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Abstract: Polyketides are large group of secondary metabolites that have notable variety in their 9 
structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, 10 
antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol and anti-inflammatory 11 
activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks and sponges. 12 
Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus 13 
is best known as one of polyketides producers. Some examples of polyketides produced by 14 
Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin and caprazamycin. 15 
Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases 16 
(PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces that responsible 17 
for producing polyketides. This paper focuses on biosynthesis of polyketides in Streptomyces with 18 
three structurally different types of PKSs.  19 
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1. Introduction 23 
Polyketides, large group of secondary metabolites, are known possessing remarkable variety 24 

not only in their structure and but also in their function [1,2]. Polyketidesexhibit a wide range of 25 
bioactivities such as antibacterial (e.g., tetracycline), antifungal (e.g.,amphotericin B), anticancer 26 
(e.g., doxorubicin), antiviral (e.g., balticolid), immune-suppressing (e.g., rapamycin), anti-cholesterol 27 
(e.g., lovastatin) and anti-inflammatory activity (e.g., flavonoids) [3–9]. Some organisms such as 28 
bacteria, fungi, plants, protists, insects, mollusks and sponges can produce polyketides naturally 29 
[10–12]. In order to survive, these polyketide-producing organisms could use polyketides that they 30 
generate to protect themselves in their environment [13].  31 

Since the beginning of 1940’s, the history of antibiotic is much related to microorganisms. One 32 
of the groups of bacteria which produce many important antibiotics is Actinobacteria. 33 
Actinobacteria are Gram-positive bacteria, have high GC content and comprise various genera 34 
known for their secondary metabolite production, such as Streptomyces,Micromonospora, 35 
Kitasatospora, Nocardiopsis, Pseudonocardia, Nocardia, Actinoplanes, Saccharopolyspora and Amycolatopsis 36 
[14,15]. The most important genus of them is Streptomyces which has a filamentous form like fungi 37 
and recently becomes a source of 80% of the antibiotics since the discovery strepthothricin within 38 
this genus in 1942 [16–18]. Among the antibiotics produced by Streptomyces, polyketides are one 39 
group of the very important compounds. Some examples of polyketides produced by Streptomyces 40 
are rapamycin (produced by Streptomyces hygroscopicus), oleandomycin (produced by Streptomyces 41 
antibioticus), actinorhodin (produced by Streptomyces coelicolorA3(2)), daunorubicin (produced by 42 
Streptomyces peucetius)and caprazamycin (produced by Streptomyces sp. MK730-62F2) [19–23].  43 

Biosynthesis of polyketides is very complex because the process involves multifunctional 44 
enzymes called polyketide synthases (PKSs). The mechanism of PKS is similar to fatty acid synthase 45 
(FAS) which includes acyltransferase (AT) that has a role in catalyzing the attachment of the 46 
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substrate (e.g., acetyl or malonyl) to the acyl carrier protein (ACP), ketosynthase (KS) which 47 
catalyzes condensation of substrates attached in ACP. For the subsequent steps, polyketide 48 
intermediate is processed by ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) as 49 
shown in Figure 1. Unlike in FAS, the three remaining process are optional in PKSs that can give the 50 
various structures of polyketides [24–26]. In Streptomyces, there are three types of PKSs (type I, type 51 
II, and type III) [27–29]. This review describes the biosynthesis of polyketides in Streptomyces with 52 
three distinct types of PKSs.  53 

 54 

 55 
Figure 1. Scheme of reaction occurred in polyketide synthases (PKSs). 56 

2. Polyketide Synthases Type I 57 

The type I polyketide synthases (type-I PKSs) involve huge multifunctional proteins that have 58 
many modules containing domains, in which a particular enzymatic reaction occur. Each module 59 
has responsibility to perform one condensation cycle in a non-iterative way. Because this system 60 
works with some modules, hence it is also called as modular PKS. The essential domains exist in 61 
each module are acyltransferase (AT), keto synthase (KS) and acyl carrier protein (ACP) that 62 
collaborates to produce β-keto ester intermediate. In addition, the other domains that may be 63 
present in the module are β-ketoreductase (KR), dehydratase (DH) and enoyl reductase (ER) which 64 
are responsible for keto group modification. In the process of producing polyketide, the expanding 65 
polyketide chain is transferred from one module to other module until the completed molecule is 66 
liberated from the last module by a special enzyme [2,26,30].  67 

