

1 *Type of the Paper (Article, Review, Communication, etc.)*

2 **Stereepinic acids A–C, new carboxylic acids produced 3 by a marine alga-derived fungus**

4 **Takeshi Yamada^{1,*}, Miwa Matsuda¹, Mayuko Seki¹, Megumi Hirose¹, and Takashi Kikuchi¹**

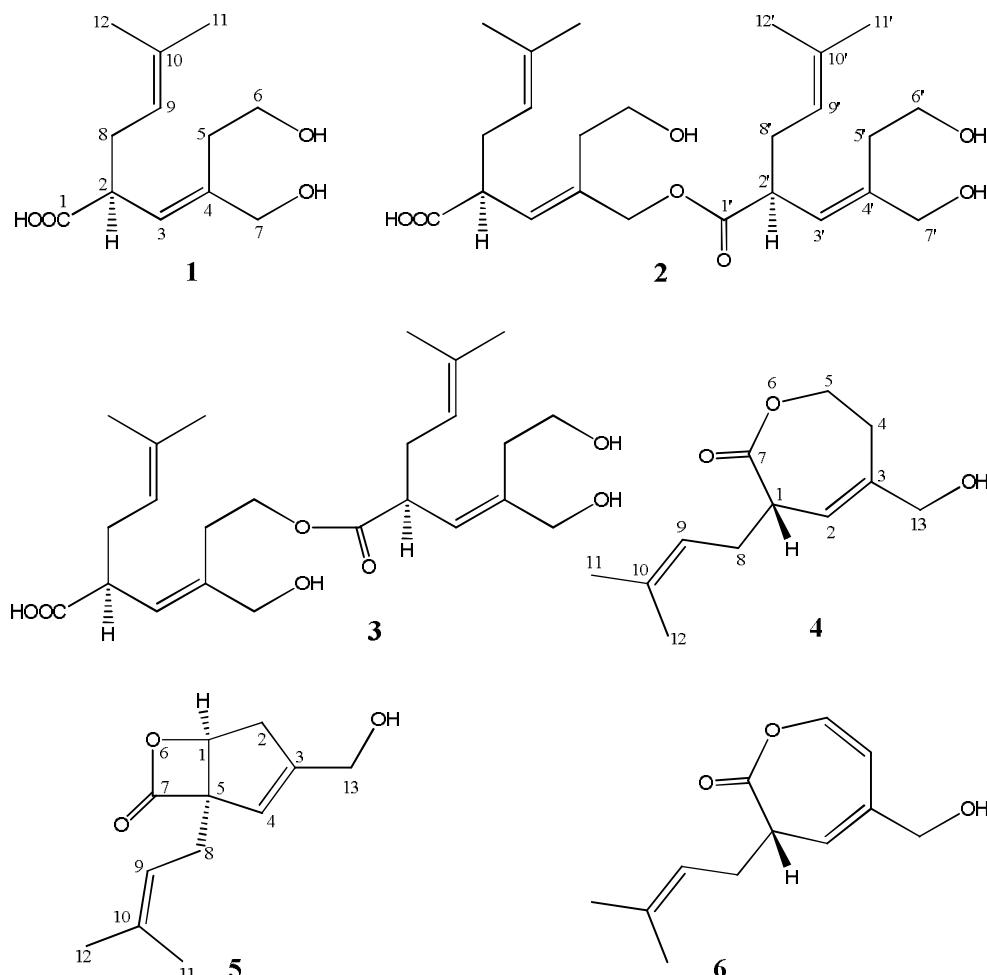
5 ¹ Osaka University of Pharmaceutical Sciences, 4-20-1, Nasahara, Takatsuki, Osaka 569-1094, Japan; E-Mails:
6 e12643@gap.oups.ac.jp (M.M); e10118@gap.oups.ac.jp (M.S); e11729@gap.oups.ac.jp (M.H);
7 t.kikuchi@gly.oups.ac.jp (T.K).

8 * Correspondence: yamada@gly.oups.ac.jp; Tel.: + 81-726-90-1085 /FAX (direct line): + 81-726-90-1085

9

10 **Abstract:** Stereepinic acids A–C (**1–3**), new carboxylic acids with two primary alcohols, have been
11 isolated from a fungal strain of *Stereum* sp. OUPS-124D-1 attached to the marine alga *Undaria*
12 *pinnatifida*. Dihydro-1,5-secovibralactone (**4**), a new vibralactone derivative, was isolated from the
13 same fungal metabolites together with known vibralactone A (**5**), and 1,5-secovibralactone (**6**). The
14 planar structures of these compounds have been elucidated by spectroscopic analyses using IR,
15 HRFABMS, and NMR spectra. To determine the absolute configuration of the compounds, we used
16 the phenylglycine methyl ester (PGME) method. These compounds exhibited less activity in the
17 cytotoxicity assay against cancer cell lines.

18 **Keywords:** terepinic acids; *Stereum* sp.; marine microorganism; *Undaria pinnatifida*; vibralactones;
19 phenylglycine methyl ester method.


