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Abstract: China’s transportation industry has made rapid progress, which has led to a mass of 

carbon emissions. However, it is still unclear how the carbon emission from transport sector is 

punctuated by shifts in underlying drivers. This paper aims to examine the process of China’s 

carbon emissions from transport sector as well as its major driving forces during the period of 2000 

to 2015 at the provincial level. We firstly estimate the carbon emissions from transport sector at the 

provincial level based on the fuel and electricity consumption using a top-down method. We find 

that the carbon emission per capita is steadily increasing across the nation, especially in the 

provinces of Chongqing and Inner Mongolia. However, the carbon emission intensity is decreasing 

in most provinces of China, except in Yunnan, Qinghai, Chongqing, Zhejiang, Heilongjiang, Jilin, 

Inner Mongolia, Henan and Anhui. We then quantify the effect of socio-economic factors and their 

regional variations on the carbon emissions using panel data model. The results show that the 

development of secondary industry is the most significant variable in both the entire nation level 

and the regional level, while the effects of the other variables vary across regions. Among these 

factors, population density is the main motivator of the increasing carbon emissions per capita from 

transport sector for both the whole nation and the western region, whereas the consumption level 

per capita of residents and the development of tertiary industry are the primary drivers of per capita 

carbon emissions for the eastern and central region. 

Keywords: Transportation, Carbon emission, Carbon intensity, Panel data analysis, China 

 

1. Introduction 

Transportation is essential to national economic development, because it provides carriers for 

product circulation. With prosperous economic development, the transportation industry has 

developed rapidly, with vast quantities of fossil fuel consumption and increasing negative influence 

on the environment. Transportation has become the second highest carbon emission industry and 

attributed approximately 23% of total carbon emission in 2013 in the world; these proportions will 

increase continuously due to  higher levels of energy consumption and be projected to reach to 3206 

million tons of standard oil equivalents in 2035 [1]. In rapidly developing China, transport sector has 

undergone dramatic development. For example, according to China’s National Bureau of Statistics, 

China’s freight turnover and passenger turnover increased by average annual rate of 19.7% and 6.8% 

over the past 16 years, respectively. The energy consumption and carbon emissions grew with the 

boom of transportation. The average annual growth of energy consumption in transport sector is 

14.67%, which is more than the total energy consumption growth rate, 12.03%. Furthermore, the 

transport carbon emissions increased from 174.7 million metric tons in 2000 to 754.3 million metric 

tons in 2015. Based on the forecast of the International Energy Agency and the study of Auffhammer 

and Carson [2], China’s transport sector will accounts for more than one-third of the world’s transport 

carbon emissions in 2035. 
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China has been a pioneer on the path of reducing carbon emissions since the government 

announced that China will sharply reduce its carbon emissions before 2020 in the Intended Nationally 

Determined Contributions in 2015. China’s government is turning this commitment into effective 

action. They presented plans which required that, compared to 2005, carbon intensity must decrease 

by 40%~45% in 2020 and 60%~65% in 2030 by effectively controlling industrial carbon emissions. As 

a matter of fact, decreasing the carbon emissions from transport sector is the requirement of China’s 

sustainable development strategies, and it will accelerate the sustainable development of transport 

worldwide. In the literatures, it is commonly acknowledged that the carbon emissions from transport 

are likely to grow with socio-economic development. Wang and Liu [3] examines the features and 

driving factors of carbon emission from commuter traffic in Beijing from 2000 to 2012, and find the 

per capita disposable income, vehicle-use intensity, population and transport capacity effects are the 

main drivers that increase carbon emissions. Loo and Li [4] trace the historical evolution and spatial 

disparity of carbon emissions from passenger transport in China from 1949 to 2009, and the result 

shows that the income growth is the principal factor leading to the growth of passenger transport 

carbon emissions and the main factor contributed to carbon emission reduction is the lower emission 

intensity supported by policies, although the effect is weak. The impact of freight transportation on 

carbon emissions has also attracted attention. By exploring the impacts of factors on the carbon 

emissions from road freight transportation in China from 1985 to 2007, Li et al [5] found that the 

economic development is the primary driving factor of carbon emissions, whereas the ton-kilometer 

per value added of industry and the market concentration level contribute significantly to reduce 

carbon emissions. Effects of fossil fuel share, fossil fuel intensity, and road freight transport intensity 

are all found responsible for carbon emissions [6].  Researchers have examined the dynamic changes 

in total factor carbon emissions performance of China’s transport sector [7], and used the co-

integration method to examine the long-run relationship between carbon emissions and affecting 

factors, including urbanization rate, energy intensity, carbon emission intensity and economic 

activity in transport sector [8]. Understanding the main driving forces of carbon emissions of 

transportation is important since that the transportation is a major source of carbon emissions in 

China [9]. However, konwledges on the driving forces of carbon emissions in China’s transport sector 

are insufficient for different regions. Particularly, due to China’s imbalanced development, different 

regions are facing different challenges, which may lead to different carbon emissions patterns [10]. 

Therefore, it’s necessary to conduct a study of driving factor at the region level so that some control 

policies considering local realities can be provided for policymakers. 

This research distinguishes itself from previous studies in the following four aspects. First, 

although some studies used time-series data to examine the factors of carbon emissions from 

transport sector in China [8], the data used are stale, and many data for the 20th century are missing. 

