

1 *Review*2

Role of GDNF in Spinal Cord Injury Repair

3 **Melissa J. Walker^{1,2,3,4}, Xiao-Ming Xu^{2,3,4*}**4 ¹ Medical Neuroscience Graduate Program, ² Spinal Cord and Brain Injury Research Group, ³ Stark
5 Neurosciences Research Institute, ⁴ Department of Neurological Surgery, Indiana University School of
6 Medicine, Indianapolis, Indiana, United States of America7
8 Melissa Walker, melissaw@ucla.edu, Tel.: +1-805-304-53159 * Correspondence: Xiao-Ming Xu, e-mail xu26@iupui.edu, Tel.: +1-317-274-1036

10

11

12 **Abstract:** Following an initial mechanical insult, traumatic spinal cord injury (SCI) induces a
13 secondary wave of injury, resulting in a toxic lesion environment inhibitory to axonal regeneration.
14 This review focuses on the glial cell line-derived neurotrophic factor (GDNF) and its application,
15 also in combination with other factors and cell transplantations, for repairing the injured spinal
16 cord. As recent decades of studies strongly suggest combinational treatment approaches hold the
17 greatest therapeutic potential for the central nervous system (CNS) trauma, future directions of
18 combinational therapies will also be discussed.19 **Keywords:** Spinal cord injury, glial cell line-derived neurotrophic factor (GDNF), GFR α -1, cRET,
20 Schwann cells, Astrogliosis, neuroprotection, axonal regeneration, combinational therapies,
21 neurotrauma.

22

23

SCI background and need for therapies

24

25 Spinal cord injury (SCI) is a devastating chronic condition for which no effective treatments
26 currently exist. Singh, Fehlings et al. [57] conducted a systematic review of global statistics,
27 beginning with 5,874 articles with a final inclusion of 48 articles, reporting worldwide SCI statistics,
28 with the United States having the highest prevalence (906 cases per 1 million people); New Zealand
29 having the highest reported national incidence (49.1 cases of SCI per 1 million people); and Spain (8
30 cases of SCI per 1 million people) and Fiji (10 cases of SCI per 1 million people) showing the lowest
31 national incidences. The primary cause of SCI cases worldwide is motor vehicle accidents,
32 followed by falls and sports injuries, for most countries [57]. The long-term potential of chronic
33 pain, inflammation, and devastating disabilities that SCI patients endure are compounded by the
34 extensive lifetime costs of care. Approximately 1 - 5 million United States dollars is spent over the
35 lifetime of an SCI patient, depending upon the patient's age and level of injury [NSCISC – National
36 Spinal Cord Injury Statistical Center, 2018]. The national cost in the United States is estimated at
37 more than \$400 billion US dollars for current and future healthcare for patients suffering from SCI.

38

39 The initial SCI mechanical trauma disrupts local vasculature and leads to a breakdown of the
40 blood-spinal cord barrier [47, 50, 54]. This is followed by secondary wave of injury [55], comprised
41 of hemorrhage, ischemia [59] excitotoxicity, edema, neuronal apoptosis, loss of gray and white
42 matter tissue [60], axonal die-back, chronic inflammation [42], and the formation of a dense
43 astrocytic glial scar surrounding the lesion. During the acute phase after SCI, the astrogliosis is
44 presumed to be a positive regulator in limiting the spread of excitotoxic molecules, thus limiting the
45 lesion area. For decades, the astrocytic glial scar has been considered inhibitory in chronic phases
46 after SCI. However, recent literature supports beneficial axon regeneration in response to the

47 astrocytic scar formation [2]. Glial cell line-derived neurotrophic factor (GDNF) has been shown to
48 positively modulate astrogliosis [28, 14, 3], in addition to its known neuroprotective effects, thus
49 making astrocytes a potential therapeutic target in SCI.
50

51 Discovery of GDNF family ligands and receptors

52
53 The GDNF subfamily of neurotrophic ligands consists of GDNF, neurturin (NRTN), artemin
54 (ARTN), and persephin (PSPN), which bind to the glycosylphosphatidylinositol-anchored GFR α
55 receptors 1-4, respectively [68]. The molecular structures of the GDNF family ligands and receptors
56 are nicely detailed by [69], as well as in Figure 1. While ARTN [71-72], NRTN [10, 27, 20], and PSPN
57 [62, 43] have all been shown to be neuroprotective, this mini review focuses specifically on GDNF
58 and its applications for the treatment of SCI.

59
60 Figure 1: GDNF family of ligands and receptors. GDNF binds to GFR α -1, NRTN binds to
61 GFR α -2, ARTN binds to GFR α -3, and PSPN binds to GFR α -4. GFR α 1-4 bind to cRET co-receptors.
62

63 GDNF was first identified as a neurotrophic factor released from glial cells by Engle et al. [19]
64 and Lin et al. [38], in its promotion of the survival of dopaminergic neurons. The GFR α -1 receptor
65 was first reported in Cell in 1996 [32], following its isolation, cloning, and characterization from rat
66 retinal cells; a study which also detailed the interaction between GDNF, GFR α -1, and the cRET
67 receptor. Interestingly, the following week a Nature publication [63] revealed concurrent work
68 with similar findings on a cloned and characterized GFR α -1, as well as the GDNF, GFR α -1, and
69 cRET multi-subunit receptor complex.
70

