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1 Abstract: Oil spills are adverse events that may be very harmful to ecosystems and food chain. In
= particular, large sea oil spills are very dramatic occurrence often affecting sea and coastal areas.
s Therefore the sustainability of oil rig infrastructures and oil transportation via oil tankers are linked
«  tolaw enforcement based on proper monitoring techniques which are also fundamental to mitigate
s the impact of such pollution. Within this context, in this study a meaningful showcase is analyzed
s  using remotely sensed measurements collected by by Synthetic Aperture Radar (SAR) satellites.

»  The Deepwater Horizon (DWH) oil accident that occurred in the Gulf of Mexico in 2010 is here
s analyzed. It is one of the world’s largest accidental oil pollution event that affected a sea area larger
o than 10,000 km?. In this study we exploit SAR data collected by the Italian COSMO-SkyMed (CSK)
10 X-band SAR constellation showing the key benefits of multi-polarization HH-VV SAR measurements
u  in observing such a huge oil pollution event.

1z Keywords: Sea, remote sensing, oil pollution

13 1. Introduction

14 Oceans, seas and all the marine resources are essential to human well-being and social and
15 economic development [1]. Oceans provide livelihoods, subsistence and benefits from fisheries,
1s tourism and many other sectors, also helping in regulating the global ecosystem by absorbing heat
1z and carbon dioxide from the atmosphere. However, oceans and coastal areas are severely susceptible
e to environmental degradation, overfishing, climate change, biodiversity loss and pollution [2]. In
1o particular, pollutants significantly threat coastal regions and, since river basins, marine ecosystems
20 and the atmosphere belong all together to the same hydrological systems, its effects are often found
=z at far distance by the polluting source. According to the 2015 “Transboundary Waters Assessment
22 Programme” global comparative assessment, the Gulf of Mexico is one of the five largest marine
23 ecosystems mostly at risk of pollution and eutrophication. Hence, its preservation and sustainable
2« management are key points to be achieved in the 2030 Agenda [3]. One of the goals mentioned in the
= sustainable development report of 2016 explicitly states “conserve and sustainably use the oceans, seas
26 and marine resources for sustainable development” is of primary importance [4].

2z Sea oil spills are the most noticeable forms of damage to the marine environment. Oil at sea comes
2e from oil tanker or oil rig disasters, but also — and primarily — from diffuse sources, such as leaks
2 during oil extraction, illegal tank—cleaning operations at sea, or discharges into the rivers which are
30 then carried into the sea. Generally speaking, two classes of sea oil spill may occur, large oil spills and
a1 small oil spills. In the first case, we are dealing with macro oil spills; while in the second case we have
sz micro oil spills. The size and duration of the spill, its chemical makeup and the marine environment
»s  are key factors to evaluate the short— and long—-term ecological consequences of the spillage. While
s macro oil spills are well-known in general terms, the correct monitoring of the time evolving processes
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35 and the precise knowledge of the marine and coastal area affected is crucial. Micro oil spills are usually
s much more difficult to be monitored by patrol coast guard ships and airplanes, since they represent
sz small-size events that may occurr in a large areas.

s Although proper monitoring is only the first part of a challenging scientific and operational processing
3o chain it is important to be properly made [5]. In fact, although any macro oil spill has its unique
20 characteristics, the logic processing chain is based on some key functional tools: monitoring, forecasting
a1 and vulnerability assessment. It must be noted that many uncertainties still remain especially in
a2 forecasting of an oil spill because of meteo—marine conditions and aging that make oil forecasting a
a3 complex process that cannot be standardized in a simple way. Hence, it is important to provide to
as  the forecast modeler the best available information in terms of sea o0il coverage and possibly sea oil
« type. Sea oil type has a direct impact on forecasting since when oil has a predominant component
s that is volatile the polluting contamination process is very different with respect to the case where
«z heavy damping oil is predominant. Generally speaking, in order to mitigate the adverse effects of a
4« sea oil spill, it is a paramount importance to monitor the event and to provide the best information to
4 the operational people to support remediation actions and dispatch proper bulletin to fishermen and
so population [6].