Second, the previous studies [7] did not divide China into different regions when analyzing the 

carbon emissions from transport sector, which may result in bias in the driving patterns of the carbon 

emissions. The reason is that China has a wide geographical area, a large population, and a complex 

economy, with significant differences between regions. It may lead to a bias conclusion if we don’t 

take the regional inequality into account. [11]. Third, many studies ignored the carbon emissions from 

transport sector generated by using electricity and instead considered it to be clean energy, but we 

must recognize that most electricity in China is produced by thermal power plants, which also emit 

carbon dioxide [12]. Fourth, the energy carbon emission intensity used in previous articles refers to 

the amount of CO2 produced by complete combustion of a unit of fuel, which reflects energy 

efficiency. It is influenced by many factors and has gradually increased with the progress of 

automobile manufacturing technology. Therefore, the use of a fix value to calculate the carbon 

emission intensity of energy may lead to inaccurate results. To overcome these deficiencies, this study 

first calculates China's provincial transport carbon emissions generated by fossil fuel and the 

electricity consumed by the transport industry over the past fifteen years and then examines the main 

driving forces of the carbon emissions, as represented by transport carbon emissions per capita (PCT) 

and carbon emission intensity (CI) using panel data models. Moreover, the zoning effects of the 

driving pattern are explored by dividing the whole nation into the western (Ningxia, Chongqing, 

Guizhou, Shaanxi, Qinghai, Sichuan, Xinjiang, Gansu, Guangxi and Yunnan), central (Shanxi, Inner 

Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei and Hunan) and eastern (Beijing, Tianjin, 
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Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan) regions to 

process the model.  

 
Figure 1. Zoning of China’s mainland 

2. Methodology  

2.1. Estimation of carbon emissions from transport sector 

Accurately measuring carbon emissions is the basis for analyzing the characteristics of the 

carbon emission from transport sector. For a mobile emissions source, there are two main approaches 

to calculating the carbon emissions. One is “bottom-up” method, which is an agent-based model 

calculating carbon emissions based mainly on the vehicle kilometers traveled, and it is widely used 

in the road transport sector [13, 14]. Although the method based on vehicle kilometers traveled can 

distinguish carbon emissions sources from different motor types and help clarify the underlying 

reason for carbon emissions, it also shows considerable uncertainty, especially in road transportation, 

because vehicle types, vehicle mileage, fuel types and road conditions will affect fuel consumption 

in different ways. The other one is a top-down method that measures the carbon emissions according 

to the consumed fuel. It has a distinct advantage in calculating the carbon emissions from China’s 

transport sector [15]. Because the production and supply of fuel in China are a state monopoly, the 

official data can be collected completely and conveniently. In conclusion, we use top-down method, 

which is a unified standard method published by the Intergovernmental Panel on Climate Change 

(IPCC) Guidelines [16-18], to estimate the carbon emissions from China’s transport sector. This 

method involves three parameters: energy type, amount of energy consumed and carbon emissions 

factor. The average low-order calorific value, average carbon content on an energy basis and carbon 

oxidation rates are multiplied to obtain the carbon emission factors of fossil fuel. The formula for 

calculating the carbon emissions from fossil fuel is as follows: 

     𝐶𝐹 = ∑ 𝐶𝐹𝑖

9

𝑖=1

= ∑ 𝐹𝐶𝑖 × 𝐹𝑖

9

𝑖=1

= ∑ 𝐹𝐶𝑖 × 𝐴𝐿𝐶𝑖 × 𝐶𝑖 × 𝑅𝑖 ×
44

12
  

9

𝑖=1

                                 (1) 

where CF (kg CO2) denotes the carbon emissions from fossil energy consumption; i denotes the 

different types of fossil fuel (including coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, 

liquefied gas and natural gas); FC (kg) represents the consumption; and F (kg CO2/kg) is the carbon 

emissions coefficient; ALC (KJ/kg) is the average low-order calorific value; C (t/TJ) is the carbon 

content; and R is the carbon oxidation rates. 

Carbon emission from electricity is calculated using: 
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   𝐶𝐸 = 𝐸𝐶 × 𝐸𝐹                                                                                    (𝟐) 

where CE (kg CO2) represents the carbon emissions from electricity consumption; EC (kg) 

represents the consumption of electricity; and EF (kg CO2/kg)is the carbon emissions factors of 

electricity. 

The total carbon emission from transport sector is calculated as follows: 

   𝐶𝑇 = 𝐶𝐹 + 𝐶𝐸                                                                                     (3) 

where CT (kg) represents the total carbon emissions from transport sector in a province. 

2.2 Panel data analysis 

As an analysis method, the Kaya identical equation [19] is widely applied to investigate the 

factors that influence carbon emissions from transport sector by explaining the varying quality of 

carbon emissions. It is usually combined with decomposition methods, such as the logarithmic mean 

Divisia index (LMDI) methods [10] and the Fisher index method [20], to investigate the influencing 

factors. However, the Kaya identical equation is not suitable for explaining the existing quantity of 

emissions and instead ignores the historical factors. The Stochastic Impacts by Regression on 

Population Affluence and Technology (STIRPAT) model [21], an extension of the Impacts by 

Regression on Population Affluence and Technology (IPAT) model [22], is also a popular model for 

analyzing transport carbon emissions [10, 23] because it can adopt any variables influencing 

environment in the model. There are other methods for investigating the carbon emissions from 

transport sector, such as the dynamic Vector Auto Regression Model [9] and the Tobit regression 

model [24]. However, the multicollinearity of variables must be considered before using these 

regression models. Choosing an appropriate model is important because this choice can affect the 

interpretation of results. Panel data analysis is a method of investigating a regression relation in the 

spatial and temporal dimensions with many advantages. First, panel data model can reflect the 

individual heterogeneity in both dimension of space and time, this advantage prevent the biased 

results caused by time series data or cross-section data analysis. Second, panel data can provide more 

reliable estimation of parameter because it has more information, a wider range of variability and 

weaker multicollinearity. Third, panel data is more suitable for researching the process of dynamic 

