

Article

Determining Vortex-Beam Superpositions by Shear Interferometry

Behzad Khajavi¹ , Junior R. Gonzales Ureta^{1,2} and Enrique J. Galvez¹

¹ Department of Physics and Astronomy, Colgate University, Hamilton, New York, U.S.A.

² Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Lima, Peru

* Correspondence: egalvez@colgate.edu; Tel.: +1-315-228-7205

Abstract: Optical modes bearing optical vortices are important light systems in which to encode information. Optical vortices are robust features of optical beams that do not dissipate upon propagation. Thus decoding the modal content of a beam is a vital component of the process. In this work we present a method to decode modal superpositions of light beams that contain optical vortices. We do so using shear interferometry, which presents a simple and effective means of determining the vortex content of a beam, and extract the parameters of the component vortex modes that constitute them. We find that optical modes in a beam are easily determined. Its modal content can be extracted when they are of comparable magnitude. The use of modes of well defined topological charge but not well defined radial-mode content, such as those produced by phase-only encoding, are much easier to diagnose than pure Laguerre-Gauss modes.

Keywords: Optical Vortices; Topological charge; Shear interference; Mode superposition

0. Introduction

Optical vortices are singular points contained in the transverse mode of beams of light. Around them the phase of the light waves advances by an integer multiple of 2π . They have attracted much attention in the last 25 years especially due to the intrinsic orbital angular that they carry in the field surrounding the optical vortex [1]. Many applications of optical vortices have been found [2], and among them, the encoding of information for communication purposes, both classical [3,4] and quantal [5,6]. Spatial modes have become attractive for bearing information because optical vortices are particularly robust in retaining their character as the light propagates through media and turbulence [7,8]. The promise of this approach is the enhanced space of information bits, well beyond binary, and in principle unbound. Encoding can be done by use of vortices as an incoherent alphabet for communicating information [9] or as coherent superpositions of modes in a deliberate way [10] as a high-dimensional basis of states [11].

These developments have led to a number of methods to encode and decode optical-vortex structures in beams. In this work we devote to the detection of the vortex content of beams. Numerous methods have been developed for the detection of optical modes of a beam bearing an optical vortex. They include non-collinear interferometry of the beam with itself [12], or in nested interferometers bearing parity-changing optical elements [13], or more simply with single optical elements, such as a double slit [14], a single slit [15], a triangular aperture [16], cylindrical lenses [17], conformational optics [18] or use of a shear interferometer [19]. Beyond a beam carrying a singly or multiply charged vortex, it is quite necessary to be able to detect superpositions or to be able to sort the modal content of beams. Promising approaches include the use of projecting modes into the fundamental gaussian mode [5], or by unwrapping modes via conformational optics to spatially separate them [18,20]. A more conventional approach is one that uses shear interferometry to recognize the vortex [21]. We use also use shear interference by single element, an extension of a method developed by two of us [19]. In this article we present the application of shear interferometry to determine modal superpositions of vortex beams. We start with the theoretical underpinnings,

38 1. Theory

39 1.1. Modal Structure

Collinear superpositions of paraxial beams bearing optical vortices produce a composite mode that can be diagnosed to determine through the vortices the composition of the modes in it. This is due to a basic feature of vortex beams: The modal pattern consists of a brightest inner ring with a radius that depends on the topological charge ℓ :

$$r_\ell \propto \ell^a, \quad (1)$$

40 where a is a positive number. For pure Laguerre-Gauss beams $r_\ell = (\ell/2)^{1/2}w$, where w is the beam
41 half width.

Let us assume that the superposition of the vortex modes is given by

$$u = \cos \beta u_{\ell_1} + \sin \beta u_{\ell_2} e^{i\gamma}, \quad (2)$$

42 where ℓ_1 and ℓ_2 are the topological charges of the two modes, β specifies the ratio of the amplitudes of
43 the two modes and γ is their relative phase. The functional expression for the modes is given by u_ℓ .
44 We can distinguish two cases.