71 Localization of GDNF and its receptors

72
73 Expression patterns of GDNF, GFR α -1, and cRET indicate that the three are not mutually
74 exclusive for GDNF's trophic actions, as GFR α -1 is expressed in regions lacking cRET, and cRET has
75 expression in regions lacking GFR α -1 expression, well-characterized by [67]. In 1996, Trupp et al.
76 [66] identified GDNF's activation of the cRET proto-oncogene, resulting in neuronal survival, while
77 Jing et al. [32] identified GFR α -1 as mediating the interaction between GDNF and cRET. In 2001,
78 Nicole et al. [46] demonstrated the expression of GDNF mRNA and protein, as well as GFR α -1 and
79 cRET on both neurons and astrocytes. Heparan sulphate, a key glycosaminoglycan, was identified

80 as crucial for the phosphorylation of the c-Ret co-receptor, thus, also necessary for GDNF signaling
81 through its GFR α -1 receptor [6].

82 Satake et al. [53] showed a dramatic upregulation of GDNF mRNA expression within 3 hours
83 post SCI that was maintained for approximately 2-4 weeks following injury. Additionally, changes
84 in GDNF's expression pattern following CNS injury are nicely illustrated by Trupp et al. [65, 67] and
85 Donnelly and Popovich [18]. GDNF targets in the CNS and PNS, as well as the administration of
86 GDNF gene therapy for motoneuron protection were highlighted in a review by Bohn [9].
87

88 GDNF promotes cell survival and growth

89

90 One of the earliest studies to report GDNF induced reduction of astrogliosis was a study by
91 Trok et al. [64], in which spinal cord explants were allotransplanted into Sprague-Dawley anterior
92 eye chambers. GDNF was shown to promote graft survival and growth, in addition to the reduced
93 GFAP immunoreactivity. Klöcker et al. [34] identified a new subpopulation of neurons responsive
94 to GDNF in a study showing significantly reduce cell death of axotomized retinal ganglion cells in
95 response to GDNF treatment. The upregulation of GDNF in the distal portion of peripheral injured
96 nerves was assessed and quantified, along with the localization of its cRET receptor, as reported by
97 Bär et al. [5]. Similarly, Höke et al. [24] showed upregulation of GFR α 1 receptor on the distal
98 segment of the sciatic nerve following injury; this upregulation and the upregulation of GDNF by
99 Schwann cells was maintained for approximately six months following injury. The GFR α 1 receptor
100 was localized to peripheral Schwann Cells in a study by Hase et al. [21], showing another target of
101 GDNF for the repair of injured nervous system. Arce et al. [4] reported a 75% inhibition of neuron
102 survival after exposure to Schwann cell cultured media containing a blocking antibody against
103 GDNF; thus, demonstrating the importance of GDNF for the Schwann cell-mediated
104 neuroprotection. Paratcha et al. [49] highlighted the recruitment of cRET to neuronal cell
105 membrane lipid rafts, in response to soluble GFR α 1. Rind et al. [52] showed anterograde transport
106 of GDNF in dorsal root ganglia (DRG) and motor neurons, both with undetectable levels of GDNF
107 mRNA in their current state. The radiolabeled GDNF in this study was provided to the DRGs and
108 motor neurons and by Schwann cells and oligodendrocytes, respectively. In 2004, a novel *in vivo*
109 study was published showing for the first time the endogenous release of GDNF from astrocytes,
110 which was neuroprotective to neighboring neuronal populations, *in utero* during development [76].
111

112 Molecular signaling of GDNF promotion of cell survival

113

114 In addition to its neuroprotective effects [48, 7, 61], GDNF has also been shown to: 1) attenuate
115 astrocyte cell death via reduced activation of caspase-3 [74] as well as through caspase-3/Akt
116 independent mechanisms [13]; 2) minimize activation of microglia and production of nitric oxide
117 [73, 23]; and 3) promote the survival [39] and proliferation [25, 75] of Schwann cells. GDNF
118 activates rat primary cortical microglial cells through GFR α -1 and cRET receptors, with downstream
119 signaling through the MAPK pathway, as illustrated in a study by Honda et al. [26]. This study
120 demonstrates microglia as another putative therapeutic target for GDNF in CNS injury and disease.
121 However, a pro-inflammatory response, resulting in increased levels of IL-1 β likely led to the GDNF
122 neuroprotection observed in a lipopolysaccharide (LPS)-induced nigral degeneration model of
123 Parkinson's disease [30].

124 Soler et al. [58] characterized the downstream signaling of GDNF in motoneurons, which
125 includes activation of both the PI3K and ERK-MAPK pathways. Further investigation revealed that
126 the neuroprotective effects of GDNF signaled through the PI3K pathway [58]. In 2001, Nicole et al.
127 [46] described a novel mechanism of cortical neuroprotection from excitotoxicity-induced necrotic
128 cell death after GDNF application; however, in this study GDNF failed to rescue cortical neurons
129 from apoptotic cell death. Moreover, this study illustrated the indispensable nature of the MAPK
130 (MEK) pathway, and GDNF's reduction of NMDA-triggered calcium influx, resulting in the
131 attenuation of necrotic cell death. However, glutamatergic excitotoxicity induced by non-NMDA

