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Abstract: This paper focuses on the integrated guidance and autopilot design with control input saturation in 
the end-game phase of hypersonic flight. Firstly, uncertain nonlinear integrated guidance and autopilot model is 
developed with third actuator dynamics, where the control surface deflection has magnitude constraint. Secondly, 
neural network is implemented in extended state observer (ESO) design, which is used to estimate the complex 
model uncertainty, nonlinearity and state coupling. Thirdly, a command filtered back-stepping controller is 
designed with hybrid sliding surfaces to improve the terminal performance. In the process, different command 
filters are implemented to avoid the influences of disturbances and repetitive derivation, meanwhile solve the 
problem of unknown control direction caused by saturation. The stability of closed-loop system is proved by 
Lyapunov theory, and the principles abided by the controller parameters are concluded through the proof. Finally, 
series of 6-DOF numerical simulations are presented to show the feasibility and validity of the proposed 
controller. 

Keywords: integrated guidance and autopilot, neural network, extended state observer, command filter, 
back-stepping control 

1 Introduction 

Since 1980s, there have been lots of studies on the area of integrated guidance and control 
(IGC). In the conventional design, the guidance and control system is treated as two separated 
processes based on different operation frequencies. The outer guidance system creates 
acceleration or angle of attack command, and the inner control system tracks it. When the two 
control loops are combined, the original performance objectives are lost and must be recovered. 
Thus the resulting iterative design may not produce an optimal overall system. Additionally, 
under the condition of high speed, imprecisely known aerodynamics, complicated uncertainties 
and external disturbances, the hypersonic flight dynamics is obviously characterized by 
nonlinearities. The approaches which involves linearization about a set of equilibrium conditions 
or trim points within the flight envelop suffer from several disadvantages. Comparatively, the IGC 
design has provided better solutions in low-cost, modular growth, design flexibility, simple 
logistics and attracted great interest of researchers. 

In [1], the scheme of tactical missile IGC system is designed, where information produced by 
inertial sensors of guidance system are used for the attitude control system. Because the 
accuracy of sensors in guidance system is much greater than that of autopilot, the IGC can reduce 
cost and improve the entire guidance and control system performance. In [2], the discussion of 
IGC scheme goes a step further with three optimal control laws for a tactical missile. In [3, 4], 
new optimal control methods are proposed to effectively design IGC system for missiles. However, 
the weighting matrices have too many elements, while the actuator dynamics is assumed 
sufficiently fast and are not modeled in the IGC development. In comparison, sliding mode 
control (SMC) is a robust method with not complicated structure for nonlinear control issues. It 
has been extensively used in IGC design. In [5], a brief review of SMC is made at first. A simple 
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first order actuator dynamics is considered in model development. Then the missile IGC design is 
compared with two different separated designs. It’s indicated that the inherent instability of 
decoupled guidance and control loops in terminal phase is postponed by the integrated design, 
so the interception accuracy is greatly improved. Besides, the control input chasing is depressed 
by using Zero-Error-Miss (ZEM) sliding surface. In [6], Predicted-Impact-Point (PIP) heading error 
is used to make sliding surface, and terminal second order sliding mode control is designed to 
achieve the convergence in a finite time without chattering. In [7, 8], the IGC dynamics is built 
with two first order actuators for dual-control missiles, and the controller complexity becomes 
staggering. Nevertheless, the true missile dynamics has high order for second or third order 
actuator dynamics. For high order nonlinear system model in [9-12], back-stepping technique is a 
useful tool, which is always combined with SMC and disturbance observer. In [9], the nonlinear 
disturbance observer is implemented to estimate the nonlinearities, uncertainties, disturbances 
in the system dynamics, thus the decrease of undesired chattering in control is achieved and the 
robustness of closed-loop system is enhanced. In [10], the ESOs are used to estimate indirectly 
measured states and various parametric uncertainties. The nonlinear ESO in [11] has better 
performance under complex uncertainties and measurement noises than linear ESO in [12, 13], 
however, it has more parameters to tune. In [14], velocity tracking error is used to design a 
composite-errors-based ESO in a feedback form, which makes estimation and tracking errors 
smaller without high gains. 

