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 2

Abstract 43 

Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the 44 

nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-45 

valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique 46 

brings in significant advantages and is a viable technique for such synthesis. This study probes 47 

the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. 48 

Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., 49 

highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with 50 

zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation 51 

tendency in crystal formation are chosen. Transmission electron microscopy and X-ray 52 

diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable 53 

guide for the resulting crystalline phase of a certain metal species, particularly when the 54 

magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix 55 

phase crystals can be expected. For example, Cu will form Cu2O and zero-valent Cu crystals, 56 

unless the synthesis is performed in a reducing environment.  57 
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Introduction 66 

Carbon nanotube-metal nanohybrids (NHs) are being considered for large scale use as electro- 67 

and photo-catalysts1 and are studied for electronics,2 gas sensing,3 biosensing,4 and laser5 68 

applications. With the increased commercial value, bulk synthesis of these NHs is attracting 69 

interest. A simple sol-gel technique can be a viable process that can produce 100s of mg of 70 

multiwalled carbon nanotube (MWNT)-metal NHs.6 Both zero-valent and oxides of metals can 71 

be formed on MWNT surfaces. However, the choice of the metal and its inherent electronic 72 

properties will dictate the resulting crystalline phases. Since preserving the oxidation state of the 73 

metal crystals is crucial to render their reactive properties,7, 8 understanding the mechanism of 74 

nanocrystal formation with a particular crystal phase is thus necessitated.  75 

When preparing metallic nanomaterials, achieving crystalline order (of the synthesized 76 

materials) is essential to extract the desired optical, electronic, and chemical properties9. 77 

Synthesis methods and operating conditions (e.g., temperature10, reducing agent11) are adjusted 78 

to prepare metal nanocrystals with ordered crystallinity10 and desired redox state of the metal 79 

species12. Calcination can facilitate preparing ordered structures, but the feasibility of applying 80 

such high temperature can be limited when carbon nanotubes are involved in the mix, at or 81 

higher than 500 °C.13, 14 Hybridization with metallic nanocrystals can facilitate MWNT oxidation 82 

and lower the MWNT oxidation temperature via chemical modification of the MWNT surface.14 83 

However, such processes are conducive to oxide formation, hence synthesizing zero-valent 84 

nanocrystals can be challenging.  85 

In sol-gel synthesis, strong reducing agents (e.g., borohydride salts) are typically added to 86 

form zero-valent nanocrystals. 11, 15 However, addition of reducing agents drive the reaction 87 

toward zero-valent metal formation (rather than hybridization), which leads to isolated and 88 
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unassociated (from MWNTs) nanocrystal formation. The excess unassociated metal particles 89 

then require rigorous post-treatment of the materials to separate the NHs from the unattached 90 

nanocrystals. Furthermore, some of the metals, because of the elemental electron properties, 91 

present further challenges in zero-valent metal crystal formation.  92 

Standard electron potential (SEP) of a metal species can dictate reaction pathway, and 93 

hence can control the oxidation state (i.e., metal vs. metal oxide) of the crystal grown on MWNT 94 

surfaces. SEP values represent electron transfer capabilities between the oxidized and the zero-95 

valent metal forms (i.e., Mn+ + ne- ↔ M, where M is the metal species and n is the number of 96 

electrons involved in the exchange). Literature evidences suggest that metals with negative SEP 97 

preferentially form oxides while those with positive values tend to form zero-valent forms of the 98 

same. Metal species commonly reported to forming oxides on carbon nanotube surfaces possess 99 

strongly negative SEP values (Table S1). Following oxides are reported to have formed with 100 

metals: Al2O3,16-18 CeO2,19, 20 CoO3,21, 22 Eu2O3,23, 24 FexOy,25-28 HfO2,29, 30 MgO,31 MoO2,32 101 

NiO,33 SiO2,34-36 SnO2,37 TiO2,38, 39 VxOy,40 ZnO,41 and ZrO2.42
 On the other hand, Ag,43 Au,44 102 

Pt,45 and Pd46 with positive SEP are reported to form zero-valent metals  on CNT surfaces. Cu 103 

and W (with positive SEP) and Fe (with negative SEP) demonstrate exceptions; i.e., despite 104 

positive values of SEP, Cu47 and W48 are shown to form oxides, whereas Fe with negative SEP 105 

can form zero-valent metal nanocrystals.49 The challenge, however, is to comment on the role of 106 

SEP on forming zero-valent vs. oxide crystals when sol-gel method is employed to synthesize 107 

MWNT-based NHs.  108 

This article aims to evaluate the efficacy of sol-gel process in hybridizing metal vs. 109 

metals oxides onto MWNT surfaces with no extra addition of reducing or oxidizing agents. The 110 

study judiciously choses three metal species, namely Zn, Ag, and Cu; Zn and Ag has strong 111 
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negative and positive SEP values (Zn with -0.763 V and Ag with +0.799 V SEP values), 112 

respectively, while Cu lies in the positive range, but with a much lower magnitude (SEP of 113 

