

1 Article

2

Acoustic parametric signal generation for underwater

3

communication

4 **María Campo-Valera ^{1*}, M. Ardid ², D. D. Tortosa ³, I. Felis ⁴, J. A. Martínez-Mora ⁵, C.D. Llorens ⁶**
5 **and P. Cervantes ⁷**6 Institut d'Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC),
7 Universitat Politècnica de València (UPV), 46730 Gandia, València, Spain.8 ¹ macamva@epsg.upv.es; ² mardid@fis.upv.es; ³ didieit@epsg.upv.es; ⁴ ivfeen@upv.es; ⁵ jmmora@fis.upv.es;
9 ⁶ cdavid@upv.es10 Laboratorio de Hidroacústica (LHA),
11 Centro Tecnológico Naval y del Mar (CTN). Ctra El Estrecho-Lobosillo, Km. 2, 30320 Fuente Álamo, Murcia
12 Spain.13 ⁷ pablocervantes@ctnaval.com

14 * Correspondence: macamva@epsg.upv.es; mardid@fis.upv.es Tel.: +34-963-877-000 Ext. 43681

15

16 **Abstract:** This paper presents a study of different types of parametric signals with application to
17 underwater acoustic communications. In all the signals, the carrier frequency is 200 kHz, which
18 corresponds to the resonance frequency of the transducer under study and different modulations
19 are presented and compared. In this sense, we study modulations with parametric sine sweeps (4
20 to 40 kHz) that represent binary codes (zeros and ones), getting closer to the application in acoustic
21 communications. The different properties of the transmitting signals in terms of bit rate, directivity,
22 efficiency and power needed are discussed as well.23 **Keywords:** underwater acoustic communication; parametric technique; self-demodulation.

24

25

1. Introduction

26 Communications in underwater environments have become a field of research of great interest
27 in recent years. The transmission of information in underwater media can be based on acoustic
28 systems, which present the advantage that the acoustic waves have lower absorption than the
29 electromagnetic ones. However, the underwater acoustic channel has important limitations because
30 of limited bandwidth, extended multipath, severe fading, and refractive properties of the medium.
31 Therefore, it is quite difficult to have clean, direct and private acoustic communication in underwater
32 environments. To deal with some of these limitations, new methods of communication are proposed
33 based on non-linear parametric effect. With this technique, directive communication can be achieved
34 by using directive high frequency transducers to produce a low-frequency secondary beam in the
35 medium that can travel over long distances. With this, several advantages are foreseen: to
36 communicate just in the desired direction, so being more robust against wanted dissemination of
37 information, or reducing reflections or multi-path effects that could worsen the quality of the
38 communication.39 The non-linear parametric effect is observed when a high-intensity acoustic beam with given
40 frequencies is propagated so that secondary frequencies (such as the addition or difference of the
41 primary frequencies) are formed and also propagated. This was first studied by Westervelt [1] and
42 later developed and applied under different circumstances [2,3]. The parametric effect has become

43 one of the most popular research areas in underwater acoustics for several decades with several
 44 applications.

45 In general, if a modulated emitted wave has a high carrier frequency (primary beam), it self-
 46 interferes and is rapidly absorbed in the medium allowing the formation of low frequencies
 47 (secondary beam) that propagate at greater distances. As it is well known, it is easier to generate very
 48 directional beams for high frequency than for low ones, which the latter are usually more omni-
 49 directional like. However, one of the fundamental characteristics of the parametric effect is that low
 50 frequencies, when generated parametrically, have a rather narrow directivity, comparable to that of
 51 the primary beam [3].

52 Theoretical studies have determined that the shape of the secondary beam signal is the second
 53 derivative of the square envelope of the emitted signal, its amplitude being proportional to the square
 54 of that of the primary beam. The waveform of the secondary beam is determined by the following
 55 equation:

$$p(x, t) = \left(1 + \frac{B}{2A}\right) \frac{p^2 S}{16\pi\rho c^4 \alpha x} \frac{\delta^2}{\delta t^2} \left[f\left(t - \frac{x}{c}\right)\right]^2 \sim \frac{\delta^2}{\delta t^2} f^2 \quad (1)$$

57
 58 where S is the area of the vibrating surface of the transducer, $f(t-x/c)^2$ is the envelope of modulation,
 59 x is the distance to the source and t is time, B/A is the nonlinearity parameter of the medium, ρ the
 60 density, c the velocity of sound and α the absorption coefficient in the medium. Therefore, the
 61 resulting wave $p(x, t)$ will be proportional to the second derivative of the envelope of the emitted
 62 signal squared [4, 5, 6].

63 1.2. Approach

64 Firstly, this paper proposes a theoretical study in order to optimize the acoustic parameters of
 65 an underwater communication system in order to be able to evaluate its performance in terms of
 66 sound pressure level and signal-to-noise ratio according to the power and geometry of the acoustic
 67 source [7].

68 Secondly, a study of measured signals is carried out by a plane emitter transducer, determining
 69 the relevant characteristics, such as amplitude and directivity of secondary beams with respect to the
 70 primary ones. In order to do this, an analysis of the measurements is performed by cross-correlating
 71 the emitted signal with the received one and thus obtaining the primary beam [8,9]. To obtain the
 72 secondary beam or parametric signal, the received signal is filtered at low frequencies and correlated
 73 with the second derivative of the envelope squared of the emitted signal.

