

1 Article

2 **MIL-100(Al) gels as an excellent platform loaded with**
3 **doxorubicin hydrochloride for pH-triggered drug**
4 **release and anticancer effect**5 **Yuge Feng ¹, Chengliang Wang ², Fei Ke ³, Jianye Zang ² and Junfa Zhu ^{1,*}**6 ¹ National Synchrotron Radiation Laboratory and Department of Chemical Physics, University of Science
7 and Technology of China, China; ygfeng@mail.ustc.edu.cn8 ² Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in
9 Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life
10 Sciences, University of Science and Technology of China, China; wangcl@ustc.edu.cn; zangjy@ustc.edu.cn11 ³ Department of Applied Chemistry and State Key Laboratory of Tea Plant Biology and Utilization, Anhui
12 Agricultural University, China; kefei@ahau.edu.cn

13 * Correspondence: jfzhu@ustc.edu.cn; Tel.: +86-551-63602064

14

15 **Abstract:** Slow and controlled release systems for drugs, have attracted increasing interest recently.
16 A highly efficient metal-organic gels (MOGs) drug delivery carrier, i.e., MIL-100(Al) gels, has been
17 fabricated by a facile, low cost and environment friendly one-pot process. The unique structure of
18 MIL-100(Al) gels leads to a high loading efficiency (620 mg/g) towards doxorubicin hydrochloride
19 (DOX) as a kind of anticancer drugs. DOX-loaded MOGs exhibited high stability under
20 physiological conditions and sustained release capacity of DOX for up to 3 days (under acidic
21 environments). They further showed sustained drug release behavior and excellent antitumor
22 effects in in vitro experiments on HeLa cells, in contrast with the extremely low biotoxicity of MOGs.
23 Our work provides a promising way for the anticancer therapy, by utilizing this MOGs-based drug
24 delivery system, as an efficient and safe vehicle.25 **Keywords:** Metal-organic gels; Doxorubicin loading and release; pH-responsiveness; anticancer
26 effect

27

28 **1. Introduction**29 Most Anticancer chemotherapeutics were controlled at high doses to make up for their
30 premature deterioration and non-specific absorption, which typically results in the development of
31 dose-limited toxicity [1-4]. As alternatives, slow and controlled release systems for drugs, have
32 attracted increasing interest recently [5,6]. On the one hand, continuous slow and sustained release
33 of small amounts of drug, instead of several large doses, can weaken patient compliance [7]. On the
34 other hand, delivering the drug by controlled release can reduce the side effects thus improve
35 therapeutic efficiency [8].36 Metal-organic framework (MOF) is a class of crystalline porous hybrids built from metal ions
37 and organic linkers. Its large surface area, tunable pore size, adjustable composition and structure,
38 and versatile functionality character, make it an ideal carrier for slow and controlled release drug
39 delivery [9-15]. For instance, Horcajada et al. reported that MIL-100(Fe) nanoparticles could load
40 anticancer drug (doxorubicin, DOX) up to 9%, and a sustained release in PBS within 14 days was
41 observed [16]. Sun et al. reported Cu-metal organic frameworks (MOFs), MOFs-2 and MOFs-3, and
42 their application as the transport vehicles for the delivery of doxorubicin hydrochloride (DOX). The
43 MOFs-2 showed the best performance in transport DOX as the consequence of highest loading
44 capacity (95 mg/g). In weak acid solution (pH 5.8), MOFs-2 released 20% DOX in 80 h [17].
45 Vasconcelos et al. encapsulated anticancer drug DOX in nano ZIF-8 with a loading capacity of 49
46 mg/g, which exhibited a progressive release behavior [18]. However, every previous study has its

47 own shortcoming, including complicated synthesis routes, intrinsic biotoxicity, low loading capacity,
48 short release time and poor stability at a physiological pH of 7.4. The shortcomings limit their
49 potential applications in clinical treatment, which requires high qualities of all the performance-
50 indicators as mentioned above.