regulation for it can associate experience and behavior at different times and locations. Fourth, the 

unit root test of panel data can solve the problem that nonstandard gradual distribution caused by 

the unit root test of time series. Researchers in many fields thus favor using panel data model to 

analyze the carbon emissions [25-27]. This study employs the panel data model to explore the factors 

that affect carbon emissions related to transport sector. It is difficult to judge the size of a population 

when choosing the model types of panel data. Hence, there are two perspectives on choosing a model 

type: one is based on the analytical goal. When the analytical goal is to estimate the parameter and 

the sample in the model is not very big, the fixed effects model is better. When the error components 

of the model are to be analyzed, we choose the random effects model to determine whether there is 

a relationship between some explanatory variables and the individual effect in the model. The other 

goal is to judge the precondition of the model. The fixed effects model assumes that the heterogeneity 

term and the independent variables are correlated. In contrast, the random effects model assumes 

that the heterogeneity term and the independent variables are not correlated. In this study, we choose 

the latter method. The procedures for setting up the panel data model in this method are as follows: 

first, conduct unit root tests to validate the stationarity of variables at the provincial level; second, 

perform cointegration tests to judge whether there is a long-term relationship between the variables; 

and finally, establish the panel data model. 

The panel data models can be divided into three types: pooled, fixed effects and random effects 

regression models. The model type is confirmed by the F-test and Hausman test. The process of model 

selection is shown in Figure 2. Under a certain significance level, if F<F0.05(N-1,NT-N-k), then the 

pooled panel model is employed; otherwise, the Hausman test should be conducted to choose the 

random effect panel model or the fixed effect panel model. When the probability of the Hausman test 

is less than 10%, the fixed effects panel model should be selected; otherwise, we should choose the 

random effects regression model [28]. After confirming the model type, Seemingly Unrelated 
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Regression method is employed to set up the regression equations, which can eliminate the effect 

from the cross sections heteroscedasticity and the autocorrelation of time series [29]. 

The formula of the F-test is: 

𝐹 =
(𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑢)/(𝑁 − 1)

𝑆𝑆𝐸𝑢/(𝑁𝑇 − 𝑁 − 𝑘)
~ 𝐹(𝑁 − 1, 𝑁𝑇 − 𝑁 − 𝑘)                                    (4) 

where SSEr and SSEu represent the residual sum of squares of the pooled regression model and fixed 

effects regression model, respectively; k is the number of public parameters; and N is the constraint 

conditions. Under a certain significance level, if F<F0.05(N-1,NT-N-k), then it is better to choose the 

pooled regression model; otherwise, the fixed effects regression model should be chosen. 

Choose Model

F>F(N-1,NT-N-K)? Pooled model

Pass the Hausman test? Random effect model

Fixed effect model

Yes

Yes

No

No

 

Figure 2. Flowchart of model decision 

3. Data and data source 

3.1 Data 

Table 1 shows the variable of the models. PCT is an important index for precisely describing the 

carbon emissions. In addition, to investigate the energy efficiency of the transportation industry, CI 

is proposed as an index to describe carbon emission intensity. CI is an explicit value which means 

carbon emission in unit output value of transport sector. A smaller PCT or CI value indicates a greater 

environmental benefit from unit transportation activity. Thus, the PCT and CI indices are considered 

dependent variables for examining the driving patterns. Then, the proportion of secondary and 

tertiary industries added value to GDP (SGDP and TGDP), passenger turnover (PT), freight turnover 

(FT), road network density (RD), population density (PD), consumption level of residents per capita 

(PCC), motor vehicle population (VP) and energy consumption structure (ES) are selected as the 

explanatory variables in the panel data models. ES is the ratio of clean fuel consumption to the total 

energy consumption, which measures the rationality of energy use in transport sector [30, 31]; 

electricity, liquefied gas (LPG) and natural gas (CNG) are classified as clean fuels in this study. CI 

and PCT are the carbon emissions indexes; SGDP and TGDP are the industry structure indexes; PT, 

FT and ES represent the development of transport industry; RD and PD stand for the road facility 

and population concentration levels respectively; and PCC and VP show the social development 

levels. PCT and CI are calculated by formulas (5) and (6) respectively. 

𝑃𝐶𝑇 =
𝐶𝑇

𝑃
                                                                                         (5) 

𝐶𝐼 =
𝐶𝑇

𝐺𝐷𝑃𝑇
                                                                                       (6) 

where P (10,000 people) and GDPT (billion RMB) donate the population and the GDP of transport 

industry in certain province, respectively.  

Table 1. Variables 

Categories Variables Abbreviation Unit 

Carbon emissions index Carbon emissions from per 

capita transport sector 
PCT Ton/per person 
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 Carbon emission intensity CI Ton/ billion RMB 

Industry structure The proportion of secondary 

industries added value to GDP 

SGDP % 

 The proportion of tertiary 

industries added value to 

GDP 

TGDP % 

Transport structure Passenger turnover PT 
Times/billion 

person 

 Freight turnover FT km/ billion ton 

 Energy consumption 

structure 
ES % 

Road facilities level Road network density RD km/m2 

Population concentration 

level 

Population density PD 10000 people/km2 

Social development level Per capita consumption level 

of residents 

PCC RMB /person 

 Motor vehicle population VP Million vehicles 

3.2 Description of data 

For better grasping the geographic distribution features of CI and PCT in different provinces and 

regions, all provinces are identified with different colors based on the total change rate in CI and PCT 

from 2000 to 2015, with the values of year 2000 as reference. The deeper the color is, the higher the 

change rate is. The overall trend is that the CI decrease with the time since the China’s government 

decision was announced at the UN climate summit, i.e. to decrease CI by 2020, expect in some 

provinces, like Zhejiang, Chongqing, Yunnan, Qinghai, Heilongjiang, Jilin, Inner Mongolia, Henan 

and Anhui. In addition, we find that most of these provinces are concentrated in central regions 

(Figure 3). Across China, the PCT is steadily increasing due to the high rising transport energy 

consumption rate and the comparatively low population growth rate, especially in Qinghai, 

Chongqing, Inner Mongolia, Henan, Anhui and Jilin (Figure 4). 