+0.345 V) compared to Ag. Transmission electron microscopy is used to evaluate the NH 114 

morphology, while X-ray diffraction (XRD) is utilized to characterize the materials before and 115 

after calcination. The design of the study is carefully carried out (e.g., synthesizing and 116 

characterizing in absence of air to avoid oxidation) and tests the efficacy of sol-gel method to 117 

form nanocrystals with both types of crystal phases.  118 

Materials and Methods 119 

Chemicals and Reagents. Pristine MWNTs (O.D. 8-15 nm) were procured from Cheap Tubes 120 

Inc. (Brattleboro, VT). Concentrated nitric acid, sulfuric acid and copper (II) nitrate monohydrate 121 

were purchased from Sigma Aldrich (St. Louis, MO). Trace metal grade silver nitrate was 122 

purchased from Alfa Aesar (Haverhill, MA). Isopropanol and dimethylformamide (DMF) was 123 

obtained from Fisher Scientific (Pittsburgh, PA) while zinc (II) nitrate hexahydrate was 124 

purchased from J.T Baker (Center Valley, PA). For preparing all aqueous suspensions and 125 

solutions, 18.2 mΩ (Milli-Q) water was used unless otherwise stated. 126 

Nanohybrid Synthesis. All materials were synthesized using a modified sol-gel method.6 In 127 

brief, MWNTs (1 g) were acid-etched by ultrasonication (Qsonica LLC, Newtown, CT) in 300 128 

mL of concentrated nitric and sulfuric acid mixture (1:1 volume basis). Upon sonication, the 129 

mixture was refluxed at 100 °C for 3 h under continuous stirring. The oxidized MWNTs were 130 

subsequently filtered until the pH of the filtrate reached >5.5 and then were dried for 48 h in a 131 

desiccator. After drying, the oxidized MWNTs were re-suspended in isopropanol with an 132 

ultrasonic dismembrator (Qsonica, Newtown, CT) and transferred into a round bottom flask. 133 

Appropriate amounts of precursors were added to 10 mL of isopropanol and introduced drop 134 
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wise to the MWNT-isopropanol suspension at 0.301 mL/min with a peristaltic pump (Ismatec, 135 

Wertheim, Germany). The slow rate of precursor addition was maintained to provide sufficient 136 

mixing time. The entire suspension was refluxed at 80 °C for 3 h in a nitrogen environment. 137 

Water was added drop wise into the reaction vessel to promote hydrolysis, where necessary. 138 

Afterwards, the refluxed mixture was washed 4 times with isopropanol (as a purification step), 139 

which removed any unreacted reagent. Finally, isopropanol was evaporated, the dry materials 140 

were powdered using a mortar and pestle, and the resultant materials were calcined at 400 °C for 141 

3 h under nitrogen to facilitate crystal formation.  142 

Physical Morphology and Elemental Composition. The physical morphology of the 143 

NMs was determined using a JEOL 2010F high resolution transmission electron microscopy 144 

(HRTEM, JEOL, Japan) equipped with energy dispersive spectroscopy (EDS). Electron 145 

micrographs were obtained at an acceleration voltage of 200 kV. The details of the HRTEM 146 

methodology are described elsewhere6, 50-56.  In brief, drops of aqueous dispersions of NHs were 147 

placed on lacey carbon coated copper TEM grids (SPI Supplies, West Chester, PA) and air-dried 148 

over a few minutes.  Several micrographs were taken to obtain representative images.  149 

The elemental composition of the dry MWNT and NH samples was evaluated with a 150 

Kratos X-ray Photoelectron Spectrometer-Axis Ultra DLD, equipped with a monochromated Al 151 

Kα X-ray source (1.486 KeV) and a concentric hemispherical analyzer.6 A thin layer of powdered 152 

sample was placed on a double-sided copper taped stainless steel bar. The bar was then placed in 153 

the analysis chamber and degassed for at least 3 h. The X-ray photoelectron spectroscopy (XPS) 154 

analysis was then performed to obtain the survey spectra as well as the spatial high-resolution 155 

spectra and the data was analyzed by fitting the high-resolution element specific peaks with 156 

CasaXPS (Casa Software Ltd., Japan). To ensure reproducibility and overall homogeneity, a total 157 
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of 9 samples for each material (MWNT and three NHs) were analyzed (3 samples each in 158 

triplicate batches for all NHs). 159 

Analysis of Crystallinity. The crystallinity of the MO on the NH surfaces was evaluated with an 160 