- 45 • When $|\ell_1| < |\ell_2|$, the modal pattern is quite predictable and showing the following features:
 - 46 – The center of the pattern has an optical vortex of charge ℓ_1 . This is what is theoretically
47 predicted. In practice, a multiply charged point is very susceptible to perturbations, and so
48 the center of the pattern may consist of $|\ell_1|$ singly charged vortices of sign $\ell_1/|\ell_1|$ in close
49 proximity.
 - The center is surrounded by $|\ell_1 - \ell_2|$ vortices arranged symmetrically about the center [22],
and at a distance r_v that satisfies

$$\tan \beta = \frac{|u_{\ell_1}|}{|u_{\ell_2}|}. \quad (3)$$

For the case of pure Laguerre-Gauss modes, we know the analytical expressions of u_ℓ , and so we can deduce r_v :

$$r_{v,LG} = \frac{w}{\sqrt{2}} \left(\frac{|\ell_2|!}{|\ell_1|! \tan^2 \beta} \right)^{\frac{1}{2(|\ell_2|-|\ell_1|)}}. \quad (4)$$

The position of the vortices depends on the relative phase between the two modes [22]

$$\phi_v = \frac{\gamma + n\pi}{\ell_2 - \ell_1}, \quad (5)$$

50 For example, when $\ell_1 = +1$ and $\ell_2 = -2$, the composite mode for $\beta = 45^\circ$ consists of a central
51 vortex of charge +1 surrounded by 3 vortices of charge -1 located at a radius r_v .
52 • When $\ell_1 = -\ell_2$ the pattern contains a central vortex of charge $\ell_1/|\ell_1|$ at $\beta \neq 45^\circ$. At $\beta = 45^\circ$ there
53 is no central vortex. The composite mode has $2|\ell_1|$ radial lines of 180° shear phase, symmetrically
54 separated. The relative weights of the modes produce on subtle variations in intensity, which
55 yields greater uncertainty in the determination. The method presented here is much more effective
56 for the previous case.

57 1.2. Shear Interference Pattern

58 For a pure mode ℓ , the shear interferometry of beams bearing optical vortices produces a pattern
59 with the following characteristics [19]:

- The pattern consists of conjoined vortices. If the shear interferometer is air spaced, the centers of the vortices are displaced by

$$s = 2t \sin \alpha, \quad (6)$$

60 where α is the incident angle, and t is the average thickness traversed by the beam. This relation
 61 is modified if the fringes are not parallel to the displacement of the two modes.

- 62 • The overall phase of the pattern is determined by the optical path-length difference and the
 reflection phases, which for our case is given by

$$\psi = \frac{4\pi t \cos \alpha}{\lambda} + \pi. \quad (7)$$

- 63 • The fringe density of the pattern is given by

$$\rho \simeq \frac{\theta}{\lambda}, \quad (8)$$

64 where θ is the angle that the back reflection makes with the horizontal, where $\theta > 0$ when the
 back reflection is tilted downward, and assuming that the front reflection is in the horizontal
 plane. It is given by

$$\theta = 2\delta \cos \alpha, \quad (9)$$

65 where δ is the wedge angle between the two active surfaces.

66 67 68 When the interferometer is a solid piece, which we have used in the past [19,23], these relations are
 modified slightly [24]. We found air-spaced interferometers very convenient for freely changing the
 above parameters. In a typical situation aiming for a total of 15 fringes over the full size of the beam
 of 4 mm, with $\alpha = 45^\circ$ requires a tilt $\delta \sim 5.8$ arcmin. The pattern representing an optical vortex
 consists forks joined by their handles or their tines when the topological charge is positive or negative,
 respectively, as discussed below. These patterns invert when $\theta < 0$.

