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Abstract: Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a 12 
secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration.  13 
This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application, 14 
also in combination with other factors and cell transplantations, for repairing the injured spinal 15 
cord.  As recent decades of studies strongly suggest combinational treatment approaches hold the 16 
greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of 17 
combinational therapies will also be discussed. 18 

Keywords: Spinal cord injury, glial cell line-derived neurotrophic factor (GDNF), GFRα-1, cRET, 19 
Schwann cells, Astrogliosis, neuroprotection, axonal regeneration, combinational therapies, 20 
neurotrauma. 21 

 22 

SCI background and need for therapies 23 
 24 
Spinal cord injury (SCI) is a devastating chronic condition for which no effective treatments 25 

currently exist.  Singh, Fehlings et al. [57] conducted a systematic review of global statistics, 26 
beginning with 5,874 articles with a final inclusion of 48 articles, reporting worldwide SCI statistics, 27 
with the United States having the highest prevalence (906 cases per 1 million people); New Zealand 28 
having the highest reported national incidence (49.1 cases of SCI per 1 million people); and Spain (8 29 
cases of SCI per 1 million people) and Fiji (10 cases of SCI per 1 million people) showing the lowest 30 
national incidences.  The primary cause of SCI cases worldwide is motor vehicle accidents, 31 
followed by falls and sports injuries, for most countries [57].  The long-term potential of chronic 32 
pain, inflammation, and devastating disabilities that SCI patients endure are compounded by the 33 
extensive lifetime costs of care. Approximately 1 - 5 million United States dollars is spent over the 34 
lifetime of an SCI patient, depending upon the patient’s age and level of injury [NSCISC – National 35 
Spinal Cord Injury Statistical Center, 2018].  The national cost in the United States is estimated at 36 
more than $400 billion US dollars for current and future healthcare for patients suffering from SCI. 37 

 38 
The initial SCI mechanical trauma disrupts local vasculature and leads to a breakdown of the 39 

blood-spinal cord barrier [47, 50, 54].  This is followed by secondary wave of injury [55], comprised 40 
of hemorrhage, ischemia [59] excitotoxicity, edema, neuronal apoptosis, loss of gray and white 41 
matter tissue [60], axonal die-back, chronic inflammation [42], and the formation of a dense 42 
astrocytic glial scar surrounding the lesion.  During the acute phase after SCI, the astrogliosis is 43 
presumed to be a positive regulator in limiting the spread of excitotoxic molecules, thus limiting the 44 
lesion area.  For decades, the astrocytic glial scar has been considered inhibitory in chronic phases 45 
after SCI. However, recent literature supports beneficial axon regeneration in response to the 46 
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astrocytic scar formation [2]. Glial cell line-derived neurotrophic factor (GDNF) has been shown to 47 
positively modulate astrogliosis [28, 14, 3], in addition to its known neuroprotective effects, thus 48 
making astrocytes a potential therapeutic target in SCI. 49 

 50 
Discovery of GDNF family ligands and receptors 51 

 52 
The GDNF subfamily of neurotrophic ligands consists of GDNF, neurturin (NRTN), artemin 53 

(ARTN), and persephin (PSPN), which bind to the glycosylphophatidylinositol-anchored GFRα 54 
receptors 1-4, respectively [68].  The molecular structures of the GDNF family ligands and receptors 55 
are nicely detailed by [69], as well as in Figure 1.  While ARTN [71-72], NRTN [10, 27, 20], and PSPN 56 
[62, 43] have all been shown to be neuroprotective, this mini review focuses specifically on GDNF 57 
and its applications for the treatment of SCI.   58 

