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Abstract: Optical modes bearing optical vortices are important light systems in which to encode 
information. Optical vortices are robust features of optical beams that do not dissipate upon 
propagation. Thus decoding the modal content of a beam is a vital component of the process. 
In this work we present a method to decode modal superpositions of light beams that contain 
optical vortices. We do so using shear interferometry, which presents a simple and effective means 
of determining the vortex content of a beam, and extract the parameters of the component vortex 
modes that constitute them. We find that optical modes in a beam are easily determined. Its modal 
content can be extracted when they are of comparable magnitude. The use of modes of well defined 
topological charge but not well defined radial-mode content, such as those produced by phase-only 
encoding, are much easier to diagnose than pure Laguerre-Gauss modes.
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0. Introduction12

Optical vortices are singular points contained in the transverse mode of beams of light. Around13

them the phase of the light waves advances by an integer multiple of 2π. They have attracted much14

attention in the last 25 years especially due to the intrinsic orbital angular that they carry in the15

field surrounding the optical vortex [1]. Many applications of optical vortices have been found [2],16

and among them, the encoding of information for communication purposes, both classical [3,4] and17

quantal [5,6]. Spatial modes have become attractive for bearing information because optical vortices are18

particularly robust in retaining their character as the light propagates through media and turbulence19

[7,8]. The promise of this approach is the enhanced space of information bits, well beyond binary,20

and in principle unbound. Encoding can be done by use of vortices as an incoherent alphabet for21

communicating information [9] or as coherent superpositions of modes in a deliberate way [10] as a22

high-dimensional basis of states [11].23

These developments have led to a number of methods to encode and decode optical-vortex24

structures in beams. In this work we devote to the detection of the vortex content of beams. Numerous25

methods have been developed for the detection of optical modes of a beam bearing an optical vortex.26

They include non-collinear interferometry of the beam with itself [12], or in nested interferometers27

bearing parity-changing optical elements [13], or more simply with single optical elements, such as28

a double slit [14], a single slit [15], a triangular aperture [16], cylindrical lenses [17], conformational29

optics [18] or use of a shear interferometer [19]. Beyond a beam carrying a singly or multiply charged30

vortex, it is quite necessary to be able to detect superpositions or to be able to sort the modal content31

of beams. Promising approaches include the use of projecting modes into the fundamental gaussian32

mode [5], or by unwrapping modes via conformational optics to spatially separate them [18,20]. A33

more conventional approach is one that uses shear interferometry to recognize the vortex [21]. We use34

also use shear interference by single element, an extension of a method developed by two of us [19]. In35

this article we present the application of shear interferometry to determine modal superpositions of36

vortex beams. We start with the theoretical underpinnings,37
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1. Theory38

1.1. Modal Structure39

Collinear superpositions of paraxial beams bearing optical vortices produce a composite mode
that can be diagnosed to determine through the vortices the composition of the modes in it. This is due
to a basic feature of vortex beams: The modal pattern consists of a brightest inner ring with a radius
that depends on the topological charge `:

r` ∝ `a, (1)

where a is a positive number. For pure Laguerre-Gauss beams r` = (`/2)1/2w, where w is the beam40

half width.41

Let us assume that the superposition of the vortex modes is given by

u = cos β u`1 + sin β u`2 eiγ, (2)

where `1 and `2 are the topological charges of the two modes, β specifies the ratio of the amplitudes of42

the two modes and γ is their relative phase. The functional expression for the modes is given by u`.43

We can distinguish two cases.44

• When |`1| < |`2|, the modal pattern is quite predictable and showing the following features:45

– The center of the pattern has an optical vortex of charge `1. This is what is theoretically46

predicted. In practice, a multiply charged point is very susceptible to perturbations, and so47

the center of the pattern may consist of |`1| singly charged vortices of sign `1/|`1| in close48

proximity.49

– The center is surrounded by |`1 − `2| vortices arranged symmetrically about the center [22],
and at a distance rv that satisfies

tan β =
|u`1 |
|u`2 |

. (3)

For the case of pure Laguerre-Gauss modes, we know the analytical expressions of u`, and
so we can deduce rv:

rv,LG =
w√

2

(
|`2|!