51 Metal-organic gels (MOGs), as the emerging carriers, are constructed by the self-assembly of
52 metal ions and suitable ligands through various noncovalent interactions [19,20]. Compared with
53 MOFs, MOGs possess lower density, higher surface area, larger porosity and can be synthesized in
54 gentle conditions, such as cheap and clean solution, low temperature and short reaction time [21-27].
55 Inspired by these outstanding features, herein, we have designed a kind of MOGs, i.e., MIL-100(Al)
56 gels synthesized by a facile, low cost and environment friendly one-pot process, as the carrier for
57 anticancer drug doxorubicin (DOX). It is encouraging that MIL-100(Al) gels exhibit high performance
58 in all the typical indicators. Firstly, they involve concise synthetic step, large loading capacity for
59 DOX and low biotoxicity. Secondly, DOX-loaded MOGs show slow and sustainable releasing ability
60 and high anticancer efficiency, thus providing promising approach for the clinical anticancer
61 treatment.

62 2. Materials and Methods

63 2.1. Materials and methods

64 1,3,5-Benzenetricarboxylic acid (H₃BTC) was purchased from Sigma-Aldrich (St. Louis, MO,
65 USA). Aluminium nitrate nonahydrate (Al(NO₃)₃•9H₂O) was obtained from Sinopharm (Shanghai)
66 Chemical Reagent Co., Ltd., China. Doxorubicin (DOX) was purchased from Aladdin Biotech
67 Company (Shanghai, China). Other chemicals obtained from commercial suppliers were of analytical
68 reagent. All chemicals were used without further purification.

69 The powder X-ray diffraction (PXRD) patterns was collected by using the Theta Rotating anode
70 X-ray Diffractometer with Cu target (40 KV, 200mA) from 2° to 70°. FTIR spectrum was determined
71 using a Magna-IR 750 spectrometer in the range of 500–4000 cm⁻¹ with a resolution of 4 cm⁻¹. The
72 morphologies of the sample were studied using a SIRION200 Schottky field emission scanning
73 electron microscope and JEM-2100F transmission electron microscope at 200 kV, respectively.
74 Nitrogen adsorption-desorption isotherms were carried out with a Micromeritics TriStar II 3020
75 adsorption analyzer at 77 K. UV-vis absorption spectra were carried out with a Shimadzu UV-1800
76 spectrophotometer.

77 2.2. Synthesis of MIL-100(Al) gels

78 In a typical synthesis procedure, aluminium nitrate nonahydrate (Al(NO₃)₃•9H₂O, 7.6 mmol)
79 and 1,3,5-benzenetricarboxylic acid (H₃BTC, 5 mmol) were added to 36 mL ethanol [28]. After stirring
80 for 15 min at room temperature to dissolve the solid, the transparent mixture was transferred to a
81 sealed container and heated to 120 °C for one hour. The wet gels were dried in an oven at 80 °C. The
82 finally obtained particles were washed by Soxhlet extractor using ethanol as medium.

83 2.3. Incorporation of DOX

84 DOX-anticancer drug (10 mg) was firstly dissolved in 4 mL deionized water and then the MIL-
85 100(Al) gels (10 mg) were added. The suspension was stirred for 24 h in dark at room temperature.
86 The obtained materials were then centrifuged, washed with deionized water for several times and
87 dried under vacuum condition for further release tests. The supernatant was collected and measured
88 by UV-vis spectrophotometer at a wavelength of 480 nm for the calculation of drug loading content
89 and drug loading efficiency. The drug loading capacity was calculated as follows: drug loading
90 capacity = (weight of DOX in MIL-100(Al) gels /weight of nanoparticles). The drug loading efficiency
91 was calculated by: Drug loading efficiency (wt %) = (weight of DOX in MIL-100(Al) gels /weight of
92 feeding DOX) × 100.

94 2.4. Drug release

95 The drug release experiment was performed by soaking the sample in PBS buffer solutions (pH
96 = 7.4 and pH = 5.5) at 37 °C. 10 mg of DOX-loaded MIL-100(Al) gels (DOX-loaded MOGs) were
97 suspended into 10 mL PBS solution. The mixture solution was stirred at the temperature of 37 °C in
98 a water bath. At predetermined time intervals, 3 mL of PBS solution was removed and assayed. The
99 volume of each withdrawn sample was replaced by the same volume of fresh PBS solution. The
100 amount of released DOX was calculated according to the absorption analyzed by UV-vis
101 spectrophotometer at 480 nm and standard absorbance vis DOX concentration curve. The calibration
102 experiment was performed using different known concentrations of DOX in PBS buffer solution
103 (shown in Figure S1). The derived standard absorbance vis DOX concentration curve is shown in
104 Figure S2.