132 agonists (AMPA and kainate) was unable to be attenuated by GDNF administration [46].
133 Additionally, this study highlighted GDNF's neuroprotective effects were likely through
134 diminished NMDA receptor activity and not the result of free radical scavenging. Cheng et al. [12]
135 investigated the downstream neuroprotection signaling of GDNF and determined that GDNF
136 activated the MAPK signaling pathway and resulted in increased levels of Bcl-2. Liu et al. [39]
137 described a similar upregulation of Bcl-2 and downregulation of Bax, which provided
138 neuroprotection *in vitro* and Schwann cell survival *in vivo*, in rats treated with Schwann cells
139 overexpressing GDNF, as compared to SCI rats.
140

141 Studies employing GDNF for repair of SCI

143 After avulsion injury, axotomized motoneuron cell death was reduced by 50% and somatic
144 atrophy was reduced, after treatment with GDNF [36]. In another study of avulsion injury, GDNF
145 administered via AAV-viral vector significantly attenuated spinal cord ventral horn motor neuron
146 death [70]. In one of the earliest studies of GDNF administration after SCI, Ramer et al. [51]
147 reported the ability of GDNF to rescue spinal cord motoneurons. In a contusive SCI model, GDNF
148 showed significant improvement in motor function (Basso, Beattie, Bresnahan, BBB locomotor rating
149 scale), increased cell survival and number of spared neuronal fibers compared to PBS-controls [12].

150 Iannotti et al. [29] reported significantly increased spared white matter and significantly
151 attenuated lesion volume in response to GDNF administration via an osmotic minipump, following
152 contusive SCI. Quite noteworthy, Mills et al. [44] described the GDNF enhancement of axonal
153 regeneration occurs within a narrow therapeutic dosage range. In a compressive clip model of SCI,
154 Kao et al. [33] demonstrated significantly improved motor functional recovery (inclined plane),
155 significantly reduced infarct zone, a dramatic increase in the number of VEGF-positive and
156 GDNF-positive cells (undetectable in sham and SCI-only groups), and significantly reduced TUNEL
157 staining.
158

159 Studies using GDNF in combinational therapies for SCI repair

161 Iannotti et al. [28] showed robust remyelination, axonal regeneration, and reduced cavitation,
162 as well as modest yet significantly reduced astrogliosis and immune infiltration, in response to
163 GDNF releasing matrigel guidance channels transplanted following hemisection SCI.
164 Additionally, there was synergistic promotion of axonal regeneration and myelination in response to
165 guidance channels containing both Schwann cells (SCs) and GDNF [28]. Despite significant axonal
166 regrowth into the SCI lesion site, accompanied by the recruitment of myelinating Schwann cells,
167 Blesch and Tuszynski [8] highlighted the difficulty of promoting axonal regrowth through and
168 beyond the lesion site, following secretion of GDNF from genetically modified, transplanted
169 fibroblasts. In a novel study of chronic spinal cord injury, using a peripheral nerve graft, GDNF
170 treatment enhanced axonal regeneration by 7-fold compared to controls [17]. In a study with
171 Schwann cell seeded-guidance channels [75] observed significantly enhanced axonal regeneration,
172 myelination, and number of blood vessels within the regenerated tissue. GDNF was also shown to
173 increase the diameter of the regenerated axons in this study [75].

174 The observed inhibitory astrogliosis was positively modulated and an intermingling of host
175 and graft tissue was observed at the hemisection lesion interface, in a combinational study of GDNF
176 and Schwann cells (SCs) in semi-permeable guidance channels [15]. Noteworthy, is a study by
177 Zhao et al. [77] in which GDNF reduced axotomy-induced astrogliosis of the facial nerve. In a more
178 recent study, a growth-promoting bridge was formed by transplantation of Schwann cell-seeded
179 guidance channels, with Schwann cells overexpressing GDNF [16]. This GDNF overexpression
180 modulated the astrocytic glial scar, created a more permissive environment for propriospinal axonal
181 regrowth through and beyond the distal end of the lesion, conducted electrical signals through the
182 lesion gap, and improved functional recovery [16]. This study highlights the importance of
183 combinational treatment approaches for traumatic spinal cord injury.

184 In another combinational treatment approach, GDNF was embedded into an alginate hydrogel
185 for slow release and employed in a hemisection SCI model [3]. In this study, GDNF promoted
186 increased functional recovery, increased numbers of intralesional and perilesional neurites, reduced
187 astrogliosis, and increased intralesional vasculature, as compared to controls. Using PLGA
188 (polylactide-co-glycolic acid) microspheres for slow release, Zhang et al. [76] administered GDNF,
189 Chondroitinase ABC, and a Nogo A antibody following a transection SCI. Lu et al. [40] showed
190 remarkably robust axonal regeneration up to 12mm in length, in a severe SCI transection model
191 (2mm of cord removed), with a combinational treatment approach including transplantation of
192 neural stem cells in fibrin matrices containing a trophic factor cocktail (GDNF, BDNF (brain-derived
193 neurotrophic factor), PDGF-AA (platelet-derived growth factor), NT3 (neurotrophin-3),
194 IGF-1(insulin-like growth factor 1), EGF (epidermal growth factor), aFGF (acidic fibroblast growth
195 factor), bFGF (basic fibroblast growth factor), HGF (hepatocyte growth factor), and calpain
196 inhibitor/MDL28170). Moreover, this tissue graft resulted in: 1) significantly enhanced motor
197 recovery, 2) significantly improved electrical signals across the lesion gap, 3) survival and
198 differentiation of the neural stem cells, 4) an intermingling of host axons into tissue grafts, 5)
199 increased myelination, and 6) functional synapse formation likely leading to the observed significant
200 improvement in locomotion [40].