Neural network are capable of providing arbitrarily good approximations to prescribed 
functionals of a finite number of real variables in [15]. Application to dynamic system modeling, 
nonlinear complex valued signal processing associated with the RBF network are describe in [16]. 
In [17], direct neural control is proposed to deal with the input nonlinearity in the model of 
hypersonic vehicle. An adaptive neural network is employed to estimate the structure 
uncertainties, then back-stepping controller is proposed to guarantee the uniform asymptotic 
stability of the uncertain system in [18]. In [19], RBF NN approximation is combined with adaptive 
back-stepping technique to achieve boundedness of all closed-loop system states.In [20], radial 
basis function neural networks are applied to approximate the lumped unknown nonlinearities to 
satisfy robustness against system uncertainties for a constrained flexible air-breathing hypersonic 
vehicle. 

In order to simplify the implementation and cancel out the system noises, command filter is 
introduced. In [21], command filtered back-stepping is proposed to offer a means to get the time 
derivatives of the pseudo control signals. In [22, 23], low-pass filter is employed to construct the 
derivative of pseudo control input. It solves the problem of “explosion of complexity” caused by 
the repeated differentiations of the pseudo control signals in dynamic surface control (DSC). In 
[24], the second-order command filters instead of the first-order filters are applied in DSC. With 
the help of command filters, the performance of back-stepping control scheme significantly 
improves in stability and steady-state tracking accuracy, while the analysis is made in detail in [25]. 
In [26], the stability of commander filtered back-stepping control is further improved by 
composite learning. In [27, 28], a second order command filter is designed to impose magnitude 
and rate limitation on the control input. In [29], directly differentiating the pseudo control 
command respect to time is avoided and the global uniform ultimate boundlessness of the 
tracking errors is guaranteed in the presence of the input constraints. In [30], low-pass filters of 
the adaptive control scheme guarantee the fast adaptive performance and robustness of the 
missile integrated guidance and autopilot system. Deep discussion about control input constraint, 
finite time convergence in IGC design arises rapidly in [31-33]. In [34], first order auxiliary 
dynamics is developed addition to the system model to deal with the input constraints. In [35, 36], 
Nussbaum function is introduced to compensate for the nonlinear term arising from input 
saturation and solve the problem of unknown control direction. In [36], a novel Nussbaum gain is 
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proposed for multiple unknown actuator directions and time-varying nonlinearities. 

In summary, IGC study should be more focused on the model development with actuator 
dynamics, coefficients uncertainties and control input constraints. Then, the application is able to 
be studied and discussed more practically and effectively. Motivated by 1) the integrated 
guidance and control design, 2) neural network and ESO based disturbance estimate, and 3) 
command filtered back-stepping control in the presence of control input constraint, this work 
proposes a novel integrated guidance and autopilot scheme for hypersonic flight. 

The paper is organized as follows: In Section 1, the integrated design and related control 
techniques are introduced. In Section 2, the hypersonic flight dynamics in end game phase with 
third order actuator model is developed, and the control surface deflection has constraint of 
magnitude saturation. In Section 3, neural network based ESO is designed to synthetically 
estimate the uncertainty and time-varying disturbance, and three ESOs are used in different 
channels of the integrated guidance and autopilot model. In Section 4, the hybrid command 
filtered back-stepping technique is implemented based on the estimations of ESOs. Hybrid 
differentiators are used to get the derivate of virtual inputs produced by the sliding mode 
controllers, and Nussbaum function based command filter is introduced to solve the problem of 
unknown control direction when differentiating the saturated control input. In Section 5, the 
stability proof of closed-loop system is given by Lyapunov theory, and the principles followed by 
the controller parameters are concluded. In Section 6, 6-DOF numerical simulations verify the 
proposed design with five scenarios, and Monte Carlo simulations are made to test the 
performance under initial flight states bias and measurement noises. Finally, section 7 concludes 
the paper. 