 59 
Figure 1: GDNF family of ligands and receptors.  GDNF binds to GFRα-1, NRTN binds to 60 

GFRα-2, ARTN binds to GFRα-3, and PSPN binds to GFRα-4.  GFRα 1-4 bind to cRET co-receptors. 61 
 62 
GDNF was first identified as a neurotrophic factor released from glial cells by Engele et al. [19] 63 

and Lin et al. [38], in its promotion of the survival of dopaminergic neurons.  The GFRα-1 receptor 64 
was first reported in Cell in 1996 [32], following its isolation, cloning, and characterization from rat 65 
retinal cells; a study which also detailed the interaction between GDNF, GFRα-1, and the cRET 66 
receptor.  Interestingly, the following week a Nature publication [63] revealed concurrent work 67 
with similar findings on a cloned and characterized GFRα-1, as well as the GDNF, GFRα-1, and 68 
cRET multi-subunit receptor complex. 69 

 70 
Localization of GDNF and its receptors 71 

 72 
Expression patterns of GDNF, GFRα-1, and cRET indicate that the three are not mutually 73 

exclusive for GDNF’s trophic actions, as GFRα-1 is expressed in regions lacking cRET, and cRET has 74 
expression in regions lacking GFRα-1 expression, well-characterized by [67].  In 1996, Trupp et al. 75 
[66] identified GDNF’s activation of the cRET proto-oncogene, resulting in neuronal survival, while 76 
Jing et al. [32] identified GFRα-1 as mediating the interaction between GDNF and cRET.  In 2001, 77 
Nicole et al. [46] demonstrated the expression of GDNF mRNA and protein, as well as GFRα-1 and 78 
cRET on both neurons and astrocytes.  Heparan sulphate, a key glycosaminoglycan, was identified 79 
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as crucial for the phosphorylation of the c-Ret co-receptor, thus, also necessary for GDNF signaling 80 
through its GFRα-1 receptor [6]. 81 

Satake et al. [53] showed a dramatic upregulation of GDNF mRNA expression within 3 hours 82 
post SCI that was maintained for approximately 2-4 weeks following injury.  Additionally, changes 83 
in GDNF’s expression pattern following CNS injury are nicely illustrated by Trupp et al. [65, 67] and 84 
Donnelly and Popovich [18].  GDNF targets in the CNS and PNS, as well as the administration of 85 
GDNF gene therapy for motoneuron protection were highlighted in a review by Bohn [9]. 86 

 87 
GDNF promotes cell survival and growth 88 

 89 
One of the earliest studies to report GDNF induced reduction of astrogliosis was a study by 90 

Trok et al. [64], in which spinal cord explants were allotransplanted into Sprague-Dawley anterior 91 
eye chambers.  GDNF was shown to promote graft survival and growth, in addition to the reduced 92 
GFAP immunoreactivity.  Klöcker et al. [34] identified a new subpopulation of neurons responsive 93 
to GDNF in a study showing significantly reduce cell death of axotomized retinal ganglion cells in 94 
response to GDNF treatment.  The upregulation of GDNF in the distal portion of peripheral injured 95 
nerves was assessed and quantified, along with the localization of its cRET receptor, as reported by 96 
Bär et al. [5].  Similarly, Höke et al. [24] showed upregulation of GFRα1 receptor on the distal 97 
segment of the sciatic nerve following injury; this upregulation and the upregulation of GDNF by 98 
Schwann cells was maintained for approximately six months following injury.  The GFRα1 receptor 99 
was localized to peripheral Schwann Cells in a study by Hase et al. [21], showing another target of 100 
GDNF for the repair of injured nervous system.  Arce et al. [4] reported a 75% inhibition of neuron 101 
survival after exposure to Schwann cell cultured media containing a blocking antibody against 102 
GDNF; thus, demonstrating the importance of GDNF for the Schwann cell-mediated 103 
neuroprotection.  Paratcha et al. [49] highlighted the recruitment of cRET to neuronal cell 104 
membrane lipid rafts, in response to soluble GFRα1.  Rind et al. [52] showed anterograde transport 105 
of GDNF in dorsal root ganglia (DRG) and motor neurons, both with undetectable levels of GDNF 106 
mRNA in their current state.  The radiolabeled GDNF in this study was provided to the DRGs and 107 
motor neurons and by Schwann cells and oligodendrocytes, respectively.  In 2004, a novel in vivo 108 
study was published showing for the first time the endogenous release of GDNF from astrocytes, 109 
which was neuroprotective to neighboring neuronal populations, in utero during development [76]. 110 
 111 
Molecular signaling of GDNF promotion of cell survival 112 