|`1|! tan2 β

) 1
2(|`2 |−|`1 |)

. (4)

The position of the vortices depends on the relative phase between the two modes [22]

φv =
γ + nπ

`2 − `1
, (5)

For example, when `1 = +1 and `2 = −2, the composite mode for β = 45◦ consists of a central50

vortex of charge +1 surrounded by 3 vortices of charge −1 located at a radius rv.51

• When `1 = −`2 the pattern contains a central vortex of charge `1/|`1| at β 6= 45◦. At β = 45◦ there52

is no central vortex. The composite mode has 2|`1| radial lines of 180◦ shear phase, symmetrically53

separated. The relative weights of the modes produce on subtle variations in intensity, which54

yields greater uncertainty in the determination. The method presented here is much more effective55

for the previous case.56

1.2. Shear Interference Pattern57

For a pure mode `, the shear interferometry of beams bearing optical vortices produces a pattern58

with the following characteristics [19]:59

• The pattern consists of conjoined vortices. If the shear interferometer is air spaced, the centers of
the vortices are displaced by

s = 2t sin α, (6)
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where α is the incident angle, and t is the average thickness traversed by the beam. This relation60

is modified if the fringes are not parallel to the displacement of the two modes.61

• The overall phase of the pattern is determined by the optical path-length difference and the
reflection phases, which for our case is given by

ψ =
4πt cos α

λ
+ π. (7)

• The fringe density of the pattern is given by

ρ ' θ

λ
, (8)

where θ is the angle that the back reflection makes with the horizontal, where θ > 0 when the
back reflection is tilted downward, and assuming that the front reflection is in the horizontal
plane. It is given by

θ = 2δ cos α, (9)

where δ is the wedge angle between the two active surfaces.62

When the interferometer is a solid piece, which we have used in the past [19,23], these relations are63

modified slightly [24]. We found air-spaced interferometers very convenient for freely changing the64

above parameters. In a typical situation aiming for a total of 15 fringes over the full size of the beam65

of 4 mm, with α = 45◦ requires a tilt δ ∼ 5.8 arcmin. The pattern representing an optical vortex66

consists forks joined by their handles or their tines when the topological charge is positive or negative,67

respectively, as discussed below. These patterns invert when θ < 0.68

2. Results69

2.1. Mode Comparison70

The effectiveness of the method depends on the radial dependence of the vortex mode. The “fuller”71

the mode, the better. This is because the pattern is the interference of two displaced identical modes.72

Such modes are the ones generated, for example, with a spiral phase plate or a forked diffraction73

grating, and known also as Hypergeometric-Gaussian modes [25]. Laguerre-Gauss eigenmodes are74

categorized by two indices: the azimuthal index or topological charge ` , and the radial index p75

specifying the number of nodes in the radial coordinate. Pure p = 0 eigenmodes are the hardest76

to diagnose. This is because most of the light intensity is limited to a well defined ring, and so the77

signal to noise of the interference patterns is low in the dark regions. Hypergeometric-Gaussian modes78

generated by phase-only encoding are in a superposition of Laguerre-Gauss modes of same ` but79

different p [26]. Such modes modes have intensity patterns featuring a main ring surrounded by broad80

radial modulations. They are much better because most regions of overlap of the modes are well lit81

and thus produce good fringe visibilities. When investigations are limited to a laboratory area, it is82

often convenient to image the mode encoding element via a 4- f sequence of lenses. That way the beam83

reconstructed onto the camera is nearly a Gaussian (the input to the encoding device), with the phase84

encoding. Imperfections in the encoding, imaging apparatus and diffraction itself make the modes85

with distinct topological charge be distinct as well, enabling optical processing with such modes. We86

cal this type of imaging “near field.”87

Figure 1 shows three types of modes that we prepared with a spatial light modulator, and their88

corresponding shear interference pattern below. They were taken with our air-spaced interferometer89

that allowed us to adjust the plate separation. The modes were generated by diffraction off the90

phase grating of a spatial light modulator with and without amplitude modulation. The amplitude91

modulation produces a pure Laguerre-Gauss mode, while the lack of amplitude modulation produces92

a Hypergeometric-Gauss mode as described above. Pure p 6= 0 eigenmodes are much harder to93
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determine because they contain more than one ring, and with consecutive rings being π out of phase.94

This feature complicates the pattern produced by the shear interferometer. The darkened regions

Figure 1. Beam modes (a-c) and corresponding shear interferograms (d-f) of vortex beams generated
using phase modulation only (a,c), phase and amplitude modulation (b); and far-field (a,b) and
near-field imaging (c). All modes have ` = +2.