XRD. A 600 W Rigaku MiniFlex 600 (Rigaku, Japan) with a Cu-Kα irradiator (0.154 nm 161 

wavelength) and a graphite monochromator was used at a step width of 0.02° (between 2θ values 162 

of 20° to 60°) and a scanning rate of 2°/min. For MWNT-Cu/Cu2O samples, the samples were 163 

inserted into an airtight XRD sample holder under vacuum before measurement. This method for 164 

the XRD of MWNT-Cu/Cu2O samples was carried out in order to eliminate air exposure of the 165 

materials while performing XRD on them. The scattering was detected using a scintillation 166 

counter. 167 

Measuring Oxidation-Reduction Potentials (ORPs). ORPs were measured with a portable 168 

ultrameter (Myron L Company, Carlsbad, CA). Two reaction mixtures, i.e., 169 

MWNT+isopropanol+Cu (NO3)2.H2O and MWNT+DMF+Cu (NO3)2.H2O were heated to 70 °C 170 

for 1 h. After calibrating the ultrameter, 1 mL of the samples was placed in the ORP 171 

measurement chamber separately and ORP was recorded. 172 

Results and Discussion 173 

Physical Morphology and Composition. Representative TEM micrographs of the NHs show 174 

tubular structures with spherical features (darker contrast) on the tubes (Figure 1). The higher 175 

magnification images (i.e., Figure 1 b, d, and f) show lattice fringes on the sphere-like features, 176 

indicating crystalline structures; while the exterior walls of the MWNTs are also observed in 177 

these images. The size of the nanocrystals is found to be larger for both the oxides (i.e., 8-10 nm 178 

for ZnO and 5-8 nm for Cu2O); the zero-valent crystals are smaller (i.e., 2-4 nm) and also are 179 

higher in density on the MWNT-Ag NH surfaces. These features are found to be distributed 180 
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along the tubes. The composition of the samples are quantified with XPS, which indicates a 181 

stronger presence of the zero-valent metal compared to the oxides (Table S2).  182 

Zn Hybridization on MWNTs: Hydroxide to Oxide Formation Pathway. ZnO nanocrystals 183 

growth on the MWNT surfaces was promoted by the negatively charged oxygen moieties on 184 

MWNT surfaces. Electrostatic attraction between metal cations and anionic surface moieties on 185 

MWNTs associate the Zn2+ with the MWNT surfaces. These ions then react with water 186 

molecules (generated from the hydrated zinc nitrate salt) to form Zn(OH)2 on the MWNT 187 

surfaces, which serve as nucleation sites for further growth of amorphous and mixed-phased 188 

Zn(OH)2 and ZnO. Nanocrystal formation pathway for MWNT-ZnO is evaluated in this study 189 

with XRD characterization on the materials, before and after calcination (Figure 2). XRD spectra 190 

before calcination shows evidence of both the crystal phases (Figure 2a). During calcination at 191 

elevated temeperature (at 400 °C in this case), the Zn(OH)2 likely loses the excess water and 192 

forms ZnO crystal phases. XRD spectrum on the NH after calcinaton shows no evidence of 193 

Zn(OH)2 phase (Figure 1b) and confirms this likely crystal formation pathway. Literature reports 194 

on XRD patterns for amorphous Zn(OH)2 and ZnO are used to relate peak positions with specific 195 

crystalline planes.57 The likely reaction pathway for MWNT-ZnO NH formation is shown below, 196 

which is similar to crystal formation pathway described for TiO2 growth on MWNTs.38 197 

푂 − 푀푊푁푇
( )
⎯⎯⎯⎯⎯ 	푂 − 푀푊푁푇 푍푛 ⎯ 	푀푊푁푇 − 푍푛푂/푍푛(푂퐻) (푎푚표푟푝ℎ표푢푠)	198 

⎯ 푀푊푁푇 − 푍푛푂	(푐푟푦푠푡푎푙푙푖푛푒) 199 

Zero-valent Metal Formation on MWNTs with no Reducing Agent. MWNTs have 200 

successfully been hybridized with zero-valent Ag (with SEP of +0.799) employing the modified 201 

sol-gel method. It is noteworthy that no additional reducing agent was required for this synthesis. 202 

The XRD spectrum of the MWNT-Ag NH (Figure 3) shows defined peaks at (111), (200), (220), 203 
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and (311) crystal planes, which correspond to zero-valent Ag.58 Earlier studies on large-scale 204 

MWNT-Ag synthesis though report high quantity of Ag-hybridization with MWNTs, the XRD 205 

spectrum show less-defined peaks, compared to the results presented in this study.43 Though this 206 

study formed Ag-crystals on poly(acrylic acid)-modified MWNT surfaces, thus the underlying 207 

mechanism of these nanocrystal growth is likely quite different compared to those grown on 208 

oxidized carbon surfaces.  209 

Intermediate SEP-metal Cu: The Anomaly that Forces Oxide Formation. With a positive 210 

