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Abstract: Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a
secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration.
This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application,
also in combination with other factors and cell transplantations, for repairing the injured spinal
cord. As recent decades of studies strongly suggest combinational treatment approaches hold the
greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of
combinational therapies will also be discussed.
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SCI background and need for therapies

Spinal cord injury (SCI) is a devastating chronic condition for which no effective treatments
currently exist. Singh, Fehlings et al. [57] conducted a systematic review of global statistics,
beginning with 5,874 articles with a final inclusion of 48 articles, reporting worldwide SCI statistics,
with the United States having the highest prevalence (906 cases per 1 million people); New Zealand
having the highest reported national incidence (49.1 cases of SCI per 1 million people); and Spain (8
cases of SCI per 1 million people) and Fiji (10 cases of SCI per 1 million people) showing the lowest
national incidences. The primary cause of SCI cases worldwide is motor vehicle accidents,
followed by falls and sports injuries, for most countries [57]. The long-term potential of chronic
pain, inflammation, and devastating disabilities that SCI patients endure are compounded by the
extensive lifetime costs of care. Approximately 1 - 5 million United States dollars is spent over the
lifetime of an SCI patient, depending upon the patient’s age and level of injury [NSCISC — National
Spinal Cord Injury Statistical Center, 2018]. The national cost in the United States is estimated at
more than $400 billion US dollars for current and future healthcare for patients suffering from SCL

The initial SCI mechanical trauma disrupts local vasculature and leads to a breakdown of the
blood-spinal cord barrier [47, 50, 54]. This is followed by secondary wave of injury [55], comprised
of hemorrhage, ischemia [59] excitotoxicity, edema, neuronal apoptosis, loss of gray and white
matter tissue [60], axonal die-back, chronic inflammation [42], and the formation of a dense
astrocytic glial scar surrounding the lesion. During the acute phase after SCI, the astrogliosis is
presumed to be a positive regulator in limiting the spread of excitotoxic molecules, thus limiting the
lesion area. For decades, the astrocytic glial scar has been considered inhibitory in chronic phases
after SCI. However, recent literature supports beneficial axon regeneration in response to the
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47  astrocytic scar formation [2]. Glial cell line-derived neurotrophic factor (GDNF) has been shown to
48  positively modulate astrogliosis [28, 14, 3], in addition to its known neuroprotective effects, thus
49  making astrocytes a potential therapeutic target in SCL

50

51  Discovery of GDNF family ligands and receptors

52

53 The GDNF subfamily of neurotrophic ligands consists of GDNF, neurturin (NRTN), artemin

54 (ARTN), and persephin (PSPN), which bind to the glycosylphophatidylinositol-anchored GFRa
55  receptors 1-4, respectively [68]. The molecular structures of the GDNF family ligands and receptors
56 are nicely detailed by [69], as well as in Figure 1. While ARTN [71-72], NRTN [10, 27, 20], and PSPN
57  [62, 43] have all been shown to be neuroprotective, this mini review focuses specifically on GDNF
58  and its applications for the treatment of SCIL

59
60 Figure 1: GDNF family of ligands and receptors. GDNF binds to GFRa-1, NRTN binds to
61 GFRa-2, ARTN binds to GFRa-3, and PSPN binds to GFRa-4. GFRa 1-4 bind to cRET co-receptors.
62
63 GDNF was first identified as a neurotrophic factor released from glial cells by Engele et al. [19]

64  and Lin et al. [38], in its promotion of the survival of dopaminergic neurons. The GFRa-1 receptor
65  was first reported in Cell in 1996 [32], following its isolation, cloning, and characterization from rat
66 retinal cells; a study which also detailed the interaction between GDNF, GFRa-1, and the cRET
67  receptor. Interestingly, the following week a Nature publication [63] revealed concurrent work
68 with similar findings on a cloned and characterized GFRa-1, as well as the GDNF, GFRa-1, and
69  cRET multi-subunit receptor complex.

70

71  Localization of GDNF and its receptors

72

73 Expression patterns of GDNF, GFRa-1, and cRET indicate that the three are not mutually

74 exclusive for GDNF's trophic actions, as GFRa-1 is expressed in regions lacking cRET, and cRET has
75  expression in regions lacking GFRa-1 expression, well-characterized by [67]. In 1996, Trupp et al.
76 [66] identified GDNF'’s activation of the cRET proto-oncogene, resulting in neuronal survival, while
77  Jing et al. [32] identified GFRa-1 as mediating the interaction between GDNF and cRET. In 2001,
78  Nicole et al. [46] demonstrated the expression of GDNF mRNA and protein, as well as GFRa-1 and
79  cRET on both neurons and astrocytes. Heparan sulphate, a key glycosaminoglycan, was identified


http://dx.doi.org/10.20944/preprints201805.0247.v1
http://dx.doi.org/10.3390/brainsci8060109

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2018 d0i:10.20944/preprints201805.0247.v1

30f12

80  as crucial for the phosphorylation of the c-Ret co-receptor, thus, also necessary for GDNF signaling
81  through its GFRa-1 receptor [6].