74 Thirdly, the influence of noise in the received signal is studied. The secondary beam is analyzed
 75 to determine how the directivity and a proposed *Relative Amplitude* is affected by noise. All these
 76 studies are also interpreted regarding acoustic communication performance in terms of rate of
 77 reconstruction of bits.

78

79 2. Theoretical Considerations

80 The level of the secondary beam signal has been obtained following the model by Berkay and
 81 Leahy [3]. This model takes into account that the shock wave may limit the control of the secondary
 82 beam modulation. It is usually the base for the design of AUV's communication systems, allowing

83 using simple calculations for circular piston arrays, and other geometries such as square or
 84 rectangular shapes [10].

85 The input parameters of this model are: carrier frequency f_p , secondary beam frequency f_s ,
 86 diameter of the transducer d , and the power of the source W_o . Thus, the design is done according to
 87 the following equations:

88

$$\begin{aligned}
 S &= (\pi d^2/4) && \text{Vibrating surface} && (2) \\
 SL_p &= 10\log W_o + 171 + 10\log(4\pi S/\lambda^2) && \text{Primary beam pressure level} && (4) \\
 SL_s &= 2SL_p + 20\log(f_s) \text{ kHz} + 20\log(\Delta) - 287 && \text{Secondary beam pressure level} && (5) \\
 \Delta &= \int_0^{\infty} \frac{e^{-x}}{x+Z} dx, \text{ where } Z = \alpha_T R_p (f_p/f_s) \text{ and} && \text{Effective length of the parametric} \\
 R_p &= (S/\lambda_p) && \text{array} && (6) \\
 \alpha_T &= 2\alpha_p - \alpha_s \text{ (Np/m)} && \text{Absorption} && \\
 SL_c &= 20 \log L - 20 \log(f_p/\text{kHz}) + 292 && \text{Critical source level (saturation)} && (7) \\
 TL &= 60 + 20\log R_{km} + \alpha_s R && \text{Transmission losses} && (8) \\
 NL &= 60 - 17 \log f_s && \text{Noise level} && (9) \\
 DI &= 10 (4\pi S/\lambda_s^2) && \text{Directivity} && \\
 SNR &= SL_s - TL - NL + DI - 10\log B && \text{Signal-to-noise-ratio} && (10)
 \end{aligned}$$

89 *2.1. Transmitter Acoustic Response*

90 As an example, these equations are applied to the emitter Airmar P19 transducer used in this
 91 paper, whose active element is a cylindrical piezoelectric ceramic with a diameter of 0.033 m working
 92 at the thickness resonant frequency of 200 kHz. The results for a secondary beam of 40 kHz with 1
 93 kHz signal bandwidth at a distance of 10 km are presented in Table 1.

94

fs [kHz]	Power [W]	TL [10 km]	NL [dB/ μ Pa @1m]	DI [dB]	SLp [dB]	SLc [dB]	SLs [dB]	SNR [1kHz]
40	182	92	33	9	216	225	180	34

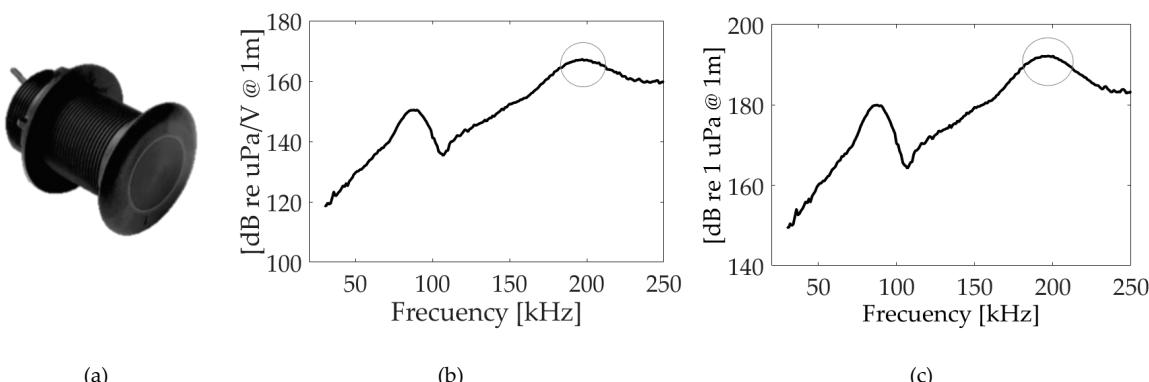
95

¹ Results for the beams at a distance of 10 km.

96 It can be observed that, for our transducer, the value for SNR is very high. This is because of the
 97 assumptions on noise level (may be considerably higher than in real situations) or on the transmission
 98 loss [10]. Even so, with this example we can show the potential of the parametric array concept,
 99 serving as the basis for the design of the application in underwater acoustic communication.