SEP value, much like Ag, Cu should form zero-valent metals. However, Cu exhibits anomalous 211 

character and produces oxides during hybridization with MWNTs. This section attempts to 212 

overcome such oxide-forming propensity by using anoxic synthesis and characterization 213 

conditions, and results continue to be surprising. Following similar synthesis conditions (when 214 

compared to Zn and Ag), the Cu hybridization resulted in a mixed Cu and Cu2O phases as 215 

shown in the XRD spectrum (Figure 4 a). Defined peaks at (111) and (200) planes (representing 216 

zero-valent Cu) and and at (220) and (111) (representing Cu2O phase) are consistent with the 217 

reported literature.59 Literature reports on nano-scale zero-valent copper suggest that such 218 

behavior can stem from unavoidable oxidation during XRD characterization.50, 51 Some literature 219 

evidences also suggest that such XRD patterns are typical for Cu/Cu2O core/shell nanocrystals.59  220 

To facilitate zero-valent Cu formation on MWNTs, synthesis conditions were modified to 221 

avoid presence of ambient oxygen during the reaction (where, MWNT-isopropanol suspension 222 

was purged with nitrogen for 1 h and sampling handling was done in a glove box) and 223 

calcination processes. The synthesized NHs were also transferred into an airtight XRD sample 224 

holder to continue to avoid exposure to oxygen to the synthesized NHs. It is interesting to note 225 

that the nanocrystals formed in such anoxic reaction environment, continue to display Cu2O 226 
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crystal planes, and with some additional Cu2O planes in higher intensity (Figure 4b). The results 227 

indicate that the likely oxidation of Cu has taken place, not during the XRD characterization, but 228 

likely during the synthesis process. The source of oxygen is likely H2O or NO3
-, which could not 229 

be removed after the completion of the reaction process. These results indicate that the use of a 230 

reducing agent may be unavoidable for the lower magnitude SEP-metal Cu.  231 

A solvent with a relatively higher reduction potential (compared to isopropanol), e.g., 232 

dimethyl formamide (DMF), can potentially facilitate formation of zero-valent Cu in a sol-gel 233 

synthesis; earlier studies have employed DMF for synthesizing Ag nanoparticles.60 Following 234 

similar protocol as noted earlier (in typical oxic environment), the nanocrystals formed with the 235 

aid of DMF exhibit a lowering of the (111) Cu2O peak, while a complete elimination of the (220) 236 

peak observed earlier (Figure 4c). To assess the reducing potency of the solvents ORP can be 237 

measured. The isopropanol system has an ORP value of +597 mV compared to DMF’s +504 238 

mV; which indicate a more conducive reducing environment when DMF is used.61 These 239 

findings strongly suggest that formation of zero-valent crystals with a sol gel method may be 240 

challenging for metals with low magnitude SEP, and may necessitate stronger reducing 241 

environment to facilitate this process. 242 

Conclusions 243 

Sol-gel synthesis can be utilized to form both zero-valent and oxides of metals on MWNT 244 

surfaces. The resulting crystal phase is strongly dependent on the electronic properties of the 245 

metal species. SEP, which is a measure of energy required per unit charge to drive a redox 246 

reaction, can be used as a guideline for the choice of metal to obtain nanocrystals with the 247 

desired crystalline phase. Results suggest that metals with higher SEP values form either zero-248 

valent or oxide phases, while those with a lower magnitude SEP facilitates mixed-phase crystals. 249 
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Sol-gel technique can be useful to form zero-valent crystals without any reducing agent; 250 

however, such reducing environment may become necessary for oxidation-prone metals, such as 251 

Cu.  252 
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Figure 1. Representative TEM micrographs of (a-b) MWNT-ZnO, (c-d) MWNT-Ag, and (e-f) 493 

MWNT-Cu/Cu2O NHs. High resolution images are shown in b, d, and f.  494 
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Figure 2. Representative XRD spectra of MWNT-ZnO NH (a) before and (b) after calcination at 516 

400 °C for 3 h. The peak positions are labeled to indicate the respective crystal planes. The XRD 517 

spectra were collected at a scanning rate of 2°/min.   518 
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Figure 3. Representative XRD spectra of CNT-Ag NHs. The peak positions are labeled to 555 

indicate the respective crystal planes. Spectrum was collected at a scanning rate of 2°/min.   556 
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 563 

Figure 4. XRD spectrum of MWNT-Cu/Cu2O NH synthesized using the sol-gel process (a) in 564 

isopropanol, (b) in oxygen-free conditions with isopropanol, and (c) in DMF. Airtight XRD 565 

sample holder was used for XRD analysis for all the three materials. The peak positions are 566 

labeled to indicate the respective crystal planes. The XRD spectra were collected at a scanning 567 

rate of 2°/min. 568 
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