69 2. Results

70 2.1. Mode Comparison

71 The effectiveness of the method depends on the radial dependence of the vortex mode. The “fuller”
 72 the mode, the better. This is because the pattern is the interference of two displaced identical modes.
 73 Such modes are the ones generated, for example, with a spiral phase plate or a forked diffraction
 74 grating, and known also as Hypergeometric-Gaussian modes [25]. Laguerre-Gauss eigenmodes are
 75 categorized by two indices: the azimuthal index or topological charge ℓ , and the radial index p
 76 specifying the number of nodes in the radial coordinate. Pure $p = 0$ eigenmodes are the hardest
 77 to diagnose. This is because most of the light intensity is limited to a well defined ring, and so the
 78 signal to noise of the interference patterns is low in the dark regions. Hypergeometric-Gaussian modes
 79 generated by phase-only encoding are in a superposition of Laguerre-Gauss modes of same ℓ but
 80 different p [26]. Such modes have intensity patterns featuring a main ring surrounded by broad
 81 radial modulations. They are much better because most regions of overlap of the modes are well lit
 82 and thus produce good fringe visibilities. When investigations are limited to a laboratory area, it is
 83 often convenient to image the mode encoding element via a 4-f sequence of lenses. That way the beam
 84 reconstructed onto the camera is nearly a Gaussian (the input to the encoding device), with the phase
 85 encoding. Imperfections in the encoding, imaging apparatus and diffraction itself make the modes
 86 with distinct topological charge be distinct as well, enabling optical processing with such modes. We
 87 call this type of imaging “near field.”

88 Figure 1 shows three types of modes that we prepared with a spatial light modulator, and their
 89 corresponding shear interference pattern below. They were taken with our air-spaced interferometer
 90 that allowed us to adjust the plate separation. The modes were generated by diffraction off the
 91 phase grating of a spatial light modulator with and without amplitude modulation. The amplitude
 92 modulation produces a pure Laguerre-Gauss mode, while the lack of amplitude modulation produces
 93 a Hypergeometric-Gauss mode as described above. Pure $p \neq 0$ eigenmodes are much harder to

94 determine because they contain more than one ring, and with consecutive rings being π out of phase. This feature complicates the pattern produced by the shear interferometer. The darkened regions

Figure 1. Beam modes (a-c) and corresponding shear interferograms (d-f) of vortex beams generated using phase modulation only (a,c), phase and amplitude modulation (b); and far-field (a,b) and near-field imaging (c). All modes have $\ell = +2$.

95 in the modes of Fig. 1(a-c) are candidates for locations bearing optical vortices , but only the shear
 96 interference pattern can confirm this association of darkened regions with vortices. It can be seen that
 97 the fuller the beam, the clearer the pattern.
 98

99 2.2. Varying the Topological Charge

100 The main virtue of the method presented in this article involves identifying vortex-mode
 101 superpositions. When this involves equal-amplitude superpositions ($\beta = 45^\circ$ in Eq. 2), we can
 102 clearly determine the modes, regardless of the type of mode. Beyond inspecting the static images of
 103 the patterns, we can determine the relative phase of each image point by slightly varying the incident
 104 angle α of the light onto the shear interferometer, and fitting the phase of the pattern, as described
 105 below. We show such a sequence in Movie1.

106 Figure 2 shows the example of the superposition of $\ell_1 = +1$ with $\ell_2 = -2$ ($\beta = 45^\circ$). We use
 107 a near-field pattern to best appreciate the procedure. We first identify the vortices. The modes are
 108 determined using the following procedure:

- 109 • We first examine the fork pattern in the center of the mode. From it we extract the magnitude $|\ell_1|$
 110 and sign $\sigma_1 = \ell_1 / |\ell_1|$ of the mode with smaller topological charge. No vortices means $\ell_1 = 0$. In
 111 the case of Fig. 2(b) we see a +1 conjoined fork, revealing that one of the modes is $\ell_1 = +1$. In the
 112 table in Fig. 2(a) we give the correspondence between the sign of the topological charge of the
 113 vortex and its signature in the shear pattern.
- We count the number of peripheral vortices N . (In Fig. 2(b) we see that $N = 3$). Their sign is
 114 specified by the type of conjoined forks. If the sign is the same as the one at the center, then

$$\ell_2 = \sigma_1 (N + |\ell_1|) . \quad (10)$$

If the sign of peripheral vortices is different than the center vortex (as is the case of Fig. 2(b)), then

$$\ell_2 = -\sigma_1 (N - |\ell_1|). \quad (11)$$

In our example, because the sign of the peripheral vortices is different from the one of the central vortex, we conclude that $\ell_2 = -2$.

- The angular orientation of the vortices reveals the relative phase between the modes per Eq. 5. In our example, $\gamma \sim 0$ or π . The ambiguity is due to the uncertainty in the parity inversion that mirror-inverts the pattern. This uncertainty also arises when the patterns are mirror invariant (i.e., giving rise to N even).