51 With reference to oil tanker security, especially after the Prestige accident in 2002, the use of double-hull
s tankers was meant as the primary source to limit the risk of accidents. Unfortunately, the recent Sanchi
ss accident in 2018 demonstrated that this ship construction technology does not lead to zero risk. On the
s« other side, oil rigs are more and more environmental risky as they move to deep and ultra—deep sea.
ss The reference accident is the Deepwater Horizon (DWH) accident that occurred in 2010 in the Gulf of
ss Mexico [7,8]. The oil spill industry sustainability is based on the increasing and increasing sea oil spill
s remediation capability and this is also based on the quality of the monitoring capability.

ss In this framework, this study focuses on the benefit of satellite day-and—night high-resolution Synthetic
s Aperture Radar (SAR) monitoring during the DWH accident. In fact, among the various remote sensing
e tools, SAR could effectively address the user needs in case of such huge accidental polluting events in
&1 terms of:

62 e area covered;

63
6s e continuous and almost near real-time operability.

es SAR imaging characteristics provide several extra—benefits if compared to optical remote sensing, even
es though the latter is extensively used to retrieve rough estimations of oil thickness and chemical
ez properties. However, optical measurements are severely affected by weather conditions and,
es furthermore, response efforts as the use of chemical dispersants, may alter oil slicks” appearance
es by dispersing it in subsurfaces making the interpretation of optical data non-trivial at all [5,6].

70 It is internationally recognized that oil spill response operational services obtain great benefits by
= utilizing airborne/satellite-based remote sensing for oil spill surveillance [9,10]. In fact, several
72 countries and governmental agencies, e.g. the European Maritime Safety Agency, assist their
zs operational services by providing remotely sensed measurements, especially by SAR imagery. The
e latter is an active, coherent, band-limited microwave high-resolution sensor that can make day— and
7 night-time measurements almost independently of atmospheric conditions. Among the currently
s available SAR systems, the Italian COSMO-SkyMed (CSK) one is attractive from an operational point
7z of view since it is a constellation of four X-band SARs, characterized by a very short revisit time, i. e.,
7~ 12 hours, and it is able to operate in an incoherent dual-polarization mode (Ping Pong, PP, mode).
7o The capability of CSK to support an operational monitoring of the oceans have been demonstrated in
s [11,12,13].

e SAR oil slick observation is physically possible because an oil slick damps the short gravity and
sz capillary waves which are responsible for the backscattering to the SAR antenna and therefore a low
es  backscattering return occurs. As a result, in the SAR image plane, a dark area is associated to an oil slick
sa [14]. SAR oil spill detection is not an easy task, since SAR images are affected by multiplicative noise,
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s known as speckle, which hampers the interpretability of such images. Furthermore, there are other
s physical phenomena, known as look-alikes, which can generate dark areas in SAR images not related to
v 0il spills, such as biogenic films, low—wind areas, rain cells, internal waves and oceanic or atmospheric
ss fronts [15]. Accordingly, tailored filtering techniques must be developed in order to minimize the
s number of false alarms. They are generally based on the use of single—polarization SAR data together
oo with ancillary data [5,14,16]. In some cases, the distinction between oil slicks and biogenic films is based
o1 on optical data [5]. The importance of dual-polarization SAR measurements has been demonstrated in
o2 literature for oil slicks observation purposes [17,18,19]. Nevertheless, although it has been physically
o3 demonstrated by theoretical modelling and experiments that polarimetric SAR measurements are the
s« most adequate source to monitor oil slicks at sea [10,20], it is important to analyze, especially in the
os occurrence of large oil spill accidents, how all the available SAR measurements can be exploited at
o6 best.
oz In this study a multi—polarization analysis of the capabilities of dual-polarization PP mode X-band
9s  CSK SAR data is first undertaken focusing on the DWH oil spill. The latter was extensively monitored
9 by means of L-, C— and X-band SAR systems but, to the best of our knowledge, no study exploited
10 the incoherent CSK PP mode to consider such a huge oil spill event [21,22,23,24]. Oil spill detection
11 and estimation of the polluted area is undertaken using a textural-based image processing approach,
102 while a multi-polarization analysis is undertaken in order to characterize the contrast, i. e., the ratio
103 between the Normalized Radar Cross Section (NRCS) relevant to the slick—free and oil-covered sea
10a surface, both in the HH and VV channels.
15 Experiments, accomplished over X-band HH-VV PP mode Single-look Complex Slant (SCS) Level 1A
s  CSK SAR data collected in the Gulf of Mexico over the polluted area, demonstrate the importance of
107 the Italian constellation of CSK SAR satellites for an effective observation of sea oil slicks.