2 IGA Model 

In this section, the integrated guidance and autopilot model in the end-game phase is 
developed. In Figure 1, the coordinate systems are built without considering the earth rotation. 
The aerodynamics is built in the velocity coordinate system. V  is the velocity of mass center, 
R  is the distance between the mass center and the landing point, q  is the angle between line 
of sight (LOS) and local horizon,   is the flight path angle,   is the angle of attack (AOA) and 

z  is the control surface deflection. The angle directions shown in Figure 1 are positive. 
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Figure 1. The planar geometry in end-game phase 

The state vector is defined as    1 2 3 4, , , , , ,T T
z zx x x x q     x , and the control 

surface deflection is saturated as  4actv sat x . Then the state space form of integrated 
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guidance and control system can be depicted as follows: 

   1 1 1 2 1 1x f x ax f x d                          (1a) 

   2 2 2 3 2 2x f x x f x d                           (1b) 

   3 3 2 3 3 3, actx f x x bv f x d                        (1c) 

where   , 1, 2, 3id t i   are the unmatched time-varying disturbances in different channels. 

The nonlinear functions   , 1, 2, 3if x i   and ,a b  are depicted as follows:  

     1
1 1 cocos , coss o

x R V Vf x q gx L a q L
R RVR            

 


    (2a) 

 2 2cos o
gf x L x L
V                             (2b) 

 3 2 3, z
f x M x M x b M                           (2c) 

The lift force can be simplified as two parts: oL L L   when the velocity is high. Then 
/ , = /o oL L mV L L mV   in Eq. (2a, 2b) are the unified parts of lift, m  is the mass. The 

aerodynamics moment is also described with two parts: zz o zM M M   , both are unified by 

the moment of inertia with respect to body z-axis zI : / , /
z zo o z zM M I M M I    in Eq. (2c). 

The high order nonlinearity and states coupling mainly caused by aerodynamics coefficients 
uncertainties are synthesized as   , 1, 2, 3if x i  . 

The actuator dynamics is considered as a first order inertial element with time constant act  
and a second order element with damping rate act , natural frequency ,n act , constant gain 

actK . Then the transfer function is expressed as following:  

  2 2
, ,

1
1 2z

act

act act n act n act

KG s
s s s    


                    (3) 

The state space model of actuator can be depicted as follows: 

4 4 4
1 1

act act

x x x  
                             (4a) 

4 5x x                                         (4b) 

     5 4 5 4 5, ,act act act actx f x x b u f x x d t                    (4c) 

where  4 5,actf x x  is a linear function,  4 5,f x x  is its uncertain part, and  actd t  is the 
time-varying disturbance in actuator dynamics. The integrated guidance and autopilot model is 

developed by Eq. (1) and Eq. (4) with state vector  1 2 3 4 4 5, , , , , Tx x x x x xX , control input 

zcu  . The nonlinear saturation characteristic of the actuator in Eq. (1c) can be modeled as: 

   ,max 4 4 ,max
4

4 4 ,max

sgn ,
,
z z

z

x x
sat x

x x
 


  

                  (5) 

where ,maxz  is the magnitude constraint of control surface deflection. The saturated signal can 
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be approximated by a smooth function defined as: 

   
4 4

4 4

4
4 ,max 4 ,max 4

,max

tanh ,
x x

z z x x
z

e e xg x x x
e e

 







  

               (6) 

then    4 4sat x g x   ,   is the small approximation error. 