100 **3. Experimental Set-up**

101 The measurements were made in the Centro Tecnológico Naval y del Mar (CTN) in Murcia, Spain,
 102 in a lake of tapered shape with a 10 m depth and a diameter of 20 m. Figure 1a and 1b are pictures of
 103 the experimental setup. The distance between the emitter and the receiver was 1 m. An ITC 1032
 104 transducer was used as receiver with receiving sensitivity (RVR) of -194 dB re 1V/ μ Pa, without much
 105 variation at the resonance frequency region at 33 kHz and below, so being quite sensitive to the low
 106 frequencies willing to be detected. The Airmar P19 plane transducer was chosen as acoustic
 107 transmitter. Figure 1b shows the measurement equipment; the transmitter transducer was driven
 108 through the National Instruments 5412 PXI signal generator with a 50 dB gain using the E&I 2100L


109 RF amplifier. Signal reception data taking was done through the PXI National Instruments 5102 card.
 110 A sampling frequency $f_s = 20$ MHz was used for data acquisition. The position of transducers were
 111 set using a positioning system controlled by brushless motors with axis X = servo motor
 112 BMH1003P32F2A with gearbox, axis Z = servo motor BMH1003P32F2A axis PAN (flat pan turn) =
 113 servo motor BSH0553P01A2A axis tilt (vertical flat turn) = servo motor BSH0553P01A2A.
 114

115 **Figure 1.** Pictures of the experimental setup. (a) The lake where the position of transducers is indicated
 116 by white circles. (b) Equipment used for the calibrations and measurements.

117 *3.1. Characteristics of the transmitter*

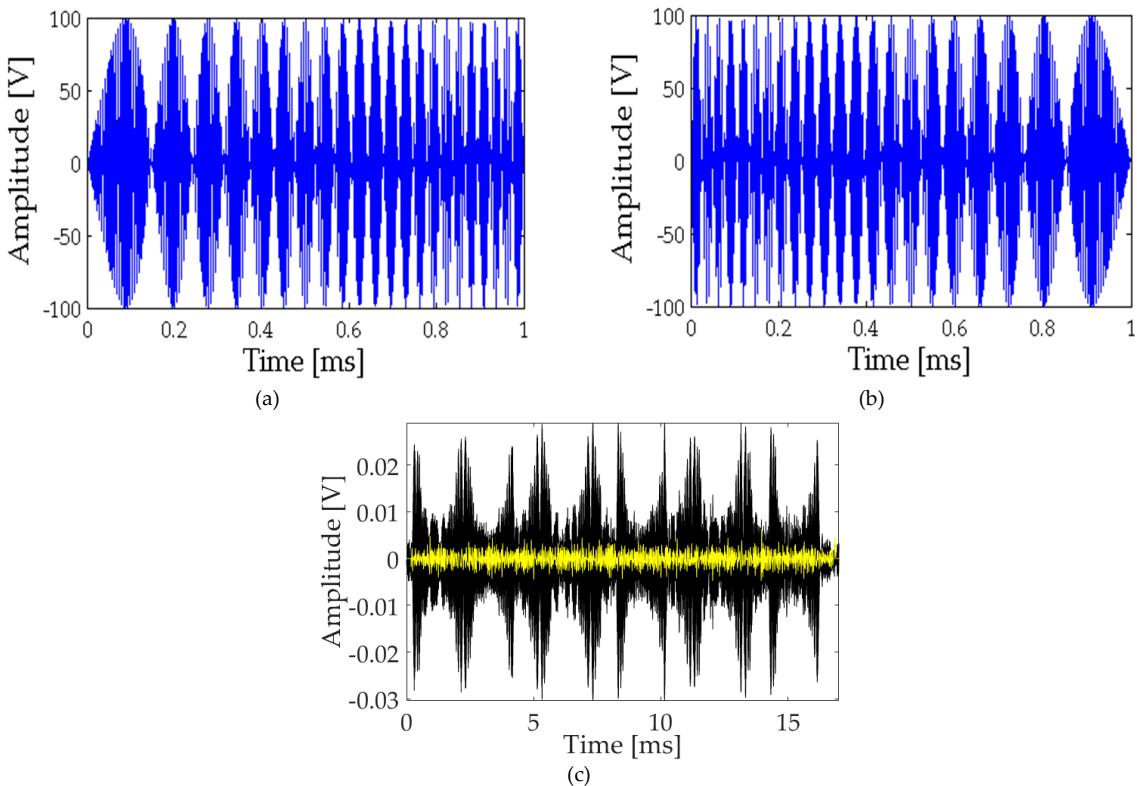
118 The knowledge of the transmitter behaviour is essential for the proposed application. Figure 2b,
 119 shows the Transmitting Voltage Response (TVR), which is the ratio of the pressure signal emitted to
 120 the applied voltage, for Airmar P19. It has been measured at the lab using tone bursts at different
 121 frequencies. The carrier frequency f_o of the modulation signal corresponds to the resonance
 122 frequency at 200 kHz and the TVR at this frequency is 167 dB re $\mu\text{Pa}/\text{V}$ @ 1 m. In figure 2c, the values
 123 of sound pressure level reached in our experiment is presented, with a value for the frequency of 200
 124 kHz of 195 dB re μPa @ 1m. The directivity of the transducer is another important parameter for the
 125 proposed study. The transducer presents a beamwidth (@ -3 dB) at 200 kHz of 11°.
 126

127 **Figure 2.** Airmar P19. (a) Picture; (b) TVR; (c) SPL, highlighting the interesting 200 kHz region for
 128 this application.