20

21 **1. Introduction**

22 Our ongoing search for seeds of antitumor chemotherapy agents from marine microorganisms
23 has led to the isolation of several antitumor and/or cytotoxic compounds [1–8]. In particular, we
24 focused on the bioactive compounds with small molecular weight due to their advantages, such as
25 easy synthesis and modification for increasing the activity. In addition, the synthesis of small
26 bioactive compounds establishes a hypothetical biosynthesis mechanism of larger bioactive
27 compounds. In this study, we isolated four new carboxylic acids with two primary alcohols,
28 designated as stereepinic acids A–C (**1–3**) and dihydro-1,5-secovibralactone (**4**) together with the
29 known vibralactone A (**5**) and 1,5-secovibralactone (**6**), from a strain of *Stereum* sp. OUPS-124D-1
30 derived from the marine alga *Undaria pinnatifida*. **5** was reported by Liu et al.,[9], and many studies
31 then followed this work, isolating the derivatives of **5** including **6** [10–15]. We report the
32 determination of the absolute configurations of **1–4** by applying the phenylglycine methyl ester
33 (PGME) method [16]. In addition, we report on the investigation of the cytotoxicity of these
34 compounds against several cancer cell lines.

35 **2. Results**

36 *Stereum* sp., a microorganism from *U. pinnatifida*, was cultured at 27°C for 5 weeks in a medium
37 (50 L) containing 1% glucose, 1% malt extract, and 0.05% pepton in artificial seawater adjusted to pH
38 7.6. After the incubation, the culture was filtrated through DIAION HP-20, and its MeOH elution was
39 purified employing a stepwise combination of silica gel column chromatography and reverse phase
40 HPLC to afford stereepinic acids, A (**1**) (64.8 mg); B (**2**) (13.3 mg); C (**3**) (16.8 mg); and dihydro-1,5-
41 secovibralactone (**4**) (12.4 mg), as a pale yellow oil, respectively (Figure 1).

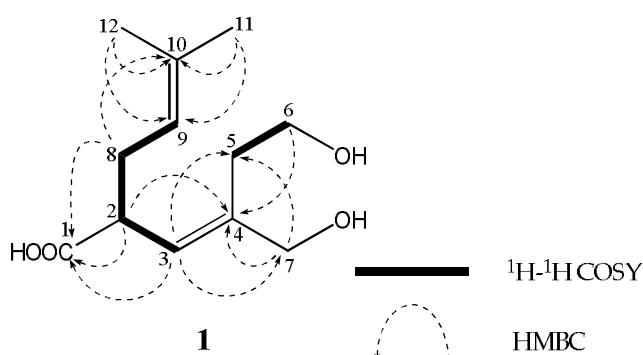


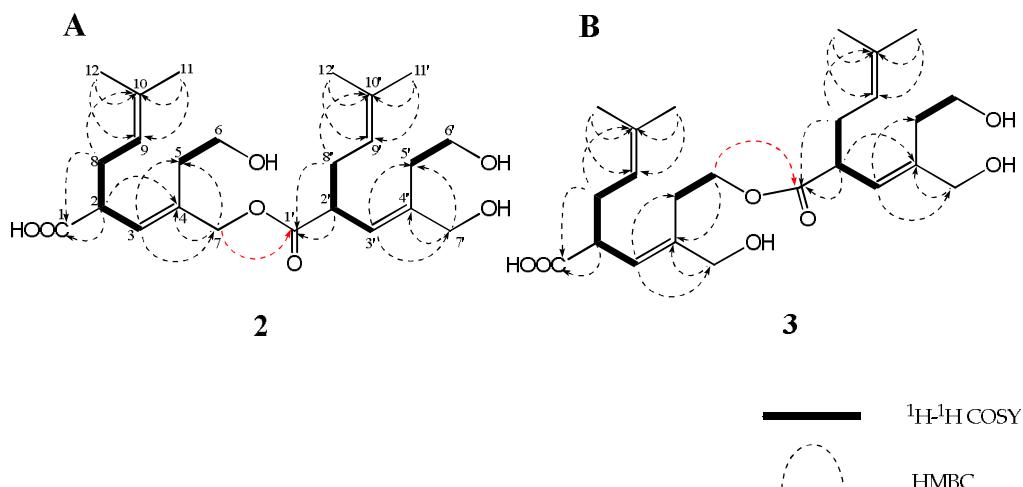
Figure 1. Structures of stereopinic acids A–C (1–3), dihydro-1,5-secovibralactone (4), and known compounds 5 and 6

The molecular formula of stereopinic acid A (1) has been determined as $C_{12}H_{20}O_4$ from its molecular weight of 229.1443 $[M+H]^+$ in HRFABMS. Its IR spectrum exhibited bands at 3330 and 1710 cm^{-1} that are characteristics of hydroxy and carbonyl groups, respectively. An analysis of the 1H and ^{13}C NMR spectra of 1 (Tables 1 and S1), using DEPT and 1H - ^{13}C heteronuclear multiple quantum coherence spectroscopy (HMQC), showed the presence of two olefin methyls (C-11 and C-12); four sp^3 -hybridized methylenes (C-5, C-6, C-7, and C-8), including two oxygen-bearing sp^3 -methylenes (C-6 and C-7); one sp^3 -methine (C-2); two sp^2 -methines (C-3 and C-9); two quaternary sp^2 -carbons (C-4 and C-10); and one carbonyl group (C-1). In the 1H - 1H correlation spectroscopy (COSY) analysis, correlations were observed between H-5 and H-6; H-2 and H-3; and H-2 and H-8, as shown by the bold lines in Figure 2. In the HMBC spectrum (Figure 2), the correlations from H-11 and H-12 to C-9 and C-10; from H-2 to C-1 and C-4; from H-3 to C-1, C-5, and C-7; from H-5 to C-3; from H-6 to C-4; from H-7 to C-3, C-4, and C-5; from H-8 to C-1 and C-10; from H-6 to C-4; and from H-7 to C-4, and C-5 elucidated the planar structure of 1 as 6-hydroxy-4-(hydroxymethyl)-2-(3-methylbut-2-en-1-yl)hex-3-enoic acid. The elucidation of the absolute stereostructure of 1 is described below together with those of 2–4.