201 Chen et al. [11] used a combinational approach consisting of hydrogel scaffolds containing
202 Schwann cells overexpressing GDNF, transplanted into the transected rat spinal cord, and observed
203 increased axonal growth and axon myelination (by host Schwann cells). Shahrezaie et al. [56]
204 observed significant functional recovery (BBB) and axon number, with a combined treatment of
205 bone marrow mesenchymal stem cells (BMSCs) with lentivirus for GDNF expression, more so than
206 SCI alone, BMSCs alone, or BMSCs with an empty lentiviral vector. Another novel combinational
207 treatment approach was utilized by Zhao et al. [78], with a temperature-sensitive heparin-poloxamer
208 hydrogel with high GDNF-binding affinity, orthotopically injected following thoracic compression
209 SCI in rats. Rats receiving hydrogel with GDNF showed dramatically increased functional recovery
210 (BBB and inclined plane) compared with hydrogel treatment or SCI alone. Furthermore, this
211 treatment showed reduced astrogliosis, increased axon regeneration, and both
212 autophagy-dependent and autophagy-independent neuroprotection. In a 2016 study [45], human
213 umbilical cord blood mononuclear cells (hUCB-MCs) were combined with an adenoviral vector
214 containing GDNF, following rat thoracic contusion SCI. Adenoviral vectors carrying GDNF as well
215 as hUCB-MCs with adenoviral GDNF showed significantly more tissue sparing than either of the
216 control groups lacking GDNF. The combined hUCB-MCs with GDNF (adenoviral vector) showed a
217 significant increase in myelination compared to hUCB-MCs or adenoviral GDNF alone. Significant
218 functional recovery (BBB) was observed for the adenoviral-GDNF group compared to the adenoviral
219 control; in addition, hUCB-MCs adenoviral-GDNF showed similar improvements to the
220 adenoviral-GDNF group. The GDNF-containing treatment groups also showed distinct changes in
221 various glial cells (astrocytes, oligodendrocytes, and Schwann cells) throughout the injured area.

222 Jiao et al. [31] employed a silk fibroin/alginate GDNF scaffold seeded with human umbilical
223 cord mesenchymal stem cells (hUCMScs) for a thoracic contusion injury in a rat model. The silk
224 fibroin scaffold combined with alginate had a prolonged release of GDNF compared to either
225 scaffold alone. Moreover, the combination scaffold including GDNF seeded with hUCMScs
226 resulted in significant functional improvement (BBB), neuroprotection, increased expression of
227 neuronal markers, and significantly reduced inflammatory cytokine expression, compared to the
228 combination scaffold with GDNF alone, combination scaffold without GDNF, and SCI alone. A
229 similar combinational study utilized placental-derived mesenchymal stem cells (PMSCs) plus GDNF
230 compared to bone marrow-derived mesenchymal stem cells (BMSCs) plus GDNF accompanied by
231 copolymer scaffolds [41]. Interestingly, PMSCs expressing GDNF did not significantly differ in their
232 SCI repair capability from BMSCs expressing GDNF. However, untransfected PMSCs and BMSCs
233 showed significantly less tissue repair than transfected PMSCs and BMSCs expressing GDNF.

234 Collectively, these studies demonstrate the high potential of GDNF, particularly in
235 combinational treatment approaches, for use for repair of the injured spinal cord.

236

237 **Conflicts of Interest**

238 The authors have nothing to disclose.

239

240 **Author Contributions**

241 Writing, M.J.W. Review, X.M.X.

242

243 **Funding**244 This work was supported in part by NIH R01 NS103481, R01 NS100531; Department of
245 Veterans Affairs I01 RX002356-01, I01 BX003705-01A1; Craig H Neilsen Foundation 296749, ISDH
246 019919 (XMX), and the Wings for Life Spinal Cord Injury Foundation (MJW).