Furthermore, type-I PKSs are responsible for producing macrocyclic polyketides (macrolides). 68 
Macrolide belongs to polyketide compound characterized by macrocyclic lactone ring containing 69 
between 12 and 16 atoms which has various bioactivities such as antibacterial, antifungal, 70 
immunosuppressant and anticancer. As an antibacterial agent, macrolide works by inhibiting 71 
protein synthesis by binding to the 50S ribosomal subunit and blocking translocation steps of protein 72 
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synthesis [8,27,31]. Some examples of macrolides produced by Streptomyces are rapamycin, FK506, 73 
spiramycin, avermectin, methymycin, narbomycin and pikromycin as shown in Figure 2 [32–36].  74 

 75 

 76 
 77 

Figure 2. Some of macrolides produced by Streptomyces. 78 

3. Biosynthesis of Rapamycin 79 
Rapamycin is 31-membered ring macrolide produced by Streptomyces hygroscopicus isolated 80 

firstly from a soil of Easter Island (Chile) in South Pacific Ocean.  It is a hydrophobic compound and 81 
was discovered as antifungal compound against Candida albicans, Cryptococcus neoformans, Aspergillus 82 
fumigatus, Fusarium oxysporum, and some pathogenic species from genus Penicillium. The antifungal 83 
mechanism of this compound has been described by diffusing into the cell and attaching to 84 
intracellular receptor FKB12. Moreover, the complex of FKB12-rapamycin inhibits the TOR (target of 85 
rapamycin) kinases that has important role in cell cycle progression. Interestingly, rapamycin has 86 
not only antifungal activity but also anticancer and immunosuppressant activity [8,27,37,38].  87 

Rapamycin is synthesized by type-I PKSs rapamycin synthase (RAPS) [39]. Rapamycin-PKS 88 
gene cluster (rapPKS) is 107.3 kb in size and has 3 remarkable large ORFs (open reading frames), 89 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2018                   doi:10.20944/preprints201805.0214.v1

http://dx.doi.org/10.20944/preprints201805.0214.v1


 4 of 14 

 

rapA, rapB and rapC which encode multifunctional protein RAPS1 (~900 kDa), RAPS2 (~1.07 MDa) 90 
and RAPS3 (~660 kDa), respectively. Protein RAPS1 comprises four modules for polyketide chain 91 
extension, protein RAPS2 contains six modules responsible for continuing the process of polyketide 92 
chain elongation until C-16, and RAPS3 possesses four modules which have role in completing the 93 
polyketide fraction of rapamycin molecule. Overall, these three giant proteins encompass 70 94 
domains or enzymatic functions and because of this, rapamycin PKSs are considered as the most 95 
complex multienzyme system discovered so far [26,27,32].  96 

In rapamycin PKSs, there is a loading domain (LD) before the first module involving three 97 
domains, i.e. coenzyme A ligase (CL), ER and ACP domain, which are considered to play in role of 98 
activating and reducing a free shikimic-acid-derived moiety starter unit and finally passing it to the 99 
KS domain of the first module. The extender units incorporated for growing chain are malonyl-CoA 100 
and methylmalonyl-CoA. Rapamycin PKSs has special characteristic not only in the starting process 101 
but also in the finishing process which the mechanism of transferring from the last domain in 102 
rapamycin PKSs and cyclisation of polyketide molecule is assisted by pipecolate-incorporating 103 
enzyme (PIE) as depicted in Figure 3. This enzyme (170 kD) is encoded by gene rapP which is also 104 
located in the rapPKS gene cluster and considered has the similarity to genes encoding nonribosomal 105 
peptide synthethases (NRPSs) [26,27,32].  106 

4. Polyketide Synthases Type II 107 
The type II polyketide synthases (type-II PKSs) are responsible for producing aromatic 108 

polyketide. Based on the polyphenolic ring system and their biosynthetic pathways, the aromatic 109 
polyketides produced by type-II PKSs are classified into three groups, i.e. anthracyclines, 110 
angucyclines, aureolic acids, tetracyclines, tetracenomycins, pradimicin-type polyphenols, and 111 
benzoisochromanequinones. Some examples of aromatic polyketide produced by Streptomyces are 112 
actinorhodin, doxorubicin, jadomycin B, oxytetracycline, mithramycin, tetracenomycin C, and 113 
benastatin A (Figure 4) [28,40–45].  114 

