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Abstract: 
 
The “Crisis of Reproducibility” has received considerable attention both within the 
scientific community and without. While factors associated with scientific culture and 
practical practice are most often invoked, I propose that the Crisis of Reproducibility is 
ultimately a failure of generalization with a fundamental scientific basis in the methods 
used for biomedical research. The Denominator Problem describes how limitations 
intrinsic to the two primary approaches of biomedical research, clinical studies and pre-
clinical experimental biology, lead to an inability to effectively characterize the full extent 
of biological heterogeneity, which compromises the task of generalizing acquired 
knowledge. Drawing on the example of the unifying role of theory in the physical 
sciences, I propose that multi-scale mathematical and dynamic computational models, 
when mapped to the modular structure of biological systems, can serve a unifying role 
as formal representations of what is conserved and similar from one biological context to 
another. This ability to explicitly describe the generation of heterogeneity from similarity 
addresses the Denominator Problem and provides a scientific response to the Crisis of 
Reproducibility. 
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Introduction: 
 
The Crisis of Reproducibility  (or Replication Crisis, or a host of similar terms) has been 
used to describe the phenomenon that a series of foundational studies across a range of 
disciplines have failed in what can be considerer a fundamental aspect of science: that 
they can be reproduced [1-5]. The Crisis of Reproducibility has been the subject of many 
editorials with a series of proposed explanations [1, 6-10], with some even questions 
whether it is a “real crisis” [11]. The vast majority of these opinions fall into two 
categories: 
 
1. The Crisis of Reproducibility is a by-produce of a faulty incentive structure in the 

current science/academic environment that overly rewards positive results, prompts 
overstated claims and propagates an “advocacy” mindset that is in opposition to the 
fundamental role of skepticism in science. The reducto ad absurdum of this position 
is scientific fraud, which most believe is not widespread; there is a recognition that 
faulty incentive have a significant role even absent that extreme. 

2. The Crisis of Reproducibility is a by-product of sloppy or un-rigorous science, both 
technically and intellectually, that is further incentivized by #1. Solutions from this 
branch of opinions gravitate towards the establishment of more rigorous standards 
for transparency in reporting and publishing methods and results. 

 
While the “societal” factors may certainly play a role in the Crisis of Reproducibility I 
have an alternative hypothesis: that the Crisis of Reproducibility is a fundamental 
epiphenomenon of how biological “science” is carried out, specifically related to a lack of 
recognition regarding how existing methods do not account for fundamental properties of 
biological systems.  Therefore, I claim that there is a scientific reason for the Crisis of 
Reproducibility intrinsic to the current process of biomedical research, and that multi-
scale mathematical and dynamic computational modeling provides a means of 
overcoming this deficit. 
 
I assert that the Crisis of Reproducibility is just one of a series of epistemic challenges 
facing biomedical research over the last several decades; I contend that these are all 
based on the inability to formally and reliably determine what knowledge can be 
translated from one context to another. Notable examples of such issues are: 
 
1. The Translational Dilemma or “Valley of Death” in drug development [12], which 

refers to the inability to reliably translate knowledge obtained at the pre-clinical 
experimental level into clinically effective therapeutics. 

2. Personalized or Precision Medicine [13], which purports to account for individual-
individual variability in the clinical setting by attempting to identify particular patient-
disease characteristics associated with improved responsiveness to existing drugs or 
other treatment modalities. This process is most notably applied in the area of 
oncology, where tumor genotypes are correlated with presumptively more effective 
drug combinations (though it is apparent that, based on existing efficacy and 
applicability, this approach is still in evolution [14]). 

 
I propose that all these issues arise from the same source: a lack of recognition of the 
Denominator Problem in biomedical research. I define Denominator Problem as referring 
to the inability to effectively characterize the “denominator” of a biosystem being studied, 
where the “denominator” is defined as the population distribution of the total possible 
behavior/state space, as described by whatever metrics chosen, of that biosystem. The 
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concept of a system’s denominator is critical since it is directly tied to the process of 
generalization of knowledge, a fundamental goal of Science that aims to formally 
express what is similar and conserved from one observational context to another. The 
Denominator Problem arises when attempting to answer the question: “When is what I 
learn from a subset of all possible outcomes of a system generalizable to the system as 
a whole?” The process of generalization involves dealing with the Problem of Induction: 
the ability to make reliable statements about a particular phenomenon based on some 
sampling of that phenomenon.  
 