67 **Table 1.** ^1H and ^{13}C NMR spectral data for metabolites (1–3) in CDCl_3

Position	1		2		3	
	δH^a	δC	δH^a	δC	δH^a	δC
1		177.5 (s)		173.5 (s)		174.3 (s)
2	3.27 m	44.9 (d)	3.28 m	45.4 (d)	3.28 m	44.9 (d)
3	5.50 d (10.2)	127.0 (d)	5.49 d (10.8)	129.3 (d)	5.55 d (9.6)	129.3 (d)
4		138.7 (s)		133.9 (s)		137.9 (s)
5A	2.25 m	31.9 (t)	2.18 m	32.3 (t)	2.30 ddd (14.4, 5.4, 5.4)	27.7 (t)
5B	2.49 m		2.54 m		2.54 ddd (14.4, 5.4, 5.4)	
6A	3.68 br s	61.0 (t)	3.65 br s	61.4 (t)	4.20 m	63.5 (t)
6B		66.8 (t)	3.72 br s			
7A	4.03 br s		4.05 d (13.2)	67.9 (t)	4.07 m	66.5 (t)
7B			d (13.2)			
8A	2.20 m	30.9 (t)	2.20 m	30.8 ^{b5} (t)	2.20 m	31.4 (t)
8B	2.44 m		2.46 m		2.44 m	
9	5.04 dd	120.2 (d)	5.03 m	120.2 ^{b6} (d)	5.02 ^{b1} dd (7.2, 7.2)	120.2 ^{b2} (d)
10		134.1 (s)		134.2 ^{b7} (s)		134.3 (s)
11	1.67 s	25.7 (q)	1.67 s	25.7 (q)	1.67 s	25.7 (q)
12	1.60 s	17.8 (q)	1.60 s	17.8 (q)	1.59 ^{b3} s	17.8 ^{b4} (q)
1'				173.5 (s)		174.3 (s)
2'		3.28 m		45.4 (d)	3.28 m	44.9 (d)
3'		5.52 d (10.8)		127.2 (d)	5.51 d (9.6)	127.2 (d)
4'				139.6 (s)		138.7 (s)
5'A		2.29 m		32.3 (t)	2.25 m	32.2 (t)
5'B		2.54 m			2.51 m	
6'A		3.72 br s		60.5 (t)	3.65 br s	61.1 (t)
6'B					3.71 br s	
7'		4.05 br s		67.5 (t)	4.02 m	67.4 (t)
8'A		2.20 m		30.6 ^{b5} (t)	2.20 m	31.4 (t)
8'B		2.46 m			2.44 m	
9'		5.03 m		120.3 ^{b6} (d)	5.06 ^{b1} dd (7.2, 7.2)	120.3 ^{b2} (d)
10'				134.3 ^{b7} (s)		134.3 (s)
11'		1.67 s		25.7 (q)	1.67 s	25.7 (q)
12'		1.60 s		17.8 (q)	1.61 ^{b3} s	17.9 ^{b4} (q)

68 ^a ^1H chemical shift values (δ ppm from SiMe₄) followed by multiplicity. ^b 1–b 7 interchangeable


69

70 **Figure 2.** Selected ^1H - ^1H COSY and HMBC correlations of **1**

71

72 Sterepinic acids, B (2) and C (3), were assigned the molecular formula of $\text{C}_{24}\text{H}_{38}\text{O}_7$, with both
 73 compounds showing molecular weight almost twice as large as that of **1**. While the general features
 74 of NMR spectra (Tables 1, S2 and S3) closely resembled those of **1**, the ^1H and ^{13}C signals of **2** and **3**
 75 were observed in pairs or with the overlapping of two signals for each functional group (*vide info.*),
 76 except for the proton signal of the oxygen-bearing methylenes [C-7 (δH 4.48 d, and δH 4.62 d) in **2**] and
 77 C-6 (δH 4.20 m) in **3**]. This phenomenon suggested that **2** and **3** were the dimers of **1**. As expected, for
 78 the HMBC spectrum of **2** (Table S2), the correlations shown in Figure 3A were used to construct two
 79 carboxylic acids, both of which are identical to the planar structure of **1**. In addition, the correlation

80 from C-7 in one carboxylic acid to C-1' in another carboxylic acid revealed that the two carboxylic
 81 acids were condensed to a dimer esterified between C-7 and C-1' (Figure 3A and Table S2). In contrast,
 82 the HMBC correlation from H-6 to C-1' observed in **3** demonstrated that the chemical structure of **3**
 83 was similar to that of the dimer esterified between C-6 and C-1' (Figure 3B and Table S3).

84

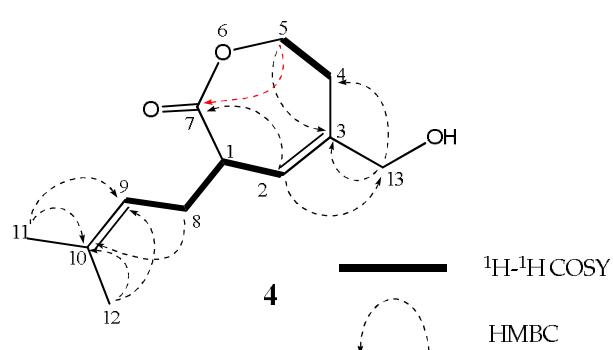
85

Figure 3. Selected ^1H - ^1H COSY and HMBC correlations of **2** (A) and **3** (B)