95

in the modes of Fig. 1(a-c) are candidates for locations bearing optical vortices , but only the shear96

interference pattern can confirm this association of darkened regions with vortices. It can be seen that97

the fuller the beam, the clearer the pattern.98

2.2. Varying the Topological Charge99

The main virtue of the method presented in this article involves identifying vortex-mode100

superpositions. When this involves equal-amplitude superpositions (β = 45◦ in Eq. 2), we can101

clearly determine the modes, regardless of the type of mode. Beyond inspecting the static images of102

the patterns, we can determine the relative phase of each image point by slightly varying the incident103

angle α of the light onto the shear interferometer, and fitting the phase of the pattern, as described104

below. We show such a sequence in Movie1.105

Figure 2 shows the example of the superposition of `1 = +1 with `2 = −2 (β = 45◦). We use106

a near-field pattern to best appreciate the procedure. We first identify the vortices. The modes are107

determined using the following procedure:108

• We first examine the fork pattern in the center of the mode. From it we extract the magnitude |`1|109

and sign σ1 = `1|/|`1| of the mode with smaller topological charge. No vortices means `1 = 0. In110

the case of Fig. 2(b) we see a +1 conjoined fork, revealing that one of the modes is `1 = +1. In the111

table in Fig. 2(a) we give the correspondence between the sign of the topological charge of the112

vortex and its signature in the shear pattern.113

• We count the number of peripheral vortices N. (In Fig. 2(b) we see that N = 3). Their sign is
specified by the type of conjoined forks. If the sign is the same as the one at the center, then

`2 = σ1 (N + |`1|) . (10)
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If the sign of peripheral vortices is different than the center vortex (as is the case of Fig. 2(b)), then

`2 = −σ1 (N − |`1|) . (11)

In our example, because the sign of the peripheral vortices is different from the one of the central114

vortex, we conclude that `2 = −2.115

• The angular orientation of the vortices reveals the relative phase between the modes per Eq. 5.116

In our example, γ ∼ 0 or π. The ambiguity is due to the uncertainty in the parity inversion that117

mirror-inverts the pattern. This uncertainty also arises when the patterns are mirror invariant118

(i.e., giving rise to N even).119

Figure 2. (a) Table showing the conditions that lead to distinct shear patterns of optical vortices.
δ > 0 corresponds to the second reflection deflected downward relative to the first reflection off the
shear interferometer. (b) Phase pattern of the shear interference of the superposition of modes with
topological charges `1 = +1 and `2 = −2. We label the arrangement of vortices produced by the
superposition. The measured radial distance of the vortices rv is taken as the distance between the
center of the central pattern and the center of each of the peripheral vortices.

Figure 3 shows 4 cases with distinct values of (`1, `2): (1,−2), (1,−4), (2,−4), and (−1,−2). The

Figure 3. Images of equal-amplitude superpositions of modes with topological charges (1,−2) in (a),
(1,−4) in (b), (2,−4) in (c), and (−1,−2) in (d). The images in the second row (e-h) are the shear
interferograms of the superpositions above them.
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120

figure shows views of the raw modes in panes (a-d) and the shear interferograms in (e-h). All cases121

were taken in the far field produced by the non-amplitude modulated encoding. The raw modes122

show dark regions where the vortices are located. The presence of a vortex is only confirmed by123

the appearance of the forked dislocations in the interferograms. The first case (a,e) is similar to the124

one in Fig. 2(b), featuring one central +1 vortex surrounded by three −1 vortices. The second case125