18 2. The Deepwater Horizon accidental oil spill: a case study

109 On 20 April 2010, a fire broke out on the Transocean DWH oil rig under lease to British Petroleum
1o (BP), with 126 people on board (see Figure 1 (a)). After a large explosion, all but 11 of the crew managed
w1 to escape as the rig was overwhelmed by fire. On 22 April 2010, the rig sank. Safeguards set in place to
12 automatically cap the oil well in case of catastrophe did not work as expected. According to a first
us conservative Minerals Management Service formula, BP estimated at worst a spill of 162,000 barrels
us per day and a standard technology recovery capacity of about 500,000 barrels per day. Only after 12
us  weeks did BP succeed in placing a tight cap on the well. A first estimate of about 5 million barrels
us  [25,26] already makes this accident the world’s largest accidental oil spill and, by far, the worst oil
ur disaster in United States history. It is surpassed only by the intentional 1991 Gulf War spill in Kuwait.
ue  Oil spilled from the DWH wellhead was a Mississippi Canyon Block 252 (MS252) South Louisiana
e sweet, i. e., low in sulfur concentration, crude oil and, as far as for all the crude oils, it consists of
120 thousands of chemical compounds [25,26]. The vast and persistent DWH spill challenged response
11 capabilities which called for quantitative oil assessment at synoptic and operational scales. Although
122 nowadays oil spill response still mainly relies on experienced observers, few trained observers and
123 confounding factors, including weather, oil emulsification and scene illumination geometry presented
124 very non-trivial challenges [7,27]. Moreover, the DWH spill was characterised by some key peculiarities
12s that made its observation very challenging:

126 o the spill originated from a water-depth of 1500 m. This has confounded many problems on
127 understanding the behaviour of the oil [28,29]. In general, oil at sea is influenced by a number of
128 advective processes, e.g. wind and wave advection, spreading, etc., and weathering. The latter is
120 a non-advective process that alters the 0il’s chemical and physical properties. In addition to the
130 conventional weathering process on the surface, the DWH oil was subjected to weathering as it
131 ascended from the well. In fact, DWH oil appeared to be incorporating water as it emerged on

132 the surface [28,29];
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Figure 1. The DWH oil spill accident. (a) Burning of the BP DWH oil rig; (b) Remediation activities; (c)
Fishery clousure boundaries 1 day after the accident (courtesy of NOAA).

o fresh oil was continuously released. Unlike “conventional” tankers oil spills, where oil is
released at once, the DWH oil spill was far more challenging due to continuous fresh oil release.
Hence, in a continuous release situation there is a mixture of fresh and weathered oil (of various
degrees) as well as emulsified oil;

e a massive use of dispersants was made to mitigate the oil’s impact on the environment [26,28].
The dispersants help to reduce the oil-water interfacial tension which, when aided by the
addition of energy in the form of wind/waves, can help to enhance natural dispersion of the oil.
During the DWH oil spill, nearly 2 million of gallons of chemical dispersant were used both
on the surface and directly onto the gushing oil at the wellhead in an attempt to keep some of
the oil under the water surface (see Figure 1 (b)). Scientists believe that BP’s excessive use of
dispersants have contributed significantly to the enormous underwater oil plumes that remain
in the Gulf, one of which was 22 miles long and six miles wide [26,28];

o the polluted area was very large (10,000km?), see Figure 1 (c) [25]. This hampered traditional
approaches to provide a synoptic spill observation, thus making remote sensing a key asset [30].