247

248

249 **References**

- 250 1. Airaksinen, M.S., and Saarma, M. (2002). The GDNF family: signalling, biological functions and
251 therapeutic value. *Nat. Rev. Neurosci.* 3, 383–394.
- 252 2. Anderson, M. A., Burda, J. E., Ren, Y., Ao, Y., O'Shea, T. M., Kawaguchi, R., Sofroniew, M. V. (2016).
253 Astrocyte scar formation aids central nervous system axon regeneration. *Nature*, 532(7598), 195–200.
254 <https://doi.org/10.1038/nature17623>.
- 255 3. Ansorena, E., De Berdt, P., Ucakar, B., Simón-Yarza, T., Jacobs, D., Schakman, O., Jankovski, A.,
256 Deumens, R., Blanco-Prieto, M.J., Préat, V., et al. (2013). Injectable alginate hydrogel loaded with
257 GDNF promotes functional recovery in a hemisection model of spinal cord injury. *Int J Pharm* 455,
258 148–158.
- 259 4. Arce, V., Pollock, R.A., Philippe, J.M., Pennica, D., Henderson, C.E., and deLapeyrière, O. (1998).
260 Synergistic effects of schwann- and muscle-derived factors on motoneuron survival involve GDNF
261 and cardiotrophin-1 (CT-1). *J. Neurosci.* 18, 1440–1448.
- 262 5. Bär, K.J., Saldanha, G.J., Kennedy, A.J., Facer, P., Birch, R., Carlstedt, T., and Anand, P. (1998). GDNF
263 and its receptor component Ret in injured human nerves and dorsal root ganglia. *Neuroreport* 9,
264 43–47.
- 265 6. Barnett, M.W., Fisher, C.E., Perona-Wright, G., and Davies, J.A. (2002). Signalling by glial cell
266 line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. *J. Cell. Sci.*
267 115, 4495–4503.
- 268 7. Beck, K.D., Valverde, J., Alexi, T., Poulsen, K., Moffat, B., Vandlen, R.A., Rosenthal, A., and Hefti, F.
269 (1995). Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced
270 degeneration in the adult brain. *Nature* 373, 339–341.
- 271 8. Blesch, A., and Tuszynski, M.H. (2003). Cellular GDNF delivery promotes growth of motor and dorsal
272 column sensory axons after partial and complete spinal cord transections and induces remyelination. *J.*
273 *Comp. Neurol.* 467, 403–417.
- 274 9. Bohn, M.C. (2004). Motoneurons crave glial cell line-derived neurotrophic factor. *Exp. Neurol.* 190,
275 263–275.
- 276 10. Buj-Bello, A., Adu, J., Piñón, L.G., Horton, A., Thompson, J., Rosenthal, A., Chinchetru, M., Buchman,
277 V.L., and Davies, A.M. (1997). Neurturin responsiveness requires a GPI-linked receptor and the Ret
278 receptor tyrosine kinase. *Nature* 387, 721–724.
- 279 11. Chen, B. K., Madigan, N. N., Hakim, J. S., Dadsetan, M., McMahon, S. S., Yaszemski, M. J., &
280 Windebank, A. J. (2018). GDNF Schwann cells in hydrogel scaffolds promote regional axon
281 regeneration, remyelination and functional improvement after spinal cord transection in rats. *Journal*
282 of *Tissue Engineering and Regenerative Medicine*, 12(1), e398–e407. <https://doi.org/10.1002/term.2431>.
- 283 12. Cheng, H., Wu, J.-P., and Tzeng, S.-F. (2002). Neuroprotection of glial cell line-derived neurotrophic
284 factor in damaged spinal cords following contusive injury. *J. Neurosci. Res.* 69, 397–405.
- 285 13. Chu, L.-F., Wang, W.-T., Ghanta, V.K., Lin, C.-H., Chiang, Y.-Y., and Hsueh, C.-M. (2008). Ischemic
286 brain cell-derived conditioned medium protects astrocytes against ischemia through
287 GDNF/ERK/NF- κ B signaling pathway. *Brain Res.* 1239, 24–35.
- 288 14. Deng, L.-X., Hu, J., Liu, N., Wang, X., Smith, G.M., Wen, X., and Xu, X.-M. (2011a). GDNF modifies
289 reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance
290 channels after spinal cord injury. *Exp. Neurol.* 229, 238–250.

291 15. Deng, L.-X., Hu, J., Liu, N., Wang, X., Smith, G.M., Wen, X., and Xu, X.-M. (2011b). GDNF reverses the
292 inhibitory properties of reactive astrocytes allowing robust axonal regeneration through Schwann
293 cell-seeded guidance channels after spinal cord injury. *Exp Neurol* 229, 238–250.

294 16. Deng, L.-X., Deng, P., Ruan, Y., Xu, Z.C., Liu, N.-K., Wen, X., Smith, G.M., and Xu, X.-M. (2013). A
295 novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes
296 propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal
297 cord injury. *J. Neurosci.* 33, 5655–5667.

298 17. Dolbeare, D., and Houle, J.D. (2003). Restriction of axonal retraction and promotion of axonal
299 regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived
300 neurotrophic factor (GDNF). *J. Neurotrauma* 20, 1251–1261.

301 18. Donnelly, D.J., and Popovich, P.G. (2008). Inflammation and its role in neuroprotection, axonal
302 regeneration and functional recovery after spinal cord injury. *Exp. Neurol.* 209, 378–388.

303 19. Engele, J., Schubert, D., and Bohn, M.C. (1991). Conditioned media derived from glial cell lines
304 promote survival and differentiation of dopaminergic neurons *in vitro*: role of mesencephalic glia. *J.*
305 *Neurosci. Res.* 30, 359–371.

306 20. Golden, J.P., Milbrandt, J., and Johnson, E.M. (2003). Neurturin and persephin promote the survival of
307 embryonic basal forebrain cholinergic neurons *in vitro*. *Exp. Neurol.* 184, 447–455.

308 21. Hase, A., Saito, F., Yamada, H., Arai, K., Shimizu, T., and Matsumura, K. (2005). Characterization of
309 glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. *J.*
310 *Neurochem.* 95, 537–543.

311 22. Henderson, C.E., Phillips, H.S., Pollock, R.A., Davies, A.M., Lemeulle, C., Armanini, M., Simmons, L.,
312 Moffet, B., Vandlen, R.A., Simpson LC corrected to Simmons, L., et al. (1994). GDNF: a potent survival
313 factor for motoneurons present in peripheral nerve and muscle. *Science* 266, 1062–1064.

314 23. Hermann, D.M., Kilic, E., Kügler, S., Isenmann, S., and Bähr, M. (2001). Adenovirus-mediated glial cell
315 line-derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in
316 rats. *Neurobiol. Dis.* 8, 964–973.

