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Abstract

The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca?*)
and phospholipid binding protein family which share a high structural homology. In
keeping with this hallmark feature, annexins have been implicated in the Ca?*-
controlled regulation of a broad range of membrane events. In this review, we identify
and discuss several themes of annexin actions that hold a potential therapeutic value,
namely the regulation of the immune response and the control of tissue homeostasis,
and that repeatedly surface in the annexin activity profile. Our aim is to identify and
discuss those annexin properties which might be exploited from a translational science

and specifically clinical point of view.
Introduction

Annexins stepped into the light in 1978, when a soluble protein was isolated from
bovine adrenal glands that caused the aggregation of secretory vesicles in vitro when
free Ca?* was present [1]. This protein, initially called “synexin”, turned out to be the
first discovered member of a new protein family, the annexins [2]. The Ca?*-dependent
binding to phospholipid-containing membranes turned out to be their hallmark,
mediated by their signature feature, the annexin repeat. More than 500 different

members of the superfamily have now been identified [3]. According to the official
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nomenclature proposed in 1999, the 12 annexins commonly found in vertebrates
constitute the A subclass [4]. Structurally, annexins all share the characteristic and
highly conserved “core” domain made up of usually four annexin repeats each of which
typically contains a Ca?*- binding motif and mediates the specific binding to negatively
charged phospholipids. In 1990, the first crystal structure (of AnxAS) confirmed the
predictions [5]. The tightly packed and slightly convex annexin core domain is linked to
an N-terminal part (sometimes also called “head” or “tail” domain) that is unique for a
given annexin. N-terminal tails are surprisingly diverse in length and sequence, and
sometimes contain binding sites for interaction partners, including members of the
S100 family of EF-hand-containing Ca?*-binding proteins [6]. In several annexins, the
tail is a substrate for kinases that have a strong influence on a wide variety of signal
pathways, such as the proto-oncogene tyrosine-kinase Src and the Ca?*-controlled
serine-threonine kinase PKC [7-9]. Phosphorylation is thought to regulate the protein
function [5,10] and has been reported to control secretion, at least in the case of AnxA1
and A2, through a yet unknown unconventional pathway of these otherwise cytosolic
proteins [11-15]. Not surprisingly, annexins have been implicated in the regulation of
a broad range of cellular and physiological processes that are linked to cellular
membranes, such as vesicle organization, membrane trafficking and scaffolding, endo-
and exocytosis, and membrane/cytoskeleton interactions [16-21]. Membrane
dynamics is also a recurrent theme in host-pathogen interactions, and annexins might
function as host cell-derived auxiliary proteins in shaping the microbe-host interplay
[22]. In recent years, a growing number of annexin knock out (KO) mouse models have
been constructed [23], and they will certainly prove to be useful tools for investigating

annexin functions, both as drugs and therapeutic targets.

Extracellular functions - Detection of Phosphatidylserine, Inmuno-evasion and

Blood coagulation

During pathophysiological responses, typical changes in the membrane composition
and loss of membrane asymmetry are repeatedly observed. A prominent feature is the
translocation of phosphatidylserine (PS), which in viable cells is located in the cytosol-
facing leaflet of the plasma membrane, to the outside-facing leaflet of the apoptotic cell
membrane [24]. In the presence of Ca?*, PS is a high-affinity ligand for the annexins

and Ca?*-dependent PS binding is in fact a defining trait of the annexin family [25]. For
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AnxA5, a Kp value of 5x10°"° in the presence of Ca?* [26] underscores the high
selectivity in its preference for PS over other negatively charged phospholipids, and
this specificity is the reason behind the wide use of labelled AnxAS5 for the identification

of apoptotic cells [27], for example in flow cytometry applications [28,29].

