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1 Abstract: Optical modes bearing optical vortices are important light systems in which to encode
> information. Optical vortices are robust features of optical beams that do not dissipate upon
s propagation. Thus decoding the modal content of a beam is a vital component of the process.
« In this work we present a method to decode modal superpositions of light beams that contain
s optical vortices. We do so using shear interferometry, which presents a simple and effective means
s of determining the vortex content of a beam, and extract the parameters of the component vortex
»  modes that constitute them. We find that optical modes in a beam are easily d etermined. Its modal
s content can be extracted when they are of comparable magnitude. The use of modes of well defined
o  topological charge but not well defined radial-mode content, such as those produced by phase-only
10 encoding, are much easier to diagnose than pure Laguerre-Gauss modes.

11 Keywords: Optical Vortices; Topological charge; Shear interference; Mode superposition

> 0. Introduction

=

13 Optical vortices are singular points contained in the transverse mode of beams of light. Around
12 them the phase of the light waves advances by an integer multiple of 277. They have attracted much
s attention in the last 25 years especially due to the intrinsic orbital angular that they carry in the
1s field surrounding the optical vortex [1]. Many applications of optical vortices have been found [2],
1z and among them, the encoding of information for communication purposes, both classical [3,4] and
1= quantal [5,6]. Spatial modes have become attractive for bearing information because optical vortices are
1o particularly robust in retaining their character as the light propagates through media and turbulence
20 [7,8]. The promise of this approach is the enhanced space of information bits, well beyond binary,
=z and in principle unbound. Encoding can be done by use of vortices as an incoherent alphabet for
22 communicating information [9] or as coherent superpositions of modes in a deliberate way [10] as a
2 high-dimensional basis of states [11].

24 These developments have led to a number of methods to encode and decode optical-vortex
2 structures in beams. In this work we devote to the detection of the vortex content of beams. Numerous
2 methods have been developed for the detection of optical modes of a beam bearing an optical vortex.
2z They include non-collinear interferometry of the beam with itself [12], or in nested interferometers
2s  bearing parity-changing optical elements [13], or more simply with single optical elements, such as
20 a double slit [14], a single slit [15], a triangular aperture [16], cylindrical lenses [17], conformational
30 optics [18] or use of a shear interferometer [19]. Beyond a beam carrying a singly or multiply charged
a1 vortex, it is quite necessary to be able to detect superpositions or to be able to sort the modal content
sz of beams. Promising approaches include the use of projecting modes into the fundamental gaussian
s mode [5], or by unwrapping modes via conformational optics to spatially separate them [18,20]. A
s more conventional approach is one that uses shear interferometry to recognize the vortex [21]. We use
ss  also use shear interference by single element, an extension of a method developed by two of us [19]. In
36 this article we present the application of shear interferometry to determine modal superpositions of
sz vortex beams. We start with the theoretical underpinnings,
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s 1. Theory

3o 1.1. Modal Structure

Collinear superpositions of paraxial beams bearing optical vortices produce a composite mode
that can be diagnosed to determine through the vortices the composition of the modes in it. This is due
to a basic feature of vortex beams: The modal pattern consists of a brightest inner ring with a radius
that depends on the topological charge ¢:

Ty X A ’ (1)

w0 where a is a positive number. For pure Laguerre-Gauss beams r, = (£/2)'/2w, where w is the beam
a1 half width.
Let us assume that the superposition of the vortex modes is given by

u = cos f uy, +sin B ugze”, )

sz where {1 and ¢, are the topological charges of the two modes, B specifies the ratio of the amplitudes of
43 the two modes and v is their relative phase. The functional expression for the modes is given by u,.
2« We can distinguish two cases.

s o  When |{1]| < |£;], the modal pattern is quite predictable and showing the following features:

46 —  The center of the pattern has an optical vortex of charge ¢;. This is what is theoretically
a7 predicted. In practice, a multiply charged point is very susceptible to perturbations, and so
as the center of the pattern may consist of /1| singly charged vortices of sign ¢1/|¢;| in close
49 proximity.