86

87

Dihydro-1,5-secovibralactone (**4**) exhibited the molecular formula $\text{C}_{12}\text{H}_{20}\text{O}_4$, containing two
 88 fewer hydrogen atoms, and one less oxygen atom than **1**. Compared with the NMR spectra of **4**
 89 (Tables 2, and S4), those of **1** showed large differences in the proton signals of H-1 (δ_{H} 3.68 m) and H-
 90 5 (δ_{H} 4.68 ddd and 4.33 ddd), corresponding to H-2 and H-6 in **1**, respectively, and the carbon signals
 91 of C-1 (δ_{C} 40.2), C-2 (δ_{C} 121.2), and C-7 (δ_{C} 174.3), corresponding to C-2, C-3, and C-1, respectively, in
 92 **1**. The numbering of the carbon positions followed the numbering mentioned in a previous report [6].
 93 **4** was observed to be the monomer with the same carboxylic acid unit as **1**. In addition, HMBC
 94 correlations from H-6 to C-1 (Table S4 and Figure 4) elucidated the planar structure of **4** as a dihydro-
 95 isomer of 1,5-secovibralactone (**6**) [10].


96

97

Table 2. ^1H and ^{13}C NMR spectral data for metabolites **4** in CDCl_3

Position	4	
	δ_{H}^a	δ_{C}
1	3.68 m	40.2 (d)
2	5.36 br s	121.2 (d)
3		139.2 (s)
4A	2.45 br d (19.2)	30.3 (t)
4B	2.59 m	
5 α	4.68 ddd (12.6, 12.6, 1.8)	64.4 (t)
5 β	4.33 ddd (12.6, 4.8, 2.4)	
6		
7		174.3 (s)
8A	2.33 ddd (14.4, 6.6, 6.6)	30.1 (t)
8B	2.52 ddd (14.4, 6.6, 6.6)	
9	5.14 dd (6.6, 6.6)	120.9 (d)
10		134.6 (s)
11	1.72 s	25.8 (q)
12	1.67 s	18.0 (q)
13A	3.99 d (13.8)	67.4 (t)
13B	4.01 d (13.8)	

^a As in Table 1

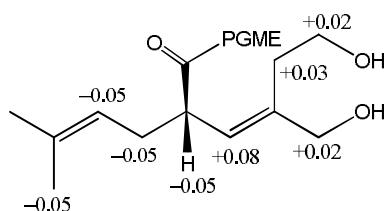
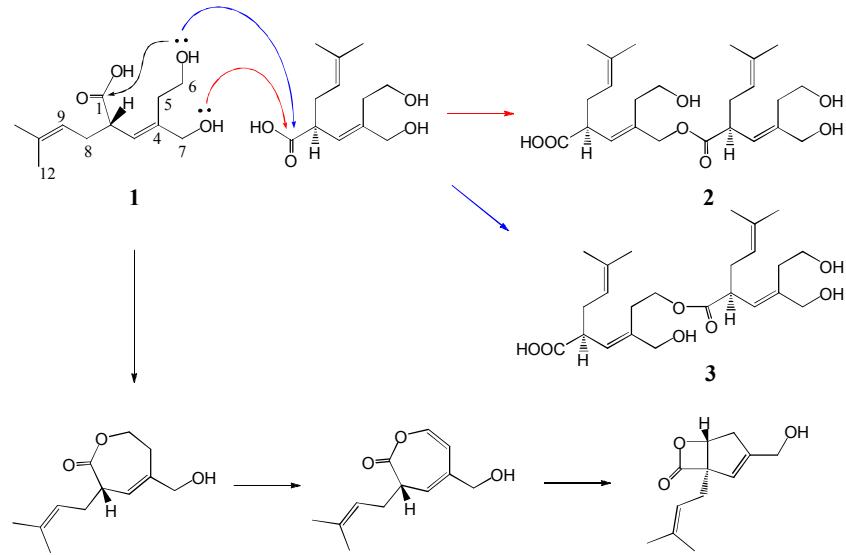


Figure 4. Selected ^1H - ^1H COSY and HMBC correlations of **4**

98

99


100 For the determination of the absolute stereostructures of metabolites isolated in this study, we
 101 first examined the absolute configuration of **1**, which is the common unit in all compounds of this
 102 study. **1** showed the presence of a secondary carboxy group at C-2, and we therefore used the PGME
 103 method [16]. The ¹H chemical-shift differences between the (S)- and (R)-PGME amides **1a** and **1b**
 104 revealed the *S* configuration at C-2 (Figure 5).

105 **1a** R = (S)-PGME amide
1b R = (R)-PGME amide

106 **Figure 5.** ¹H chemical-shift differences ($\Delta\delta$ ppm) between the (S)- and (R)- PGME amides **1a** and **1b**

107
 108 Next, for the elucidation of the stereochemistry of **2–4**, we attempted to perform hydrolysis to
 109 derive **1** from **2–4**; however, due to the small volume of reaction, the carboxylic acid was not produced.
 110 We therefore tried methanolysis to facilitate the purification of the product resulting from the reaction.
 111 The treatment with conc. H₂SO₄ of MeOH solution of **2** only gave a methyl carboxylate, the spectral
 112 data (¹H NMR spectrum and the optical rotation) for which were identical to those of the methyl ester
 113 of **1**; i.e., **2** is found to be in the 2*S*, 2*'S* absolute configuration. The same procedure applied to **3** and
 114 **4** revealed the *S* configuration at C-2 and C-2' in **3**, and the *S* configuration at C-2 in **4**, respectively.
 115 This evidence confirmed that **2–4** were composed of **1**. A lone pair on the alcohol oxygen atom attacks
 116 a carboxy carbon atom by an intra- or inter-molecular nucleophilic reaction, as shown by the arrows
 117 coded using three different colors (Scheme 1). The routes shown in red and blue, which are the
 118 dimerization routes, produce **2** and **3**, respectively. On the other hand, the route shown in black leads
 119 to **4** followed by a dehydrogenation to **6**. Meanwhile, Zhao et al., used an *in vitro* enzymatic
 120 conversion and showed that **5** is derived from **6** using a ring rearrangement [17].