Figure 2. (a) Table showing the conditions that lead to distinct shear patterns of optical vortices. $\delta > 0$ corresponds to the second reflection deflected downward relative to the first reflection off the shear interferometer. (b) Phase pattern of the shear interference of the superposition of modes with topological charges $\ell_1 = +1$ and $\ell_2 = -2$. We label the arrangement of vortices produced by the superposition. The measured radial distance of the vortices r_v is taken as the distance between the center of the central pattern and the center of each of the peripheral vortices.

Figure 3 shows 4 cases with distinct values of (ℓ_1, ℓ_2) : $(1, -2)$, $(1, -4)$, $(2, -4)$, and $(-1, -2)$. The

Figure 3. Images of equal-amplitude superpositions of modes with topological charges $(1, -2)$ in (a), $(1, -4)$ in (b), $(2, -4)$ in (c), and $(-1, -2)$ in (d). The images in the second row (e-h) are the shear interferograms of the superpositions above them.

120 figure shows views of the raw modes in panes (a-d) and the shear interferograms in (e-h). All cases
 121 were taken in the far field produced by the non-amplitude modulated encoding. The raw modes
 122 show dark regions where the vortices are located. The presence of a vortex is only confirmed by
 123 the appearance of the forked dislocations in the interferograms. The first case (a,e) is similar to the
 124 one in Fig. 2(b), featuring one central +1 vortex surrounded by three -1 vortices. The second case
 125 (ℓ_1, ℓ_2) = (1, -4) in (b,f) has again a central +1 vortex surrounded by five -1 vortices. The third case
 126 with (2, -4) underscores the method, showing a +2 central vortex, surrounded by 6 -1 vortices. The
 127 case (-1, -2) involves $\gamma = \pi/2$. When $\gamma = 0, \pi$ the peripheral vortex is along the horizontal axis of
 128 the pattern.

130 When the fringes are lined up along the location of the displaced modes, positive vortices are
 131 revealed by two forks connected by their handle, whereas negative vortices are revealed by two forks
 132 conjoined by the tines. If the alignment is not as good, then the conjoined forks are laterally displaced,
 133 as illustrated in Fig. 2(a), so that for example, in the case of negative vortices, the forks share only one
 134 tine. They can also share no tines and just be laterally displaced. We can also make adjustments to
 135 a second tilt of the air-spaced interferometer to tilt the fringes along the direction that connects the
 136 displaced vortices. The case of Fig. 2(b) shows clearly that the forks representing each vortex are joined
 137 by both tines. Depending on the value of the local phase difference between the two interference
 138 beams, the forks are more clearly observed either via the bright or dark fringes.

139 2.3. Varying β

140 The comparisons of the previous cases involve equal-amplitude superpositions. The question
 141 that begs is: To what degree can this method detect superposition of modes with unequal amplitudes?
 142 We can determine the superposition as long as we can have light from one reflection of the shear
 143 interferometer overlap with all vortex locations of the second reflection, and vice versa. Such a situation
 144 is the requirement for producing a measurable fork pattern. In the case of the pure eigenmodes, the
 145 settings of the shear interferometer (separation and tilt) have to be adjusted for the particular situation,
 146 whereas in the fuller non-eigenmodes, no specific settings are required.

147 The peripheral vortices that surround the central vortex, located at a radius r_v , are seen as long as
 148 $r_v < R$, where R is the visible radius of the beam. This sets a lower bound for the value of $\beta = \beta_{\min}$
 149 in Eq. 2, which depends on the type of vortex mode: lower for fuller modes. In the cases that we
 150 investigated $\beta_{\min} \sim 35^\circ$. Figure 4 shows an example of modes created with unequal amplitudes. We
 151 show in pane (a) the case with (+1, -2) with $\beta = 35^\circ$. The peripheral vortices are close to the edge of
 152 the beam. Depending on the type of mode, this minimum value can range between 30° and 40° .