82 Satake et al. [53] showed a dramatic upregulation of GDNF mRNA expression within 3 hours
83  post SCI that was maintained for approximately 2-4 weeks following injury. Additionally, changes
84  in GDNF’s expression pattern following CNS injury are nicely illustrated by Trupp et al. [65, 67] and
85  Donnelly and Popovich [18]. GDNF targets in the CNS and PNS, as well as the administration of
86  GDNF gene therapy for motoneuron protection were highlighted in a review by Bohn [9].

87

88  GDNF promotes cell survival and growth

&9

90 One of the earliest studies to report GDNF induced reduction of astrogliosis was a study by

91  Trok et al. [64], in which spinal cord explants were allotransplanted into Sprague-Dawley anterior
92  eye chambers. GDNF was shown to promote graft survival and growth, in addition to the reduced
93  GFAP immunoreactivity. Klocker et al. [34] identified a new subpopulation of neurons responsive
94 to GDNF in a study showing significantly reduce cell death of axotomized retinal ganglion cells in
95  response to GDNF treatment. The upregulation of GDNF in the distal portion of peripheral injured
96  nerves was assessed and quantified, along with the localization of its cRET receptor, as reported by
97  Bér et al. [5]. Similarly, Hoke et al. [24] showed upregulation of GFRal receptor on the distal
98  segment of the sciatic nerve following injury; this upregulation and the upregulation of GDNF by
99  Schwann cells was maintained for approximately six months following injury. The GFRal receptor
100  was localized to peripheral Schwann Cells in a study by Hase et al. [21], showing another target of
101  GDNEF for the repair of injured nervous system. Arce et al. [4] reported a 75% inhibition of neuron
102 survival after exposure to Schwann cell cultured media containing a blocking antibody against
103  GDNF; thus, demonstrating the importance of GDNF for the Schwann cell-mediated
104  neuroprotection. Paratcha et al. [49] highlighted the recruitment of cRET to neuronal cell
105  membrane lipid rafts, in response to soluble GFRal. Rind et al. [52] showed anterograde transport
106  of GDNF in dorsal root ganglia (DRG) and motor neurons, both with undetectable levels of GDNF
107  mRNA in their current state. The radiolabeled GDNF in this study was provided to the DRGs and
108  motor neurons and by Schwann cells and oligodendrocytes, respectively. In 2004, a novel in vivo
109  study was published showing for the first time the endogenous release of GDNF from astrocytes,
110 which was neuroprotective to neighboring neuronal populations, in utero during development [76].

111

112 Molecular signaling of GDNF promotion of cell survival

113

114 In addition to its neuroprotective effects [48, 7, 61], GDNF has also been shown to: 1) attenuate

115 astrocyte cell death via reduced activation of caspase-3 [74] as well as through caspase-3/Akt
116  independent mechanisms [13]; 2) minimize activation of microglia and production of nitric oxide
117 [73, 23]; and 3) promote the survival [39] and proliferation [25, 75] of Schwann cells. GDNF
118  activates rat primary cortical microglial cells through GFRa-1 and cRET receptors, with downstream
119  signaling through the MAPK pathway, as illustrated in a study by Honda et al. [26]. This study
120 demonstrates microglia as another putative therapeutic target for GDNF in CNS injury and disease.
121  However, a pro-inflammatory response, resulting in increased levels of IL-1p likely led to the GDNF
122 neuroprotection observed in a lipopolysaccharide (LPS)-induced nigral degeneration model of
123 Parkinson’s disease [30].