121
 122 **Scheme 1.** Plausible mechanism for the formation of **2–6** from **1**

123 Cancer cell growth-inhibitory properties of sterepinic acids A–C (**1–3**) and dihydro-1,5-secovibralactone
124 (**4**) were examined using murine P388 leukemia, human HL-60 leukemia, and murine L1210 leukemia cell
125 lines; however, these metabolites did not exhibit significant activity against these cancer cells. We therefore
126 continue to investigate related compounds with more potent cytotoxicity from this fungal metabolite and
127 examine another assay.

128 **3. Materials and Methods**

129 *3.1. General Experimental Procedures*

130 NMR spectra were recorded on an Agilent-NMR-vnmrs 600 MHz and 400 MHz with
131 tetramethylsilane (TMS) as an internal reference. FABMS was recorded using a JEOL JMS-7000 mass
132 spectrometer. IR spectra was recorded on a JASCO FT/IR-680 Plus. Optical rotations were measured using
133 a JASCO DIP-1000 digital polarimeter. DIAION HP20 (Mitsubishi Chemical), and Silica gel 60 (230—
134 400 mesh, *Nacalai Tesque, Inc.*) was used for column chromatography with medium pressure. ODS HPLC
135 was run on a JASCO PU-1586 equipped with a differential refractometer (RI-1531) and Cosmosil
136 Packed Column 5C₁₈-MSII (25 cm x 20 mm i. d.). Analytical TLC was performed on precoated Merck
137 aluminium sheets (DC-Alufolien Kieselgel 60 F254, 0.2 mm) with the solvent system CH₂Cl₂-MeOH
138 (19 : 1), and compounds were viewed under a UV lamp and sprayed with 10% H₂SO₄ followed by
139 heating.

140 *3.2. Fungal Material*

141 A strain of *Stereum* sp. was initially isolated from a piece of the marine alga *Undaria pinnatifida*
142 collected at collected in Osaka bay, Japan in May 2015. The fungal strain were identified by Techno
143 Suruga Laboratory Co., Ltd. The surface of the marine alga was wiped with EtOH and its snip applied
144 to the surface of nutrient agar layered in a Petri dish. Serial transfers of one of the resulting colonies
145 provided a pure strain of *Stereum* sp..

146 *3.3. Culturing and isolation of metabolites*

147 The fungal strain was cultured at 27 °C for 4 weeks in a liquid medium (50 L) containing 1% malt
148 extract, 0.05% pepton, and 1% D-glucose in artificial seawater adjusted to pH 7.5. The culture was
149 filtered under suction, and the culture filtrate was passed through to DIAION HP20, washed with
150 water to remove water-soluble component. The fraction eluted with MeOH were evaporated *in*
151 *vacuo* to afford a mixture of crude metabolites (10.2 g) that exhibited cytotoxicity against the P388 cell
152 line (IC₅₀ < 10 µg/mL). The mixture was chromatographed on a silica gel column with a CH₂Cl₂-
153 MeOH gradient as the eluent to afford Fr. 1 (2% MeOH in CHCl₃ eluate, 270.5 mg) and Fr.2 (10%
154 MeOH in CHCl₃ eluate, 840.3 g). Fr. 1 was purified by ODS HPLC using MeOH-H₂O (50 : 50) as the
155 eluent to afford **4** (12.4 mg). Fr. 2 was purified by HPLC using MeOH-H₂O (60 : 40) as the eluent to
156 afford **2** (13.3 mg), **3** (16.8 mg), and Fr.3 (102.3 mg). Fr. 3 was purified by ODS HPLC using MeOH-
157 H₂O (40 : 60) as the eluent to afford **1** (64.8 mg).

158 Sterepinic acids A (**1**): Pale yellow oil; [α]_D²² +58.0 (c 0.34, MeCN); IR (neat) ν_{max} / cm⁻¹: 3330, 1710.
159 FABMS *m/z* (rel. int.): 229 ([M+H]⁺, 71.4%), 211 (87.4%), 143 (34.2%), 69 (100%). HRFABMS *m/z*
160 229.1443 [M+Na]⁺ (calcd for C₁₂H₂₁O₄ : 229.1440). ¹H and ¹³C NMR data are listed in Table 1 and Table
161 S1 (SI).

164 Sterepinic acids B (**2**): Pale yellow oil; $[\alpha]_{D}^{22} +141.7$ (*c* 0.27, MeCN); IR (neat) ν_{max} / cm⁻¹: 3362,
165 1730. FABMS *m/z* (rel. int.): 439 ([M+H]⁺, 40.9%), 211 (93.5%), 69 (100%). HRFABMS *m/z* 439.2694
166 [M+H]⁺ (calcd for C₂₄H₃₉O₇ : 439.2695). ¹H and ¹³C NMR data are listed in Table 1 and Table S2 (SI).