The surface-exposed PS assists in the recognition and subsequent phagocytic
engulfment, of dying cells [30]. This process is called efferocytosis and is immune-
calming in its nature [30] and seems to depend on the concomitant externalization of
AnxA1 [31], which is part of the apoptotic cell-associated molecular patterns (ACAMPs)
[32] that is presented by dying cells and convey the switch towards an anti-
inflammatory response. In accordance with the function as an “eat-me” signal, which
most likely includes the acquisition of PS-bound anxA1 on the outer surface,
phagocytosis of PS-decorated red blood cells is inhibited when PS is masked [33], for
example through PS-binding proteins. Recent findings suggest that exposition of PS
on the outer leaflet is not confined to apoptosis but appears to act as an evolutionary
conserved global immunosuppressive signal [34], and is also found on the surface of
cancer cells [35]. Unfortunately, in this context, PS exposure is not linked to cell
elimination but seems to function in immune evasion [34], which, like in apoptotic cells,
might depend on cell surface associated AnxA1 [36]. Blocking of PS with AnxA5 might
be a strategy to antagonize the immune-suppression and help establish an anti-tumor
immune reaction. Furthermore, AnxA5 might be used for the development of selective
molecular imaging probes for cancer diagnosis and disease management [29,37] and

importantly, for targeting drugs to the cancer cells [25,35].
Coagulation

Exposure of PS is also an important step in the regulation of blood clotting [38]. PS on
the surface of endothelial cells or membrane vesicles derived from activated platelets
greatly enhances the pro-thrombin/thrombin conversion which is a central unit in the
coagulation [39]. Annexin A5 is abundantly found on the surface of the
syncytiotrophoblast, which covers the placental surface, and the AnxA5 layer is
discussed to protect the placenta from abnormal coagulation [40]. Furthermore, a
polymorphism in the AnxAS5 gene was found to be associated with recurrent pregnancy
loss. Women with the SNP in the AnxA5 gene had a significantly higher risk of fetal

loss than non- carriers [41]. The AnxAS anticoagulant function might depend on its
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well-established property to self-assemble on PS-containing membranes into an
extensive two-dimensional crystal lattice [42] that hinders the assembly of the pro-
coagulant complexes. In line with such protective function in the blood clotting
regulation, anti-AnxA5 autoantibodies are found in patients suffering from anti-
phospholipid syndrome [43], a disease that manifests clinically as recurrent thrombotic
events and is associated with fetal loss [44]. The occurrence of AnxA5 autoantibodies
[45] is also linked to autoimmune disorders [46] also observed in some patients

suffering from multiple sclerosis or systemic lupus erythematosus.

Among the many functions exerted by thrombin is the conversion of fibrinogen to fibrin
which, together with platelets, forms a stable haemostatic plug that seals the injured
vessel wall. To avoid excessive clot formation, the damaged endothelium slowly
secrets components that assist in the conversion of plasminogen entrapped in the clot
to enzymatically active plasmin which breaks down the fibrin mesh. AnxA2, possibly
as a heterotetramer together with its ligand S100A10, was demonstrated to enhance
plasmin generation [47,48]. Consistently, AnxA2 KO mice present defective fibrinolysis
and increased thrombotic vascular occlusion and impaired neovascularization [49].
Blast cells of patients with acute promyelocytic leukemia (APL) express AnxA2 to a
high amount [50], which might explain the haemorrhagic complications observed in
APL patients. In line with the impact of AnxA2 on coagulopathy [50], treatment with the
retinoic acid receptor ligand, all-trans retinoic acid (ATRA), attenuates AnxA2

expression and improves clinical resolution.

Extracellular functions- annexins as ligands of defined inflammation-related

receptors

A conceptually straightforward approach is to therapeutically exploit those annexins
which function as endogenous ligands for known receptors. In this regard, the most
prominent annexin is certainly AnxA1. Still under its former name lipocortin 1, AnxA1
gained considerable attraction as a key mediator of glucocorticoid actions in
inflammation. AnxA1 deficient mice do not respond to glucocorticoid treatment under
inflammatory conditions [51]. The full-length protein as well as its famous Ac2-26 N-
terminal peptide pharmacophore (which might be proteolytically released from the full
length protein [32,52]), act in an anti-inflammatory manner in many experimental