Science has evolved means of dealing with the Problem of Induction (and, thus, the 
Denominator Problem) in other fields. One solution to the Problem of Induction is seen in 
the physical sciences, where “natural laws” have been discovered and characterized in 
mathematical form; this is a theory-based approach to science. The other means of 
addressing the Problem of Induction is through the development and use of statistics. 
Statistics has evolved as an empirically based means of determining the reliability of 
generalizing statements, but its application requires knowing the relationship between 
the empirical sampling and the range of possible phenomena being evaluated, e.g. the 
denominator set reflecting the space of intended generalization. Therefore, in the 
absence of theory, achieving the generalizing aim of Science depends upon the 
reliability of the denominator space of the phenomenon being examined. The use of 
statistical tools invariably requires an initial assumption about the nature of a system’s 
underlying total population distribution of observables. When such assumptions have a 
high degree of confidence, as in the assumption of a normal distribution when the 
conditions of the Central Limit Theorem are met, characterizing the denominator is not a 
problem, and traditional statistical tools are very effective. The Denominator Problem, 
however, occurs when those assumptions cannot be made. I assert that the 
Denominator Problem in biomedicine arises from a lack of recognizing the full 
consequences of biological heterogeneity as manifestation of dynamic multi-scale 
biological processes. The generation of multi-scale biological heterogeneity leads to a 
vast representational gulf between the empirically collected world of observables (data) 
and the inferences made regarding the generative processes and structures that 
produce those observations; this gulf reflects an issue of sparsity arising from limitations 
in how biological data is produced/collected. A schematic of this problem is depicted in 
Figure 1, which shows the relationship between the set of biological possibility (e.g. the 
denominator of the system), A, versus both an inferred structure of that space based on 
either empirical sampling B (i.e. clinical data sets versus the range of possible 

  

 

Figure 1: Depiction of the 
Denominator Problem: the 
relationship between possible 
behaviors of a biological system (A) 
with a smaller space of empirical 
sampling (B) and smaller sets 
examined by “good” experiments (C1 
and C2). In addition to their lack of 
coverage, B, C1 and C2 do not 
reproduce the shape of A. Their 
inability to characterize A is the 
Denominator Problem. 
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physiological states, for an example within a research domain see [15]), and the range of 
particular possibilities investigated by experiment, C1 and C2 (see Refs [16, 17]). 
 
The limitations of biological investigation have both a legacy and logistical component 
(for extensive discussion see Ref [18]).  Historically, biology has been an almost 
completely empirical endeavor, with an emphasis on description at greater and greater 
levels of detail. Zoology and botany both manifest this property, where similarity and 
difference are categorized by increasingly subtle descriptions of various features or 
components of an organism. There is a belief that increasingly detailed information 
about a particular system equates to increased knowledge of the system, i.e. a quest for 
microstate characterization. The emphasis on various –omics technologies to classify 
biological states or entities today is a direct result of this paradigm. However, microstate 
characterization, when used to determine a baseline probability distribution of the 
denominator of a thusly described (e.g. microstate-based) phenotype space cannot be 
assumed to have a normal distribution since the variables across the system are not 
independent and thus violate the conditions of the Central Limit Theorem. Note that this 
assertion only related to the denominator distribution if viewed as a list of microstate 
variables, as in the case in various –omics profiles or attempts at biomarker panel 
discovery. This is not the case for the population of higher order 
phenotypes/observables that incorporate and manifest the multi-scale transition from 
microstate to macrostate (i.e. the normal distribution of human height as it produced by a 
host of genetic and environmental factors, for instance). However, with the desire to 
increase the granularity of state description to the –omics level, there is a loss in the 
ability to infer the shape of the denominator distribution for the reason described above. 
Defining the shape of the denominator space through real world population sampling is 
further compromised by the sheer logistical challenges of acquiring “good” empirical 
data: the need for quality control of the collected data produces a paradox in that with 
better precision of characterization of the data (e.g. “high quality”) the smaller that data 
set becomes, further degrading the general representative capability of that data; as 
such Region B in Figure 1 shrinks further compared to A [15]. 
 