129 **4. Results**

130 *4.1 First studies*

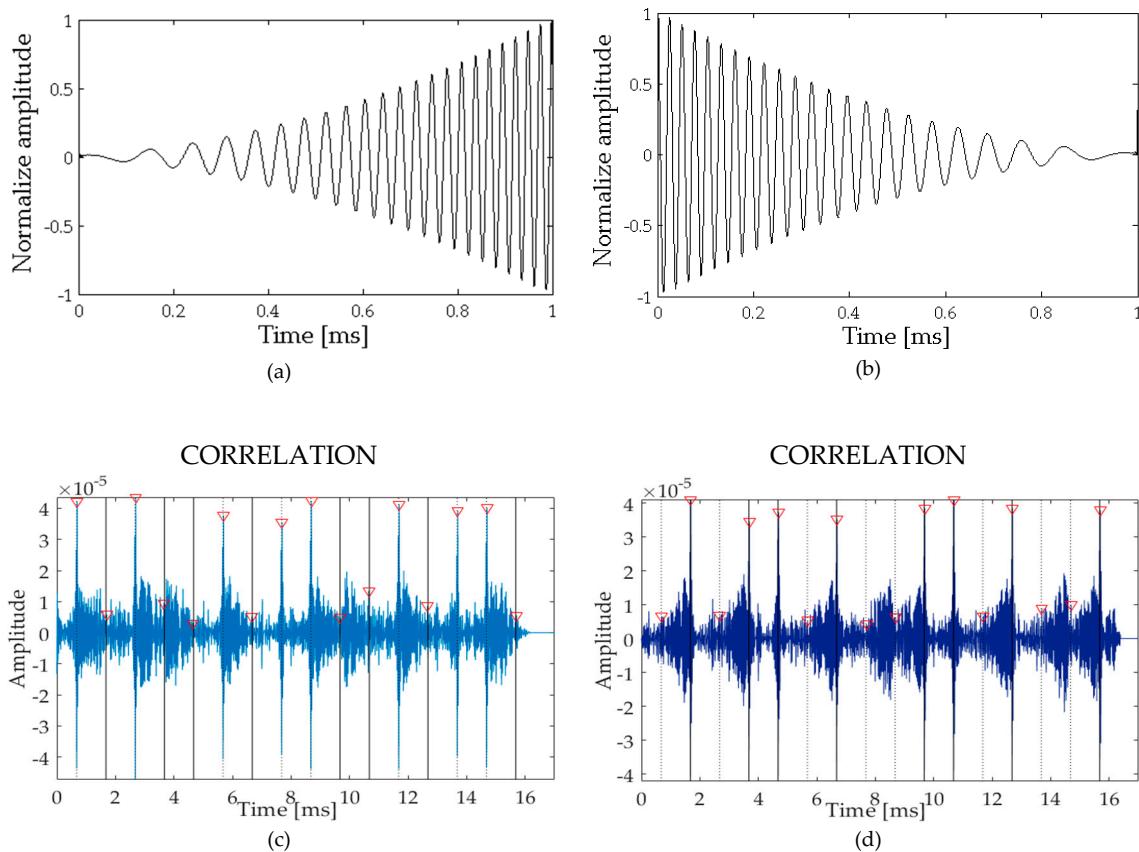
131 The study for the parametric generation of a sine sweep signal with the emitting transducer was
 132 carried out by emitting frequency-modulated signals with carrier frequency of 200 kHz. Two
 133 modulating sine sweep signals were used as basic codification of the information: bit 1, upwards


134 from 4 to 40 kHz, and bit 0, downwards from 40 to 4 kHz, corresponding to figures 3a and 3b,
 135 respectively.

136 Figure 3c shows the received signal being a mixed of the primary beam at 200 kHz and the
 137 secondary beam at low frequency produced by parametric effect. In order to distinguish the
 138 secondary beam, a bandpass filter (2 to 42 kHz) was applied. The secondary beam (yellow) is
 139 multiplied by a factor of 20 to be visible along with the original received signal.

140 A parametric sine sweep signal with a frequency bandwidth of 4 to 40 kHz with a duration of 1
 141 ms and a carrier frequency $f_o = 200$ kHz is then used for the communication study. The idea is to
 142 generate a 16-bit string = 1010010110010110, code of ones and zeros with this signal; where bit 1
 143 corresponds to the sine sweep signal from 4 to 40 kHz and bit 0 corresponds to a sine sweep signal
 144 from 40 to 4 kHz. Using cross correlation techniques, it is possible to recognize the parametric signal
 145 since the correlation produces a clear narrow peak on the signal arrival time, which allows it to be
 146 distinguished from near echoes, and increases the signal to noise ratio [8,11].

147 The signals emitted for bit 1 and bit 0, as well as the received signal for the string are shown in
 148 Figure 3.


149

150 **Figure 3.** Signal used in the analysis. (a) Bit 1: Upwards sine sweep signal; (b) Bit 0: Downwards sine
 151 sweep signal; (c) 16-bit received signal (black) and filtered at low frequencies (yellow).

152 The expected secondary beams, that is, the second derivative of the envelope to the square of the
 153 signals emitted are presented in Figure 4a and 4b for bits 1 and 0, respectively.

154 Figures 4c and 4d show the results of the cross-correlation between the received signal filtered at
 155 low frequency containing the 16-bits string (figure 3c, yellow) with the expected secondary beams for
 156 bits 1 and 0 (Figures 4a and 4b). Thus, one can observe that correlating with bit 1 the cross-correlation
 157 amplitudes for the positions of bit 1 of the string are much greater than the corresponding amplitudes
 158 for bit 0. In the same way, the positions of bit 0 are clearly enhanced in the correlation amplitudes
 159 when correlating with bit 0.

160 **Figure 4.** Signal analysis using cross-correlation. (a) second time derivative of envelope for bit 1; (b) second time
 161 derivative of envelope for bit 0; (c) Cross correlation signal with bit 1; (d) Cross correlation signal with bit 0.