3 Neural Extended State Observer  

As the introduction section refers to, neural network has good approximation performance 
in dealing with complex system uncertainties and disturbances. In this section, in order to 
compensate the integrated guidance and autopilot model under complex aerodynamics 
uncertainties and unmatched disturbances, the technique of neural extended state observer 
(NESO) is exploited. Firstly, considering the following system: 

         p p p p p p px t f x b u t f x d t                      (7) 

The uncertain nonlinearity and time-varying disturbance are considered as a whole 

   p p p pf x d t     to be estimated. Defining se o , esox  as the states of NESO to estimate 

respectively p  and px , the estimate error of px  as p eso pe x x  , then the state space 

model of NESO is designed as follows: 

 
 

eso p eso eso sys p p
T

eso eso

x f x e b u
x O

    
  


 *W h                   (8) 

where * * * *
11 12 1, , ,

T P
pw w w   W R  is the idea weight,  esoxh  is a vector of Gaussian 

functions: 

 
2

2
2exp , 1, 2, 3, ...,

2
eso j

j eso

x
h x j n

d
 

   
 
 

              (9) 

 1 2, , , T
n   �H  is the center vector of the Gaussian functions, d  is the affect size, and 

O  in Eq.(8) is the construction error of neural network. By employing the  -modification type 
of adaptation law, the weight can be functioned as:  

 pe   W h W                           (10) 

where 0   is constant, 0   is gain. Defining prx  as reference signal of px , then the 

tracking error can be expressed as p p pre x x  .  

In the integrated guidance and autopilot design, three NESOs are used to compensate the 
unmatched uncertain nonlinearities and time-varying disturbances     , 1, 2, 3i i if x d t i      

in Eq. (1), the estimate results are respectively  , , 1, 2, 3esoi esoix i  . 

4 Hybrid Command Filtered Controller 

In this section, a hybrid command filtered back-stepping sliding mode controller is designed 
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to achieve LOS rate convergence based on the estimate results of NESOs. 

�^�š���‰�� �í�W The first sliding surface is chosen as 1 1s x . The virtual control input 2x  is 
designed as reference signal of 2x  according to a proportional reaching law with positive 
constant 1k . 

 2 1 1 1
1

esox k s
a

                             (11) 

�^�š���‰���î�W Defining the second sliding surface 2 2 2rs x x  , and the virtual control input 3x  
is obtained by the following control law: 

3 2 2 2 2eso rx k s x                             (12) 

where 2rx  is the derivative of 2x , if directly differentiating 2x  respect to time, the virtual 
control input 3x  is likely to peak. So a low-pass command filter is used to get the derivative: 

   1 2 2 2 2 20 0r r rx x x x x    �È                     (13) 

In Eq. (13), 1  is positive time constant. The error produced by the low-pass filter is defined 
as 1 2 2= rx x  , and 1  can be sufficiently small when 1  is appropriately set. 

Another low-pass filter in the same form of Eq. (13) is used to avoid directly differentiating 
of 3x . 

   2 3 3 3 3 30 0r r rx x x x x    �È                     (14) 

Then the error produced by the low-pass filter can be expressed as 2 3 3rx x    under 
appropriate time constant 2 . 

�^�š���‰���ï�W In this step, there are two sub-steps to finish the tracking control. Firstly, the virtual 
control input 4x  is designed to achieve the convergence of 3 3 3rs x x   under the following 
control law: 

4 3 3 3 3eso rx k s x                             (15) 

The third low-pass filter is used to get the first order derivative of 4x : 

   3 4 4 4 4 40 0r r rx x x x x    �È                    (16) 

The error between 4x  and 4rx  is given as 3 4 4rx x    under time constant 3 . 

Secondly, if defining  4 4 4rs g x x  , then differentiating it respect to time: 

4 4 4rs x x                                (17) 

where 4x  is also given by a low-pass filter with time constant act . 

 4
4 4 4

4

, act c

g x
x x x

x
 


  


                       (18) 

Then the proportional reaching law with positive constant 4k  is chosen to achieve the 
convergence of 4s . The control direction is unknown because of  , a Nussbaum function 
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 N   is used to design pseudo control input 4ux . 