Unlike type-I PKSs that involve huge multifunctional proteins that have many modules 115 
containing domains and perform the enzymatic reaction in a non-iterative way, the type-II PKSs 116 
have monofunctional polypeptides and work iteratively to produce aromatic polyketide. However, 117 
like the type-I PKS, the type-II PKSs also comprise acyl carrier protein (ACP) that functions as an 118 
anchor for the nascent polyketide chain. In addition to possessing ACP, the type-II PKSs also consist 119 
of two ketosynthases units (KSα and KSβ) that work cooperatively to produce poly-β-keto chain. KSα 120 
unit catalyze condensation of the precursors, on the other hand, the role of KSβ in the type-II PKSs is 121 
as a chain length-determining factor. The three major systems (ACP, KSα and KSβ) are called 122 
‘minimal PKS’ that work iteratively to produce aromatic polyketide. The other additional enzymes 123 
such as ketoreductases, cyclases and aromatases cooperate together to transform the poly-β-keto 124 
chain into the aromatic compound core. Furthermore, the post-tailoring process is conducted by 125 
oxygenases, glycosyl and methyl transferases [40,46–48].  126 

5. Biosynthesis of Doxorubicin 127 
Doxorubicin was isolated from Streptomyces peucetius in the early of 1960s. It belongs to 128 

anthracyclines that has tetracyclic ring containing quinone and hydroquinone group in its structure. 129 
Doxorubicin is one of the important drugs for treatment of cancer such as breast cancer, childhood 130 
solid tumors, soft tissue sarcomas, and aggressive lymphomas. There are some proposed 131 
mechanisms how doxorubicin kills the cancer cells, i.e. (i) DNA intercalation, (ii) topoisomerase II 132 
poisoning, (iii) oxidative stress, and (iv) ceramide overproduction [49–51].  133 
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 134 
Figure 3. Biosynthesis of rapamycin. 135 

 136 
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 137 
Figure 4. Some aromatic polyketides produced by Streptomyces. 138 

Daunorubicin (DNR)-doxorubicin (DXR) type-II PKSs, encoded by dps genes in Streptomyces 139 
peucetius, are involved in the formation of doxorubicin. The biosynthesis of doxorubicin requires one 140 
of propionyl-CoA as the starter unit and nine of malonyl-CoA as the extender units. The process 141 
involves two ‘minimal PKS’ expressed by dpsABCDG genes to produce a 21-carbon decaketide as an 142 
intermediate compound. The repetitive process is conducted by KSα (DpsA), KSβ (DpsB) and ACP 143 
(DpsG). The next process employs several enzymes such as ketoreductase (DpsE), cyclases (DpsF, 144 
DpsY and DnrD), oxygenase (DnrG and DnrF), and methyl transferase (DnrC) to produce 145 
ε-rhodomycinone, an important intermediate of doxorubicin biosynthesis. The remaining steps to 146 
synthesize doxorubicin utilize glycosyltransferase (DnrS) with the thymidinediphospho (TDP) 147 
derivative of L-daunosamine, methyl esterase (DnrP), oxygenase (DoxA) and methyl transferase 148 
(DnrK) (Figure 5) [48,52–56].  149 

6. Polyketide Synthases Type III 150 

Unlike the type-I and type II PKSs, the type-III PKSs do not utilize ACP as an anchor for the 151 
production of polyketide metabolite. In this case, acyl-CoAs are used directly as substrates for 152 
generating polyketide compounds. In order to create polyketides, this system contains enzymes that 153 
construct homodimers and catalyzes many reactions such as priming, extension, and cyclization in 154 
the iterative way. With this fact, the type-III PKSs are the simplest structure among the other type 155 
PKSs. The type-III PKSs founded in bacteria was first time reported in 1999 and before that time the 156 
type-III PKSs were known only could be detected in plants [57–59].  157 
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158 
 159 