167 Sterepinic acids C (**3**): Pale yellow oil; $[\alpha]_{D}^{22} +53.5$ (*c* 0.16, MeCN); IR (neat) ν_{max} / cm⁻¹: 3383, 1710.
168 FABMS *m/z* (rel. int.): 439 ([M+H]⁺, 15.9%), 211 (54.0%), 69 (96.1%). HRFABMS *m/z* 439.2694 [M+H]⁺
169 (calcd for C₂₄H₃₉O₇ : 439.2695). ¹H and ¹³C NMR data are listed in Table 1 and Table S3 (SI).

170 Dihydro-1,5-secovibralactone (**4**): Pale yellow oil; $[\alpha]_{D}^{22} +7.9$ (*c* 0.32, MeCN); IR (neat) ν_{max} / cm⁻¹:
171 3396, 1736. FABMS *m/z* (rel. int.): 211 ([M+H]⁺, 100%) 142 (37.7%), 69 (54.1%). HRFABMS *m/z* 211.1342
172 [M+H]⁺ (calcd for C₁₂H₁₉O₃ : 211.1334). ¹H and ¹³C NMR data are listed in Table 1 and Table S3 (SI).

173

174 3.4. Chemical transformation

175 3.4.1. Formation of the (*S*)- and (*R*)-PGME amides

176 To a solution of **1** (5.8 mg, 0.025 mmol) and (*S*)-PGME (0.054 mmol) in dry DMF (1 mL) was
177 added EDC-HCl (0.050 mmol), HOBr (0.050 mmol), and DMAP (catalysis volume). The reaction
178 mixture was stirred at room temperature 2 hours. The reaction mixture was added water (1.0 mL),
179 and extracted using CH₂Cl₂. The organic layer was evaporated under reduced pressure, and the
180 residue was purified by HPLC using MeOH – H₂O (50 : 50) as the eluent to afford (*S*)-PGME amide
181 **1a** (0.9 mg, 0.0024 mmol) as a pale yellow oil.

182 **1** (6.7 mg, 0.030 mmol) and (*R*)-PGME (0.052 mmol) were treated with the same procedure to
183 afford (*R*)-PGME amide **2a** (3.1 mg, 0.0083 mmol) as a pale yellow oil.

184 PGME amide **1a**: Pale yellow oil; HRFABMS *m/z* 376.2126 [M+H]⁺ (calcd for C₂₁H₃₀NO₅ :
185 376.2124). ¹H NMR δ ppm (400 MHz in CDCl₃): 1.61 (3H, s, H-11), 2.16 (1H, ddd, *J* 17.2, 7.6, 7.6 Hz,
186 H-8A), 2.25 (1H, ddd, *J* 14.8, 6.0, 6.0 Hz, H-5A), 2.47 (1H, ddd, *J* 17.2, 7.6, 7.6 Hz, H-8B), 2.60 (1H, ddd,
187 *J* 14.8, 7.6, 7.6 Hz, H-5B), 3.22 (1H, ddd, *J* 10.4, 7.6, 7.6 Hz, H-2), 3.68 (3H, s, OCH₃), 3.79 (2H, m, H-6),
188 4.07 (1H, d, *J* 17.6 Hz, H-7A), 4.11 (1H, d, *J* 17.6 Hz, H-7B), 4.99 (1H, dd, *J* 7.6, 7.6 Hz, H-9), 5.54, (1H,
189 d, *J* 8.0 Hz, Gly-CH), 5.60 (1H, d, *J* 10.4 Hz, H-3), 7.24-7.34 (5H, m, Ar.H).

190 PGME amide **1b**: Pale yellow oil; HRFABMS *m/z* 376.2126 [M+H]⁺ (calcd for C₂₁H₃₀NO₅ :
191 376.2124). ¹H NMR δ ppm (400 MHz in CDCl₃): 1.58 (3H, s, H-12), 1.64 (3H, s, H-11), 2.21 (1H, ddd, *J*
192 17.2, 7.6, 7.6 Hz, H-8A), 2.30 (1H, ddd, *J* 10.8, 5.6, 4.0 Hz, H-5A), 2.51 (1H, ddd, *J* 17.2, 7.6, 7.6 Hz, H-
193 8B), 2.57 (1H, ddd, *J* 10.8, 8.0, 4.0 Hz, H-5B), 3.27 (1H, ddd, *J* 9.6, 7.6, 7.6 Hz, H-2), 3.69 (3H, s, OCH₃),
194 3.77 (2H, m, H-6), 4.05 (1H, m, H-7A), 4.09 (1H, m, H-7B), 5.03 (1H, dd, *J* 7.6, 7.6 Hz, H-9), 5.54, (1H,
195 d, *J* 8.0 Hz, Gly-CH), 5.52 (1H, d, *J* 9.6 Hz, H-3), 7.21-7.35 (5H, m, Ar.H).

196

197 3.4.2. Formation of methyl ester of **1**

198 **1** (8.8 mg) was added trimethylsilyldiazomethane (10% in hexane) 2mL, and the reaction mixture
199 was stirred at room temperature over-night. The reaction mixture was evaporated under reduced
200 pressure, and the residue was purified by HPLC using MeOH – H₂O (60 : 40) as the eluent to afford
201 methyl ester (6.5 mg) as a pale yellow oil.