105 2.5. Cell cytotoxicity of DOX-loaded MOGs

106 HeLa cell was used for cell viability assay. A 96 well plate was used for cell seeding with total
107 number about 2×10^3 per well. The cells were first incubated overnight, and then the MIL-100(Al) gels
108 and DOX-loaded MOGs were added in every well with a final concentration ranging from 0.1 µg/mL
109 to 100 µg/mL (0.1 µg/mL, 0.5 µg/mL, 1 µg/mL, 2.5 µg/mL, 5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL,
110 and 100 µg/mL). Autoclave water was added and treated as negative control. The cells were
111 incubated with MOGs or DOX-loaded MOGs for 12, 24, 36, 48, 72 hours, respectively. Later, all the
112 medium in the wells were drawn and discharged, additional MTT solution dissolved in the medium
113 was used to treat the cells for another 4 hours. Finally, DMSO was loaded to replace the medium and
114 dissolve the crystals for further absorbance detection. The absorbance of each well was obtained at
115 the wavelength of 590 nm. Compared to the negative control, the cell viability were calculated. Each
116 sample were repeated for 5 times and the results were presented as average values with error bars
117 representing standard deviation.

118 2.6. Flow cytometry

119 HeLa cells (2×10^5) were seeded on six-well plate and incubated overnight. In the next day, cells
120 were incubated with MIL-100(Al) gels (12.5 µg/mL), DOX-loaded MOGs (12.5 µg/mL) and autoclave
121 water overnight, respectively. The cells were washed twice with 1X PBS followed by treated with 1X
122 trypsin for 5 min before quenching the cells with culture medium. Thereafter, the cells were washed
123 twice with 1X PBS by centrifugation (1000 rpm, 5 min), and 1X ANNEXIN binding buffer (100 µL)
124 was added to the cell together with PI-PE and ANNEXIN V-FITC conjugate. The cells were incubated
125 in the dark for 20 min. Then, they were immediately analyzed with flow cytometer.

126 2.7. Fluorescence microscopy images

127 The fluorescence microscopy studies were performed on HeLa cells in a confocal dish with total
128 number of 4×10^5 per dish. MIL-100(Al) gels (200 µL) and DOX-loaded MOGs (200 µL) were added
129 into each dish respectively, to give a final concentration of 12.5 µg/mL and incubated cells for 12 h.
130 Thereafter, the medium was removed and the cells were washed 3 times with 1X PBS. The treated
131 cells were re-suspended in 1X PBS. Then added ANNEXIN V – FITC conjugate (25 µL), and incubated
132 the cells for 15 min in the dark. Thereafter, the ANNEXIN containing PBS was removed and the cells
133 were washed 3 times with 1X PBS before fixing them with paraformaldehyde solution (4% in 1X PBS,
134 1 mL). After 20 min, removed the formaldehyde solution and washed the cells twice with 1X PBS. In
135 the end, the cells were incubated with Hoechst solution (5 µg/ mL, 1 mL) in 1X PBS in the dark for 15
136 min, and washed with twice with 1X PBS to image.

137

138 **3. Results and Discussion**139 *3.1. Morphology and structure characterization of MIL-100(Al) gels*

140 Transmission electron microscope (TEM) images (Fig. 1 a, b) show the irregular structure of the
141 as-synthesized MIL-100(Al) gels. Powder X-ray diffraction (XRD) was applied to identify their
142 microstructure. As depicted in Fig. S1, the XRD result reveals a close relationship to the simulated
143 patterns of single-crystal MIL-100(Al). It shows that the corresponding peaks observed for the MIL-
144 100(Al) crystal also appear in the obtained gel, suggesting that the gel maintains a similar porous
145 structure as that of the MIL-100(Al) crystal. The nitrogen adsorption-desorption isotherm, which was
146 used to evaluate the porous properties of MIL-100(Al) gels, is between those of type-I and type-IV,
147 suggesting the coexistence of micropores and mesopores in the MIL-100(Al) gels sample (Fig. S2).
148 The Brunauer–Emmett–Teller (BET) surface area and pore volume of the MIL-100(Al) gels were
149 calculated to be 920 m²/g and 0.535 cm³/g, respectively. Thus, the large surface area and high porosity
150 make this material to be possible used for highly efficient drug loading.