The trends of the explanatory variables of the three regions and the whole nation are shown in 

Figure 5. The figure indicates that the country shares the same trend in all three regions. From 2000 

to 2015, the values of VP, PCC, RD and PD increase monotonically, TGDP and FT increase with 

fluctuations, and SGDP rises and then decreases in 2011. This resulted from the Chinese government 

implementing an industrial structure adjustment policy since the 1990s, and the intensity of this 

structure adjustment has increased gradually, especially since 2000, with the environment receiving 

more attention from the public. PT shows the same changed in trend with SGDP, and this change is 

caused by the policy allowing citizens to drive on the highway for free during holidays, as 

implemented in August 2012. This policy has decreased the number of people who travel by public 

transport and increased the number of self-driving tourists. ES has the opposite trend as PT: it 

decreases first and then increases because of the increasingly widespread use of new-energy 

automobiles and projects that aim to balance regional energy sources, such as the west-to-east gas 

transmission project. 
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Figure 3. The distribution of the CI change rate from 2000 to 2015 

 

 
Figure 4. The distribution of the PCT change rate from 2000 to 2015 
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Figure 5. Trends of the explanatory variables  

3.3 Data source 

The carbon emission factor of electricity production and fuel consumption are affected by fuel 

quentity and consumption technology level, which is relatively stable in a shorter period of time (i.e., 

several years). Besides, the annual data of China’s electricity production and fuel consumption carbon 

emissions factor is unavailable. For these reasons, the standard value of carbon emission factor is 

employed in this research. Thus, the carbon content of fossil fuel, carbon oxidation rates (Table 2) and 

electricity carbon emission factors (Table 3) are derived from the Guidance for Compiling Provincial 

Greenhouse Gas Emission Lists (Trial). Fossil fuel consumption data, electricity consumption data 

and average low-order calorific values are collected from Energy Statistical Yearbook of China. The 

data of population, GDP of the transport industry and explanatory variables can be accessed from 

the Statistical Yearbook of China.  
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Table 2. Parameters used to calculate the carbon emissions of fossil fuels 

Fuel 

The average low-order calorific 

value 

Carbon 

content 

Carbon oxidation 

rates 

(ALC) KJ/kg (C) t/TJ (R) 

Coal 20908 26.37 0.94 

Coke 28435 29.5 0.93 

Crude oil 41816 20.1 0.98 

Gasoline 43070 18.9 0.98 

Kerosene 43070 19.6 0.98 

Diesel 42652 20.2 0.98 

Fuel oil 41816 21.1 0.98 

Liquefied gas 44200 17.2 0.98 

Natural gas 38931 15.9 0.99 

Table 3. Carbon emission factors of electricity in different provinces 

Province 
Carbon emission factors 

(kg CO2 / kW﹒h) 

Beijing, Tianjin, Hebei, Shanxi, Shandong, Inner Mongolia 1.246 

Liaoning, Jilin, Heilongjiang, 1.096 

Shanghai, Jiangsu, Zhejiang, Anhui, Fujian 0.928 

Henan, Hubei, Hunan, Jiangxi, Sichuan, Chongqing 0.801 

Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 0.977 

Guangdong, Guangxi, Yunnan, Guizhou 0.714 

Hainan 0.917 

4. Empirical results 

4.1 Unit root test 

To avoid heteroskedasticity and non-stationarity phenomena, a natural logarithm 

transformation is conducted for some variables, including PD, PCC, RD, VP, PT and FT, before 

implementing the panel data analysis. Then, two different models are built. Model 1 depicts the 

relationship between transport carbon emissions and human activity, so we choose PCT as the 

dependent variable and PD, PCC, RD, VP and TGDP as independent variables. Model 2 is used to 

describe the effect on the carbon emissions from transport sector from the development of transport 

industry. Hence, CI is chosen as the dependent variable, and TGDP, SGDP, PT, FT and ES are chosen 

as independent variables.  

Model 1:  

        ln𝑃𝐶𝑇𝑖,𝑡 = 𝐶0 + 𝛽1ln𝑃𝐷𝑖,𝑡 + 𝛽2ln𝑃𝐶𝐶𝑖,𝑡 + 𝛽3ln𝑅𝐷𝑖,𝑡 + 𝛽4ln𝑉𝑃𝑖,𝑡 + 𝛽5𝑇𝐺𝐷𝑃𝑖,𝑡 + 𝜀𝑖,𝑡            (7)  

Model 2:  

        ln𝐶𝐼𝑖,𝑡 = 𝐶0 + 𝛿1𝑇𝐺𝐷𝑃𝑖,𝑡 + 𝛿2𝑆𝐺𝐷𝑃𝑖,𝑡 + 𝛿3ln𝑃𝑇𝑖,𝑡 + 𝛿4ln𝐹𝑇𝑖,𝑡 + 𝛿5𝐸𝑆𝑖,𝑡+𝜀𝑖,𝑡                 (8)  

where i=1,…, N for each province in the panel and t=1,…, 16 refers to the time period from 2000 to 

2015. 𝐶0 and 𝜀𝑖,𝑡 denote the constant terms and white noise respectively. 