(`1, `2) = (1,−4) in (b,f) has again a central +1 vortex surrounded by five −1 vortices. The third case126

with (2,−4) underscores the method, showing a +2 central vortex, surrounded by 6 −1 vortices. The127

case (−1,−2) involves γ = π/2. When γ = 0, π the peripheral vortex is along the horizontal axis of128

the pattern.129

When the fringes are lined up along the location of the displaced modes, positive vortices are130

revealed by two forks connected by their handle, whereas negative vortices are revealed by two forks131

conjoined by the tines. If the alignment is not as good, then the conjoined forks are laterally displaced,132

as illustrated in Fig. 2(a), so that for example, in the case of negative vortices, the forks share only one133

tine. They can also share no tines and just be laterally displaced. We can also make adjustments to134

a second tilt of the air-spaced interferometer to tilt the fringes along the direction that connects the135

displaced vortices. The case of Fig. 2(b) shows clearly that the forks representing each vortex are joined136

by both tines. Depending on the value of the local phase difference between the two interference137

beams, the forks are more clearly observed either via the bright or dark fringes.138

2.3. Varying β139

The comparisons of the previous cases involve equal-amplitude superpositions. The question140

that begs is: To what degree can this method detect superposition of modes with unequal amplitudes?141

We can determine the superposition as long as we can have light from one reflection of the shear142

interferometer overlap with all vortex locations of the second reflection, and vice versa. Such a situation143

is the requirement for producing a measurable fork pattern. In the case of the pure eigenmodes, the144

settings of the shear interferometer (separation and tilt) have to be adjusted for the particular situation,145

whereas in the fuller non-eigenmodes, no specific settings are required.146

The peripheral vortices that surround the central vortex, located at a radius rv, are seen as long as147

rv < R, where R is the visible radius of the beam. This sets a lower bound for the value of β = βmin148

in Eq. 2, which depends on the type of vortex mode: lower for fuller modes. In the cases that we149

investigated βmin ∼ 35◦. Figure 4 shows an example of modes created with unequal amplitudes. We150

show in pane (a) the case with (+1,−2) with β = 35◦. The peripheral vortices are close to the edge of151

the beam. Depending on the type of mode, this minimum value can range between 30◦ and 40◦.152

In similar manner, as β → 90◦ the singly charged vortices reach the center to form a region of153

charge `2. For β > βmax, it is not possible to distinguish clearly the central vortex from the peripheral154

vortices, and so we cannot identify the component modes. From our own experience, βmax ∼ 70◦.155

Figure 4(c) shows the case for β = 60◦. We have taken sequences of a number of cases with varying `1,156

`2 and β. In Movie2 we show a case for a sequence of β values.157

We further did an analysis of the variation of rv with β by measuring the values of rv in the images.158

In Fig. 5 we show the case of (+1,−2). We divide the value of rv by the radius of the beam R. The159

uncertainties are standard deviations of the measurements. We compare those measurements with the160

predicted value of rv = rv−LG scaled by a factor of
√

2. We found similar agreement with two other161

cases that we studied, but using other scalings.162

3. Discussion163

The analysis shown above shows that shear interferometry can be used to identify the topological164

charges of modes in superpositions. We can do this determination for most pure or semi-pure modes165

bearing optical vortices. We have showed this with modes imaged in the far field as well as in the near166

field [23]. The method can be used to determine the relative weights of the two modes when their167
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Figure 4. Top row: Shear interferograms of the superposition of modes with topological charges
`1 = +1 and `2 = −2 for several values of β: 35◦ in (a),45◦ in (b) and 60◦ in (c). Bottom row:
reconstructions of the phase of the light field corresponding to the shear patterns above them. False
color encodes phase.

amplitudes are not too dissimilar (in the language of Eq. 2, for 30◦ ≤ β ≤ 70◦. The results of this article168

apply for modes in the far field, which may be used in communications. If the use of vortex beams is169

limited to the laboratory environment, one can use engineered near-field patterns, which allow greater170

flexibility in the encoding of vortices[10] and greater ease in their detection by shear interferometry171

[23].172

Our analysis works for modes that do not involve phase changes in the radial directions. That is,173

for example, p = 0 Laguerre-Gauss modes. Modes with predominantly p > 0 have π-phase inversions174

at radial nodes. Our simulations show that superpositions of these types of modes lead to a duplication175

of the peripheral vortices for each radial node, yielding very complicated patterns with numerous176

vortices that may be very difficult to unravel.177

The identification of modal superpositions done here was done with an air-spaced shear178

interferometer that we built. This gives much flexibility in adjusting the characteristics of the pattern179