conditions, and we refer the reader to the many excellent and comprehensive review
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articles on that topic [53-56]. A molecular explanation was provided by the discovery
that both AnxA1 and the Ac2-26 peptide specifically bind and activate the formyl-
peptide receptor (FPR) subfamily [57,58] of heptahelical, G-protein coupled cell
surface receptors. Most of the reported AnxA1 anti-inflammatory functions depend on
binding to FPRs. However, it is entirely possible that additional signaling mechanisms
elicited through yet unknown signalling receptors are involved, as the recognition of an
annexin core (which can also be derived from annexins other than A1) also contributes
to an immune-modulation [59]. In humans, three members of the FPR family are found:
FPR1, FPR2, and FPR3, whereas in mice at least eight FPRs are expressed [60]. The
most prominent receptors among the FPR family expressed in the murine model are
FPR1 and FPR2 [61]. FPR1 and FPR2 are predominantly expressed on the surface of
many immune cells (e.g. neutrophils, macrophages, dendritic cells) but also found in
endo- and epithelial cells [62]. A broad range of FPR1 ligands, both agonist and
antagonists, have been described [63], and autocrine/paracrine signalling of
externalized AnxA1 protein and/or its peptides via the FPRs might explain its well-
known immune-modulatory and pro-resolving actions. Upregulation of AnxA1
expression is observed in several inflammatory conditions [64] and thought to function
in resolution and tissue protection [65]. Indeed, studies on the use of Ac2-26-containing
nanocapsules in the treatment of mucosal injury in the murine model, reported
enhanced colonic wound healing, both in the acute and chronic situation [66].
Interestingly, a small peptide derived from the AnxA1 N-terminus attenuated
experimental colitis in mice [67]. Chronic inflammation is also observed in obesity [68].
Interestingly, AnxA1 KO mice on a high-fat diet are more prone to obesity than the

control animals [69], and FPR2 activation improved systemic insulin sensitivity [70].

The AnxA1/FPR signaling axis might constitute an attractive target for the treatment of
cardiovascular diseases. We give an only cursory overview as we want to draw the
reader’s attention to the excellent review articles included in this special collection. A
lowered AnxA1 expression in plaques obtained from patients with carotid stenosis
correlates with neurological symptoms [71]. Correspondingly, vulnerable plaque
regions obtained from human carotid endarterectomy were shown to have less pro-
resolving factors, such as resolvin D1 (RvD1), compared to more stable regions [72].
RvD1 is another ligand for FPR2 [73], thus indicating a potential therapeutic use of

AnxA1 to support the resolution phase, suppress plaque progression, and enhance
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plaque stability. A growing body of evidence also points at an anti-inflammatory and
neuroprotective function of AnxA1 in the brain, and AnxA1-derived molecules might
emerge as promising tools in the treatment of brain diseases, including stroke and
neurodegenerative disorders [74,75]. The decisive role of AnxA1 in stroke
development and progression has been highlighted in a global murine stroke model
mimicking cerebral ischemia caused by atherosclerosis, which is accompanied by
cardiac arrest. Ischemic mice treated with AnxA1or the Ac2-26 peptide presented
reduced infarct size, less cerebral edema, and improved neurological score [76].
Furthermore, Ac2-26 prevents neutrophil-platelet aggregate formation within cerebral

microvessels through the interaction with FPR2 [77].

A caveat to the generalized use of AnxA1 for treatment of excess inflammatory
conditions is the observation that LPS, a highly potent pro-inflammatory component
derived from the bacterial wall of gram-negative bacteria, triggers the upregulation of
AnxA1 expression in a variety of cell types e.g. neutrophils [78]. Indeed, elevated
AnxA1 plasma levels are found in 56% of septic patients after hospital admission [79].
While initially beneficial [78], it remains to be investigated whether excess LPS-induced
AnxA1 externalization might cause the so-called endotoxin resistance, a dangerous
refractive state of the innate immune system characterized by a lowered response
towards a second exposure to bacterial lipopolysaccharide [80]. However, the target
delivery of AnxA1-derived compounds has tremendous promise to treat a range of

inflammatory conditions.

AnxA2 not only impacts fibrinolysis but (in its heterotetrameric form together with
S100A10) affects the Toll-like receptor (TLR) signaling. The AnxA2-S100A10 complex
activates human and murine macrophages through the TLR4-MyD88 pathway,
although the cell’s responsiveness requires an additional and yet unknown factor [81—
83]. Signaling through the TRAM/TRIF- module of the TLR4 pathway was reported to
attenuate Klebsiella-induced lung inflammation in a murine model of acute pneumonia
[83]. Monomeric AnxA2 was also shown to bind to and activate TLR2 via its N-terminal
domain, thus assisting in the differentiation of antigen-presenting cells [84].
Extracellular AnxA2 was shown to also interact with the proprotein convertase
subtilisin/kexin-type 9 (PCSK9), thus interfering with PCSK9-mediated degradation of
the hepatic low-density lipoprotein receptor (LDLR) [85—-87]
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In search of the molecular mechanism underlying the stimulatory effects of AnxA2 on
human osteoclast formation [88,89], a novel type | membrane protein was identified as
a putative AnxA2 receptor [90]. A recent study linked a single nucleotide polymorphism
(SNP) in the AnxA2 gene (rs7170178) to osteonecrosis in sickle cell patients. The SNP
frequency of the AnxA2 gene polymorphism was higher in sickle cell osteonecrosis
patients than those without osteonecrosis [91]. Interaction of AnxA2 with the AnxA2
receptor also mediates adhesion and activation of the cells responsible for the initiation
and maintenance of multiple myeloma [92] and this signal pathway could be used as

a therapeutic target.