In addition, such huge oil spillage may have a critical long-term impact over the whole marine
and coastal ecosystem and, therefore, still needs to be continuosly monitored [31,32].
In summary, this unprecedented oil spill accident triggered the operational use of SAR techniques
to provide detailed information on the surfactants related to the DWH accident. Nevertheless,
since the DWH polluted area includes oil slicks of different thickness, emulsified oil, weathered
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15 0il, oil/dispersant mixture, fresh oil, etc., the surface slick is very heterogeneous, including different
16 kind of surfactants. This implies that a synergistic use of different SAR operating modes is needed. In
17 fact, large-swath imaging modes, i. e., ScanSAR, allow obtaining information on the extent of the oil
e spill, while narrower swath polarimetric modes, i. e., PP, allow extracting deeper information on the
s 0il’s backscattering.

10 3. Experiments and discussion

161 In this section experiments undertaken on multi—polarization SCS CSK SAR data collected over
162 the Gulf of Mexico area affected by the DWH accident are presented and discussed to demonstrate
163 their potential in detecting the oil spill and to analyze the slick—free and oil-covered sea surface
1es  backscattering under different polarizations.

16s  The CSK SAR data set consists of two SAR scenes collected in right-looking ascending orbit over the
1s  DWH accidental oil spill site in the very next days after the accident, see Figure 2. The first SAR scene
167 (product ID: 2006020) was acquired from the satellite “3” of the constellation on April 23, 2010, i. e.,
1es only 3 days after the oil spillage just after the BP oil rig sank, in dual-polarization HH-VV PingPong
160 mode under an incidence angle of 40° at mid-range. The SAR image consists of a 4123 x 18042 pixels
170 covering an area of 30 km X 30 km with about 5 m X 2 m (range x azimuth) spatial resolution.

i1 A key parameter when observing sea oil slicks by SAR imagery is wind speed. In fact, it is unanimously
12 recognized that SAR oil slick observation is possible when moderate wind conditions, i. e., wind
173 speed ranges from about 2 m/s up to approximately 13 m/s [9,33]. When higher wind conditions
17a  apply, mixing phenomena dominate making the detectability of oil with respect to the surrounding
175 sea impossible. At lower wind speeds, sea surface backscattering is comparable to the scattering from
e the oil slick; hence, even in this case oil-sea separability is not possible. Typically wind information is
17z provided by ancillary remotely sensed data, e. g., scatterometer/radiometer or buoy measurements.
17e  Unfortunately, very often the information coming from other remotely sensed sources is not co-located
1o in time and/or space with the available SAR data set. In addition, buoys co-located to the accident
10 point are not always available.

11 Hence, in this study a different approach is proposed that consists of providing a wind map by
1.2 processing the SAR image. Different methods are available in literature that are mainly based on
13 the exploitation of a scatterometer—like Geophsyical Model Function (GMF) to extract wind speed
e information once a priori wind direction information is available [34,35,36]. In this study, a spectral
s approach is considered that does not require any a priori wind direction information to provide the
1es  wind speed map. This approach is based on the inherent SAR peculiarities, i. e., the low—pass filtering
17 in the azimuth direction due to the orbital motion of the sea surface waves that distorts the Doppler
1ee  history of the backscattered waves [37,38]. The wind map, generated using the azimuth cut-off method,
180 is shown in Figure 3 where the oil-covered area is masked out. It can be noted that low—to-moderate
10 wind regime applies that is characterized by a mean wind speed of 7 m/s at the SAR acquisition time.
101 Hence, SAR sea oil slick detection can be effectively undertaken.

w2 3.1. Oil spill detection

103 In this subsection a texture-based oil spill detection procedure is undertaken to assess the potential
10s  of CSK SAR data to detect the DWH oil spill and to estimate its surface extent.

15 In order to extract suitable intensity—based features that allow obtaining the oil spill detection binary
16 mask, a textural-based feature extraction algorithm is adopted using the Gray-Level Co—occurrence
107 Matrix (GLCM). The latter is one of the most popular statistical method to extract second—order texture
10s features from remotely sensed images. The technique has been already successfully exploited in a
100 broad range of SAR applications, e. g., ice—cover classification [39] and oil detection [40]. Basically,
200 GLCM is a mathematical formalism that takes into account how often different pixel intensity value
21 combinations occur in a remotely sensed image within given distances and directions. Among the basic
202 GLCM parameters that can be extracted from a SAR image, which include mean, variance, correlation,
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Figure 2. Multi—polarization CSK SAR imagery relevant to the acquisition collected on 23 April 2010.
(a) HH-and (b) VV—polarized NRCS graytone images (dB scale).
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Figure 3. Azimuth cut-off based wind speed map derived from the CSK SAR scene collected on 23
April 2010.
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Figure 4. ASM-based oil detection maps relevant to the CSK SAR scene collected on 23 April 2010. (a)
HH and (b) VV channel.