317 24. Höke, A., Gordon, T., Zochodne, D.W., and Sulaiman, O.A.R. (2002). A Decline in Glial
318 Cell-Line-Derived Neurotrophic Factor Expression Is Associated with Impaired Regeneration after
319 Long-Term Schwann Cell Denervation. *Experimental Neurology* 173, 77–85.

320 25. Höke, A., Ho, T., Crawford, T.O., LeBel, C., Hilt, D., and Griffin, J.W. (2003). Glial cell line-derived
321 neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve
322 fibers. *J. Neurosci.* 23, 561–567.

323 26. Honda, S., Nakajima, K., Nakamura, Y., Imai, Y., and Kohsaka, S. (1999). Rat primary cultured
324 microglia express glial cell line-derived neurotrophic factor receptors. *Neurosci. Lett.* 275, 203–206.

325 27. Horger, B.A., Nishimura, M.C., Armanini, M.P., Wang, L.C., Poulsen, K.T., Rosenblad, C., Kirik, D.,
326 Moffat, B., Simmons, L., Johnson, E., et al. (1998). Neurturin exerts potent actions on survival and
327 function of midbrain dopaminergic neurons. *J. Neurosci.* 18, 4929–4937.

328 28. Iannotti, C., Li, H., Yan, P., Lu, X., Wirthlin, L., and Xu, X.M. (2003). Glial cell line-derived
329 neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and
330 enhance myelination after spinal cord injury. *Exp. Neurol.* 183, 379–393.

331 29. Iannotti, C., Ping Zhang, Y., Shields, C.B., Han, Y., Burke, D.A., and Xu, X.-M. (2004). A
332 neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord
333 contusion injury. *Experimental Neurology* 189, 317–332.

334 30. Iravani, M.M., Sadeghian, M., Leung, C.C.M., Jenner, P., and Rose, S. (2012).
335 Lipopolysaccharide-induced nigral inflammation leads to increased IL-1 β tissue content and
336 expression of astrocytic glial cell line-derived neurotrophic factor. *Neurosci. Lett.* 510, 138–142.

337 31. Jiao, G., Lou, G., Mo, Y., Pan, Y., Zhang, Z., Guo, R., & Li, Z. (2017). A combination of GDNF and
338 hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair.
339 *Materials Science & Engineering. C, Materials for Biological Applications*, 74, 230–237.
340 <https://doi.org/10.1016/j.msec.2016.12.017>.

341 32. Jing, S., Wen, D., Yu, Y., Holst, P.L., Luo, Y., Fang, M., Tamir, R., Antonio, L., Hu, Z., Cupples, R., et al.
342 (1996). GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a
343 novel receptor for GDNF. *Cell* 85, 1113–1124.

344 33. Kao, C.-H., Chen, S.-H., Chio, C.-C., Chang, C.-K., and Lin, M.-T. (2008). Exogenous administration of
345 glial cell line-derived neurotrophic factor improves recovery after spinal cord injury. *Resuscitation* 77,
346 395–400.

347 34. Klöcker, N., Bräunling, F., Isenmann, S., and Bähr, M. (1997). *In vivo* neurotrophic effects of GDNF on
348 axotomized retinal ganglion cells. *Neuroreport* 8, 3439–3442.

349 35. Lee, G.A., Lin, C.-H., Jiang, H.-H., Chao, H.-J., Wu, C.-L., and Hsueh, C.-M. (2004). Microglia-derived
350 glial cell line-derived neurotrophic factor could protect Sprague-Dawley rat astrocyte from *in vitro*
351 ischemia-induced damage. *Neurosci. Lett.* 356, 111–114.

352 36. Li, L., Wu, W., Lin, L.F., Lei, M., Oppenheim, R.W., and Houenou, L.J. (1995). Rescue of adult mouse
353 motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. *Proc. Natl.*
354 *Acad. Sci. U.S.A.* 92, 9771–9775.

355 37. Lin, C.-H., Cheng, F.-C., Lu, Y.-Z., Chu, L.-F., Wang, C.-H., and Hsueh, C.-M. (2006). Protection of
356 ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors.
357 *Experimental Neurology* 201, 225–233.

358 38. Lin, L.F., Doherty, D.H., Lile, J.D., Bektash, S., and Collins, F. (1993). GDNF: a glial cell line-derived
359 neurotrophic factor for midbrain dopaminergic neurons. *Science* 260, 1130–1132.

360 39. Liu, G., Wang, X., Shao, G., and Liu, Q. (2014). Genetically modified Schwann cells producing glial cell
361 line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury. *Mol Med Rep* 9,
362 1305–1312.

363 40. Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E.S.,
364 Havton, L.A., et al. (2012). Long-distance growth and connectivity of neural stem cells after severe
365 spinal cord injury. *Cell* 150, 1264–1273.

366 41. Lu, Y., Gao, H., Zhang, M., Chen, B., & Yang, H. (2017). Glial Cell Line-Derived Neurotrophic
367 Factor-Transfected Placenta-Derived Versus Bone Marrow-Derived Mesenchymal Cells for Treating
368 Spinal Cord Injury. *Medical Science Monitor: International Medical Journal of Experimental and*
369 *Clinical Research*, 23, 1800–1811.

370 42. Mautes, A.E., Weinzierl, M.R., Donovan, F., and Noble, L.J. (2000). Vascular events after spinal cord
371 injury: contribution to secondary pathogenesis. *Phys Ther* 80, 673–687.