- The center is surrounded by |1 — ¢5| vortices arranged symmetrically about the center [22],

and at a distance r, that satisfies
[0,
tanf = ——. 3)
I
For the case of pure Laguerre-Gauss modes, we know the analytical expressions of 1, and
so we can deduce r:

1
w [42]! 261141
r =—|——"— . 4
A @
The position of the vortices depends on the relative phase between the two modes [22]
y+nmr
= , ®)
LA P
50 For example, when /; = +1 and ¢, = —2, the composite mode for = 45° consists of a central
51 vortex of charge 41 surrounded by 3 vortices of charge —1 located at a radius r.
s= o  When/; = —/, the pattern contains a central vortex of charge ¢1/|¢1| at p # 45°. At p = 45° there
53 is no central vortex. The composite mode has 2|¢; | radial lines of 180° shear phase, symmetrically
54 separated. The relative weights of the modes produce on subtle variations in intensity, which
55 yields greater uncertainty in the determination. The method presented here is much more effective
56 for the previous case.
sz 1.2. Shear Interference Pattern
58 For a pure mode /, the shear interferometry of beams bearing optical vortices produces a pattern

so  with the following characteristics [19]:

e  The pattern consists of conjoined vortices. If the shear interferometer is air spaced, the centers of
the vortices are displaced by
s = 2tsina, (6)
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60 where « is the incident angle, and ¢ is the average thickness traversed by the beam. This relation
o1 is modified if the fringes are not parallel to the displacement of the two modes.
o  The overall phase of the pattern is determined by the optical path-length difference and the
reflection phases, which for our case is given by

47t cosw

Eb:f‘FT[. (7)

o  The fringe density of the pattern is given by

0
o=t (8)

where 0 is the angle that the back reflection makes with the horizontal, where 6 > 0 when the
back reflection is tilted downward, and assuming that the front reflection is in the horizontal
plane. It is given by

0 =26cosa, 9)

62 where ¢ is the wedge angle between the two active surfaces.

es  When the interferometer is a solid piece, which we have used in the past [19,23], these relations are
s« modified slightly [24]. We found air-spaced interferometers very convenient for freely changing the
es above parameters. In a typical situation aiming for a total of 15 fringes over the full size of the beam
e Of 4 mm, with « = 45° requires a tilt § ~ 5.8 arcmin. The pattern representing an optical vortex
ez consists forks joined by their handles or their tines when the topological charge is positive or negative,
es respectively, as discussed below. These patterns invert when 6 < 0.

6o 2. Results

70 2.1. Mode Comparison

7 The effectiveness of the method depends on the radial dependence of the vortex mode. The “fuller”
72 the mode, the better. This is because the pattern is the interference of two displaced identical modes.
73 Such modes are the ones generated, for example, with a spiral phase plate or a forked diffraction
za grating, and known also as Hypergeometric-Gaussian modes [25]. Laguerre-Gauss eigenmodes are
7 categorized by two indices: the azimuthal index or topological charge ¢, and the radial index p
7 specifying the number of nodes in the radial coordinate. Pure p = 0 eigenmodes are the hardest
7z to diagnose. This is because most of the light intensity is limited to a well defined ring, and so the
7e  signal to noise of the interference patterns is low in the dark regions. Hypergeometric-Gaussian modes
7 generated by phase-only encoding are in a superposition of Laguerre-Gauss modes of same ¢ but
s different p [26]. Such modes modes have intensity patterns featuring a main ring surrounded by broad
a1 radial modulations. They are much better because most regions of overlap of the modes are well lit
ez and thus produce good fringe visibilities. When investigations are limited to a laboratory area, it is
s often convenient to image the mode encoding element via a 4-f sequence of lenses. That way the beam
ss reconstructed onto the camera is nearly a Gaussian (the input to the encoding device), with the phase
es encoding. Imperfections in the encoding, imaging apparatus and diffraction itself make the modes
s with distinct topological charge be distinct as well, enabling optical processing with such modes. We
ez cal this type of imaging “near field.”

a8 Figure 1 shows three types of modes that we prepared with a spatial light modulator, and their
s corresponding shear interference pattern below. They were taken with our air-spaced interferometer
%o that allowed us to adjust the plate separation. The modes were generated by diffraction off the
o1 phase grating of a spatial light modulator with and without amplitude modulation. The amplitude
o= modulation produces a pure Laguerre-Gauss mode, while the lack of amplitude modulation produces
o3 a Hypergeometric-Gauss mode as described above. Pure p # 0 eigenmodes are much harder to
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s determine because they contain more than one ring, and with consecutive rings being 7r out of phase.
This feature complicates the pattern produced by the shear interferometer. The darkened regions