 4 4u act ucx N x                          (19) 

4 4 4 4 4uc r
act

x x x k s

 

   
 

                      (20) 

The Nussbaum function is defining with the following properties:  

 
0

1lim sup
s

s
N d

s
 


                      (21a) 

 
0

1liminf
s

s
N d

s
 


                      (21b) 

According to the above properties, the following Nussbaum function is implemented: 

   
2

cosN e                           (22) 

The parameter   is an adaptive parameter according to the following principle: 

4 4 4 4 4r
act

x x k s s
 

 

   
 

                      (23) 

In the end, a third order differentiator is also used as command filter to get first and second 
order derivatives of the virtual control input 4ux : 

       

1 2

2 3

5 51
2 23 33

3 3 3 1 43

4 2 sgn sgn , 0 0

CF CF

CF CF

CF CF CF CF u

x x
x x

x v v x x x x 






       
  





  (24) 

where  
9
7

1 4 2 2
1 sgnCF u CF CFv x x x x


   , the error between 3CFx  and 4ux  can be enough 

small through choosing suitable  . 

�^�š���‰�� �ð�W The task of tracking 4ux  is completed by a terminal sliding mode controller. 
Considering the second order dynamics in Eq. (4b) and Eq. (4c), the uncertainty and the 
time-varying disturbance are bounded by positive constants ,F D . 

,act actf F d D                            (25) 

Defining error vector  , T
act actE e e   with 4 4act ue x x  , and its derivative can be 

written as 4 2act CFe x x   . Then the following nonlinear sliding mode surface is designed: 

acts CE CP                              (26) 

In Eq. (26),  1 2,C c c  is a constant vector, and  , TP p p   is determined by the 

following nonlinear function: 
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 

2 3
3 2

4 5
4 3 2 5 4 3

1 10 6 3
2 2

15 8 3 6 3 1 , 0
2 2

0,

act act act act act act

act act act act act act

e e t e t e e e t
T T T

p t
e e e t e e e t t T

T T T T T T
t T

                            


   

     (27) 

where T  is the convergence time of the terminal sliding mode controller.  

Finally, the control input is designed as follows: 

       1
3 2

2

1 1 sgnact CF act act
act act

cu f x x p e p c s F D
b c b

 
        

 
       (28) 

5 Stability Analysis 

Defining  1 1 2 2 2 3 3 3 4 4 4, , ,e x e x x e x x e g x x       , and differentiating them with 

respect to time:  

1 1 1 1 2 1e x k e e                                (29) 

2 2 2 2 2 3 2 2 1 1e x x k e e k                          (30) 

3 3 3 3 3 4 3 3 2 2e x x k e e k                          (31) 

  4 4 4 4 3 4 31uce x N k e k                       (32) 

Besides the following Lyapunov function is chosen: 

2 2 2 2 2
1 2 3 4

1 1 1 1 1
2 2 2 2 2 actV e e e e s                        (33) 

Differentiating the actuator dynamics related part of Eq. (33) with respect to time: 

   

        
     

1
2 4 2 2

2

2 3 4 2 2 2

2 3 4 2 2

sgn

act act act u act act act act

act CF u act act act

act CF u act act act act

cs s c f x p e p c b u c f d
c

s c x x c c s F D c f d

c s x x c s F D c s f d


             
   

      

      

    





  (34) 

Because the differentiator is set appropriately such that 3 4CF u CFx x   , CF  is small 

positive constant, and ,act actf d  is bounded. We can find a positive constant   to yield to: 

2act act acts s c s                           (35) 

Through differentiating Eq. (33) and combining Eq. (34), we have: 

       

1 1 2 2 3 3 4 4
2 2 2 2

1 1 2 2 3 3 4 4 1 2 1 1

2 2 1 2 1 3 3 2 3 2 4 3 4 3 4

2 3

4 1uc

act actV e e e e e e e e s s
k e k e k e k e e e e e e

e k e k e k x e N



         





