the central and eastern
21  regions, but a galvanizing impact in the western region and the entire nation. The carbon emissions
22 of China’s passenger transportation is related to the level of regional economic development and
23  natural geographic conditions [39]. Compared with the western region, the better developed central
24 and eastern regions are more likely to get the support of advanced carbon- reduction technologies
25  and policies, which are significant for decreasing CI. The complicated natural geography in the west
26 also indirectly inhibits the implementation of carbon-reduction policies and extension of advanced
27  technologies.
28 FT has small impact but is highly statistically significant on CI in the eastern region. In terms of
29  freight transport structure, vessel transportation is the main transport form in the eastern region, but
30 it should not be ignored that there has been a sharp increas in freight volume in both airfreight and
31  road freight, which have lower energy intensities. Conversely, FT is an inhibitor of CI in the entire
32 nation and the central and western region. With the implementation of policies, such as the western
33  development campaign and the plan of rejuvenating old industrial bases in Northeast China, that
34  aim to improve the level of industrial agglomeration, the freight demand of unit industrial added
35  value has declined steadily and the empty-loading rate has also declined. Moreover, long-distance
36  freight transport has increasingly relied on more economic transport modes, such as water carriage,
37  rail transport and pipeline transport.
38 Due to the geographic heterogeneity, ES inhibits the CI of transport sector in the eastern and
39  central regions, especially in the latter, with a coefficient of -2.766, but it shows statistical significance
40  in the western region. The western region has a high proportion of clean energy sources, but it also
41  has a complex natural geographical condition, which results in inefficient energy use [40].
42  Additionally, natural conditions limit the development of efficient transport modes and the
43  expanded use of clean energy. Therefore, with this geographic environment in the western region,
44 road transportation, which includes low-energy intensity transport modes, has the largest
45  proportion. The west-east pipeline project and the west-east power transmission project are indeed
46  effective programs for balancing the energy distribution in China and decreasing CI by promoting
47 the use of new-energy automoblies. In contrast, the use of natural energy is less frequent in the central
48  region than in it is the western regional, but it is more common than that in the eastern region. Hence,
49  itis much easier to promote the use of new-energy autombolies to decrease CI.