162 Obtained the amplitude voltage by cross-correlation for the detection of bit 1 and 0, presented in
 163 Figures 4c and 4d, and specified in Table 2, a parameter, called *Relative Amplitude RA*, is introduced
 164 for bit detection analysis. It is defined as:

$$RA = \frac{V - F}{\text{MAX}(V; F)} \quad (11)$$

165 where V is the amplitude for the true bit, that is; the one with which should be in correlation with
 166 the bit emitted (1 or 0) and F is a false bit since it is the bit not emitted. In this sense, if the bit is
 167 detected correctly, the value V will be greater than F and therefore the values of RA will be
 168 between 0 and +1. On the other hand, if RA is between 0 and -1, it means a wrong detection.

169 In Table 2 the results for a direct communication for transducers at 1 m distance, facing each other,
 170 so at 0 degrees, are presented. A detection time of about 0.63 ms is obtained. The *Relatives Amplitudes*
 171 RA obtained after the cross-correlation and the assigned bit are also presented, showing that the
 172 information could easily be extracted. In this sense the RA is correct for each bit position, oscillating
 173 between 0.78 and 0.86, so close to +1.

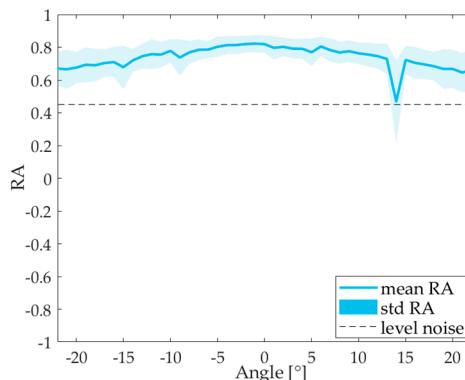
174

175

176

177

178


179

Bit Position	Bits	Detection time [ms]	Amplitude BIT 1 [10 ⁻⁴]	Amplitude BIT 0 [10 ⁻⁴]	RA
1	1	0.634	0.4069	0.066	0.8378
2	0	1.692	0.0661	0.3846	0.8281
3	1	2.694	0.4198	0.0642	0.8471
4	0	3.693	0.0776	0.3736	0.7923
5	0	4.692	0.0629	0.393	0.8399
6	1	5.653	0.3895	0.0516	0.8675
7	0	6.693	0.0747	0.3739	0.8002
8	1	7.631	0.3847	0.0593	0.8459
9	1	8.642	0.4056	0.0903	0.7774
10	0	9.693	0.0787	0.3805	0.7932
11	0	10.69	0.0874	0.4126	0.7882
12	1	11.69	0.4084	0.0704	0.8276
13	0	12.69	0.08	0.4066	0.8032
14	1	13.69	0.4014	0.073	0.8181
15	1	14.69	0.4251	0.0822	0.8066
16	0	15.69	0.0538	0.3898	0.8620

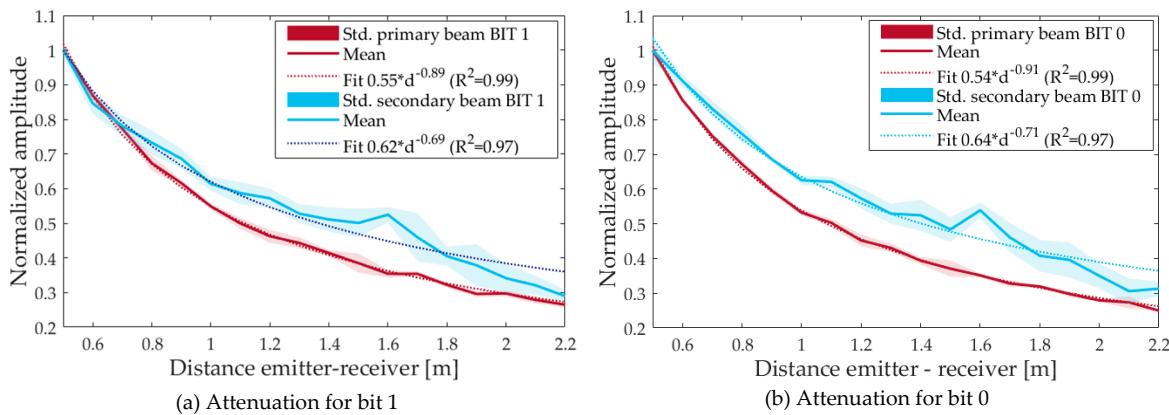
180 ²Parameters of the detection and interpretation of the 16-bit signal received

181 for transducers facing each other 1 m.

182 In Figure 5, the *RA* parameter averaged for all bit positions is presented as a function of the
 183 directivity angle of the emitter. We can observe that for this case all *RA* values are above the noise
 184 level region, which is between ± 0.45 , so the detection is produced for all angles ($\pm 25^\circ$).