    

   

         

  



    






  (36) 

If defining the following bounds: 
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max max max maxk                             (37a) 

max 1 2 3max , ,                             (37b) 

 max 1 2 3max , ,k k k k                          (37c) 

max 1 2 3max , ,                             (37d) 

max 1 2 3max , ,                                (37e) 

According to the Young’s inequality, Eq. (36) can be rewritten as following: 

       2 2 2 2 2
1 1 2 2 3 3 4 4 4 4

3 11 1 1 1
2 2 ucV k e k e k e k e x e N                  

     (38) 

�Z���u���Œ�l: If choosing      1 2 3 4
3min 1 , , 1 , 1
2

C k k k k          
, then the following inequality is 

yielded to: 

 21 1
2

V CV N


  


      
                    (39) 

Integrating Eq. (39) directly, then we have: 

       
2

0
0 1 1

2

Ct tCt Ct CeV t V e e N e d
C





    



               (40) 

According to the proof in [36],  
0

1
t CN e d        is bounded, and  V t  is bounded, 

which implied all the error is bounded. 

6 Numerical Simulation 

In this section, series of 6-DOF nonlinear numerical simulations are provided to illustrate the 
control schemes proposed in the previous sections. Firstly, the initial flight condition in end-game 
phase is set as follows: 

2
0

0 0 0

20 , 1200 / , 9.8 /
0deg, 10deg, 60deg

R km V m s g m s
q 

  
    

              (41) 

The IGA model is built in four scenarios with the following aerodynamics coefficients based 
on table in Appendix A. 

Scenario 1: 

1, 1.6,
0.1, 11,

oL L
M M M


  

  

  
                   (42a) 

Scenario 2: 

,1 0.01 , 1.6
0.1 0.001 , 1 0.001 , 1

o

z

L L
MM M



 



 

   

    
          (42b) 
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Scenario 3: 

,

,

,1 0.01 0.01 , 1.6

0.1 0.001 0.001 , 1 0. 1001 ,
z sat o

z sat z

L L

M M M


 

 

  

    

     
      (42c) 

Scenario 4: 

Furthermore, the un-modeled measurement uncertainty of q  in Scenario 4 is considered 
as a first order transfer function: 

  0.75
0.05 1sensorG s

s



                       (42d) 

The third order actuator dynamics is given by the following transfer function: 

  2

1 4621
0.0198 1 66.34 4848z

G s
s s s 
  

                 (43) 

Scenario 5: 

Dead-zone is also part of control input nonlinearity, which can be defined by Eq. (6) with the 

following function of ,maxz : 

,max

0, 1
10,z

t
else




 


                          (44) 

The time-varying disturbances in different channels of IGA model are given as follows: 

         1 2 30.001sin 2 , 0.05cos 2 , 0.05sin cos 2 , 0.01sinactd t d t d t t d t      (45) 

Secondly, the three NESOs are set. The first neural network input is chosen as  1 2, , actx x y , 

according to the bound of the states, the following center vector is employed: 

1

3 2.25 1.5 0.75 0 0.75 1.5 2.25 3
20 15 10 5 0 5 10 15 20
10 7.5 5 2.5 0 2.5 5 7.5 10


    
      
     

        (46) 

The second neural network input is chosen as  2 , actx y , according to the bound of the 

states, the following center vector is employed: 

2

20 15 10 5 0 5 10 15 20
10 7.5 5 2.5 0 2.5 5 7.5 10


    

      
           (47) 

The third neural network input is chosen as  2 3, , actx x y , according to the bound of the 

states, the following center vector is employed: 

3

20 15 10 5 0 5 10 15 20
32 24 16 8 0 8 16 24 32
10 7.5 5 2.5 0 2.5 5 7.5 10


    
      
     

            (48) 

The other parameters of NESOs are set with  30, 30, 30�E . 
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Thirdly, the first order command filters have time constants 1 2 3= = = 0.0198s   . The 
third order differentiator in Eq. (24) is set with 0.04  . The control surface deflection is 
constraint with ,max 10degz  , and the Nussbaum function in Eq. (22) is set with 610

 . The 

proportional reaching law of back-stepping sliding mode controller is designed with constants 
1 2 31.2, 1.45, 1.45k k k   . The terminal sliding surface in Eq. (26) is set with 1 25, 1c c  , 

and the bound of uncertainty and time-varying disturbance in Eq. (28) is given as 10, 3F D  . 