At this point it is critical to recognize the importance and role of biology’s foundational 
theory, evolution, its effect on the structures it produces, and the ability to characterize 
them. Biology is inherently multi-scale, with organizational levels that encompass highly 
diverse yet somewhat redundant processes. The leads to the case where there is 
virtually no path-uniqueness between microstates and higher order 
phenotypes/observable; in fact, evolution could not work otherwise. This “bowtie” 
architecture [19, 20] produces a modular organization for biology that allows the 
persistence of a diversity of potential in the face of natural selection optimizing on 
phenotypic fitness. The lack of path-uniqueness in how generative microstates produce 
phenotypic macrostates means that traditional reductionist methods of system 
characterization insufficiently capture the true diversity (and therefore the effective 
denominator space in terms of microstate) of a biological system: what is identified 
through classical reductionism is only a sliver of plausible solutions/outcomes. This 
dynamic is reflected in Figure 1, where C1 and C2 are intentionally draw narrower than 
A or B to illustrate an intrinsic inability of reductionist experimental biology to effectively 
reflect system denominator space. There are inherent constraints imposed by what 
constitutes a “good experiment” on the ability of those experiments to approach 
representing A, namely the need to produce highly controlled conditions that limit 
variability in order to strengthen the statistical power of experimental results. In other 
words, these studies explicitly limit the range of possible phenotypes represented with 
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the experimental system for the sake of a more definitive conclusion arrived at through 
the specific experimental preparation. While this paradigm is essential for experimental 
biology, by its very nature it produces the preconditions of the Crisis of Reproducibility: 
experimental results may be statistically valid with respect to the very specific context in 
which they were generated, but this increased precision comes at the expense of 
increased sensitivity to subtly different conditions that may lead to disparate results [16]. 
A practical manifestation of this phenomenon is seen in the extreme sensitivity to initial 
conditions in experimental biology, and is illustrated by the following situation familiar to 
anyone who has run a basic science research lab: a previously reliable and reproducible 
experimental model needs to be nearly completely recalibrated when either a new lab 
tech/post-doc/grad-student starts, or when the bedding/reagent supplier changes, or 
even the air or water filters for the lab are changed. In fact, this sensitivity to 
initial/experimental conditions is exactly how the Crisis of Reproducibility came to be 
recognized, as meticulously followed experimental procedures intended to replicate prior 
results were unable to do so [21].  The limitations of experimental biology are further 
accentuated by the fact that the knowledge extracted from these experiments is focused 
on component-based description, e.g. state identification. Such an approach necessarily 
results in systems that are viewed, at best, as a series of static snapshots of their 
component configuration (i.e. metabolic state, gene/mRNA/protein expression levels, 
receptor levels/types, histological features, biomarker panels, etc.), but without any 
explicitly described process linking these various snapshots. 
 
However, biological systems are not static; they are dynamical systems. Biological 
phenomena consist of trajectories that define the progression of one state to another. 
Thus, the dynamics of biology requires its characterization through functions. I assert 
that these functions, operating both within and across scales of organization, are what 
are conserved in biology. This conservation results in the path-non-uniqueness and 
modular redundancy seen in biology’s bow-tie organizational structure that allows 
evolution to work.  This function-based view of similarity exactly reflects the role of 
theory in the physical sciences, where natural laws in physics and chemistry have 
mathematical forms able to generate the vast range of heterogeneous instances seen in 
the physical world.  It is worth noting that there are antecedents for thinking about 
biology in terms of functions, namely in classical physiology and classical genetics. They 
both view biology in terms of generalizable functions amenable to abstraction (where it is 
recognized that abstraction = generalization). But with the advent of molecular biology, 
these function-based representations of biology have become subsumed by the desire 
for increasing descriptive detail, to a point where the representational capabilities of 
classical physics and genetics have broken down. The fact is that, at the level of 
granularity biological systems are currently being studied, the dynamics and 
heterogeneity of their behavior has proven too complex to be characterized by unifying 
natural laws using existing mathematical methods (at least thus far). As such, modern 
biology (especially biomedicine) has retreated to its historical descriptive legacy, 
focusing more on the differences between systems as opposed to trying to discover 
more powerful generalizing perspectives.  
 