The prerequisite for Pedroni cointegration is that all variables in the models must be integrated 

of the order one. The IPS unit root test is conducted to confirm this state, and the results are reported 

in Table 4. The results show that except for the ES of the entire nation, all variables accept the null 

hypothesis of non-stationarity at a less than 10% level of significance at the original series. However, 

for the first-order differences, all variables are stationary at the 1% significance level. Based on this 

finding, we conclude that all variables are integrated with first-order differences, other than the ES 

of the entire nation. 
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Table 4. Results of the IPS unit root test 

 Whole nation Eastern region Central region Western region 

 Original 

series 

First order 

differences 

Original 

series 

First order 

differences 

Original 

series 

First order 

differences 

Original 

series 

First order 

differences 

ln(PCT) 4.279 -13.328*** 1.533 -6.751*** 4.232 -7.076*** 1.815 -9.282*** 

ln(CI) 1.920 -13.909*** 0.939 -8.903*** 0.786 -7.458*** 0.162 -8.888*** 

SGDP -1.044 -7.954*** -0.421 -5.835*** -1.175 -2.657*** -0.242 -5.152*** 

TGDP 4.583 -11.040*** 5.389 -6.213*** 1.171 -5.470*** 1.162 -7.410*** 

ln(PD) 1.371 -5.333*** -0.831 -3.864*** 2.234 -2.222*** 1.167 -3.074*** 

ln(PCC) 8.947 -10.001*** 4.302 -4.300*** 4.882 -5.860*** 6.37 -7.249*** 

ln(VP) 7.375 -6.336*** 0.688 -3.541*** 5.309 -3.336*** 6.891 -4.095*** 

ln(PT) 0.327 -12.910*** -0.314 -8.743*** 0.215 -6.060*** 0.695 -7.452*** 

ln(FT) 2.479 -9.273*** 0.701 -5.081*** 1.836 -5.610*** 1.854 -5.424*** 

ln(RD) -0.412 -15.085*** -0.102 -8.748*** -0.177 -7.376*** -0.439 -9.955*** 

ES -2.709* - -0.982 -3.561*** 0.192 -4.081*** 0.04 -2.796*** 
1 The unit root tests of each variable are carried out with individual intercept.  

2 ***, ** and ** denote significance at 1%, 5% and 10%, respectively. 

4.2 Pedroni cointegration test 

The Pedroni cointegration test is used to estimate the long-run relationship of the independent 

variables because all variables are stationary for the first-order difference. Table 5 shows the results 

of the seven test methods; of them, three accept the null hypothesis of no cointegration, and four 

reject it. In addition, the significance levels are different for these variables. According to the panel 

ADF-statistics, we further find that the independent variables of Model 1 and Model 2 all reject the 

null hypothesis of no cointegration at the 1% and 5% significance levels. The results of the Pedroni 

cointegration test obviously prove that regardless of the regions or models considered, the 

explanatory variables maintain a long-run relationship with the explained variable during the study 

period. 

4.3 Driving patterns and zoning effects based on panel models 

Model 1 and Model 2 are employed to estimate the driving patterns for both the entire nation 

and the three regions, respectively. The estimated results are given in Table 6 to Table 8. The null 

hypothesis of the F-test is that all models are based on pooled effects. As shown in Table 6, all of the 

F-values are higher than the critical value of the F-test at the 5% significance level, thus rejecting the 

null hypothesis of the pooled effects method. In addition, as indicated in Table 7, which shows the 

results of Hausman test, all of the P-values are less than the critical value at the 5% and 10% 

significance level, except for the western region in Model 2. This result indicates that the random 

effect model should be used for the western region in Model 2 and that the fixed effect model should 

be employed for the other Models.  

Table 8 shows the regression results of Model 1, for which the fixed effect regression model is 

selected, and the R2 values are all greater than 0.9, which indicates good fitting. Further, it can be 

observed that the zoning effect of the carbon emissions from transport sector is prominent in China, 

which indicates that the factors have different effects on the carbon emissions from transport sector 

in different regions. Among the variables of Model 1, PD, PCC and TGDP have positive effects on 

PCT in all regions, but VP exerts a negative effect. In addition, the impacts of RD on PCT vary from 

region to region: it plays a driving role in the eastern region, plays a opposite role in the both entire 

nation and the western region, and has no significant influence in the central region. 
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Table 5.  Results of Pedroni panel cointegration test 

  
Whole 

nation 

Eastern 

region 

Central 

region 

Western 

region 

Model 1 Within-dimension     

 Panel v-Statistic -4.312 -0.566 -2.973 -1.724 

 Panel rho-Statistic 4.635 2.773 2.931 2.25 

 Panel PP-Statistic -6.820*** -3.740*** -3.954*** -4.464*** 

 Panel ADF-Statistic -4.441*** -3.237*** -2.698*** -4.486*** 

 Between-dimension     

 Group rho-Statistic 6.561 3.852 4.265 3.277 

 Group PP-Statistic -9.341*** -5.526*** -3.746*** -6.829*** 

 Group ADF-Statistic -2.422*** -3.027*** -2.140** -5.200*** 

Model 2 Within-dimension     

 Panel v-Statistic -1.586 -1.365 -1.853 -1.622 

 Panel rho-Statistic 2.276 2.621 2.003 2.592 

 Panel PP-Statistic -5.020*** -1.427* -1.789** -2.741*** 

 Panel ADF-Statistic -4.870*** -3.817*** -2.105** -3.976*** 

 Between-dimension     

 Group rho-Statistic 4.791 3.696 3.559 3.225 

 Group PP-Statistic -6.723*** -2.075** -1.925** -4.457*** 

 Group ADF-Statistic -5.246*** -3.600*** -1.935** -4.080*** 
1 There are only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT.  