151

152 **Figure 1.** TEM images of (a, b) MIL-100(Al) gels. (c, d) DOX-loaded MIL-100(Al) gels.153 *3.2. Drug loading and release behaviors*

154 TEM images of DOX-loaded MOGs (Fig. 1c, d) exhibit almost no change in morphology
155 compared with MIL-100(Al) gels. Fig. 2a are XRD patterns of MIL-100(Al) gels and DOX-loaded MIL-
156 100(Al) gels (DOX-loaded MOGs). Both of them show similar features before and after the drug
157 adsorption, indicating that the porous structure of MIL-100(Al) gels is retained after the loading of
158 DOX. Fig. 2b exhibits the FTIR spectra of MIL-100(Al) gels, DOX and DOX-loaded MOGs. The peak
159 at 3400 cm⁻¹ is attributed to the O–H stretching of MIL-100(Al) gels. In FTIR spectrum of DOX, peaks
160 at 1020 cm⁻¹ and 3400 cm⁻¹ are caused by –NH₂ torsional vibration and O–H stretching vibrations of
161 DOX, respectively. In case of DOX-loaded MOGs, peaks of O–H stretching vibrations overlap are
162 broadened and a new adsorption band at 1020 cm⁻¹ owing to the torsional vibration of –NH₂ from
163 DOX generate. This FTIR result indicates that MIL-100(Al) gels conjugate with DOX molecules
164 successfully.

Figure 2. (a) Powder XRD patterns of MIL-100(Al) gels, DOX-loaded MOGs, and drug-released MOGs at pH 5.5; (b) FTIR spectra of MIL-100(Al) gels, DOX, and DOX-loaded MOGs.

It turns out that the loading capacity is reached up to 620 mg of DOX per gram of the sample. This large DOX loading capacity and high loading efficiency (62%) may be attributed to the ultrahigh porosity and enormous internal surface of MIL-100(Al) gels. In addition, the interaction between the ammonium groups of DOX and the carboxylate groups of MOGs should be considered as another important reason [29].

Figure 3. Drug release profiles for DOX-loaded MOGs in PBS buffer solution at pH = 5.5 and pH = 7.4 within 100h. (Inset are TEM images of DOX-loaded MOGs after 10h, 50h and 100h in release process at pH 5.5.) Bars denote the standard deviation (\pm SD, n = 5).

Controlled drug release kinetics of DOX from DOX-loaded MOGs were investigated using UV-vis adsorption spectra in phosphate-buffered saline (PBS) buffer solutions at 37 °C. Fig. 3 are the DOX release profiles at two different pH values (pH = 7.4 and 5.5). It can be seen that the release of DOX from DOX-loaded MOGs in pH = 7.4 only reached 10% within 100 h. In contrast, the DOX release rate is significantly increased in pH = 5.5 and this release reached nearly 100% within 100 h. This reveals that under the acidic conditions, the drug can be released more easily. Under the weak acidic condition (pH=5.5), the drug delivery rate gradually decreases with the time. Basically, the rate can be clearly divided into three regions: (i) an early rapid release within the first 10 hours; (ii) a slow release region in the time range between 10 and 60 hours; (iii) a saturation region after 70 hours [30]. The first rapid release is induced by the simple diffusion and dissolution of DOX molecules adsorbed onto the surface of MOGs. The second region reveals a gentle and steady release over a long time, due to the desorption, diffusion, and dissolution processes of DOX molecules from channels in the

189 gels to the solution. The last saturated drug release process could be attributed to host-guest
 190 interactions between DOX molecules and the gels. The results revealed that the obtained MIL-100(Al)
 191 gels exhibit a high drug loading and long sustained release time under acidic environment. To further
 192 understand the DOX release process from DOX-loaded MOGs, TEM images were taken from DOX-
 193 loaded MOGs after 10h, 50h and 100h in release process at pH 5.5 (inset in Fig. 3). They revealed
 194 gradual collapse of MIL-100(Al) gels structure during the procedure. The result is consistent with the
 195 XRD pattern of drug-released MOGs at pH 5.5 (Fig. 2a) which shows the dissolution of MIL-100(Al)
 196 gels in the acidic environment.