50 5. Conclusions and suggestions

51 This study examines the dynamics of the carbon emissions from transport sector in China during
52 the period of 2000 to 2015. In the period, the PCT increased across China, especially in Chongging
53  and Inner Mongolia. However, CI decreased in most provinces in China, other than Zhejiang,
54 Chongging, Yunnan, Qinghai, Heilongjiang, Jilin, Inner Mongolia, Henan and Anhui, most of which
55 are concentrated in the central region. The econometric panel data model is employed to estimate the
56  effects of driving factors on PCT and CI of transport sector in China and their zoning effects. The
57  resultindicates clear zoning effects. PD is the most significant influencing factor on PCT in the entire
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58  nation and the western region with coefficients of 0.551 and 5.468, respectively. PCC and TGDP have
59  the most significant impact on PCT in the eastern and central regions, with coefficients of 0.665 and
60  0.745, respectively. The only inhibiting factor of the PCT in the entire nation and the central and
61  easternregionsis VP, whereas VP and RD are the restraining factors of the PCT in the western region.
62  In terms of CI, the development of secondary industry is the primary motivator in all regions of
63  China. Moreover, TGDP, PT, FT and ES have significantly diverse effects on the growth of CI at both
64  the national and regional levels.
65 Our study has a good implication for policy maker in terms of transport sector. Here we propose
66  some suggestions based on the empirical results of this study. First, some relevant recommendations
67  are given for the promotion of clean energy vehicles. It's a complex system project that widespread
68  use of clean energy vehicles in the western region, because it not only need to consider the social
69 economic factor, but also environmental factors. So the government should narrow the promotion of
70  clean energy vehicle down to the short-distance passenger and freight vehicles. According to the
71 result, we find the potential for clean energy vehicles to reduce carbon emissions in the central region
72 is huge. Hence, we suggest that the government should focus on opening the clean energy vehicle
73 market in the central region and promoting clean energy vehicles by transferring clean energy vehicle
74 production enterprises to the central region. In some eastern cities, clean energy vehicle population
75  isinfluenced by the policy which limits the total number of vehicles, e.g. Beijing and Shanghai. Hence,
76  we advise government in the eastern region to introduce favorable policies to exchange fossil fuel
77  vehicle to clean energy vehicle. Second, Chinese government should proactively facilitate the shift of
78  the secondary industry from eastern region to central region. Because the secondary industry
79  development pattern of the eastern region in China has been changed from the mode of fast
80  development to the mode of efficient development, hence the secondary industry with high energy-
81  consumption and labor-intensive is not suitable for eastern China. Besides, compared with the
82  western region, the central region has a distinct advantage of geography, resource and industrial
83  base, and this study find that developing the secondary industry in central region also shows the
84  smallest increase of the carbon emissions from transport sector among three regions. Third,
85  improving infrastructure and optimizing urban layout is highly recommended. Natural condition of
86  the western region limits the development of high-speed railway which is high-efficiency and low
87  carbon intensity transportation mode, so the passenger turnover is increasing mostly concern in road
88 passenger transport and air passenger transport. Based on this situation, we recommend government
89  to increase the road and railway network density by sufficiently considering of geographic and
90  ecological factor in the western region. Additionally, in order to resist the carbon emissions from
91 transport sector pressure caused by increasing population density, we propose government to
92  promote the conversion of traditional city model from a single-core city into a multi-core city.
93 It should be noted that this study ignores the transboundary issues of estimated carbon emission
94 produced in provincial transportation, we focused only on the carbon emission produced from fuel
95  consumption when calculating the carbon emission of provincial and regional transportation
96  departments. However, in the further research, we will try to take passenger, cargo volume,
97  scheduled flight volume and some other influence factors into account to solve the problem.
98  Additionally, the inaccessibility in the data brought by the electric power departments required us to
99  use only the standard value of carbon emission factor produced from electricity to calculate carbon
100  emissions. This study is not restricted by the above limitations, creatively uses CI as the index to
101  measure the carbon emission of transportation departments, and includes the carbon emission of
102  transportation departments into its calculation.
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116  Appendix

117  Panel unit root tests

118 Using non-stationary variables to establish regression will lead to spurious regression. Therefore, it is
119 significant to assess the variables with unit root tests [26]. For panel data, there are several unit root test methods,
120 including the Levin-Lin-Chu test (LLC) [41], Im-Pesaran-Shin test (IPS), ADF-Fisher test [42] and Fisher-PP test

121 [43]. The former three tests are universally used in research [44-46]. The LLC test assumes that the variables have
122 identical unit roots, so the autoregressive coefficient is the same across the cross sections, whereas the IPS test
123 loosens the assumption of LLC test and allows variance across regions under the alternative hypothesis [47].

124 Therefore, the IPS test is used to examine the stationarity of variables in this study. If the probabilities for the IPS
125 test are less than 10%, we can reject the null hypothesis and consider the variables to be stationary.

126 Panel cointegration tests

127 After confirming that the variables are integrated of order one, the next step is to employ panel cointegration
128 to identity whether a long-term relationship exists between the variables. The Pedroni test [48], Kao test [49] and
129 Johansen [50] test are generally used in panel cointegration analyses. Pedroni test constructs seven statistics to
130 verify the cointegration relation among panel variables based on the regression residual of the cointegration
131 equation, so it is applied in this study. Among these seven statistics, the Group rho-Statistic, Group PP-Statistic
132 and Group ADF-Statistic pool the regression residuals using the between-dimension approach. Four others, i.e.,
133 the panel v-statistic, panel r-statistic, panel PP-statistic and panel ADEF-statistic, pool the coefficients of
134 autoregressive across different numbers by the within-dimension method [51]. In addition, the panel ADE-
135 statistic is found to be more precise than the other six statistics [52]. Thus, the panel ADF-statistic is used to
136 determine the goodness of fit. When the panel ADF-statistic is less than 10%, it can be determined that there
137 exists a long-run relationship between variables.
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