153 In similar manner, as $\beta \rightarrow 90^\circ$ the singly charged vortices reach the center to form a region of
 154 charge ℓ_2 . For $\beta > \beta_{\max}$, it is not possible to distinguish clearly the central vortex from the peripheral
 155 vortices, and so we cannot identify the component modes. From our own experience, $\beta_{\max} \sim 70^\circ$.
 156 Figure 4(c) shows the case for $\beta = 60^\circ$. We have taken sequences of a number of cases with varying ℓ_1 ,
 157 ℓ_2 and β . In Movie2 we show a case for a sequence of β values.

158 We further did an analysis of the variation of r_v with β by measuring the values of r_v in the images.
 159 In Fig. 5 we show the case of (+1, -2). We divide the value of r_v by the radius of the beam R . The
 160 uncertainties are standard deviations of the measurements. We compare those measurements with the
 161 predicted value of $r_v = r_{v-LG}$ scaled by a factor of $\sqrt{2}$. We found similar agreement with two other
 162 cases that we studied, but using other scalings.

163 3. Discussion

164 The analysis shown above shows that shear interferometry can be used to identify the topological
 165 charges of modes in superpositions. We can do this determination for most pure or semi-pure modes
 166 bearing optical vortices. We have showed this with modes imaged in the far field as well as in the near
 167 field [23]. The method can be used to determine the relative weights of the two modes when their

Figure 4. Top row: Shear interferograms of the superposition of modes with topological charges $\ell_1 = +1$ and $\ell_2 = -2$ for several values of β : 35° in (a), 45° in (b) and 60° in (c). Bottom row: reconstructions of the phase of the light field corresponding to the shear patterns above them. False color encodes phase.

amplitudes are not too dissimilar (in the language of Eq. 2, for $30^\circ \leq \beta \leq 70^\circ$. The results of this article apply for modes in the far field, which may be used in communications. If the use of vortex beams is limited to the laboratory environment, one can use engineered near-field patterns, which allow greater flexibility in the encoding of vortices[10] and greater ease in their detection by shear interferometry [23].

Our analysis works for modes that do not involve phase changes in the radial directions. That is, for example, $p = 0$ Laguerre-Gauss modes. Modes with predominantly $p > 0$ have π -phase inversions at radial nodes. Our simulations show that superpositions of these types of modes lead to a duplication of the peripheral vortices for each radial node, yielding very complicated patterns with numerous vortices that may be very difficult to unravel.

The identification of modal superpositions done here was done with an air-spaced shear interferometer that we built. This gives much flexibility in adjusting the characteristics of the pattern

Figure 5. Graph of the radial position of the peripheral vortices relative to the beam radius as a function of the parameter β that determines the ratio of the amplitudes of the modes in Eq. 2. The data shown corresponds to the case $(+1, -2)$. The solid line corresponds to the $r_{v-LG}/(\sqrt{2}w)$ in Eq. 4.

180 that best suit the modal determinations. Such freedom allows the adjustment of the interferometer
 181 angles. These determinations can also be done with a commercially available single-plate shear
 182 interferometer, as reported recently [19,23].

183 4. Apparatus and Methods

184 4.1. Shear Interferometer

185 In this work we used an air-spaced shear interferometer shown in the insert to Fig. 6. It consisted
 186 of two thick (~ 5 mm) uncoated wedged glass blanks mounted in such a way that the one responsible
 187 for the back reflection was mounted in a mirror-type mount so that its tilt δ could be adjusted.
 188 The blank responsible for the first reflection, made of vycor glass ($n = 1.438$), was mounted on a
 189 translating mount to enable adjustment of the separation between the two active surfaces t . The entire
 190 interferometer was mounted on a rotation stage that allowed for slight variations in the incident angle
 191 α . We used the latter to change the phase ψ between the two reflections. The data was taken for an
 192 angle of incidence of about $\alpha = 45^\circ$, which corresponds to an internal angle of incidence on the shear
 gap of 29° .

193 **Figure 6.** Apparatus used to make the measurements. Components include spatial light modulator
 194 (SLM) lenses (L_i), fiber collimators (C), single-mode fiber (SMF), beam splitter (BS), polarizer (P),
 195 neutral density filters (F), and digital camera (DC). Insert shows a photo of the shear interferometer.
 196 The diagram also shows the relevant parameters of the interferometer: the angle of incidence α ,
 197 the shear displacement s , the shear-plate separation t , and second plate tilt δ .