202 Methyl ester of **1**: Pale yellow oil; $[\alpha]_{D}^{22} -7.9$ (*c* 0.25, MeCN); HRFABMS *m/z* 243.1597 [M+H]⁺
203 (calcd for C₁₃H₂₃O₄ : 243.1597). ¹H NMR δ ppm (600 MHz in CDCl₃): 1.61 (3H, s, H-12), 1.68 (3H, s, H-
204 11), 2.19 (1H, ddd, *J* 14.4, 7.2, 7.2 Hz, H-8A), 2.42 (1H, m, H-5A), 2.45 (1H, m, H-8B), 2.47 (1H, m, H-
205 5B), 3.32 (1H, ddd, *J* 9.6, 7.8, 7.8 Hz, H-2), 3.64 (3H, s, OCH₃), 3.73 (2H, m, H-6), 4.08 (1H, d, *J* 17.6 Hz,
206 H-7A), 4.10 (1H, d, *J* 17.6 Hz, H-7B), 5.04 (1H, dd, *J* 7.2, 7.2 Hz, H-9), 5.56, (1H, d, *J* 10.2 Hz, H-3).

207

208 3.4.2. Methanolysis of **2–4**

209 To a solution of **2** (3.2 mg) in MeOH (0.5 mL) was added conc. H₂SO₄ (0.01 mL), and the
210 reaction mixture was left at room temperature for 1 hr. The mixture was diluted with water and
211 extracted with CH₂Cl₂, and the extract was evaporated under reduced pressure, and then the residue
212 was purified by HPLC using MeOH – H₂O (60 : 40) as the eluent to afford methyl ester (0.8 mg) as a
213 pale yellow oil.

214 Using the same procedure as above with **2**, a solution of **3** (3.3 mg) in MeOH (0.5 mL) was treated
215 with conc. H₂SO₄ (0.01 mL) and purified by HPLC using MeOH – H₂O (60 : 40) as the eluent to afford
216 methyl ester (0.8 mg).

217 Using the same procedure as above with **2**, a solution of **4** (2.4 mg) in MeOH (0.5 mL) was treated
218 with conc. H₂SO₄ (0.01 mL) and purified by HPLC using MeOH – H₂O (60 : 40) as the eluent to afford
219 methyl ester (0.7 mg).

220 **4. Conclusions**

221 In this study, new carboxylic acids designated as stereopinic acids **A–C** (**1–3**) and dihydro-1,5-
222 secovibralactone (**4**), have been isolated from a strain of *Stereum* sp. derived from marine sponge.
223 Their absolute configurations were established by the application of the PGME method to **1** and the
224 chemical transformation of **2–4**.

225 In the screening for the search of the seeds of antitumor agents, these compounds did not exhibit
226 significant cytotoxic activity against three cancer cell lines.

227 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Table S1: Spectral data
228 including 2D NMR data for **1**, Table S2: Spectral data including 2D NMR data for **2**, Table S3: Spectral data
229 including 2D NMR data for **3**, Table S4: Spectral data including 2D NMR data for **4**, Figure S1: ¹H NMR spectra
230 of **1** in CDCl₃, Figure S2: ¹³C NMR spectra of **1** in CDCl₃, Figure S3: ¹H-¹H COSY of **1**, Figure S4: NOESY of **1**,
231 Figure S5: HMQC of **1**, Figure S6: HMBC of **1**, Figure S7: ¹H NMR spectrum of **2** in CDCl₃, Figure S8: ¹³C NMR
232 spectrum of **2** in CDCl₃, Figure S9: ¹H-¹H COSY of **2**, Figure S10: NOESY of **2**, Figure S11: HMQC of **2**, Figure
233 HMBC of **2**, Figure S13: ¹H NMR spectrum of **3** in CDCl₃, Figure S14: ¹³C NMR spectrum of **3** in CDCl₃,
234 Figure S15: ¹H-¹H COSY of **3**, Figure S16: NOESY of **3**, Figure S17: HMQC of **3**, Figure S18: HMBC of **3**, Figure
235 S19: ¹H NMR spectrum of **4** in CDCl₃, Figure S20: ¹³C NMR spectrum of **4** in CDCl₃, Figure S21: ¹H-¹H COSY of
236 **4**, Figure S22: NOESY of **4**, Figure S25: HMQC of **4**, Figure S24: HMBC of **4**, Figure S25: ¹H NMR spectra of **1a** in
237 CDCl₃, Figure S26: ¹H NMR spectra of **1b** in CDCl₃, Figure S27: ¹H NMR spectra of methyl ester of **1** in CDCl₃.

238 **Author Contributions:** Conceived and designed the experiments: Takeshi Yamada, Miwa Matsuda, Mayuko
239 Seki, Megumi Hirose, Takashi Kikuchi, Reiko Tanaka; Performed the experiments: Takeshi Yamada, Miwa
240 Matsuda, Mayuko Seki, Megumi Hirose; Analyzed the data: Takeshi Yamada; Wrote the paper: Takeshi Yamada.

241 **Funding:** This research received no external funding.

242 **Acknowledgments:** We thank Dr. Endo (Kanazawa University) for supply of the cancer cells. We are grateful to
243 Dr. M. Fujitake and Dr. K. Minoura of this university for MS and NMR measurements, respectively.

244 **Conflicts of Interest:** The authors declare no conflict of interest.

245

246 **References**

1. Muroga, Y.; Yamada, T.; Numata, A.; Tanaka, R. Chaetomugilins I–O, new potent cytotoxic metabolites from a marine-fish-derived *Chaetomium* species. Stereochemistry and biological activities. *Tetrahedron* **2009**, *65*, 7580–7586, DOI: 10.1016/j.tet.2009.06.125.
2. Yamada, T.; Kitada, H.; Kajimoto, T.; Numata, A.; Tanaka, R. The relationship between the CD Cotton effect and the absolute configuration of FD-838 and its seven stereoisomers. *J. Org. Chem.* **2010**, *75*, 4146–4153, DOI: 10.1021/jo100496f.
3. Yamada T.; Kikuchi T.; Tanaka R.; Numata A. Halichoblelides B and C, potent cytotoxic macrolides from a

254 *Streptomyces* species separated from a marine fish. *Tetrahedron Lett.* **2012**, *53*, 2842–2846, DOI:
255 10.1016/j.tetlet.2012.03.114.