2 ***, ** and * indicate significance at 1%, 5% and 10%, respectively. 

Table 6. F-test result for Model 1 and Model 2 

 Model 1 Model 2 

Nationwide F0.05(29,444)<46.708 F0.05(29,445)<425.690 

Eastern F0.05(10,160)<43.358 F0.05(10,160)<2.973 

Central F0.05(8,130)<18.663 F0.05(8,130)<32.057 

Western F0.05(9,145)<34.506 F0.05(9,145)<267.057 
1 There is only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT. 

Table 7. Hausman test result for Model 1 and Model 2 

 Model 1 Model 2 

 Chi-Sq statistic P values Chi-Sq statistic P values 

Nationwide 89.766 0.000 11.605 0.021 

Eastern 32.654 0.000 9.822 0.080 

Central 19.929 0.001 18.204 0.003 

Western 116.026 0.000 1.934 0.858 
1 There is only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT. 

As expected, PD exerts a significantly positive influence on PCT, especially in the western 

region, with a coefficient of 5.468. The PD has continuously increased over the past sixteen years in 

China, which has put substantial pressure on both transportation and the PCT. The study of Wang et 

al [32] showed that for an increase of one inhabitant, the number of day trips will increase 2.64 person-

times. The western region is a vast territory with a sparse population which led to low transport 

intensity. Thus, the increasing demand of living material transportation and long-distance travel 

transportation with the expanded population scale will result in higher levels of carbon emissions. 

Therefore, it is unsurprising that growth in PD will lead to a corresponding increase in PCT. 

PCC is found to have a positive influence on PCT in all three regions. Since 2000, with the overall 

increase of the consumption level in China, there has been an increasing tendency for high-end 

consumption, which represents choosing a high-energy-consumption trip mode, such as traveling by 
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airplane, as the primary long distance trip mode. In developed regions, such as the eastern region, or 

in road- or railway-network-sparse regions, such as the western region, airplane travel is a superior 

choice. This explanation can be confirmed indirectly by data from the Statistical Bulletin for the 

Development of the civil aviation industry in 2016, which indicate that the handling capacity of 

airport passengers is highest (551 million people) in the eastern region, followed by the western 

region (301 million people). 

TGDP is also found to contribute a positive effect on PCT. A booming tertiary industry leads to 

more demand on business and tourist transportation, particularly in road and air passenger 

transport. In terms of energy efficiency, rail and water transport are more efficient than road transport 

and air transport [4], thereby generating further growth in PCT. Furthermore, the central region has 

intensive road network while also having a less intensive high-speed railway than the eastern region, 

so travelers prefer road passenger transportation, which has led to higher carbon emissions due to 

the development of tertiary industry in the central region. 

VP shows an inhibitory effect on PCT. With the rapid process of urbanization, more polycentric 

cities have appeared in China [33-35]. Such a smart growth mode with a higher degree of mixed land-

use and an intensive road network would significantly shorten the commuting distance [36]. 

Furthermore, the vehicle oil consumption has been improved as the development of the technology. 

According to China’s standard document named Fuel Consumption Limits for Heavy-duty 

Commercial Vehicle, the average fuel consumption of heavy-duty commercial vehicle produce in 

2020 should decrease 15% than the same kind vehicle produced in 2015. As a result, an increasing VP 

contributes to some inhibitors in relation to PCT. A more stringent vehicle emission control policy 

and the polycentric urban development mode have caused the eastern region to have a superior 

ability to confront increasing VP compared with those of the other regions. Hence, the coefficient of 

the central region is the highest among the three regions. 

RD influences PCT differently in various regions, but for the whole nation, it has an inhibitory 

action on PCT. The development of transportation infrastructure positively affects the carbon 

emissions in mega-cities, which are mainly concentrated in eastern China, but it has negative effects 

in medium-small cities [37]. Road construction plays a vital role in national economic as a kind of 

traffic infrastructure, and the economic significantly influences PCT [5]. The unbalanced 

development of transportation infrastructure ultimately results in different PCT in different regions. 

Table 8 also shows the regression results of Model 2. There are only four independent variables 

in Model 2 for the whole nation: TGDP, SGDP, PT and FT, ES is not adopted because it rejects the 

null hypothesis of non-stationarity at 1% at the original series. Our result is in line with the studies 

of Guo et al [10]and Fan and Lei[20], which indicated that the ES has a great impact on the carbon 

emissions from transport sector. We also find that it is an important indicator for the carbon emissions 

from transport sector in both the eastern and central regions, with statistical significance at the 1% 

level. The individual fixed effects regression model is used for entire nation and for the central and 

eastern regions, but the random effects model is used for western region with an R2 value of the 

regression results of only 0.170. Nevertheless, some of the variables still have remarkable effects on 

the explained variable. In addition, the zoning effect also obviously exists. For example, except for 

the SGDP always significantly increasing the value of CI, the other variables affect CI differently in 

various regions. 
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Table 8. Estimation parameters of the panel data models 1 

Variables 
Model 1 Model 2 

Whole nation Eastern region Central region Western region Whole nation Eastern region Central region Western region 

Constant -1.919*** -2.146*** -1.628*** 0.222 9.735*** 7.182*** 11.3885*** 9.7763*** 

 (0.072) (0.101) (0.108) (0.621) (0.249) (0.160) (0.170) (0.496) 

ln(PD) 0.551*** 0.657*** 0.137* 5.468***     

 (0.092) (0.067) (0.072) (0.313)     

ln(PCC) 0.411*** 0.665*** 0.382*** 0.898***     

 (0.061) (0.017) (0.041) (0.131)     

ln(RD) -0.029 0.190*** -0.009 -0.498***     

 (0.019) (0.013) (0.013) (0.066)     

ln(VP) -0.114** -0.369*** -0.122*** -0.279***     

 (0.037) (0.016) (0.030) (0.092)     