198 The entire layout of our optical setup is shown in Fig. 6. The output of a helium-neon laser
 199 is spatially filtered by passage through a single-mode fiber (SMF) coupled by collimators (C). The
 200 polarization of the beam is adjusted for optimal diffraction with a spatial light modulator (SLM).
 201 The light incident on it is expanded via lenses F_1 and F_2 . The first-order diffraction off the SLM is
 202 expanded further with lenses F_3 and F_4 and divided by a beam splitter to observe the mode with
 203 a digital camera. The second beam expansion was needed for greater overlap of the two shear reflections.
 204 The light transmitted by the beam splitter was steered onto the shear interferometer. We also used a
 205 single-element shear interferometer to insure that the input beam had a maximum radius of curvature.
 206 The beam bearing the shear interference pattern was slightly focused by a lens to fit the mode within
 207 the digital camera sensing element.

208 4.2. Shear-Pattern Analysis

209 The shear interferometer has the flexibility to allow the change in the phase of the interference
 210 pattern by slightly varying the incident angle α : 3 arcmin change per fringe shift using Eq. 7. As
 211 mentioned above, we collected a movie of the pattern for at least one fringe shift. We used this data

208 to fit the period of the pattern in a sequence of images. The outcome of that fit was used as a fixed
209 parameter to fit the phase of each imaged point. The outcome of this analysis yielded the phase patterns
210 of the type shown in Figs. 2 and 4. The phase of the pattern allows a straightforward determination
211 of the vortices, and from them we can find the topological charge of the component beams. We used
212 this procedure as an alternative to the determination of vortices directly from the interferograms. This
213 procedure can be automated further using an algorithm to make an automatic determination of the
214 location of the vortices and their topological charge.

215 5. Conclusions

216 To conclude, we presented a robust method to determine the topological charges of modal
217 superpositions based on shear interferometry. The method relies on the interference of an incoming
218 beam with itself, so it does not rely on the need for a reference beam. The key aspect of the method
219 is that it is simple and robust. Optical vortices arrange in a predictably way that can be used to
220 make the modal determinations. This includes a range of the relative weights of the 2 vortex modes
221 in the superposition and their relative phase. The method presented here can be used to identify
222 vortex modes when they are inserted in optical beams for the purpose of encoding information. This
223 method may also be used as a diagnosis tool when using optical vortices in biomedical diagnosis or
224 nanotechnology.

225 **Author Contributions:** Individual contributions: Conceptualization and Methodology, B.K. and E.G.; Data
226 Acquisition B.K., J.G.; Analysis, B.K., J.G., E.G.; Writing, E.G.

227 **Funding:** This research was funded by the National Science Foundation grant number PHY1506321.

228 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the design
229 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
230 decision to publish the results.

231 References

- 232 1. Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the
233 transformation of Laguerre-Gaussian laser modes. *Phys. Rev. A* **1992**, *45*, 8185–8189.
- 234 2. et. al., H.R.D. Roadmap on structured light. *J. Opt.* **2017**, *013001*.
- 235 3. Gibson, G.; Courtial, J.; Padgett, M.; Vatnetsov, M.; Pas'ko, V.; Barnett, S.; Franke-Arnold, S. Free-space
236 information transfer using light beams carrying orbital angular momentum. *Opt. Express* **2004**,
237 *12*, 5448–5456.
- 238 4. Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.;
239 Willner, A.E. Terabit free-space data transmission employing orbital angular momentum multiplexing.
Nat. Photonics **2012**, *340*, 488–496.
- 240 5. Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of
241 photons. *Nature* **2001**, *412*, 313–316.
- 242 6. Molina-Terriza, G.; Torres, J.; Torner, L. Twisted photons. *Nat. Phys.* **2008**, *3*, 305–310.
- 243 7. Malik, M.; O'Sullivan, M.; Rodenburg, B.; Mirhosseini, M.; Leach, J.; Lavery, M.P.J.; Padgett, M.; Boyd,
244 R. Influence of atmospheric turbulence on optical communications using orbital angular momentum for
245 encoding. *Opt. Express* **2012**, *20*, 13195–13200.
- 246 8. D'Ambrosio, V.; Nagali, E.; Walborn, S.; Aolita, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F. Complete
247 experimental toolbox for alignment-free quantum communication. *Nat. Commun.* **2012**, *3*, 961.
- 248 9. Krenn, M.; Fickler, R.; Fink, M.; Handsteiner, J.; Malik, M.; Scheidl, T.; Ursin, R.; Zeilinger, A.
249 Communication with spatially modulated light through turbulent air across Vienna. *New J. Phys.* **2014**,
250 *16*, 113028.
- 251 10. Molina-Terriza, G.; Torres, J.; Torner, L. Management of the angular momentum of light: Preparation of
252 photons in multidimensional vector states of angular momentum. *Phys. Rev. Lett.* **2002**, *88*, 013601.
- 253 11. Barreiro, J.; Langford, N.; Peters, N.; Kwiat, P. Generation of hyperentangled photon pairs. *Phys. Rev. Lett.*
254 **2005**, *95*, 260501.