256 4. Kitano, M.; Yamada, T.; Amagata, T.; Minoura, K.; Tanaka, R.; Numata, A. Novel pyridinopyrone sesquiterpene
257 type pileotin produced by a sea urchin-derived *Aspergillus* sp. *Tetrahedron Lett.* **2012**, *53*, 4192–4194, DOI:
258 10.1016/j.tetlet.2012.05.144.

259 5. Yamada T.; Mizutani Y.; Umebayashi Y.; Inno N.; Kawashima M.; Kikuchi T.; Tanaka R. A novel
260 ketoaldehyde decalin derivative, produced by a marine sponge-derived *Trichoderma harzianum*. *Tetrahedron*
261 *Lett.* **2014**, *55*, 662–664, DOI: 10.1016/j.tetlet.2013.11.107.

262 6. Yamada T.; Umebayashi Y.; Kawashima M.; Sugiura, Y.; Kikuchi T.; Tanaka R. Determination of the chemical
263 structures of tandyukisins B–D, isolated from a marine sponge-derived fungus. *Marine Drugs*, **2015**, *13*, 3231–
264 3240, DOI: 10.3390/md13053231.

265 7. Suzue, M.; Kikuchi, T.; Tanaka R.; Yamada T. Tandyukisins E and F, novel cytotoxic decalin derivatives
266 isolated from a marine sponge-derived fungus. *Tetrahedron Lett.* **2016**, *57*, 5070–5073, DOI:
267 10.1016/j.tetlet.2016.10.004.

268 8. Yamada, T.; Suzue, M.; Arai, T.; Kikuchi T.; Tanaka R. Trichodermanins C–E, new diterpenes with a fused 6-
269 5-6-6 ring system produced by a marine sponge-derived fungus. *Marine Drugs*, **2017**, *15*, 169,
270 DOI:10.3390/md15060169.

271 9. Liu, D.Z.; Wang, F.; Liao, T.G.; Tang, J.G.; Steglich, W.; Zhu, H.J.; Liu, J.K. Vibralactone: a lipase inhibitor
272 with an unusual fused β -lactone produced by cultures of the basidiomycete *Boreostereum vibrans*. *Org. Lett.*
273 **2006**, *8*, 5749–5752, DOI:10.1021/o1062307u.

274 10. Jiang, M.Y.; Wang, F.; Yang, X.L.; Fang, L.Z.; Dong, Z.J.; Zhu, H.J.; Liu, J.K. Derivatives of vibralactone from
275 cultures of the basidiomycete *Boreostereum vibrans*. *Chem. Pharm. Bull.* **2008**, *56*, 1286–1288, DOI:
276 10.1248/cpb.56.1282.

277 11. Jiang, M.Y.; Zhang, L.; Dong, Z.J.; Yang, Z.L.; Leng, Y.; Liu, J.K. Vibralactones D–F from cultures of the
278 basidiomycete *Boreostereum vibrans*. *Chem. Pharm. Bull.* **2010**, *58*, 113–116, DOI:10.1248/cpb.58.113.

279 12. Ding, J.H.; Feng, T.; Li, Z.H.; Li, L.; Liu, J.K. Twelve new compounds from the basidiomycete *Boreostereum*
280 *vibrans*. *Nat. Prod. Bioprospect.* **2012**, *2*, 200–205, DOI:10.1007/s13659-012-0060-x.

281 13. Wang, G.Q.; Wei, K.; Feng, T.; Li, Z.H.; Zhang, L.; Wang, Q.A.; Liu, J.K. Vibralactones G–J from cultures of
282 the basidiomycete *Boreostereum vibrans*. *J. Asian Nat. Prod. Res.* **2012**, *14*, 115–120, DOI:
283 10.1080/10286020.2011.636037.

284 14. Wang, G.Q.; Wei, K.; Li, Z.H.; Feng, T.; Ding, J.H.; Wang, Q.A.; Liu, J.K. Three new compounds from the
285 cultures of basidiomycete *Boreostereum vibrans*. *J. Asian Nat. Prod. Res.* **2013**, *15*, 950–955, DOI:
286 10.1080/10286020.2013.824429.

287 15. Chen, H.P.; Zhao, Z.Z.; Yin, R.H.; Yin, X.; Feng, T.; Li, Z.H.; Wei, K.; Liu, J.K. Six new vibralactone derivatives
288 from cultures of the fungus *Boreostereum vibrans*. *Nat. Prod. Bioprospect.* **2014**, *4*, 271–276, DOI:10.1007/s13659-
289 014-0029-z.

290 16. Yabuuchi, T.; Kusumi, T. Phenylglycine Methyl Ester, a Useful Tool for Absolute Configuration
291 Determination of various chiral carboxylic acids. *J. Org. Chem.* **2000**, *65*, 397–404, DOI:10.1021/jo991218a.

292 17. Zhao, P.J.; Yang, Y.L.; Du, L.; Liu, J.-K.; Zeng Y. Elucidating the biosynthetic pathway for vibralactone: a
293 pancreatic lipase inhibitor with a fused bicyclic β -lactone. *Angew. Chem. Int. Ed.*, **2013**, *52*, 2298–2302, DOI:
294 10.1002/anie.201208182.

295 **Sample Availability:** Samples of the compounds are available from the authors.