TGDP 0.236** 0.375*** 0.745*** 0.443** -0.635*** 0.541*** -0.057 0.031 

 (0.110) (0.050) (0.076) (0.215) (0.252) (0.149) (0.124) (0.551) 

SGDP     0.762** 4.576*** 0.247*** 1.338** 

     (0.235) (0.169) (0.122) (0.675) 

ln(PT)     0.030 -0.394*** -0.433*** 0.369*** 

     (0.051) (0.022) (0.046) (0.103) 

ln(FT)     -0.238*** 0.028*** -0.127*** -0.375*** 

     (0.022) (0.008) (0.020) (0.068) 

ES     - -0.291** -2.766*** 0.33 

     - (0.132) (0.120) (0.317) 

Observations 480 176 144 160 480 176 144 160 

Individuals 30 11 9 10 30 11 9 10 

Model types 
Fixed effects 

model 

Fixed effects 

model 

Fixed effects 

model 

Fixed effects 

model 

Fixed effects 

model 

Fixed effects 

model 

Fixed effects 

model 

Random 

effects model 

Adjusted R2 0.909  0.994 0.962 0.961 0.988 0.984 0.965 0.17 

F-statistic 142.149*** 2044.865*** 283.135*** 282.770*** 1162.886*** 653.192*** 300.736*** 7.520*** 

DW statistic 0.439  1.796 1.695 1.536 0.74 1.817 1.632 0.743 
1 Numbers in the parentheses are standard errors. 2 

2 There are only four independent variables in Model 2 of the whole nation: TGDP, SGDP, PT and FT. 3 
3 ***, ** and * denote significance at 1%, 5% and 10% level of significance respectively. 4 
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From Table 8, we find that the impact of tertiary industries on the CI is positive only for the 5 
eastern region; it is negactive for the whole nation and is statistically non-significant for the central 6 
and western regions. Tertiary industry, which provides services for production and consumption, 7 
exists on a larger scale in the eastern region of China than in other regions. The flourishing tourism, 8 
catering, culture and sport industries strongly stimulate passenger transportation demand, drive the 9 
development of transport industry and generate more carbon emissions. However, compared with 10 
the impact of secondary industry development on transport CI, tertiary industry development has 11 
much less influence in the eastern region and is even an inhibiting factor for the entire nation. 12 
Secondary industry development maintains a significant positive role in relation to CI across China. 13 
The eastern region is in the late industrial stage [38], so the transportation mode is also developing a 14 
more convenient and higher CI, with the transformation of the product from bulky and low value-15 
added to light-weight, deep processing and high value-added. In contrast, the other two region are 16 
in the early-middle industrial stage, so the transportation mode is quite different from that of the 17 
eastern region. Hence, the coefficient of SGDP of the eastern region is much higher than those of the 18 
other regions. 19 

As shown in the results, PT is found to have inhibitory action on CI in the central and eastern 20 
regions, but a galvanizing impact in the western region and the entire nation. The carbon emissions 21 
of China’s passenger transportation is related to the level of regional economic development and 22 
natural geographic conditions [39]. Compared with the western region, the better developed central 23 
and eastern regions are more likely to get the support of advanced carbon- reduction technologies 24 
and policies, which are significant for decreasing CI. The complicated natural geography in the west 25 
also indirectly inhibits the implementation of carbon-reduction policies and extension of advanced 26 
technologies. 27 

FT has small impact but is highly statistically significant on CI in the eastern region. In terms of 28 
freight transport structure, vessel transportation is the main transport form in the eastern region, but 29 
it should not be ignored that there has been a sharp increas in freight volume in both airfreight and 30 
road freight, which have lower energy intensities. Conversely, FT is an inhibitor of CI in the entire 31 
nation and the central and western region. With the implementation of policies, such as the western 32 
development campaign and the plan of rejuvenating old industrial bases in Northeast China, that 33 
aim to improve the level of industrial agglomeration, the freight demand of unit industrial added 34 
value has declined steadily and the empty-loading rate has also declined. Moreover, long-distance 35 
freight transport has increasingly relied on more economic transport modes, such as water carriage, 36 
rail transport and pipeline transport. 37 

Due to the geographic heterogeneity, ES inhibits the CI of transport sector in the eastern and 38 
central regions, especially in the latter, with a coefficient of -2.766, but it shows statistical significance 39 
in the western region. The western region has a high proportion of clean energy sources, but it also 40 
has a complex natural geographical condition, which results in inefficient energy use [40]. 41 
Additionally, natural conditions limit the development of efficient transport modes and the 42 
expanded use of clean energy. Therefore, with this geographic environment in the western region, 43 
road transportation, which includes low-energy intensity transport modes, has the largest 44 
proportion. The west-east pipeline project and the west-east power transmission project are indeed 45 
effective programs for balancing the energy distribution in China and decreasing CI by promoting 46 
the use of new-energy automoblies. In contrast, the use of natural energy is less frequent in the central 47 
region than in it is the western regional, but it is more common than that in the eastern region. Hence, 48 
it is much easier to promote the use of new-energy autombolies to decrease CI. 49 