I propose that the solution to this divergence from a function-based view of biology is to 
employ mathematical and dynamic computational models that balance descriptive detail 
with generalizing abstraction to represent and instantiate conserved functions. When 
used to represent complex biological objects by mapping in a modular fashion to the 
multiple levels of organization seen in those objects, multi-scale models (MSMs) are 
able to encapsulate what is conserved from one biological instance to another. Consider 
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the diagram depicted in Figure 2. The upper row of ovals represent that traditional 

reductionist investigatory workflow, where laboratory experiments are carried out in a 
successive series of biological model systems of increasing complexity and fidelity to the 
clinical target. However, the mapping/transfer of knowledge from one context to the 
other is an incomplete injective relationship at best, i.e. there is an inferred partial  
mapping from the components/processes from one model to another, but it is both 
incomplete (non-comprehensive) and loosely specified. This is because the biological 
models are opaque, and consist of numerous “hidden” processes not accounted for in 
the mapping from both the domain object and the codomain object; this uncertainty is 
represented by the “?” over each opaque injection arrow. Alternatively, the in silico 
representations (i.e. models) of the knowledge assumed at each level are transparent: 
there are no “hidden” variables. Also, while in silico model is necessarily a reduced 
incomplete representation of the real world system, its explicit and transparent 
composition makes it a proper subset (PS). As such, the injective relationship between 
the in silico object (domain) and its target real world object (codomain) is an explicit 
injection; the unrepresented aspects of the real world object are “ignored” for the 
purposes of the mapping as long as selected macrostate phenotypes are generated of 
sufficient fidelity by the in silico analog (*For obvious reasons, the mapping cannot occur 
at the microstate-level, since it is acknowledged that the in silico object does not contain 
every feature of the real world object). Furthermore, since the in silico objects are 
completely transparent and explicitly specified, the relationship along the lower 
horizontal axis is an explicit bijective relationship. There is a caveat that increasing 
complexity of the in silico models may require incorporation of new features not present 
at the lower level model, and therefore result in a partial bijective relationship from one 
specific in silico model to the more complex one, but this process should take advantage 
of the modular nature of biology, allowing the integration of subset in silico objects such 
that in combination/union they form an explicit bijective relationship with the more 
complex in silico objects. This allows the nesting of in silico objects that move towards 
those representing clinical populations. The key here is that the entire sets of the domain 
and codomain are explicitly specified and formally expressed, which significantly 
strengthens any statements made about their behavior. This is consistent with how 
mathematical formalisms are used in the physical sciences, where target systems are 
explicitly specified as being governed by one or more natural laws. Used in an 
analogous fashion, MSMs hold the key to addressing the Denominator Problem and thus 
the Crisis of Reproducibility. MSMs are able to generate multiple instances of a system 

 

Figure 2: Role of MSMs in 
determining what is similar 
across biological instances. 
Since biological objects are 
opaque, the injective mapping 
across them is uncertain (upper 
row). However, mappings 
between in silico 
analogs/modules are explicit 
injections, and since they are 
transparent (Proper Subsets = 
PS) the mapping across modules 
is explicit and bijective (or 
*partially bijective). 
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given an explicitly specified function, producing data at a scale not feasible in real world 
systems. This scale of data generation addresses the limitations of Letter B, where there 
is virtually no limit to the sample size acquired, while encompassing and expanding on 
the representational capacity of Letters C1 and C2, to produce a denser and more 
expansive baseline population distribution (e.g. the denominator space) of the system 
being studied (see Figure 3). The distribution of the denominator space is defined by the 
sum of the trajectories generated from the parameter space of the model, which 

incorporates stochasticity (both epistemic and aleatory), Thus, observed biological 
heterogeneity is a manifestation of the parameter space of an underlying MSM, and 
advances in computational power allow the scale of simulation experiments needed to 
more fully characterize the denominator of any biological system being studied. 
 