197 *3.3. Cell Cytotoxicity of DOX-loaded MOGs*

198 After evaluating the drug loading and release ability of MOGs, in vitro cell viabilities of DOX-
 199 loaded MOGs and pure MIL-100(Al) gels on HeLa cells were investigated using MTT (3-(4,5-
 200 Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To study the biotoxicity of pure MIL-
 201 100(Al) gels and the therapeutic efficiency of DOX-loaded MOGs, HeLa cells were cultured with the
 202 DOX-loaded MOGs and pure MIL-100(Al) gels at concentrations ranging from 0.1 μ g/mL to 100
 203 μ g/mL (0.1, 0.5, 1, 2.5, 5, 10, 25, 50 and 100 μ g/mL) for 24h. The results are exhibited in Fig. 4. As can
 204 be seen, after 24 h incubation with HeLa cells, the pure MIL-100(Al) gels show no obvious toxicity
 205 towards the HeLa cells even at the concentration of the MIL-100(Al) gels as high as 100 μ g/mL. In
 206 contrast, the DOX-loaded MOGs shows high cytotoxicity on HeLa cells. As the concentration of DOX-
 207 loaded MOGs increases, the cell viability rapidly decreases. When the concentration of DOX-loaded
 208 MOGs reaches 25 μ g/mL, only ~20% of HeLa cells can survive. Therefore, the DOX can be efficiently
 209 released from the DOX-loaded MOGs to kill most of the tumor cells, demonstrating that the as-
 210 synthesized MIL-100(Al) gels hold a great promise for application in the field of drug delivery system
 211 for cancer treatment.

212

213 **Figure 4.** The effect of MIL-100(Al) gels and DOX-loaded MOGs with various concentrations
 214 on the cell viability of HeLa cells in 24h (the orange and blue bars represent viability of
 215 HeLa cancer cells incubated with MIL-100(Al) gels and DOX-loaded MOGs, respectively).

216 In vitro drug release behavior of DOX-loaded MOGs on HeLa cells was also investigated. DOX-
 217 loaded MOGs and MOGs + free DOX with different concentration were studied. The results are shown
 218 in Fig. 5a-f. Accordingly, viability of cells incubated with DOX-loaded MOGs gradually decrease in
 219 the time range of 72 h. This is in contrast with the sudden reduction behavior of the viability of cells
 220 incubated with MOGs + free DOX, in all the control experiment groups.

221

222

223 **Figure 5.** Cell viability of HeLa cells incubated with DOX-loaded MOGs and MOGs + free DOX for
 224 different time periods at concentrations of (a) 2.5 μ g/mL, (b) 5 μ g/mL, (c) 10 μ g/mL, (d) 25 μ g/mL, (e)
 225 50 μ g/mL, and (f) 100 μ g/mL.

226 **3.4. Flow cytometry**

227 In order to further investigate the apoptosis of the cells, we performed the flow cytometry
 228 analysis on HeLa cells with 12.5 μ g/mL MIL-100(Al) gels and DOX-loaded MOGs. As shown in Fig.
 229 6, almost no necrotic and late apoptotic cells were observed at the control experiment (only contains
 230 pure autoclave water) (1.49%) MIL-100(Al) gels (1.88%), revealing the low toxicity of this MOGs-
 231 based materials. However, when the DOX-loaded MOGs were added, the percentage of apoptotic
 232 cells immediately became prominent (89.9%). These results are in line with the MTT assay and further
 233 confirm the apoptotic cell death arised from the DOX released from DOX-loaded MOGs.