5. Conclusions and suggestions 50 

This study examines the dynamics of the carbon emissions from transport sector in China during 51 
the period of 2000 to 2015. In the period, the PCT increased across China, especially in Chongqing 52 
and Inner Mongolia. However, CI decreased in most provinces in China, other than Zhejiang, 53 
Chongqing, Yunnan, Qinghai, Heilongjiang, Jilin, Inner Mongolia, Henan and Anhui, most of which 54 
are concentrated in the central region. The econometric panel data model is employed to estimate the 55 
effects of driving factors on PCT and CI of transport sector in China and their zoning effects. The 56 
result indicates clear zoning effects. PD is the most significant influencing factor on PCT in the entire 57 
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nation and the western region with coefficients of 0.551 and 5.468, respectively. PCC and TGDP have 58 
the most significant impact on PCT in the eastern and central regions, with coefficients of 0.665 and 59 
0.745, respectively. The only inhibiting factor of the PCT in the entire nation and the central and 60 
eastern regions is VP, whereas VP and RD are the restraining factors of the PCT in the western region. 61 
In terms of CI, the development of secondary industry is the primary motivator in all regions of 62 
China. Moreover, TGDP, PT, FT and ES have significantly diverse effects on the growth of CI at both 63 
the national and regional levels. 64 

Our study has a good implication for policy maker in terms of transport sector. Here we propose 65 
some suggestions based on the empirical results of this study. First, some relevant recommendations 66 
are given for the promotion of clean energy vehicles. It’s a complex system project that widespread 67 
use of clean energy vehicles in the western region, because it not only need to consider the social 68 
economic factor, but also environmental factors. So the government should narrow the promotion of 69 
clean energy vehicle down to the short-distance passenger and freight vehicles. According to the 70 
result, we find the potential for clean energy vehicles to reduce carbon emissions in the central region 71 
is huge. Hence, we suggest that the government should focus on opening the clean energy vehicle 72 
market in the central region and promoting clean energy vehicles by transferring clean energy vehicle 73 
production enterprises to the central region. In some eastern cities, clean energy vehicle population 74 
is influenced by the policy which limits the total number of vehicles, e.g. Beijing and Shanghai. Hence, 75 
we advise government in the eastern region to introduce favorable policies to exchange fossil fuel 76 
vehicle to clean energy vehicle. Second, Chinese government should proactively facilitate the shift of 77 
the secondary industry from eastern region to central region. Because the secondary industry 78 
development pattern of the eastern region in China has been changed from the mode of fast 79 
development to the mode of efficient development, hence the secondary industry with high energy-80 
consumption and labor-intensive is not suitable for eastern China. Besides, compared with the 81 
western region, the central region has a distinct advantage of geography, resource and industrial 82 
base, and this study find that developing the secondary industry in central region also shows the 83 
smallest increase of the carbon emissions from transport sector among three regions. Third, 84 
improving infrastructure and optimizing urban layout is highly recommended. Natural condition of 85 
the western region limits the development of high-speed railway which is high-efficiency and low 86 
carbon intensity transportation mode, so the passenger turnover is increasing mostly concern in road 87 
passenger transport and air passenger transport. Based on this situation, we recommend government 88 
to increase the road and railway network density by sufficiently considering of geographic and 89 
ecological factor in the western region. Additionally, in order to resist the carbon emissions from 90 
transport sector pressure caused by increasing population density, we propose government to 91 
promote the conversion of traditional city model from a single-core city into a multi-core city.  92 

It should be noted that this study ignores the transboundary issues of estimated carbon emission 93 
produced in provincial transportation, we focused only on the carbon emission produced from fuel 94 
consumption when calculating the carbon emission of  provincial and regional transportation 95 
departments. However, in the further research, we will try to take passenger, cargo volume, 96 
scheduled flight volume and some other influence factors into account to solve the problem. 97 
Additionally, the inaccessibility in the data brought by the electric power departments required us to 98 
use only the standard value of carbon emission factor produced from electricity to calculate carbon 99 
emissions. This study is not restricted by the above limitations, creatively uses CI as the index to 100 
measure the carbon emission of transportation departments, and includes the carbon emission of 101 
transportation departments into its calculation. 102 
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Appendix  116 

Panel unit root tests 117 

Using non-stationary variables to establish regression will lead to spurious regression. Therefore, it is 118 
significant to assess the variables with unit root tests [26]. For panel data, there are several unit root test methods, 119 
including the Levin-Lin-Chu test (LLC) [41], Im-Pesaran-Shin test (IPS), ADF-Fisher test [42] and Fisher-PP test 120 
[43]. The former three tests are universally used in research [44-46]. The LLC test assumes that the variables have 121 
identical unit roots, so the autoregressive coefficient is the same across the cross sections, whereas the IPS test 122 
loosens the assumption of LLC test and allows variance across regions under the alternative hypothesis [47]. 123 
Therefore, the IPS test is used to examine the stationarity of variables in this study. If the probabilities for the IPS 124 
test are less than 10%, we can reject the null hypothesis and consider the variables to be stationary. 125 

Panel cointegration tests 126 

After confirming that the variables are integrated of order one, the next step is to employ panel cointegration 127 
to identity whether a long-term relationship exists between the variables. The Pedroni test [48], Kao test [49] and 128 
Johansen [50] test are generally used in panel cointegration analyses. Pedroni test constructs seven statistics to 129 
verify the cointegration relation among panel variables based on the regression residual of the cointegration 130 
equation, so it is applied in this study. Among these seven statistics, the Group rho-Statistic, Group PP-Statistic 131 
and Group ADF-Statistic pool the regression residuals using the between-dimension approach. Four others, i.e., 132 
the panel v-statistic, panel r-statistic, panel PP-statistic and panel ADF-statistic, pool the coefficients of 133 
autoregressive across different numbers by the within-dimension method [51]. In addition, the panel ADF-134 
statistic is found to be more precise than the other six statistics [52]. Thus, the panel ADF-statistic is used to 135 
determine the goodness of fit. When the panel ADF-statistic is less than 10%, it can be determined that there 136 
exists a long-run relationship between variables. 137 
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