As an example we have applied these concepts in a preliminary fashion to the problem 
of sepsis [22]. We used a previously validated agent-based model (ABM) that simulates 
the innate immune response as a proxy system to characterize the denominator space 
of that system’s response dynamics to infectious insults. We utilized high-performance 
computing to perform extensive parameter space characterization of the ABM by 
simulating over 66 million simulated patient trajectories, each trajectory made up of up to 
216000 time points representing 90 days of simulated time, and in so doing were able to 
define a region of parameter space consistent with plausible biological behavior, 
essentially creating a 1st approximation of the “true” denominator space of sepsis. As a 
comparison, there have been roughly 30,000 patients enrolled in all the reported clinical 
trials for sepsis [23], data that exists in general at a few time points and a limited set of 
observables. Furthermore, the generated state space for sepsis demonstrated a 
complex, multi-dimensional topology requiring the development of a novel metric for 
characterization (Probabilistic Basins of Attraction or PBoA [22]), and definitely not 
consisting of a normal distribution, or one that could have reasonably been inferred a 
priori. Further analysis of this near comprehensive behavior space characterization 
demonstrated that any attempt to develop a state-based sampling strategy that would be 
predictive of system outcome, the motivation behind biomarker discovery, was futile [22]. 
This suggests that attempts for reliable forecasting sepsis trajectories would have to 
adopt some means of model-based, non-linear classifier. Ongoing work in this area is 
aimed at utilizing advanced learning and optimization techniques to discover both 
forecasting classifiers and multi-modal control strategies [24, 25]. 
 

  
 

Figure 3: Depiction of the ability of 
MSMs to more completely address 
the Denominator Problem. A’ (the 
region enclosed by the dashed line) 
represents the potential unifying 
descriptive capacity offered by 
computational MSMs serving as 
surrogates for the real system. Note 
that A’ remains an approximation of 
A, that will improve with iterative 

refinement over time (A’ ➔A). 
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The following statements summarize the reasoning provided in this paper as to how the 
Crisis of Reproducibility arises out of the Denominator Problem inherent to how 
biomedical research is currently conducted: 
 
1. The shape of the denominator space for a microstate characterization for a complex 

biological system cannot be assumed. 
2. Insufficient sampling of that denominator space will lead to an inability to generalize 

knowledge generated from that sampling, i.e. an inability to either translate 
knowledge from one context to another, or reproduce one experiment in another 
context. 

3. The paradigm/requirements of experimental biology serve to constrain the sampling 
of denominator space. This same paradigm leads to extreme sensitivity to conditions 
and irreproducibility. 

4. The logistical barriers of clinical research limit the density/granularity of 
representation and characterization denominator space (e.g. sparsity). 

5. Multi-scale models can and need to be used as proxy systems that can both bind 
together experimental knowledge (e.g. link denominator spaces generated by 
reductionist experiments to define the shape of the overall space) and “fill in the 
gaps” of clinical data (e.g. increase the density coverage of the denominator space). 

 
There is, however, a significant cautionary note with respect to the use of MSMs for this 
unifying purpose. Specifically, an emphasis on precise and detailed prediction as a 
means of judging the adequacy and validity of MSMs generates the same limitations that 
afflict experimental biology: trying to enhance precision by reducing or eliminating output 
variability or noise functions to restrict the denominator space represented by the MSM 
and reduces its generalizing capability. This phenomenon most often manifests with 
over-fit and tightly parameterized, brittle models; therefore overcoming this trap requires 
employing the concept of using widely bounded parameter spaces as part of the 
description of a MSM, and utilizing experimental/clinical data that incorporates outliers 
that reflect a sparse sampling of the wider behavioral denominator space.  
 
In this fashion, MSMs serve a critical fundamental role in the scientific process: they are 
able to generate the data seen in different contexts (be it in different experiments or 
clinical situations) using the same functional structure through either expansion of 
parameter space or stochastic processes. As such these models function as (t)heories 
that encapsulate what can be considered “similar” between ostensibly different biological 
systems or individuals, thereby obviating the “crisis” of obtaining robust, scalable and 
generalizable knowledge in biomedical research. With a wider adoption of this approach 
to using MSMs, it is hoped that perhaps new, more powerful mathematical formalisms 
will be identified that are able to more effectively depict biological systems in all their 
richness. In the meantime, however, I suggest that the use of MSMs as described above 
can bring a much needed level of formalism to determining what is and is not similar 
between different biological systems, be it across the translational divide (to address the 
Valley of Death) or between individuals for “true” Precision Medicine, which should mean 
the right drugs in the right combinations for the right patients at the right time. Having 
trustworthy formal functional representations that can effectively capture biological 
heterogeneity is a necessary step in being able to apply true engineering principles to 
identifying strategies to control pathophysiological processes back to a state of health. 
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