Intracellular functions of annexins in inflammatory and wound healing

processes

The following sections will cover those intracellular functions of annexins which are of
potential relevance in pathophysiological scenarios. In the simplest approach,
characteristic changes in the annexin expression profile might be used to diagnose
and monitor diseases and to predict and evaluate the therapeutic success. It is entirely
possible that the relative expression levels of several annexins constitute valuable
panels of biomarkers, and that such an annexin-based multibiomarker-model could be
used to estimate the disease risk. Approaches addressing intracellular proteins are
challenging and require sophisticated technologies that are only beginning to emerge.
In this case, annexins might be used for gene and cell therapy approaches or might
serve as druggable targets for cell-penetrating small molecules that interfere with or
mimic annexin functions. Additionally, the intracellular delivery of annexin-derived
therapeutics (e.g. as cell-penetrating fusion peptides) might be exploited in intracellular

protein therapy.
Annexins as biomarkers

Changes in cellular or tissue expression levels have been reported for several
annexins and a broad range of diseases (Fig. 1), suggesting a potential use to
determine onset and progression of disease and to monitor therapeutic success. The
following studies are exemplary only and illustrate the potential use of determining

annexin expression profiles for the early detection of common cancers.
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Massive dysregulation of annexin expression patterns occur during tumorigenesis. For
instance, serum levels of AnxA1 are significantly elevated in lung cancer patients. Due
to the strong association of AnxA1 to the pathological grade and clinical stage, it is a
convenient marker for monitoring the course of disease [93]. Furthermore, the AnxA2
expression is significantly associated with tumor size, lymph node metastasis, distant
metastasis and clinical stage of laryngeal cancer and therefore a promising candidate

for estimating the prognosis of patients with laryngeal carcinoma or gliomas [94].

AnxA10 is already used as a biomarker for hepatocellular carcinoma (HCC) and
markedly downregulated during cancer progression [95]. The AnxA10 downregulation,
together with a characteristic p53 mutation, acts synergistically toward high-grade,

high-stage HCC and goes along with poorer prognosis [95].
Regulation of cytosolic phospholipase A2 (cPLA2) enzymatic activity

Very early on, the ability of annexins, and especially AnxA1 and AnxA2, to inhibit
cPLA2, thus interfering with arachidonic acid release and eicosanoid formation, has
been acknowledged. Mechanistically, the function was explained by competition for
the lipid substrates [96-98]. However, cPLA2 might be inhibited in a more direct
manner [99]. Given the fundamental role of this enzymatic activity in eicosanoid
production, annexins might serve as a starting point to discover new lead structures
for further cPLAZ2 inhibitors.

Cell surface presentation of integral plasma membrane molecules

The AnxA2-S100A10 tetramer has been shown to interact with (and possibly regulate)
a number of integral plasma membrane molecules including ion channels and
receptors, like the Ca?*-selective Transient Receptor Potential vanilloid type 5 and 6
channels (TRPV5 and TRPV6) [100], the acid-sensing ion channel ASIC [101], the
two-pore-domain potassium channel TASK-1 [102], the chloride channel Cystic
Fibrosis Transmembrane Conductance Regulator (CFTR) [103] the GPCR CCR10
[104] and the 5-HT1B receptor [105]. Interfering with these S100A10 interactions could
be envisioned for the treatment of the corresponding diseases, including depression
[105], although a beneficial effect of an upregulation of S100A10 expression, e. g.
through 1,25-dihydroxyvitamin D3 [100], yet needs to be demonstrated.
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Plasma membrane repair