A.  �E�}�u�]�v���o���^�]�u�µ�o���š�]�}�v 

The nominal simulation results of Scenario 1 (S1) indicate the feasibility of the proposed 
method. As Figure 2(a) shows, q  finally converges to zero under the saturated control surface 
deflection. In Figure 2(d), the control surface deflection of the proposed method is well constraint 
under the saturation. The state estimate errors of NESO converge well in very small range, the 
NESO can estimate the system states with good accuracy, and all the states converge under 
saturated control surface deflection. The results indicate that the proposed control scheme 
performs very well. 

 

(a)                                     (b)                    

 

(c)                                      (d)                   

Figure 2. IGA and NESO states of Scenario 1: (a) comparison between q  and NESOI, (b) 
comparison between   and NESOI, (c) comparison between z  and NESOI, and (d) saturated 

z  curve 

B. �����}�u�‰���Œ�]�•�}�v���^�]�u�µ�o���š�]�}�v�• 

Scenario 2 (S2) and Scenario 3 (S3) are set to test the performance under large 
aerodynamics coefficient uncertainties. In S2, L  in the unified lift force is set with nonlinearity 
item of AOA, while ,M M   in the unified moment are also nonlinear functions of AOA and 
pitch angle rate. In S3, ,L M   are influenced by control surface deflection. Besides, 
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simulation in Scenario 4 provides comprehensive testing under complex model uncertainties.  

 

(a)                                      (b)                   

 

(c)                                     (d)                   

Figure 3. Comparison between Scenario 1 and Scenario 2: (a) curves of q , (b) curves of  , (c) 
curves of z , and (d) curves of saturated z . 

Figure 3 shows the comparison simulation results between S2 and S1. The proposed control 
scheme is able to cancel out influence of the nonlinear uncertainty in aerodynamics coefficients 
of lift and moment. Figure 4 shows the comparison simulation results between S3 and S1. The 
nonlinear parts of control surface deflection in aerodynamics coefficients have a limited impact 
on the convergence with small overshoot in Figure 4(a) and Figure 4(b). It’s indicated that the 
performance improves under complex nonlinearity with the help of the great approximation 
ability of neural network. 

 

(a)                                      (b)                   
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(c)                                      (d)                   

Figure 4. Comparison between Scenario 1 and Scenario 3: (a) curves of q , (b) curves of  , (c) 
curves of z , and (d) curves of saturated z . 

The comparison results of S3 and S4 are shown in Figure 5, which indicate that the proposed 
method can cancel out the complex uncertainties and disturbances with unknown measurement 
dynamics. 

 

(a)                                      (b)                  

 

(c)                                     (d)                  

Figure 5. Comparison between Scenario 3 and Scenario 4: (a) curves of q , (b) curves of  , (c) 
curves of z , and (d) curves of saturated z . 

In Figure 6, simulation results in S1 and S5 are compared. Figure 5(d) shows that the control 
surface deflection of S5 has 1 second dead-zone. It’s seen that the NESO approximation based 
IGA control scheme guarantees the closed-loop system stable under saturated control surface 
deflection with dead-zone nonlinearity. 
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(a)                                      (b)                  

 

(c)                                      (d)                    

Figure 6. Comparison between Scenario 1 and Scenario 5: (a) curves of q , (b) curves of  , (c) 
curves of z , and (d) curves of saturated z . 