124 Soler et al. [58] characterized the downstream signaling of GDNF in motoneurons, which
125  includes activation of both the PI3K and ERK-MAPK pathways. Further investigation revealed that
126  the neuroprotective effects of GDNF signaled through the PI3K pathway [58].  In 2001, Nicole et al.
127  [46] described a novel mechanism of cortical neuroprotection from excitotoxicity-induced necrotic
128  cell death after GDNF application; however, in this study GDNF failed to rescue cortical neurons
129 from apoptotic cell death. Moreover, this study illustrated the indispensable nature of the MAPK
130  (MEK) pathway, and GDNF’s reduction of NMDA-triggered calcium influx, resulting in the
131  attenuation of necrotic cell death. However, glutamatergic excitotoxicity induced by non-NMDA
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132 agonists (AMPA and kainate) was unable to be attenuated by GDNF administration [46].
133 Additionally, this study highlighted GDNF’s neuroprotective effects were likely through
134 diminished NMDA receptor activity and not the result of free radical scavenging. Cheng et al. [12]
135  investigated the downstream neuroprotection signaling of GDNF and determined that GDNF
136  activated the MAPK signaling pathway and resulted in increased levels of Bel-2. Liu et al. [39]
137  described a similar upregulation of Bcl-2 and downregulation of Bax, which provided
138  neuroprotection in vitro and Schwann cell survival in vivo, in rats treated with Schwann cells
139 overexpressing GDNF, as compared to SCI rats.

140

141  Studies employing GDNF for repair of SCI

142

143 After avulsion injury, axotomized motoneuron cell death was reduced by 50% and somatic

144 atrophy was reduced, after treatment with GDNF [36]. In another study of avulsion injury, GDNF
145  administered via AAV-viral vector significantly attenuated spinal cord ventral horn motor neuron
146 death [70]. In one of the earliest studies of GDNF administration after SCI, Ramer et al. [51]
147  reported the ability of GDNF to rescue spinal cord motoneurons. In a contusive SCI model, GDNF
148  showed significant improvement in motor function (Basso, Beattie, Bresnahan, BBB locomotor rating
149 scale), increased cell survival and number of spared neuronal fibers compared to PBS-controls [12].
150 Iannotti et al. [29] reported significantly increased spared white matter and significantly
151  attenuated lesion volume in response to GDNF administration via an osmotic minipump, following
152 contusive SCI. Quite noteworthy, Mills et al. [44] described the GDNF enhancement of axonal
153 regeneration occurs within a narrow therapeutic dosage range. In a compressive clip model of SCI,
154  Kao et al. [33] demonstrated significantly improved motor functional recovery (inclined plane),
155  significantly reduced infarct zone, a dramatic increase in the number of VEGF-positive and
156  GDNF-positive cells (undetectable in sham and SCI-only groups), and significantly reduced TUNEL
157  staining.

158

159  Studies using GDNF in combinational therapies for SCI repair

160

161 Iannotti et al. [28] showed robust remyelination, axonal regeneration, and reduced cavitation,

162  as well as modest yet significantly reduced astrogliosis and immune infiltration, in response to
163  GDNF releasing matrigel guidance channels transplanted following hemisection SCL
164  Additionally, there was synergistic promotion of axonal regeneration and myelination in response to
165  guidance channels containing both Schwann cells (SCs) and GDNF [28]. Despite significant axonal
166  regrowth into the SCI lesion site, accompanied by the recruitment of myelinating Schwann cells,
167  Blesch and Tuszynski [8] highlighted the difficulty of promoting axonal regrowth through and
168  beyond the lesion site, following secretion of GDNF from genetically modified, transplanted
169  fibroblasts. In a novel study of chronic spinal cord injury, using a peripheral nerve graft, GDNF
170  treatment enhanced axonal regeneration by 7-fold compared to controls [17]. In a study with
171  Schwann cell seeded-guidance channels [75] observed significantly enhanced axonal regeneration,
172 myelination, and number of blood vessels within the regenerated tissue. GDNF was also shown to
173 increase the diameter of the regenerated axons in this study [75].