234

235

236 **Figure 6.** Flow cytometry experiments of HeLa cells when incubated with (a) Pure autoclave water
 as control, (b) MIL-100(Al) gels, and (c) DOX-loaded MOGs, respectively.

237 **3.5. Fluorescence microscopy images**

238 To further confirm therapeutic efficiency of DOX-loaded MOGs, we performed the confocal
 239 fluorescence microscopy for HeLa cells incubated with 12.5 μ g/ml pure MIL-100(Al) gels and DOX-
 240 loaded MOGs for 24 h, followed by staining the nucleus with DAPI and the apoptotic cells with
 241 Annexin V-FITC. The results are revealed in Fig. 7. Herein, the green fluorescence is attributed to the
 242 apoptotic HeLa cells, while the blue and red fluorescence represent the living cell imaging and DOX
 243 released, respectively. For the HeLa cells incubated with pure MIL-100(Al) gels, only very small
 244 amount of apoptotic HeLa cells is presented (Fig. 7c, d). In contrast, for the HeLa cells incubated with
 245 DOX-loaded MOGs, a large number of the HeLa cells are apoptotic (Fig. 7g, h). This result again
 246 demonstrates the high efficiency of the DOX-loaded MOGs in the cancer therapeutic treatment.

247

248 **Figure 7.** Confocal microscopy images of HeLa cells incubated with 12.5 µg/mL **(a-d)** MIL-100(Al)
 249 gels and **(e-h)** DOX-loaded MOGs, respectively. Blue fluorescence represents the living cell imaging.
 250 Red fluorescence represents released DOX from DOX-loaded MOGs within the cancer cells. Green
 251 fluorescence represents apoptosis of cells. d and h are the merged images of a-c and e-g, respectively.

252 **4. Conclusions**

253 On the basis of the methods reported in the previous work [5,6,19, 20], we report a metal-organic
 254 gels (MOGs)-based drug delivery system, for anticancer therapy, i.e., MIL-100(Al) gels, which were
 255 synthesized by a facile, low cost and environment friendly one-pot method. The anticancer drug
 256 doxorubicin hydrochloride (DOX) can be successfully encapsulated in the MIL-100(Al) gels with high
 257 loadings (620 mg/g). Through control experiments, the fabricated DOX-loaded MOGs are comparable
 258 with some previous pH-responsive drug delivery system [16-18]. Specifically, the drug was not
 259 released at physiological condition (PBS, pH 7.4) but released in a controlled manner at acidic
 260 conditions (pH 5.5) with approximately 100%, after delivered over 3 days. We also conducted in vitro
 261 experiment of DOX-loaded MIL-100(Al) gels (DOX-loaded MOGs) toward HeLa cells. It turns out
 262 that the DOX-loaded MOGs have excellent efficiency in killing the HeLa cells. The synthetic MIL-
 263 100(Al) gels here feature concise synthetic step, large loading capacity for DOX and low biotoxicity.
 264 Further, the DOX-loaded MOGs show slow and sustainable releasing ability and high anticancer
 265 efficiency. MIL-100(Al) gels exhibit high qualities of all the performance-indicators as mentioned
 266 above, making DOX-loaded MOGs a promising anticancer approach for clinical application.

267 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1.

268 **Author Contributions:** Y.F. conceived and designed the experiments; Y.F. and C.W. performed the experiments;
 269 Y.F. and C.W. analyzed the data; Y.F. wrote the paper.

270 **Acknowledgments:** This work is supported by the National Key R&D Program of China (2017YFA0403402), the
 271 Natural Science Foundation of China (Grants U1732272 and 21773222), the Key Program of Research and
 272 Development of Hefei Science Center of CAS (2017HSC-KPRD001) and Collaborative Innovation Center of
 273 Suzhou Nano Science and Technology. Thanks for Mr. Jilong Wang and Dr. Fan Zheng for the assistance of in
 274 vivo cell experiments.

275 **Conflicts of Interest:** The authors declare no conflict of interest.

276 **References**

1. Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors, *Nat. Rev. Clin. Oncol.* 2010, 7, 653-664.
2. Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer, *Nat. Rev. Drug Discov.* 2008, 7, 771-781.