C.  �^�]�u�µ�o���š�]�}�v�•���Á�]�š�Z���s���o�}���]�š�Ç�U���/�v�]�š�]���o�����]�•�š���v���������]�•�‰���Œ�•�]�}�v�����v�����D�����•�µ�Œ���u���v�š���E�}�]�•���• 

With the help of Monte Carlo theory, large number of numerical simulations under a wide 
dispersion range of velocity, initial distance and measurement noises are made. The results are 
shown in Figure 7, 8, 9. In Figure 7, the simulation results under velocity dispersion between 1000 
m/s and 1400 m/s are presented. The mean value is 1200 m/s. It is seen that the parameters 
setting of the proposed controller can satisfied large variations of flight velocity. 

 

(a)                                     (b)                   
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(c)                                      (d)                  

Figure 7. Monte Carlo Simulation under V  dispersion: (a) curves of q , (b) curves of  , (c) 
curves of z , and (d) curves of saturated z . 

Figure 8 presents the Monte Carlo simulation results under initial distance dispersion 
between 18km and 22km. The mean value is 20km. It can be seen that the corresponding flight 
states converge well, the main difference lies in the convergence time under initial distance 
dispersion. Briefly, the proposed scheme is able to achieve the control object under large 
dispersion of initial flight states. 

 

(a)                                     (b)                    

 

(c)                                     (d)                   

Figure 8. Monte Carlo Simulation under 0R  dispersion: (a) curves of q , (b) curves of  , (c) 
curves of z , (d) curves of saturated z . 

In Figure 9, the Monte Carlo simulation results under measurement noises with unknown 
gain and time constant in Eq. (42d) are presented. It can be concluded that the uncertain gain of 
sensor dynamics has a very limited effect on the proposed controller. 
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(a)                                     (b)                    

 

(c)                                      (d)                   

Figure 9. Monte Carlo simulation under measurement noises: (a) Curves of q , (b) Curves of  , 
(c) Curves of z , (d) Curves of saturated z . 

7 Conclusion 

In this paper, a novel composite IGA scheme combined with third order actuator dynamics 
under control input saturation and extended state observer is developed to address hypersonic 
flight control with multiple uncertainties and control constraint. The complex nonlinearities and 
unmatched time-varying disturbances are well estimated by three neural ESOs. Four 
differentiators include a third order hybrid nonlinear differentiator is employed to calculate the 
derivatives of virtual control input. Thus, the peaking phenomenon and chasing of back-stepping 
sliding mode controller is greatly depressed. Besides, the noteworthy feature of the proposed IGC 
approach is that the control surface deflection is constraint under saturation with Nussbaum gain. 
It is very important in practical application.  
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Appendix A  

The aerodynamics of NASA CAV-L in 1998 is performed in the following table: 

 
AOA Mach3.5 Mach 5 Mach 8 Mach 15 Mach 20 Mach 23 

10�e  0.3401 0.3264 0.3108 0.2856 0.2760 0.2739 

15�e  0.5786 0.5358 0.4883 0.4491 0.4349 0.4319 

20�e  0.7975 0.7291 0.6731 0.6137 0.5975 0.5966 

Table A.1 CAV Lift Coefficient ( LC ) 

AOA: Angle of Attack. Mach: Mach number 

When the flight velocity is high�Èthe lift coefficient can be simplified as 0
α

L L LC C α C   . 

 

Figure A.1 Polynomial fit results 

Mach 
LC
  0LC  

3.5 0.04574 -0.114 

5 0.04027 -0.07362 

8 0.03623 -0.05272 

15 0.03281 -0.04268 

20 0.03215 -0.4612 

Table A.2 Fit curve parameters 
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Take 4, 20Mach H km   and 20.35refS m  as example to calculate the aerodynamics 

parameters: 

1= 1.673
2
1 0.9149
2

o
o ref Lo

ref L

LL VS C
mV
LL VS C
mV








  

  
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