Figure 5. Biosynthesis of doxorubicin. 160 

Some studies previously revealed that type-III PKSs could also be identified in the Streptomyces 161 
such as RppA, founded in Streptomyces griseus, that is responsible in the synthesis of 162 
1,3,6,8-tetrahydroxynaphthalene (THN), which is the intermediate compound in the synthesis of 163 
flaviolin and hexahydroxyperylenequinone (HPQ) melanin [60]. Gcs, identified in Streptomyces 164 
coelicolor A3(2), is reported has an important role in the biosynthesis of germicidin [61]. SrsA, 165 
encoded by srsA gene and isolated from Streptomyces griseus, is known to have an important role in 166 
the biosynthesis of phenolic lipids, i.e. alkylresorcinols and alkylpyrones [29]. The type-III PKS 167 
Ken2, isolated from Streptomyces violaceoruber, was suggested to be involved in the production of 168 
3,5-dihydroxyphenylglycine (3,5-DHPG). This compound is nonproteinogenic amino acid needed 169 
for formation of kendomycin and several other glycopeptide antibiotics such as balhimycin, 170 
chloroeremomycin and also vancomycin [62]. Cpz6, encoded by cpz6 gene and isolated from 171 
Streptomyces sp. MK730–62F2, was reported to be engaged in the biosynthesis of caprazamycins by 172 
producing a group of new triketidepyrenes (presulficidins)  [63]. Moreover, other finding also 173 
suggested that DpyA, encoded on a linear plasmid of Streptomyces reveromyceticus, catalyzes the 174 
formation of the alkyldihydropyrones (Figure 6) [64].  175 

 176 
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 177 

Figure 6. Some compounds produced by type-III PKSs. 178 

7. Biosynthesis of Germicidin 179 

Germicidin, a pyrone-derived polyketide, is produced by a type-III PKSs germicidin synthase 180 
(Gcs) and is known to inhibit spore germination. Germicidin A, produced by Streptomyces 181 
viridochromogenes and Sreptomyces coelicolor, prevents the spore germination reversibly at very low 182 
concentration (40 pg/ml). The mechanism of inhibition is suggested by affecting the sporal 183 
respiratory chain and blocking Ca2+-activated ATPase, thus resulting inadequate energy for spore 184 
gemination. Furthermore, germicidin A also has antibacterial properties against various 185 
Gram-positive bacteria [65,66].  186 

Although, many bacterial type-III PKSs use only malonyl-CoA as both starter and extender 187 
units, the type-III PKS Gcs, which is responsible in germicidin biosynthesis, is suggested having 188 
ability to utilize either acyl-ACP or acyl-CoA as a starter unit [67]. Moreover, for extender units, Gcs 189 
may involved malonyl-CoA and either methylmalonyl-CoA or ethylmalonyl-CoA in order to 190 
produce many types of germicidins [68]. In the first step, the starter unit is transacylated onto the 191 
cystein residue of Gcs and then Gcs catalyzes the condensation reaction between starter unit and 192 
extender unit concomitantly with decarboxylation process resulting β-ketoacyl-thioester of CoA. 193 
The procces continues with β-ketoacyl-CoA that transacylates back onto the cysteine residue of Gcs 194 
(repetitive process) and subsequently undergoes condensation reaction with either 195 
methylmalonyl-CoA or ethylmalonyl-CoA simultaneously with decarboxylation to formulate 196 
β,δ-diketothioester of CoA. In the end of the reaction, cyclization of the β,δ-diketothioester of CoA is 197 
catalyzed also by Gcs to produce varios type of germicidins (Figure 7) [61].  198 
 199 
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 200 
Figure 7. Biosynthesis of Germicidins. 201 

8. Conclusions 202 

There are three types of PKSs (type I, type II, and type III) in Streptomyces which is responsible 203 
in the biosynthesis of polyketides. Type I polyketide synthases (type-I PKSs) are huge 204 
multifunctional proteins that have many modules containing different domains. Each module has 205 
responsibility to perform one condensation cycle in a non-iterative way and in each domain, a 206 
particular enzymatic reaction is occured. Type-I PKSs are responsible for producing macrocyclic 207 
polyketides (macrolides) such as rapamycin, FK506, spiramycin, avermectin, methymycin, 208 
narbomycin and pikromycin. The type-II PKSs have monofunctional polypeptides and synthesize 209 
iteratively aromatic polyketide such as actinorhodin, doxorubicin, jadomycin B, oxytetracycline, 210 
mithramycin, tetracenomycin C, and benastatin A. Unlike the type-I and type II PKSs, the type-III 211 
PKSs do not utilize ACP as an anchor for the production of polyketide and use acyl-CoAs directly as 212 
substrates for generating polyketide compounds. Type-III PKSs contain enzymes that construct 213 
homodimers and catalyze many reactions in the iterative way in the biosynthesis of some 214 
compounds such as  tetrahydroxynaphthalene (THN), alkylresorcinols, alkylpyrones, 215 
dihydroxyphenylglycine, germicidins, presulficidins, and alkyldihydropyrones. The type-III PKSs 216 
are also considered as the simplest structure among the other type PKSs.   217 
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