Figure 5. Graph of the radial position of the peripheral vortices relative to the beam radius as a function
of the parameter β that determines the ratio of the amplitudes of the modes in Eq. 2. The data shown
corresponds to the case (+1,−2). The solid line corresponds to the rv−LG/(

√
2w) in Eq. 4.
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that best suit the modal determinations. Such freedom allows the adjustment of the interferometer180

angles. These determinations can also be done with a commercially available single-plate shear181

interferometer, as reported recently [19,23].182

4. Apparatus and Methods183

4.1. Shear Interferometer184

In this work we used an air-spaced shear interferometer shown in the insert to Fig. 6. It consisted185

of two thick (∼ 5 mm) uncoated wedged glass blanks mounted in such a way that the one responsible186

for the back reflection was mounded in a mirror-type mount so that its tilt δ could be adjusted.187

The blank responsible for the first reflection, made of vycor glass (n = 1.438), was mounted on a188

translating mount to enable adjustment of the separation between the two active surfaces t. The entire189

interferometer was mounted on a rotation stage that allowed for slight variations in the incident angle190

α. We used the latter to change the phase ψ between the two reflections. The data was taken for an191

angle of incidence of about α = 45◦, which corresponds to an internal angle of incidence on the shear192

gap of 29◦.

Figure 6. Apparatus used to make the measurements. Components include spatial light modulator
(SLM) lenses (Li), fiber collimators (C), single-mode fiber (SMF), beam splitter (BS), polarizer (P),
neutral density filters (F), and digital camera (DC). Insert shows a photo of the shear interferometer.
The diagram also shows the relevant parameters of the interferometer: the angle of incidence α, the
shear displacement s, the shear-plate separation t, and second plate tilt δ.

193

The entire layout of our optical setup is shown in Fig. 6. The output of a helium-neon laser194

is spatially filtered by passage through a single-mode fiber (SMF) coupled by collimators (C). The195

polarization of the beam is adjusted for optimal diffraction with a spatial light modulator (SLM).196

The light incident on it is expanded via lenses F1 and F2. The first-order diffraction off the SLM is197

expanded further with lenses F3 and F4 and divided by a beam splitter to observe the mode with198

digital camera. The second beam expansion was needed for greater overlap of the two shear reflections.199

The light transmitted by the beam splitter was steered onto the shear interferometer. We also used a200

single-element shear interferometer to insure that the input beam had a maximum radius of curvature.201

The beam bearing the shear interference pattern was slightly focused by a lens to fit the mode within202

the digital camera sensing element.203

4.2. Shear-Pattern Analysis204

The shear interferometer has the flexibility to allow the change in the phase of the interference205

pattern by sightly varying the incident angle α: 3 arcmin change per fringe shift using Eq. 7. As206

mentioned above, we collected a movie of the pattern for at least one fringe shift. We used this data207
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to fit the period of the pattern in a sequence of images. The outcome of that fit was used as a fixed208

parameter to fit the phase of each imaged point. The outcome of this analysis yielded the phase patterns209

of the type shown in Figs. 2 and 4. The phase of the pattern allows a straightforward determination210

of the vortices, and from them we can find the topological charge of the component beams. We used211

this procedure as an alternative to the determination of vortices directly from the interferograms. This212

procedure can be automated further using an algorithm to make an automatic determination of the213

location of the vortices and their topological charge.214

5. Conclusions215

To conclude, we presented a robust method to determine the topological charges of modal216

superpositions based on shear interferometry. The method relies on the interference of an incoming217

beam with itself, so it does not rely on the need for a reference beam. The key aspect of the method218

is that it is simple and robust. Optical vortices arrange in a predictably way that can be used to219

make the modal determinations. This includes a range of the relative weights of the 2 vortex modes220

in the superposition and their relative phase. The method presented here can be used to identify221

vortex modes when they are inserted in optical beams for the purpose of encoding information. This222

method may also be used as a diagnosis tool when using optical vortices in biomedical diagnosis or223

nanotechnology.224
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