174 The observed inhibitory astrogliosis was positively modulated and an intermingling of host
175  and graft tissue was observed at the hemisection lesion interface, in a combinational study of GDNF
176  and Schwann cells (SCs) in semi-permeable guidance channels [15]. Noteworthy, is a study by
177 Zhao et al. [77] in which GDNF reduced axotomy-induced astrogliosis of the facial nerve. Inamore
178  recent study, a growth-promoting bridge was formed by transplantation of Schwann cell-seeded
179  guidance channels, with Schwann cells overexpressing GDNF [16]. This GDNF overexpression
180  modulated the astrocytic glial scar, created a more permissive environment for propriospinal axonal
181  regrowth through and beyond the distal end of the lesion, conducted electrical signals through the
182  lesion gap, and improved functional recovery [16]. This study highlights the importance of
183  combinational treatment approaches for traumatic spinal cord injury.
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184 In another combinational treatment approach, GDNF was embedded into an alginate hydrogel
185  for slow release and employed in a hemisection SCI model [3]. In this study, GDNF promoted
186  increased functional recovery, increased numbers of intralesional and perilesional neurites, reduced
187  astrogliosis, and increased intralesional vasculature, as compared to controls. Using PLGA
188  (polylactide-co-glycolic acid) microspheres for slow release, Zhang et al. [76] administered GDNF,
189  Chondroitinase ABC, and a Nogo A antibody following a transection SCI. Lu et al. [40] showed
190  remarkably robust axonal regeneration up to 12mm in length, in a severe SCI transection model
191  (2mm of cord removed), with a combinational treatment approach including transplantation of
192 neural stem cells in fibrin matrices containing a trophic factor cocktail (GDNF, BDNF (brain-derived
193 neurotrophic factor) PDGF-AA (platelet-derived growth factor), NT3 (neurotrophin-3),
194  IGF-1(insulin-like growth factor 1), EGF (epidermal growth factor), aFGF (acidic fibroblast growth
195  factor), bFGF (basic fibroblast growth factor), HGF (hepatocyte growth factor), and calpain
196  inhibitor/MDL28170). Moreover, this tissue graft resulted in: 1) significantly enhanced motor
197  recovery, 2) significantly improved electrical signals across the lesion gap, 3) survival and
198  differentiation of the neural stem cells, 4) an intermingling of host axons into tissue grafts, 5)
199  increased myelination, and 6) functional synapse formation likely leading to the observed significant
200  improvement in locomotion [40].

201 Chen et al. [11] used a combinational approach consisting of hydrogel scaffolds containing
202  Schwann cells overexpressing GDNF, transplanted into the transected rat spinal cord, and observed
203  increased axonal growth and axon myelination (by host Schwann cells). Shahrezaie et al. [56]
204  observed significant functional recovery (BBB) and axon number, with a combined treatment of
205  bone marrow mesenchymal stem cells (BMSCs) with lentivirus for GDNF expression, more so than
206  SCI alone, BMSCs alone, or BMSCs with an empty lentiviral vector. Another novel combinational
207  treatment approach was utilized by Zhao et al. [78], with a temperature-sensitive heparin-poloxamer
208  hydrogel with high GDNF-binding affinity, orthotopically injected following thoracic compression
209  SCIin rats. Rats receiving hydrogel with GDNF showed dramatically increased functional recovery
210  (BBB and inclined plane) compared with hydrogel treatment or SCI alone. Furthermore, this
211  treatment showed reduced astrogliosis, increased axon regeneration, and both
212 autophagy-dependent and autophagy-independent neuroprotection. In a 2016 study [45], human
213 umbilical cord blood mononuclear cells (hUCB-MCs) were combined with an adenoviral vector
214  containing GDNF, following rat thoracic contusion SCI. Adenoviral vectors carrying GDNF as well
215  as hUCB-MCs with adenoviral GDNF showed significantly more tissue sparing than either of the
216  control groups lacking GDNF. The combined hUCB-MCs with GDNF (adenoviral vector) showed a
217  significant increase in myelination compared to hUCB-MCs or adenoviral GDNF alone. Significant
218  functional recovery (BBB) was observed for the adenoviral-GDNF group compared to the adenoviral
219 control; in addition, hUCB-MCs adenoviral-GDNF showed similar improvements to the
220  adenoviral-GDNF group. The GDNF-containing treatment groups also showed distinct changes in
221  wvarious glial cells (astrocytes, oligodendrocytes, and Schwann cells) throughout the injured area.
222 Jiao et al. [31] employed a silk fibroin/alginate GDNF scaffold seeded with human umbilical
223 cord mesenchymal stem cells (hUCMSCs) for a thoracic contusion injury in a rat model. The silk
224  fibroin scaffold combined with alginate had a prolonged release of GDNF compared to either
225 scaffold alone. Moreover, the combination scaffold including GDNF seeded with hUCMSCs,
226  resulted in significant functional improvement (BBB), neuroprotection, increased expression of
227 neuronal markers, and significantly reduced inflammatory cytokine expression, compared to the
228 combination scaffold with GDNF alone, combination scaffold without GDNF, and SCI alone. A
229  similar combinational study utilized placental-derived mesenchymal stem cells (PMSCs) plus GDNF
230  compared to bone marrow-derived mesenchymal stem cells (BMSCs) plus GDNF accompanied by
231  copolymer scaffolds [41]. Interestingly, PMSCs expressing GDNF did not significantly differ in their
232 SCI repair capability from BMSCs expressing GDNF. However, untransfected PMSCs and BMSCs
233 showed significantly less tissue repair than transfected PMSCs and BMSCs expressing GDNF.

234 Collectively, these studies demonstrate the high potential of GDNF, particularly in
235  combinational treatment approaches, for use for repair of the injured spinal cord.
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