203 entropy, homogeneity, energy, contrast, dissimilarity, etc., the Angular Second Moment (ASM) was
20 found to be the most effective in separating the oiled area from the surrounding sea. ASM is defined
205 as Z%‘:o[l (i,7)]?, where P is the original intensity SAR image and N is the number of gray levels [41].
206 ASM can be seen as a measure of homogeneity of the intensity SAR image. Since the oiled area is
207 expected to be more homogeneous than the sea surface, i. e., few gray levels are present, it will be
20s characterized by few and relatively high intensity values I(i, j) that result in ASM values larger than
200 the ones characterizing sea surface. In this study, quantization in N = 32 gray levels and a 9 x 9 sliding
210 window are used to estimate ASM.

2 Qil spill detection results are shown in Figure 4, where the binary masks obtained thresholding the
22 ASM images are obtained from HH and VV channel (see Figure 4 (a) and (b), respectively). A threshold
23 ASM =1 is empirically set. Post-processing techniques, i. e., a morphological filter, is then applied to
za  derive the oil detection maps of Figure 4. It can be noted that the oil detection mask obtained from
x5 the VV NRCS clearly separates the polluted area, that calls for ASM values larger than 1 due to its
zs  homogeneity, from the surrounding sea, that represents a more heterogeneous scenarios resulting in
217 a lower ASM values (see Figure 4 (b)). Please note also that the few isolated black spots related to
=us metallic targets at sea involved in cleaning—up operations (see bright spots in Figure 2) are visible in the
210 0il spill detection map. This is likely due to the fact that they behave as very homogeneous scatterers.
220 The oil spill can be detected even from the HH NRCS, although a very slightly larger number of false
21 alarms and missed oil pixels within the slick are observed, see Figure 4 (a).

222 Hence, according to the detection map of Figure 4 (b), the extent of the DWH oil spill can be estimated
223 to be approximately 100 km? at the SAR acquisition time, i. e., 3 days after the accident.

224 3.2. Multi-polarization analysis

225 In this subsection a multi—polarization analysis is undertaken to discuss the sensitivity of HH-
226 and VV-polarized NRCS, 0¥;;; and o), respectively, to slick—free and oil-covered backscattering.

22z The two intensity channels are jointly used to generate the Pauli false-color RGB images of Figure 5
222 Where the following color-coding is adopted: R (U%V); G (U%H) and B (‘7101H - U‘O,V). It can be noted
220 that the joint use of VV and HH channels provides further information that can be exploited to gain
230 a better understanding of the scattering processes. The backscattering from metallic targets (mostly
21 due to ships and oil/gas drilling platforms), see brighter spots in Figure 2, is significantly larger than
232 the sea one at both HH and VV polarizations. Sea surface backscattering results in VV—polarized
233 backscattering larger tha the oil-covered area, as expected from the Bragg/tilted—Bragg theory. The
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Table 1. Multi—polarization analysis results.

Transect ROI o), (dB) o¢%, (dB) Ayy (dB) App (dB)

Azimuth o 2413 2734 1243 10,53
Direction
Ol -36.59 -37.86
Range ~ oed 2262 2585 14.40 12.11
Direction
Oil  -37.00 -37.96

Table 2. Statistical oil-sea separability.

Parameter HH \4%
Oil-sea JM 0.8232 1.0763
Overlapped area (%) 50 40

23a  smallest difference between VV—and HH—-polarized backscattering is achieved within the oil-covered
235 areas. From a physical viewpoint, this can be explained considering that oil layer reduces significantly
236 Bragg scattering waves leading to a noise-like backscattering which results in practically no difference
237 between HH and VV channels.