372 43. Milbrandt, J., de Sauvage, F.J., Fahrner, T.J., Baloh, R.H., Leitner, M.L., Tansey, M.G., Lampe, P.A.,
373 Heuckeroth, R.O., Kotzbauer, P.T., Simburger, K.S., et al. (1998). Persephin, a novel neurotrophic factor
374 related to GDNF and neurturin. *Neuron* 20, 245–253.

375 44. Mills, C.D., Allchorne, A.J., Griffin, R.S., Woolf, C.J., and Costigan, M. (2007). GDNF selectively
376 promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. *Mol. Cell.*
377 *Neurosci.* 36, 185–194.

378 45. Mukhamedshina, Y. O., Shaymardanova, G. F., Garanina, E. E., Salafutdinov, I. I., Rizvanov, A. A.,
379 Islamov, R. R., & Chelyshev, Y. A. (2016). Adenoviral vector carrying glial cell-derived neurotrophic
380 factor for direct gene therapy in comparison with human umbilical cord blood cell-mediated therapy
381 of spinal cord injury in rat. *Spinal Cord*, 54(5), 347–359. <https://doi.org/10.1038/sc.2015.161>.

382 46. Nicole, O., Ali, C., Docagne, F., Plawinski, L., MacKenzie, E.T., Vivien, D., and Buisson, A. (2001).
383 Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of
384 NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. *J. Neurosci.* 21,
385 3024–3033.

386 47. Noble, L.J., and Wrathall, J.R. (1987). The blood-spinal cord barrier after injury: pattern of vascular
387 events proximal and distal to a transection in the rat. *Brain Res.* 424, 177–188.

388 48. Oppenheim, R.W., Houenou, L.J., Johnson, J.E., Lin, L.F., Li, L., Lo, A.C., Newsome, A.L., Prevette,
389 D.M., and Wang, S. (1995). Developing motor neurons rescued from programmed and
390 axotomy-induced cell death by GDNF. *Nature* 373, 344–346.

391 49. Paratcha, G., Ledda, F., Baars, L., Coupier, M., Basset, V., Anders, J., Scott, R., and Ibáñez, C.F. (2001).
392 Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a
393 novel mechanism of recruitment of c-Ret to lipid rafts. *Neuron* 29, 171–184.

394 50. Popovich, P.G., Horner, P.J., Mullin, B.B., and Stokes, B.T. (1996). A quantitative spatial analysis of the
395 blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. *Exp.*
396 *Neurol.* 142, 258–275.

397 51. Ramer, M. S., Bradbury, E. J., Michael, G. J., Lever, I. J., & McMahon, S. B. (2003). Glial cell line-derived
398 neurotrophic factor increases calcitonin gene-related peptide immunoreactivity in sensory and
399 motoneurons in vivo. *The European Journal of Neuroscience*, 18(10), 2713–2721.

400 52. Rind, H.B., and von Bartheld, C.S. (2002). Anterograde axonal transport of internalized GDNF in
401 sensory and motor neurons. *Neuroreport* 13, 659–664.

402 53. Satake, K., Matsuyama, Y., Kamiya, M., Kawakami, H., Iwata, H., Adachi, K., and Kiuchi, K. (2000).
403 Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord
404 injury. *Neuroreport* 11, 3877–3881.

405 54. Schnell, L., Fearn, S., Klassen, H., Schwab, M.E., and Perry, V.H. (1999). Acute inflammatory responses
406 to mechanical lesions in the CNS: differences between brain and spinal cord. *Eur. J. Neurosci.* 11,
407 3648–3658.

408 55. Schwab, M.E., and Bartholdi, D. (1996). Degeneration and regeneration of axons in the lesioned spinal
409 cord. *Physiol. Rev.* 76, 319–370.

410 56. Shahrezaie, M., Mansour, R. N., Nazari, B., Hassannia, H., Hosseini, F., Mahboudi, H., ... Enderami, S.
411 E. (2017). Improved stem cell therapy of spinal cord injury using GDNF-overexpressed bone marrow
412 stem cells in a rat model. *Biologicals: Journal of the International Association of Biological
413 Standardization*, 50, 73–80. <https://doi.org/10.1016/j.biologicals.2017.08.009>.

414 57. Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A., & Fehlings, M. G. (2014). Global prevalence and
415 incidence of traumatic spinal cord injury. *Clinical Epidemiology*, 6, 309–331.
416 <https://doi.org/10.2147/CLEP.S68889>.

417 58. Soler, R.M., Dolcet, X., Encinas, M., Egea, J., Bayascas, J.R., and Comella, J.X. (1999). Receptors of the
418 glial cell line-derived neurotrophic factor family of neurotrophic factors signal cell survival through
419 the phosphatidylinositol 3-kinase pathway in spinal cord motoneurons. *J. Neurosci.* 19, 9160–9169.

420 59. Tator, C.H., and Fehlings, M.G. (1991). Review of the secondary injury theory of acute spinal cord
421 trauma with emphasis on vascular mechanisms. *J. Neurosurg.* 75, 15–26.

422 60. Tator, C.H., and Koyanagi, I. (1997). Vascular mechanisms in the pathophysiology of human spinal
423 cord injury. *J. Neurosurg.* 86, 483–492.

424 61. Tomac, A., Lindqvist, E., Lin, L.F., Ogren, S.O., Young, D., Hoffer, B.J., and Olson, L. (1995). Protection
425 and repair of the nigrostriatal dopaminergic system by GDNF *in vivo*. *Nature* 373, 335–339.