 113 
In addition to its neuroprotective effects [48, 7, 61], GDNF has also been shown to: 1) attenuate 114 

astrocyte cell death via reduced activation of caspase-3 [74] as well as through caspase-3/Akt 115 
independent mechanisms [13]; 2) minimize activation of microglia and production of nitric oxide 116 
[73, 23]; and 3) promote the survival [39] and proliferation [25, 75] of Schwann cells.  GDNF 117 
activates rat primary cortical microglial cells through GFRα-1 and cRET receptors, with downstream 118 
signaling through the MAPK pathway, as illustrated in a study by Honda et al. [26].  This study 119 
demonstrates microglia as another putative therapeutic target for GDNF in CNS injury and disease.  120 
However, a pro-inflammatory response, resulting in increased levels of IL-1β likely led to the GDNF 121 
neuroprotection observed in a lipopolysaccharide (LPS)-induced nigral degeneration model of 122 
Parkinson’s disease [30]. 123 

Soler et al. [58] characterized the downstream signaling of GDNF in motoneurons, which 124 
includes activation of both the PI3K and ERK-MAPK pathways.  Further investigation revealed that 125 
the neuroprotective effects of GDNF signaled through the PI3K pathway [58].   In 2001, Nicole et al. 126 
[46] described a novel mechanism of cortical neuroprotection from excitotoxicity-induced necrotic 127 
cell death after GDNF application; however, in this study GDNF failed to rescue cortical neurons 128 
from apoptotic cell death.  Moreover, this study illustrated the indispensable nature of the MAPK 129 
(MEK) pathway, and GDNF’s reduction of NMDA-triggered calcium influx, resulting in the 130 
attenuation of necrotic cell death.  However, glutamatergic excitotoxicity induced by non-NMDA 131 
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agonists (AMPA and kainate) was unable to be attenuated by GDNF administration [46].  132 
Additionally, this study highlighted GDNF’s neuroprotective effects were likely through 133 
diminished NMDA receptor activity and not the result of free radical scavenging.  Cheng et al. [12] 134 
investigated the downstream neuroprotection signaling of GDNF and determined that GDNF 135 
activated the MAPK signaling pathway and resulted in increased levels of Bcl-2.  Liu et al. [39] 136 
described a similar upregulation of Bcl-2 and downregulation of Bax, which provided 137 
neuroprotection in vitro and Schwann cell survival in vivo, in rats treated with Schwann cells 138 
overexpressing GDNF, as compared to SCI rats. 139 
 140 
Studies employing GDNF for repair of SCI 141 

 142 
After avulsion injury, axotomized motoneuron cell death was reduced by 50% and somatic 143 

atrophy was reduced, after treatment with GDNF [36].  In another study of avulsion injury, GDNF 144 
administered via AAV-viral vector significantly attenuated spinal cord ventral horn motor neuron 145 
death [70].  In one of the earliest studies of GDNF administration after SCI, Ramer et al. [51] 146 
reported the ability of GDNF to rescue spinal cord motoneurons.  In a contusive SCI model, GDNF 147 
showed significant improvement in motor function (Basso, Beattie, Bresnahan, BBB locomotor rating 148 
scale), increased cell survival and number of spared neuronal fibers compared to PBS-controls [12].  149 