Very recently, another important annexin function related to cellular processes
controlling damage appeared. To maintain a functional plasma membrane (PM),
eukaryotic cells are able to repair PM injuries. The resealing is Ca?*-dependent and
depends on a complex machinery. It can probably occur through different mechanisms,
depending on the kind and extent of injury. PM repair is essential for skeletal muscle
homeostasis, and defective PM repair manifests very impressively in skeletal muscle
damage and is linked to degenerative muscle diseases such as myopathies and
muscular dystrophies [106]. A growing body of research suggests that several annexin
family members facilitate the required membrane fusion events during the healing of
PM lesions [107—109]. Here, gene therapy, i.e. the transfer of DNA encoding functional
annexin proteins into the target cells, might be used to treat conditions caused by

defective PM repair mechanisms.
Annexins and the host/pathogen interface

The growing appearance of antibiotic resistance is one of the major threats to human
health. To overcome the emergence of drug-resistant viruses, bacteria, and fungi,
therapeutic strategies that aim at targeting host cell factors rather than the pathogen
itself are currently pursued [110]. However, most of these novel approaches are still in
very early phases of clinical trials. For the development of such novel approaches, the
detailed knowledge of the manifold host/pathogen interactions that take place during
the course of infection, is paramount. An obvious target for interventions is the host
innate immune response. It acts as a first line of defense against pathogen attack, and,
not surprisingly, pathogens have evolved sophisticated strategies to overcome these
cellular defense mechanisms or even use them to their advantage. Trypanosoma cruzi,
for example, presents PS on the cell surface of trypomastigote stage in order to mimic
the anti-inflammatory effects of apoptotic cells, thus evading the host innate immune
response [111]. A similar mechanism of apoptotic mimicry to balance inflammation is
also used by Toxoplasma gondii [112] and Leishmania braziliensis [113], although it
remains to be studied whether the immunomodulatory function also depends on the
recruitment of AnxA1. However, blocking of the surface-exposed PS by AnxA5 impacts
infectivity of Toxoplasma [112] and Leishmania [113]. These exemplary observations

underscore that the elucidation of a functional role for the annexins during microbial
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infection, an emerging and rapidly growing field within the annexin research, holds

potential for developing annexin-based therapeutic options.

Several annexins are incorporated into virus particles, for example, influenza A virus
(IAV) particles contain annexins A1, A2, A4, A5, and A11 [114]. In addition to 1AV,
AnxA1 is found associated with several other viruses [114—-122]. Interestingly, no
indications so far suggest that the viruses rely on its immune-modulating capacity to
facilitate virus entry, although the AnxA1 receptor FPR2 is involved in AV replication
[123]. A clearer active role during viral infection is found for AnxA2 and AnxA5. An
exploitation of virus-incorporated AnxA2 to promote the conversion of plasminogen to
plasmin on the cell surface was reported to be utilized, at least in a supportive manner,
by herpesvirus and 1AV [124-127]. Virus-incorporated AnxAS5 assists IAV infection
through the inhibition of interferon-mediated host cell protection [128]. Whether the
specific binding of anxA5 to a hepatitis B virus (HBV) surface antigen [129,130]
mediates a similar function, thereby affecting the host cell susceptibility to HBV [131—
134] remains to be investigated. Although the potential importance of the remaining
IAV-associated annexins is still unknown, the above indications point to a function, at
least for several annexins, as host-derived virulence factors. Furthermore, the most
common high-risk human papillomavirus HPV16, which causes benign and malignant
mucosal and cutaneous epithelial tumors, induces and utilizes the AnxA2/S100A10
heterotetramer on the host cell surface for effective internalization. The complex most
likely interacts with the HPV minor capsid protein L2 [135,136]. Importantly, interfering
with AnxA2/S100A10 complex through the use of small molecule inhibitors markedly
impairs HPV16 infection in a cell culture model [137]. Because a similar function for
AnxA2 as a host cell receptor was also reported for several other viruses, including
human cytomegalovirus, enterovirus type 71, rabbit vesivirus, and respiratory syncytial
virus [138-143], as well as for Pseudomonas aeruginosa and Mycoplasma [144—146],
such small molecule inhibitors might be of therapeutic value in a broad range of viral
and bacterial infections. Further host-directed drug therapies might include targeting of
other annexin/pathogen interactions, for instance through the use of synthetic mimetic

peptides that effectively compete for interaction sites.