(a) (b) (C)

Figure 1. Beam modes (a-c) and corresponding shear interferograms (d-f) of vortex beams generated
using phase modulation only (a,c), phase and amplitude modulation (b); and far-field (a,b) and
near-field imaging (c). All modes have ¢ = +2.
95
s in the modes of Fig. 1(a-c) are candidates for locations bearing optical vortices , but only the shear
o7 interference pattern can confirm this association of darkened regions with vortices. It can be seen that
os the fuller the beam, the clearer the pattern.

oo 2.2. Varying the Topological Charge

100 The main virtue of the method presented in this article involves identifying vortex-mode
11 superpositions. When this involves equal-amplitude superpositions (f = 45° in Eq. 2), we can
102 clearly determine the modes, regardless of the type of mode. Beyond inspecting the static images of
103 the patterns, we can determine the relative phase of each image point by slightly varying the incident
10s  angle a of the light onto the shear interferometer, and fitting the phase of the pattern, as described
105 below. We show such a sequence in Moviel.

106 Figure 2 shows the example of the superposition of /1 = +1 with /, = =2 (B = 45°). We use
10z a near-field pattern to best appreciate the procedure. We first identify the vortices. The modes are
1e  determined using the following procedure:

100 o  We first examine the fork pattern in the center of the mode. From it we extract the magnitude |/1]

110 and sign 07 = ¢1|/|¢1] of the mode with smaller topological charge. No vortices means ¢; = 0. In
111 the case of Fig. 2(b) we see a +1 conjoined fork, revealing that one of the modes is #/1 = +1. In the
112 table in Fig. 2(a) we give the correspondence between the sign of the topological charge of the
113 vortex and its signature in the shear pattern.

o  We count the number of peripheral vortices N. (In Fig. 2(b) we see that N = 3). Their sign is
specified by the type of conjoined forks. If the sign is the same as the one at the center, then

by = 0q (N+|£1|) (10)
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If the sign of peripheral vortices is different than the center vortex (as is the case of Fig. 2(b)), then

62 = —01 (N — |£1|) . (11)
114 In our example, because the sign of the peripheral vortices is different from the one of the central
115 vortex, we conclude that ¢, = —2.
us o  The angular orientation of the vortices reveals the relative phase between the modes per Eq. 5.
117 In our example, v ~ 0 or /7. The ambiguity is due to the uncertainty in the parity inversion that
118 mirror-inverts the pattern. This uncertainty also arises when the patterns are mirror invariant
110 (i.e., giving rise to N even).

(@)

Fork
Condition | signature

1>0,8>0 | DO~
or or

(<0,86<0 | O——

(<0,6>0 | —O—
or or

(>0,8<0 £

Figure 2. (a) Table showing the conditions that lead to distinct shear patterns of optical vortices.
6 > 0 corresponds to the second reflection deflected downward relative to the first reflection off the
shear interferometer. (b) Phase pattern of the shear interference of the superposition of modes with
topological charges /1 = +1 and ¢, = —2. We label the arrangement of vortices produced by the
superposition. The measured radial distance of the vortices ry is taken as the distance between the
center of the central pattern and the center of each of the peripheral vortices.

Figure 3 shows 4 cases with distinct values of (¢1,¢,): (1,—2), (1, —4), (2, —4), and (-1, —2). The

(a) (b) (c) (d)

Figure 3. Images of equal-amplitude superpositions of modes with topological charges (1, —2) in (a),
(1,—4) in (b), (2,—4) in (¢), and (—1, —2) in (d). The images in the second row (e-h) are the shear
interferograms of the superpositions above them.
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11 figure shows views of the raw modes in panes (a-d) and the shear interferograms in (e-h). All cases
122 were taken in the far field produced by the non-amplitude modulated encoding. The raw modes
123 show dark regions where the vortices are located. The presence of a vortex is only confirmed by
124 the appearance of the forked dislocations in the interferograms. The first case (a,e) is similar to the
12 one in Fig. 2(b), featuring one central +1 vortex surrounded by three —1 vortices. The second case
126 ({1,02) = (1, —4) in (b,f) has again a central +1 vortex surrounded by five —1 vortices. The third case
12z with (2, —4) underscores the method, showing a +2 central vortex, surrounded by 6 —1 vortices. The
12 case (—1,—2) involves v = 71/2. When 7 = 0, 7t the peripheral vortex is along the horizontal axis of
120 the pattern.