  Iannotti et al. [29] reported significantly increased spared white matter and significantly 150 
attenuated lesion volume in response to GDNF administration via an osmotic minipump, following 151 
contusive SCI.  Quite noteworthy, Mills et al. [44] described the GDNF enhancement of axonal 152 
regeneration occurs within a narrow therapeutic dosage range.  In a compressive clip model of SCI, 153 
Kao et al. [33] demonstrated significantly improved motor functional recovery (inclined plane), 154 
significantly reduced infarct zone, a dramatic increase in the number of VEGF-positive  and 155 
GDNF-positive cells (undetectable in sham and SCI-only groups), and significantly reduced TUNEL 156 
staining. 157 
 158 
Studies using GDNF in combinational therapies for SCI repair 159 

 160 
Iannotti et al. [28] showed robust remyelination, axonal regeneration, and reduced cavitation, 161 

as well as modest yet significantly reduced astrogliosis and immune infiltration, in response to 162 
GDNF releasing matrigel guidance channels transplanted following hemisection SCI.  163 
Additionally, there was synergistic promotion of axonal regeneration and myelination in response to 164 
guidance channels containing both Schwann cells (SCs) and GDNF [28].  Despite significant axonal 165 
regrowth into the SCI lesion site, accompanied by the recruitment of myelinating Schwann cells, 166 
Blesch and Tuszynski [8] highlighted the difficulty of promoting axonal regrowth through and 167 
beyond the lesion site, following secretion of GDNF from genetically modified, transplanted 168 
fibroblasts.  In a novel study of chronic spinal cord injury, using a peripheral nerve graft, GDNF 169 
treatment enhanced axonal regeneration by 7-fold compared to controls [17].  In a study with 170 
Schwann cell seeded-guidance channels [75] observed significantly enhanced axonal regeneration, 171 
myelination, and number of blood vessels within the regenerated tissue.  GDNF was also shown to 172 
increase the diameter of the regenerated axons in this study [75].    173 

The observed inhibitory astrogliosis was positively modulated and an intermingling of host 174 
and graft tissue was observed at the hemisection lesion interface, in a combinational study of GDNF 175 
and Schwann cells (SCs) in semi-permeable guidance channels [15].  Noteworthy, is a study by 176 
Zhao et al. [77] in which GDNF reduced axotomy-induced astrogliosis of the facial nerve.  In a more 177 
recent study, a growth-promoting bridge was formed by transplantation of Schwann cell-seeded 178 
guidance channels, with Schwann cells overexpressing GDNF [16].  This GDNF overexpression 179 
modulated the astrocytic glial scar, created a more permissive environment for propriospinal axonal 180 
regrowth through and beyond the distal end of the lesion, conducted electrical signals through the 181 
lesion gap, and improved functional recovery [16].  This study highlights the importance of 182 
combinational treatment approaches for traumatic spinal cord injury. 183 
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In another combinational treatment approach, GDNF was embedded into an alginate hydrogel 184 
for slow release and employed in a hemisection SCI model [3].  In this study, GDNF promoted 185 
increased functional recovery, increased numbers of intralesional and perilesional neurites, reduced 186 
astrogliosis, and increased intralesional vasculature, as compared to controls.  Using PLGA 187 
(polylactide-co-glycolic acid) microspheres for slow release, Zhang et al. [76] administered GDNF, 188 
Chondroitinase ABC, and a Nogo A antibody following a transection SCI.  Lu et al. [40] showed 189 
remarkably robust axonal regeneration up to 12mm in length, in a severe SCI transection model 190 
(2mm of cord removed), with a combinational treatment approach including transplantation of 191 
neural stem cells in fibrin matrices containing a trophic factor cocktail (GDNF, BDNF (brain-derived 192 
neurotrophic factor), PDGF-AA (platelet-derived growth factor), NT3 (neurotrophin-3), 193 
IGF-1(insulin-like growth factor 1), EGF (epidermal growth factor), aFGF (acidic fibroblast growth 194 
factor), bFGF (basic fibroblast growth factor), HGF (hepatocyte growth factor), and calpain 195 
inhibitor/MDL28170).  Moreover, this tissue graft resulted in: 1) significantly enhanced motor 196 
recovery, 2) significantly improved electrical signals across the lesion gap, 3) survival and 197 
differentiation of the neural stem cells, 4) an intermingling of host axons into tissue grafts, 5) 198 
increased myelination, and 6) functional synapse formation likely leading to the observed significant 199 
improvement in locomotion [40]. 200 