256 12. Heckenberg, N.; McDuff, R.; Smith, C.; Rubinsztein-Dunlop, H.; Wegener, M. Laser beams with phase
257 singularities. *Opt. Quanum Electron.* **1992**, *24*, 355–361.

258 13. Leach, J.; Padgett, M.J.; Barnett, S.M.; Franke-Arnold, S.; Courtial, J. Measuring the orbital angular
259 momentum of a single photon. *Phys. Rev. Lett.* **2002**, *88*, 257901.

260 14. Sztul, H.I.; Alfano, R.R. Double-slit interference with Laguerre-Gaussian beams. *Opt. Lett.* **2006**,
261 *31*, 999–1001. doi:10.1364/OL.31.000999.

262 15. Ferreira, Q.; Jesus-Silva, A.; Fonseca, E.; Hickmann, J. Fraunhofer diffraction of light with orbital angular
263 momentum by a slit. *Opt. Lett.* **2011**, *36*, 3106–3108.

264 16. Hickmann, J.; Fonseca, E.; Soares, W.; Chavez-Cerda, S. Unveiling a truncated optical lattice associated
265 with a triangular aperture using light's orbital angular momentum. *Phys. Rev. Lett.* **2010**, *105*, 053904.

266 17. Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic laser mode converters
267 and transfer of orbital angular momentum. *Opt. Commun.* **1993**, *96*, 123–132.

268 18. Berkhout, G.C.; Lavery, M.P.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital
269 angular momentum states of light. *Phys. Rev. Lett.* **2010**, *105*, 153601.

270 19. Khajavi, B.; Galvez, E. Determining topological charge of an optical beam using a wedged optical flat. *Opt.*
271 *Lett.*, *42*, 1516–1519.

272 20. O'Sullivan, M.; Mirhosseini, M.; Malik, M.; Boyd, R. Near-perfect sorting of orbital angular momentum
273 and angular position states of light. *Opt. Express* **2012**, *20*, 24444.

274 21. Ghai, D.P.; Senthilkumaran, P.; Sirohi, R. Shearograms of an optical phase singularity. *Opt. Commun.* **2008**,
275 *281*, 1315–1322.

276 22. Baumann, S.; Kalb, D.; MacMillan, L.; Galvez, E. Propagation dynamics of optical vortices due to Gouy
277 phase. *Opt. Express* **2009**, *17*, 9818–9827.

278 23. Khajavi, B.; Galvez, E. Determination of the topological charge of complex light beams by shearing
279 interference from a wedged optical at. *Proc. SPIE* **2018**, *10549*, 105490M.

280 24. Riley, M.E.; Gisinow, M.A. Laser beam divergence utilizing a lateral shearing interferometer. *Appl. Opt.*
281 **1977**, *16*, 2753–2756.

282 25. Karimi, E.; Zito, G.; Piccirillo, B.; Marrucci, L.; Santamato, E. Hypergeometric-Gaussian modes. *Opt. Lett.*
283 **2007**, *32*, 3053–3055.

284 26. Sephton, B.; Dudley, A.; Forbes, A. Revealing the radial modes in vortex beams. *Appl. Opt.* **2016**,
285 *55*, 7830–7835.