281 3. Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors:
282 improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo, *Adv.*
283 *Drug Deliv. Rev.* 2013, **65**, 71-79.

284 4. Chen, Y.; Ai, K.; Liu, J.; Sun, G.Y.; Yin, Q.; Lu, L.H.; Multifunctional envelope-type mesoporous silica
285 nanoparticles for pH-responsive drug delivery and magnetic resonance imaging, *Biomaterials* 2015, **60**, 111-
286 120.

287 5. Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon dots embedded magnetic
288 nanoparticles@chitosan@metal organic framework as a nanoprobe for pH sensitive targeted anticancer
289 drug delivery. *ACS Appl. Mater. Interfaces* 2016, **8**, 16573-16583.

290 6. Su, Y.Y.; Teng, Z.; Yao, H.; Wang, S.J.; Tian, Y.; Zhang, Y.L.; Liu, W.F.; Tian, W.; Zheng, L. J.; Lu, N.; Ni,
291 Q.Q.; Su, X.D.; Tang, Y.X.; Sun, J.; Liu, Y.; Wu, J.; Yang, G.F.; Lu, G. M.; Zhang, L.J. A multifunctional
292 PB@mSiO₂-PEG/DOX nanoplatform for combined photothermal-chemotherapy of tumor. *ACS Appl.*
293 *Mater. Interfaces* 2016, **8**, 17038-17046.

294 7. Jalvandi, J.; White, M.; Gao, Y.; Truong, Y.B.; Padhye, R.; Kyratzis, I.L. Polyvinyl alcohol composite
295 nanofibres containing conjugated levofloxacin-chitosan for controlled drug release, *Mater. Sci. Eng. C*
296 2017, **73**, 440-446.

297 8. Wang, D.D.; Zhou, J.J.; Chen, R.H.; Shi, R.H.; Zhao, G.Z.; Xia, G.L.; Li, R.; Liu, Z.B.; Tian, J.; Wang, H.J.;
298 Guo, Z.; Wang, H.B.; Chen, Q.W. Controllable synthesis of dual-MOFs nanostructures for pH-responsive
299 artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal
300 combinational cancer therapy. *Biomaterials* 2016, **100**, 27-40.

301 9. Zhao, D.; Timmons, D.J.; Yuan, D.; Zhou, H.C. Tuning the Topology and Functionality of Metal-Organic
302 Frameworks by Ligand Design, *Acc. Chem. Res.* 2011, **44**, 123-133.

303 10. Corma, A.; Garcia, H.; Llabres, F.X.; Xamena, I. Engineering Metal Organic Frameworks for Heterogeneous,
304 *CatalysisChem. Rev.* 2010, **110**, 4606-4655.

305 11. Keskin, S.; Kizilel, S. Biomedical Applications of Metal Organic Frameworks, *Chem. Res.* 2011, **50**, 1799-1812.

306 12. Yang, X.L.; Chen, X.H.; Hou, G.H.; Guan, R.F.; Shao, R.; Xie, M.H. A multiresponsive metal-organic
307 framework: direct chemiluminescence, photoluminescence, and dual tunable sensing applications, *Adv.*
308 *Funct. Mater.* 2016, **26**, 393-398.

309 13. Kaur, R.; Kim, K.H.; Paul, A.K.; Deep, A. Recent advances in the photovoltaic applications of coordination
310 polymers and metal organic frameworks, *J. Mater. Chem. A* 2016, **4**, 3991-4002.

311 14. Li, H.; Guo, K.; Wu, C.; Shu, L.; Guo, S.; Hou, J.; Zhao, N.; Wei, L.; Man, X.; Zhang, L. Controlled and
312 Targeted Drug Delivery by a UV-responsive Liposome for Overcoming Chemo-resistance in Non-Hodgkin
313 Lymphoma, *Chem. Biol. Drug Des.* 2015, **86**, 783-794.

314 15. He, Q.; Gao, Y.; Zhang, L.; Zhang, Z.; Gao, F.; Ji, X.; Li, Y.; Shi, J. A pH-responsive mesoporous silica
315 nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance, *Biomaterials* 2011,
316 **32**, 7711-7720.