130 When the fringes are lined up along the location of the displaced modes, positive vortices are
11 revealed by two forks connected by their handle, whereas negative vortices are revealed by two forks
132 conjoined by the tines. If the alignment is not as good, then the conjoined forks are laterally displaced,
13 as illustrated in Fig. 2(a), so that for example, in the case of negative vortices, the forks share only one
13s tine. They can also share no tines and just be laterally displaced. We can also make adjustments to
135 a second tilt of the air-spaced interferometer to tilt the fringes along the direction that connects the
136 displaced vortices. The case of Fig. 2(b) shows clearly that the forks representing each vortex are joined
13z by both tines. Depending on the value of the local phase difference between the two interference
13s  beams, the forks are more clearly observed either via the bright or dark fringes.

10 2.3. Varying B

140 The comparisons of the previous cases involve equal-amplitude superpositions. The question
11 that begs is: To what degree can this method detect superposition of modes with unequal amplitudes?
1.2 We can determine the superposition as long as we can have light from one reflection of the shear
13 interferometer overlap with all vortex locations of the second reflection, and vice versa. Such a situation
1as  is the requirement for producing a measurable fork pattern. In the case of the pure eigenmodes, the
s settings of the shear interferometer (separation and tilt) have to be adjusted for the particular situation,
16 Whereas in the fuller non-eigenmodes, no specific settings are required.

147 The peripheral vortices that surround the central vortex, located at a radius r,, are seen as long as
e Ty < R, where R is the visible radius of the beam. This sets a lower bound for the value of § = Bmin
10 in Eq. 2, which depends on the type of vortex mode: lower for fuller modes. In the cases that we
1o investigated Bmin ~ 35°. Figure 4 shows an example of modes created with unequal amplitudes. We
151 show in pane (a) the case with (41, —2) with § = 35°. The peripheral vortices are close to the edge of
152 the beam. Depending on the type of mode, this minimum value can range between 30° and 40°.

153 In similar manner, as B — 90° the singly charged vortices reach the center to form a region of
1sa  charge 5. For B > Bmax, it is not possible to distinguish clearly the central vortex from the peripheral
15 vortices, and so we cannot identify the component modes. From our own experience, Bmax ~ 70°.
16 Figure 4(c) shows the case for § = 60°. We have taken sequences of a number of cases with varying ¢;,
157 {3 and B. In Movie2 we show a case for a sequence of  values.

158 We further did an analysis of the variation of r, with § by measuring the values of r, in the images.
1o In Fig. 5 we show the case of (41, —2). We divide the value of r, by the radius of the beam R. The
160 uncertainties are standard deviations of the measurements. We compare those measurements with the
11 predicted value of r, = r,_; ¢ scaled by a factor of v/2. We found similar agreement with two other
162 cases that we studied, but using other scalings.

163 3. Discussion

164 The analysis shown above shows that shear interferometry can be used to identify the topological
165 charges of modes in superpositions. We can do this determination for most pure or semi-pure modes
166 bearing optical vortices. We have showed this with modes imaged in the far field as well as in the near
167 field [23]. The method can be used to determine the relative weights of the two modes when their
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Figure 4. Top row: Shear interferograms of the superposition of modes with topological charges
{1 = +1 and fp = —2 for several values of B: 35° in (a),45° in (b) and 60° in (c). Bottom row:
reconstructions of the phase of the light field corresponding to the shear patterns above them. False
color encodes phase.

amplitudes are not too dissimilar (in the language of Eq. 2, for 30° < B < 70°. The results of this article
apply for modes in the far field, which may be used in communications. If the use of vortex beams is
limited to the laboratory environment, one can use engineered near-field patterns, which allow greater
flexibility in the encoding of vortices[10] and greater ease in their detection by shear interferometry
[23].

Our analysis works for modes that do not involve phase changes in the radial directions. That is,
for example, p = 0 Laguerre-Gauss modes. Modes with predominantly p > 0 have r-phase inversions
at radial nodes. Our simulations show that superpositions of these types of modes lead to a duplication
of the peripheral vortices for each radial node, yielding very complicated patterns with numerous
vortices that may be very difficult to unravel.