Their biochemical signature, i.e. the ability to dynamically bind to membrane
phospholipids (and for some annexins, to F-actin) in response to fluctuating

intracellular Ca?* concentrations, annexins are perfectly suited to transduce and
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integrate membrane-related events and signaling. Past research on annexin functions,
therefore, centered around annexin-mediated functions in elementary membrane
biology, such as. While there is a vast body of literature on their participation in e.g.
endo- and exocytosis, membrane rearrangement events and cytoskeletal organization,
growing evidence suggests that the establishment and control of membranes under
non-equilibrium conditions is where the full annexin potential is unlocked. A
predominant function of these proteins in the assembly of transient membrane
domains and the maintenance of membrane integrity under potentially harmful
conditions, such as PM disruption (see above) is also in accordance with the fact that
annexin KO mice are viable, develop normally and have no evident phenotypic

alterations during their lifetime [23] .

Because microbes in the human body intimately associate with the membrane system
of their host cells, they have evolved sophisticated strategies to hijack the cell
machinery and use it to their advantage [147]. For instance, many invading pathogens
need to penetrate the PM or endosomal membranes to get access to the cell interior
in order to proliferate. These pathogen-induced membrane manipulations are
potentially harmful, and a clear example is the insertion of pore-forming toxins, such
as streptolysin-O (SLO), the pore-forming toxin of Streptococcus pyogenes. The host
cell perceives the concomitant rise in intracellular Ca?* as a danger signal indicating
PM injury, a situation that closely resembles PM damage induced by mechanical
forces. In line with their proposed function as part of the repair machinery that kicks in
when a high Ca?* influx is sensed [20,148], several annexins are involved in repairing
the PM lesions caused by SLO [149,150]. This annexin-mediated resealing, blebbing,
and subsequent shedding of the affected PM domains as pore-containing
microvesicles is cell-protective and thus might constitute a vital part of the host cell
innate immune response. The importance of the rapid and effective toxin removal for
the host protection has been impressively demonstrated in vivo, as the administration
of artificial liposomes that effectively compete with the host cell membranes sequester
such toxins and successfully prevent the development of severe sepsis in a murine
staphylococcal sepsis model [151]. Another example of a pathogen exploiting the host
cell PM repair mechanism is the induction of lysosomal exocytosis during the host cell
entry process of adenoviruses [152]. Fusion of lysosomes with the PM is also a means

to control the propagation of intracellular bacteria [153]. As annexins are involved in at
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least certain lysosomal fusion events [154,155], it is highly likely that they also play an

important part in these pathogen-related events.

In many cases, annexin-mediated reorganization of intracellular membranes affects
the pathogen propagation. 1AV infection, for instance, is significantly reduced when
AnxA6 is overexpressed, causing imbalanced cholesterol levels in the PM and
endosomal membranes [156]. AnxA2 and A3 are involved in the production of Hepatitis
C virus (HCV) particles, presumably through supporting the establishment of the
“‘membranous web”, the highly specialized and supposedly endoplasmatic reticulum
(ER)-derived sites of HCV replication in infected cells [157-159] and affecting HCV

maturation and egress [160].

These examples are certainly far from being complete, but were selected to highlight
the potential therapeutic value of the annexins in the development of novel, host-
centered approaches, either as lead substances for drug design or promising targets

in pathogen-host cell interactions.

Autoimmune disorders

Head / Brain
- Alzheimer - Lupus erythematosus
- Laryngeal carcinoma - Rheumatoid arthritis
- Psychiatric mood disorders - T2D
Perodontitis -  APS
- Stroke
Blood
Thoracic region X i;FIJ_S'S
- Asthma -
- Lung cancer
- Breast cancer
- Artherosclerosis
Uterus

- Preeclampsia

- Pregnancy loss
Gastrointestinal tract and

associated organs
- Crohn's disease

- Ulcerative colitis Metabolic Disorder
- Pancreas cancer - Cystic fibrosis
- Liver cancer - Adipostias

- Colon cancer

Bone
- Osteonecrosis

Figure 1. Constituent overview of diseases associated with changes in annexin expression
levels. Abbreviation: T2D: Type 2 diabetes mellitus; APS: antiphospholipid syndrome; APL:

promyelocytic leukemia.
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Conclusion

This review summarizes the potential clinical use of the annexins. While by no means
being exhaustive (we apologize to any colleague whose excellent work had to be
excluded in the interest of space), we believe that this collection of exemplary articles
helps bring together annexin-themed basic science and translational research which
will inspire a fresh look and open up a whole new world for these proteins to be

conquered.
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