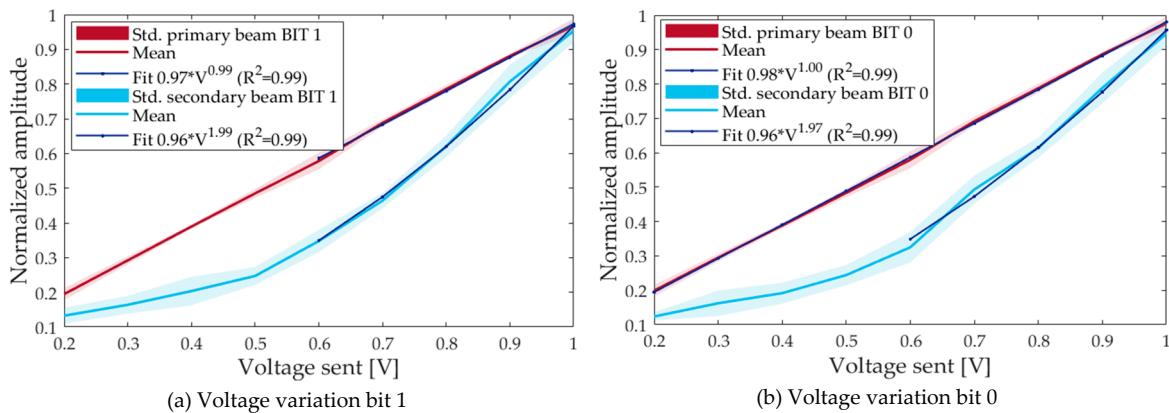
185 **Figure 5.** Relative amplitude for string bits.

186


187 *4.2 Parametric Studies*

188 To confirm the non-linear parametric effect and see the applicability of this technique for
 189 communication purposes, three different studies have been performed:

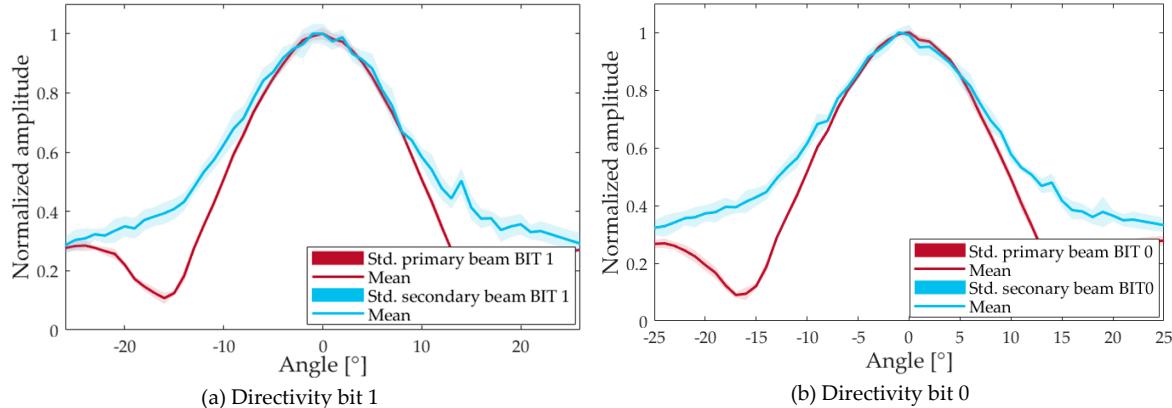
190 1. Attenuation – as a function of distance.
 191 2. Voltage variation –as a function of the primary beam intensity.
 192 3. Directivity – as a function of the angle of emission.


193 The first study analyzes the secondary beam generation in the medium by changing the distance
 194 between the emitter and the receiver. The second one aims to compare the amplitudes of the primary
 195 and secondary beams by emitting the signal at low intensity (that is, low feeding voltage) and
 196 increasing it to demonstrate the non-linear effect. The third study compares the directivity pattern of
 197 both beams.
 198

199 Figure 6 shows the results varying the distance, d , between the emitter and the receiver from 0.50
 200 m to 2.2 m, in steps of 0.10 m. The measurements of both, primary and secondary beams, are adjusted
 201 to a function $a \cdot d^{-b}$. Neglecting the absorption, for a spherical propagation beam, a value of $b = 1$
 202 is expected. The value for the primary beam is 0.89 is close to 1, however the value for the secondary
 203 beam is much smaller, 0.69, and this can be understood as a hint of the parametric generation of the
 204 beam in the medium, and therefore there is less attenuation.

205 **Figure 6.** Normalized amplitude of the received signal for primary (red) and secondary (blue) beam as a function
 206 of distance between emitter and receiver. Std means the standard deviation. (a) for bit 1; (b) for bit 0.

207 The dependence with respect to the intensity of the primary beam was done by setting the
 208 amplitude in the waveform signal generator from 200 mV to 1 V in steps of 100 mV, and studying the
 209 received amplitude. A fit with the function $a \cdot x^b$ was made with data from 600 mV to 1 V. An
 210 exponent of 0.99 (linear behavior) is obtained for the primary beam whereas an exponent of 1.98
 211 (square behavior) is obtained for the secondary beam, so agreeing perfectly to the theory of
 212 parametric emission.