The identification of modal superpositions done here was done with an air-spaced shear
interferometer that we built. This gives much flexibility in adjusting the characteristics of the pattern

1.2

0.8 -
0.6 -
0.4 -
0.2

0 T T T T 1
25 35 45 55 65 75

B (degrees)

Figure 5. Graph of the radial position of the peripheral vortices relative to the beam radius as a function

= |-

of the parameter  that determines the ratio of the amplitudes of the modes in Eq. 2. The data shown
corresponds to the case (+1, —2). The solid line corresponds to the r, ¢/ (v/2w) in Eq. 4.
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10 that best suit the modal determinations. Such freedom allows the adjustment of the interferometer
11 angles. These determinations can also be done with a commercially available single-plate shear
12 interferometer, as reported recently [19,23].

e 4. Apparatus and Methods

1sa  4.1. Shear Interferometer

185 In this work we used an air-spaced shear interferometer shown in the insert to Fig. 6. It consisted
16 Of two thick (~ 5 mm) uncoated wedged glass blanks mounted in such a way that the one responsible
17 for the back reflection was mounded in a mirror-type mount so that its tilt § could be adjusted.
1 The blank responsible for the first reflection, made of vycor glass (n = 1.438), was mounted on a
180 translating mount to enable adjustment of the separation between the two active surfaces t. The entire
100 interferometer was mounted on a rotation stage that allowed for slight variations in the incident angle
11 . We used the latter to change the phase i between the two reflections. The data was taken for an
192 angle of incidence of about & = 45°, which corresponds to an internal angle of incidence on the shear
gap of 29°.

i
G
',
.
v,

“~_ Interferometer

sLm Il

Figure 6. Apparatus used to make the measurements. Components include spatial light modulator
(SLM) lenses (L;), fiber collimators (C), single-mode fiber (SMF), beam splitter (BS), polarizer (P),
neutral density filters (F), and digital camera (DC). Insert shows a photo of the shear interferometer.
The diagram also shows the relevant parameters of the interferometer: the angle of incidence «, the
shear displacement s, the shear-plate separation ¢, and second plate tilt é.

108 The entire layout of our optical setup is shown in Fig. 6. The output of a helium-neon laser
105 is spatially filtered by passage through a single-mode fiber (SMF) coupled by collimators (C). The
16 polarization of the beam is adjusted for optimal diffraction with a spatial light modulator (SLM).
1z The light incident on it is expanded via lenses F; and F,. The first-order diffraction off the SLM is
s expanded further with lenses F; and F,; and divided by a beam splitter to observe the mode with
100 digital camera. The second beam expansion was needed for greater overlap of the two shear reflections.
200 The light transmitted by the beam splitter was steered onto the shear interferometer. We also used a
201 single-element shear interferometer to insure that the input beam had a maximum radius of curvature.
202 The beam bearing the shear interference pattern was slightly focused by a lens to fit the mode within
203 the digital camera sensing element.

206 4.2. Shear-Pattern Analysis

205 The shear interferometer has the flexibility to allow the change in the phase of the interference
206 pattern by sightly varying the incident angle a: 3 arcmin change per fringe shift using Eq. 7. As
207 mentioned above, we collected a movie of the pattern for at least one fringe shift. We used this data
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20s  to fit the period of the pattern in a sequence of images. The outcome of that fit was used as a fixed
200 parameter to fit the phase of each imaged point. The outcome of this analysis yielded the phase patterns
210 Of the type shown in Figs. 2 and 4. The phase of the pattern allows a straightforward determination
2 of the vortices, and from them we can find the topological charge of the component beams. We used
212 this procedure as an alternative to the determination of vortices directly from the interferograms. This
z3 procedure can be automated further using an algorithm to make an automatic determination of the
=a  location of the vortices and their topological charge.

25 5. Conclusions

216 To conclude, we presented a robust method to determine the topological charges of modal
21z superpositions based on shear interferometry. The method relies on the interference of an incoming
zus beam with itself, so it does not rely on the need for a reference beam. The key aspect of the method
210 is that it is simple and robust. Optical vortices arrange in a predictably way that can be used to
220 make the modal determinations. This includes a range of the relative weights of the 2 vortex modes
221 in the superposition and their relative phase. The method presented here can be used to identify
222 vortex modes when they are inserted in optical beams for the purpose of encoding information. This
223 method may also be used as a diagnosis tool when using optical vortices in biomedical diagnosis or
222 nanotechnology.
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