426 62. Tomac, A.C., Agulnick, A.D., Haughey, N., Chang, C.-F., Zhang, Y., Bäckman, C., Morales, M.,
427 Mattson, M.P., Wang, Y., Westphal, H., et al. (2002). Effects of cerebral ischemia in mice deficient in
428 Persephin. *Proc Natl Acad Sci U S A* 99, 9521–9526.

429 63. Treanor, J.J., Goodman, L., de Sauvage, F., Stone, D.M., Poulsen, K.T., Beck, C.D., Gray, C., Armanini,
430 M.P., Pollock, R.A., Hefti, F., et al. (1996). Characterization of a multicomponent receptor for GDNF.
431 *Nature* 382, 80–83.

432 64. Trok, K., Hoffer, B., and Olson, L. (1996). Glial cell line-derived neurotrophic factor enhances survival
433 and growth of prenatal and postnatal spinal cord transplants. *Neuroscience* 71, 231–241.

434 65. Trupp, M., Rydén, M., Jörnvall, H., Funakoshi, H., Timmus, T., Arenas, E., and Ibáñez, C.F. (1995).
435 Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and
436 mammalian peripheral neurons. *J. Cell Biol.* 130, 137–148.

437 66. Trupp, M., Arenas, E., Fainzilber, M., Nilsson, A.S., Sieber, B.A., Grigoriou, M., Kilkenny, C.,
438 Salazar-Grueso, E., Pachnis, V., and Arumäe, U. (1996). Functional receptor for GDNF encoded by the
439 c-ret proto-oncogene. *Nature* 381, 785–789.

440 67. Trupp, M., Belluardo, N., Funakoshi, H., and Ibáñez, C.F. (1997). Complementary and overlapping
441 expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF
442 receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. *J. Neurosci.* 17,
443 3554–3567.

444 68. Trupp, M., Raynoschek, C., Belluardo, N., and Ibáñez, C.F. (1998). Multiple GPI-anchored receptors
445 control GDNF-dependent and independent activation of the c-Ret receptor tyrosine kinase. *Mol. Cell.*
446 *Neurosci.* 11, 47–63.

447 69. Wang, X. (2013). Structural studies of GDNF family ligands with their receptors-Insights into ligand
448 recognition and activation of receptor tyrosine kinase RET. *Biochim. Biophys. Acta* 1834, 2205–2212.

449 70. Watabe, K., Ohashi, T., Sakamoto, T., Kawazoe, Y., Takeshima, T., Oyanagi, K., Inoue, K., Eto, Y., and
450 Kim, S.U. (2000). Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial
451 cell line-derived neurotrophic factor. *J. Neurosci. Res.* 60, 511–519.

452 71. Widenfalk, J., Wu, W., Hao, J., Person, J.K.E., Wiesenfeldt-Hallin, Z., and Risling, M. (2009). Treatment
453 of transected peripheral nerves with artemin improved motor neuron regeneration, but did not reduce
454 nerve injury-induced pain behaviour. *Scand J Plast Reconstr Surg Hand Surg* 43, 245–250.

455 72. Wong, L.E., Gibson, M.E., Arnold, H.M., Pepinsky, B., and Frank, E. (2015). Artemin promotes
456 functional long-distance axonal regeneration to the brainstem after dorsal root crush. *Proc. Natl. Acad.*
457 *Sci. U.S.A.* 112, 6170–6175.

458 73. Xing, B., Xin, T., Zhao, L., Hunter, R.L., Chen, Y., and Bing, G. (2010). Glial cell line-derived
459 neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide
460 neurotoxicity. *J. Neuroimmunol.* **225**, 43–51.

461 74. Yu, A.C.H., Liu, R.Y., Zhang, Y., Sun, H.R., Qin, L.Y., Lau, L.T., Wu, B.Y., Hui, H.K., Heung, M.Y., and
462 Han, J.S. (2007). Glial cell line-derived neurotrophic factor protects astrocytes from staurosporine- and
463 ischemia- induced apoptosis. *J. Neurosci. Res.* **85**, 3457–3464.

464 75. Zhang, L., Ma, Z., Smith, G.M., Wen, X., Pressman, Y., Wood, P.M., and Xu, X.-M. (2009).
465 GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by
466 primary effects on neurons. *Glia* **57**, 1178–1191.

467 76. Zhang, Y., Gu, Z., Qiu, G., & Song, Y. (2013). Combination of chondroitinase ABC, glial cell
468 line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the
469 functional recovery of spinal cord injury. *The Journal of Craniofacial Surgery*, **24**(6), 2153–2157.
470 <https://doi.org/10.1097/01.SCS.0000436700.65891.3b>.

471 77. Zhao, Z., Alam, S., Oppenheim, R.W., Prevette, D.M., Evenson, A., and Parsadanian, A. (2004).
472 Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from
473 programmed cell death and promotes their long-term survival following axotomy. *Exp. Neurol.* **190**,
474 356–372.

475 78. Zhao, Y.-Z., Jiang, X., Lin, Q., Xu, H.-L., Huang, Y.-D., Lu, C.-T., & Cai, J. (2017). Thermosensitive
476 heparin-poloxamer hydrogels enhance the effects of GDNF on neuronal circuit remodeling and
477 neuroprotection after spinal cord injury. *Journal of Biomedical Materials Research. Part A*, **105**(10),
478 2816–2829. <https://doi.org/10.1002/jbm.a.36134>.

479