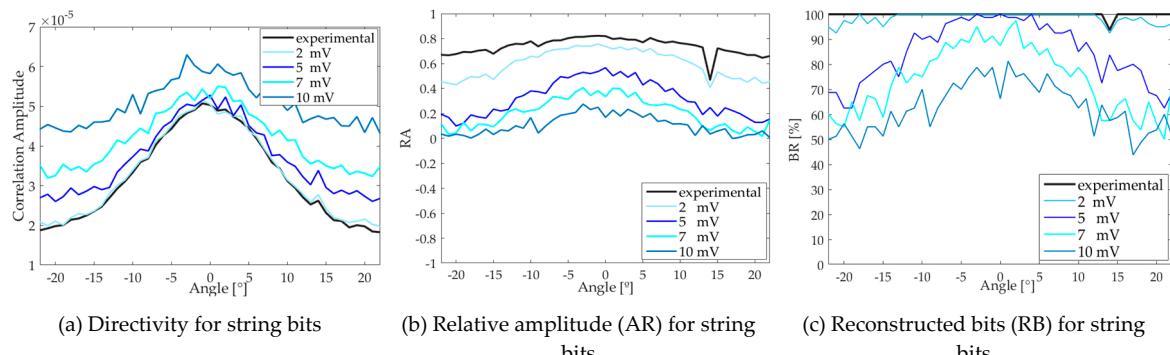

213 **Figure 7.** Normalized amplitude of the received signal for primary beam (red) and secondary beam (blue) as a
 214 function of voltage sent of emitted signal (i.e., feeding voltage before the amplifier). Std. means the standard
 215 deviation. (a) for bits 1; (b) for bits 0.

216 The evidence of the parametric effect of the secondary beam is also clearly shown in the
 217 directivity study which results are presented in Figure 8. An open angle of $\pm 12^\circ$ is obtained for the

218 secondary beam, whereas for the primary beam, it is $\pm 10^\circ$. So, both beams present a quite similar
 219 directivity pattern despite the big differences in the frequency content.

220 Summarizing, all these effects agree that the signal has been generated parametrically and thus,
 221 this technique could be used for underwater acoustic communications in circumstances that highly
 222 directive beams are preferable.

223


224 **Figure 8.** Directivity pattern of the primary and secondary beams.

225 **4.3 Influence of noise**

226 In this section, we study the influence of the noise on the communication using the parametric
 227 technique. To this end, a study is carried out that consists of adding to the received signals a white
 228 noise with different amplitude values from 1 mV to 10 mV, then, the correlation process described in
 229 section 4.1 is performed and the parameters *RA* and *RB*, *Reconstructed bits*, are analyzed.

230 We can see in Figure 9 that by increasing the amplitude of the white noise the directivity is
 231 degraded (a), the *RA* parameter decreases (b) and, therefore, the bit detection rate also does (c).
 232 Therefore, the signal is sensitive to changes in amplitude of noise and *RB* is quite dependent of the
 233 angle. For example, with 5 mV white noise *RB* is larger than 90% in the region $\pm 10^\circ$ whereas it
 234 degrades quite fast outside this region. This could be applied for situation in which directive
 235 communication is required, where the noise could either be environmental or easily produced
 236 artificially with a non-directive transducer working at low frequencies.

237

238 **Figure 9.** Influence of the noise in the secondary beam for the string of bits (experimental) and the ones adding
 239 some white noise of different amplitude: 2, 5, 7 and 10 mV. (a) Directivity; (b) Relative amplitude; (c)
 240 Reconstructed bits.

241

242 4.4 Amplitude ratio between the secondary and primary beams

243 In this section we compare the amplitude ratio between the secondary beam and the primary
244 beam A_s/A_p obtained experimentally with a theoretical model referenced in [2].245 A 0.28% direct ratio has been measured for the pressure amplitude of both beams, 12940 Pa for
246 the primary beam and 36.8 Pa for the secondary one.247 With respect to the theoretical predictions, using the first approach, the equation of the complex
248 parametric gain G (dB) is used, which is defined as a value whose magnitude is the ratio between the
249 primary and secondary beams pressures [2], where.

250

$$g \equiv rP(r, 0)/R_o P_o \quad (12)$$

251

252 and in decibels:

$$G = 20\log|g| \quad (13)$$

253

254 where r is the observer's radial coordinate, $P(r, 0)$ secondary beam pressure at a point r centered
255 on the emitter (Pa), $R_o = A_o f_o / c$ is the Rayleigh length (m), P_o the peak face pressure amplitude of
256 the primary component (Pa) at the Rayleigh distance.257 According to the specifications of the emitters and the calibrations done, for our case we have $g \approx$
258 **0.0028** and $G \equiv -51 \text{ dB}$, thus obtaining an amplitude ratio between the secondary beam and the
259 primary beam of 0.28 %, so fully agreeing with the measurements. This gain G corresponds to a
260 value of $L_o^* = 245$ dB rms source level of the primary component and $\bar{\alpha}R_o \approx 10^{-3}$ dB (0.0012 dB).

261

$$L_o = 20 \log(P_o R_o / \sqrt{2}), \text{ and } L_o^* = L_o + 20 \log f_o \text{ (dB // 1 } \mu\text{Pa m kHz}) \quad (14)$$

262

263 According to the parametric-gain curves, figure 2 of Ref. [2], we effectively find values close to
264 10^{-3} for $\bar{\alpha}R_o$ and $L_o^* \sim 240$ in the shown curves.265 Moreover, by applying equation (1), the measured sweep is studied with a set of parametric sine
266 waves at the limit frequencies and a centered one; that is, 4, 20 and 40 kHz frequencies are chosen.
267 The ratios between the secondary beam and the primary beam obtained are 0.141 %, 0.35% and
268 1.41%, respectively, with a primary beam pressure of 12940 Pa. As expected, the closest ratio to the
269 experimental one is the one for 20 kHz sine wave, which is about the average frequency of the
270 parametric sweep emitted.271 Finally, the measurement is also contrasted according to the operating regime for parametric
272 sources. Following ref. [2], our case is in the regime of absorption limiting in the far spherical zone:
273

$$X \ll 1, \quad 2\alpha R_o f_o / f \ll 1 \quad (15)$$

274

275 where α (Np/m) is the absorption, R_o (m) Rayleigh length, f_o (Hz) carrier frequency and
276 f difference frequency 4, 20 y 40 kHz. Applying the equation (15) we obtain 0.014, 0.0028 y 0.0014
277 respectively for $2\alpha R_o f_o / f$ and 0.006 for X , so all values much lower than one.278 Subsequently, the parameter g is calculated through the following equation:

279

$$|g| = \frac{X}{2} \frac{f}{f_o} E_1 \left(\frac{2\alpha R_o f_o}{f} \right) \quad (16)$$

280

281 where E_1 is the exponential integral function. We obtain 0.0002 for 4 kHz, 0.0015 for 20 kHz and
282 0.0035 for 40 kHz and applying equation (13) we have -73.36 dB -56.27 dB and -49.18 dB respectively,
283 validating that for the emitted frequency of 20 kHz the value of $G = -56.27$ dB is similar to the first
284 analysis studying the pressures received from the primary and secondary beam with a $G = -51$ dB.

285 **5. Conclusions**

286 The generation and analysis of parametric signals for a plane emitter transducer has been
287 discussed in order to apply it to underwater acoustic communications. The formulations presented
288 to optimize the design of an array according to the model of Berklay and Leahy lay the foundations
289 for developing the design of the experiment. The dependence of the parametric signal with respect
290 to the primary beam intensity, attenuation and directivity, as well as the corresponding impact in
291 communications in terms of bit reconstruction has been studied and evaluated. With respect to this,
292 we can conclude that the parametric generation allows a better use of the communication channel
293 which allows transmitting in a more defined region, so allowing a more private communication, or
294 not adding acoustic contamination to protected areas. Moreover, for some cases, this method helps
295 to improving the resistance against possible background noise and interference.

296 On the other hand, the rapid absorption of high frequencies in the medium allows the low
297 frequencies (secondary beam) to propagate at greater distances with a rather narrow directivity angle
298 of the order of 10 ° for a frequency bandwidth between the 4 and 40 kHz presented in this study,
299 comparing it with conventional transducers with a directivity angle of ~60 °.

300 **Acknowledgements:** We acknowledge the financial support of Plan Estatal de Investigación, ref. FPA2015-
301 65150-C3-2-P (MINECO/FEDER), and of the Generalitat Valenciana, Grant PrometeoII/2014/079. We
302 acknowledge as well the Laboratorio de Hidroacústica (LHA). Centro Tecnológico Naval y del Mar (CTN). Ctra.
303 El Estrecho-Lobosillo, Km. 2, 30320 Fuente Álamo, Murcia, Spain.

304 **Author Contributions:** Conceptualization, Methodology, Project Administration, Supervision, M.A. and J.A.
305 M.-M.; Software, I.F, M.C.V., D.D.T.; Investigation, M.C.V.; Writing Original, M.C.V.; Writing-Review & Editing,
306 M.A., J.A. M-M., I.F., D.D.T.; Resources, C.L. and P. Cervantes.

307 **Conflicts of Interest:** The authors declare no conflict of interest.

308 **References**

1. P. J. Westervelt, Parametric Acoustic Array. *J Acoust. Soc. Am.* **1963**, *35*, 5.
2. M. B. Moffett and R. H. Mellen, Model for parametric acoustic sources. *J Acoust. Soc. Am.* **1977**, *61*, 325-337.
3. H. O. Berklay.; D. J. Leahy., P. Farfield, performance of parametric transmitters. *J Acoust. Soc. Am.* **1972**, *55*, 539-546.
4. María Saldaña, Acoustic System Development for Neutrino Underwater Detectors. PhD thesis, Universitat Politècnica de València, 2017.
5. M. Ardid.; Juan A. Martínez-Mora.; Manuel Bou-Cabo.; Giuseppina Larosa.; Silvia Adrián-Martínez and Carlos D. Llorens, P. Acoustic transmitters for underwater neutrino telescopes. *Sensors*. **2012**, *12*, 4113-4132.
6. M. Saldaña, C.D. Llorens, I. Felis, J.A. Martínez-Mora, M. Ardid, Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration. *Sensors* **2016**, *16*, 1210.
7. Lauren Kopp, Daniel Cano, Evelyne Dubois, Liansheng Wang, Brian Smith and Rodney F. W. Coates, Potential performance of parametric communications. *IEEE Journal of oceanic engineering*. **2000**, *25*, 282-295.
8. S. Adrián-Martínez, M. Bou-Cabo, I. Felis, C.D. Llorens, J.A. Martínez-Mora, M. Saldaña, M. Ardid. Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions. In Ad-hoc Networks and Wireless; Springer: Berlin/Heidelberg, Germany, 2015; Volume 8629, pp. 66-79.
9. I. Felis, J.A.; Martínez-Mora, M. Ardid, Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors. *Sensors* **2016**, *16*, 860.

327 10. T.B. Pederson, A parametric sonar performance calculator. *J. Phys. Colloque.* **1979**, C8, Suppl., Tome 40, C8-
328 137-C8-139.

329 11. S. Adrián-Martínez, Design and Development of an Acoustic Calibrator for Deep-Sea Neutrino Telescopes
330 and First Search for Secluded Dark Matter with ANTARES PhD thesis, Universitat Politècnica de València,
331 2015.