317 16. Nunzio, M.R.; Agostoni, V.; Cohen, B.; Gref, R.; Douhal, A. A "Ship in a Bottle" Strategy To Load a
318 Hydrophilic Anticancer Drug in Porous Metal Organic Framework Nanoparticles: Efficient Encapsulation,
319 Matrix Stabilization and Photodelivery, *J. Med. Chem.* 2014, **57**, 411-420.

320 17. Sun, K. K.; Li, L.; Yu, X. L.; Liu, L.; Meng, Q. T.; Wang, F.; Zhang, R. Functionalization of mixed ligand
321 metal-organic frame-works as the transport vehicles for drugs, *J. Colloid Interface Sci.* 2017, **486**, 128-135.

322 18. Vasconcelos, I.B.; Silva, T.G.; Militao, G.C.; Soares, T.A.; Rodrigues, N.M.; Rodrigues, M.O.; Freire, N.B.;
323 Junior, S.A. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8, *RSC Adv.* 2012,
324 **2**, 9437-9442.

325 19. Sengupta, S.; Mondal, R. Metal-Organic-Particle-Supported Metallogel Formation Using a
326 Nonconventional Chelating Pyridine-Pyrazole-Based Bis-Amide Ligand, *Chem. Eur. J.* 2013, **19**, 5537-5541.

327 20. Zhang, J.; Su, C.Y. Metal-organic gels: From discrete metal-logelators to coordination polymers, *Coordin.*
328 *Chem. Rev.* 2013, **257**, 1373-1408.

329 21. Xiao, B.; Zhang, Q.; Huang, C.; Li, Y. Luminescent Zn(II)-terpyridine metal organic gel for visual
330 recognition of anions, *RSC Adv.* 2015, **5**, 2857-2860.

331 22. Aiyappa, H. B.; Saha, S.; Wadge, P.; Banerjee, R. S. Fe(III) phytate metallogel as a prototype anhydrous,
332 intermediate temperature proton conductor, *Chem. Sci.* 2015, **6**, 603-607.

333 23. Huang, M.; Mi, K.; Zhang, J.H.; Liu, H.L.; Yu, T.T.; Yuan, A.; Kong, Q.; Xiong, S. MOF-derived bi-metal
334 embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, *J. Mater. Chem. A* 2017,
335 **5**, 266-274.

336 24. Zhao, X.; Yuan, L.; Zhang, Z. Q.; Wang, Y. S.; Yu, Q.; Li, J. Synthetic Methodology for the Fabrication of
337 Porous Porphyrin Materials with Metal-Organic-Polymer Aerogels, *Inorg. Chem.* 2016, **55**, 5287-5296.

338 25. Li, L.; Xiang, S. L.; Cao, S. Q.; Zhang, J. Y.; Ouyang, G. F.; Chen, L. P.; Su, C. Y. A synthetic route to ultralight
339 hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels, *Nat. Commun.* 2013, **4**, 1774-
340 1782.

341 26. Mahmood, A.; Xia, W.; Mahmood, N.; Wang, Q. F.; Zou, R. Q. Hierarchical heteroaggregation of binary
342 metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water, *Sci.
343 Rep.* 2015, **5**, 10556-10568.

344 27. Sutar, P.; Maji, T. K. Coordination polymer gels: soft metal-organic supramolecular materials and versatile
345 applications, *Chem. Commun.* 2016, **52**, 8055-8074.

346 28. Liu, Y.R.; He, L.; Zhang, J.; Wang, X.; Su, C.Y. Evolution of spherical assemblies to fibrous networked Pd
347 (II) metallo gels from a pyridine-based tripodal ligand and their catalytic property, *Chem. Mater.* 2009, **21**,
348 557-563.

349 29. Tan, S.Y.; Ang, C.Y.; Mahmood, A.; Qu, Q.; Li, P.; Zou, R. Zhao, Y.L. Doxorubicin-Loaded Metal-Organic
350 Gels for pH and Glutathione Dual-Responsive Release. *ChemNanoMat* 2016, **2**, 504-508.

351 30. Kayal, S.; Ramanujan, R.V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug
352 delivery, *Mater. Sci. Eng. C* 2010, **30**, 484-490.