Chen et al. [11] used a combinational approach consisting of hydrogel scaffolds containing 201 
Schwann cells overexpressing GDNF, transplanted into the transected rat spinal cord, and observed 202 
increased axonal growth and axon myelination (by host Schwann cells). Shahrezaie et al. [56] 203 
observed significant functional recovery (BBB) and axon number, with a combined treatment of 204 
bone marrow mesenchymal stem cells (BMSCs) with lentivirus for GDNF expression, more so than 205 
SCI alone, BMSCs alone, or BMSCs with an empty lentiviral vector. Another novel combinational 206 
treatment approach was utilized by Zhao et al. [78], with a temperature-sensitive heparin-poloxamer 207 
hydrogel with high GDNF-binding affinity, orthotopically injected following thoracic compression 208 
SCI in rats. Rats receiving hydrogel with GDNF showed dramatically increased functional recovery 209 
(BBB and inclined plane) compared with hydrogel treatment or SCI alone. Furthermore, this 210 
treatment showed reduced astrogliosis, increased axon regeneration, and both 211 
autophagy-dependent and autophagy-independent neuroprotection. In a 2016 study [45], human 212 
umbilical cord blood mononuclear cells (hUCB-MCs) were combined with an adenoviral vector 213 
containing GDNF, following rat thoracic contusion SCI. Adenoviral vectors carrying GDNF as well 214 
as hUCB-MCs with adenoviral GDNF showed significantly more tissue sparing than either of the 215 
control groups lacking GDNF. The combined hUCB-MCs with GDNF (adenoviral vector) showed a 216 
significant increase in myelination compared to hUCB-MCs or adenoviral GDNF alone. Significant 217 
functional recovery (BBB) was observed for the adenoviral-GDNF group compared to the adenoviral 218 
control; in addition, hUCB-MCs adenoviral-GDNF showed similar improvements to the 219 
adenoviral-GDNF group. The GDNF-containing treatment groups also showed distinct changes in 220 
various glial cells (astrocytes, oligodendrocytes, and Schwann cells) throughout the injured area. 221 

Jiao et al. [31] employed a silk fibroin/alginate GDNF scaffold seeded with human umbilical 222 
cord mesenchymal stem cells (hUCMSCs) for a thoracic contusion injury in a rat model. The silk 223 
fibroin scaffold combined with alginate had a prolonged release of GDNF compared to either 224 
scaffold alone. Moreover, the combination scaffold including GDNF seeded with hUCMSCs, 225 
resulted in significant functional improvement (BBB), neuroprotection, increased expression of 226 
neuronal markers, and significantly reduced inflammatory cytokine expression, compared to the 227 
combination scaffold with GDNF alone, combination scaffold without GDNF, and SCI alone. A 228 
similar combinational study utilized placental-derived mesenchymal stem cells (PMSCs) plus GDNF 229 
compared to bone marrow-derived mesenchymal stem cells (BMSCs) plus GDNF accompanied by 230 
copolymer scaffolds [41]. Interestingly, PMSCs expressing GDNF did not significantly differ in their 231 
SCI repair capability from BMSCs expressing GDNF. However, untransfected PMSCs and BMSCs 232 
showed significantly less tissue repair than transfected PMSCs and BMSCs expressing GDNF.  233 

Collectively, these studies demonstrate the high potential of GDNF, particularly in 234 
combinational treatment approaches, for use for repair of the injured spinal cord. 235 
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