23s  To provide a quantitative analysis of VV and HH backscattering over slick—free and oil-covered sea
23 surface, 0¥, and 0%, values related to the azimuth- and range-oriented transects, see white dashed
2e0  lines in Figure 2, are depicted in Figure 6. Values related to the along-range transect are depicted in
21 Figure 6 (a), where one can not that: over slick—free sea surface (T‘O/V > U%H (the difference is about 3
22 dB) since Bragg scattering applies; within the oiled area, the backscattering is significantly lower than
2a3  the sea one and there is negligible difference between HH and VV channels (the difference is less than
2es 1 dB). Same comments apply for the azimuth—oriented transect, see Figure 6 (b). The mean values
2es  related to slick—free and oil-covered ¢ values evaluated along with this transect are listed in Table 1
ass where the contrast A, i. e., the slick—free to oil-covered ¢? ratio, is also listed for both the channels. As
2az - expected, the VV-polarized contrast is larger than the HH one (of about 2 dB) due to the larger sea
2as  surface backscattering in VV channel.

2e0 To further discuss sea—oil backscattering separability, two equal-size Region of Interest (ROIs) kept
20 within the oiled area and the slick—free sea surface are considered and the empirical probability density
251 function (pdf) related to ¢ values are shown for both the VV and HH channels, see Figure 7. It can
22 be noted that there is a good oil-sea separability at both HH and VV polarization according to the
23 Jeffries-Matusita (JM) distance, see Table 2. The JM distance is defined as JM = 2(1-e~B), where B =
2se -In(Lyex /(p(x)q(x)) is the Bhattacharyya distance between the distribution pixel x belonging to
25 slick—free (p) and oil-covered () ROIs [42]. In fact, the minimum [M value, i. e., 0, means that the two
=6 distribution are completely overlapped while the maximum JM value, i. e., 2, means totally separated
=7 distributions.

28 Results listed in Table 2 clearly show that the largest oil-sea separation is provided by VV channel
20 (JM =1.0763) with a 40% overlapping between oil and sea pdfs. However, even when the HH channel
200 performs fine in oil-sea separation (JM = 0.8232) with an overlapping equal to 50%. It can be also
201 Observed that the largest separation is provided by the combination of 0%, evaluated over oil and ¢V,
22 evaluated over slick—free sea surface.
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Figure 5. False—color RGB image relevant to the CSK SAR scene collected on 23 April 2010, where the
following color—coding is adopted: R = U%V, G= (T%H and B = (T%H - U%V.
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Figure 6. HH- and VV-polarized NRCS values (in dB) evaluated along with the range- (a) and
azimuth-oriented (b) transects shown in Figure 2.
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Figure 7. Empirical pdfs related to ¢ values evaluated over the slick—free and oil-covered sea surface
ROIs for both the VV and HH channels.

4. Conclusions

In this study, the capability of multi-polarization CSK SAR data, gathered in dual-polarization PP
mode over the Gulf of Mexico, to observe the DWH accidental oil spill is investigated. Experimental
results showed that:

e CSK SAR data can be successfully employed to support local authorities in remediation and
mitigation activity plans and the sustainability of coastal areas in case of offshore environmental
disasters;

o The observation of the DWH oil spill can take full benefits of the fine-resolution, dense revisit
time and wide area coverage offered by the CSK satellites constellation;

e The net extent of the DWH oil spill within 3 days of first oil release was about 100 km?;

e The mean 0}, sea—oil contrast is always larger than the 0%, one;

e The largest separation is provided by the combination of ¢, evaluated over oil and oV,
evaluated over slick—free sea surface.
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SAR Synthetic Aperture Radar
DWH DeepWater Horizon
CSK COSMO-SkyMed

H Horizontal
A\ Vertical
PP PingPong

NRCS Normalized Radar Cross—Section
SCS Single-look Complex Slant
BP British Petroleum
202 NOAA National Oceanic and Atmospheric Agency
GMF Geophsyical Model Function
dB Decibel
GLCM  Gray-Level Co—occurrence Matrix
ASM Angular Second Moment
RGB Red Green Blue
ROI Region Of Interest

pdf Probability Density Function
™M Jeffries—Matusita
ASI Italian Space Agency
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