(Review)

Unanswered Questions Regarding Sex and BMP/TGF-β signaling

3 4

Tapan A. Shah¹ and Melissa B. Rogers¹*

- ¹Rutgers New Jersey Medical School, Microbiology, Biochemistry, & Molecular Genetics,
- 6 Newark, NJ
 - * Correspondence: rogersmb@njms.rutgers.edu; Tel.: +1-973-972-2984

Abstract: Crosstalk between the BMP and TGF- β signaling pathways regulates many complex developmental processes from the earliest stages of embryogenesis throughout adult life. In many situations, the two signaling pathways act reciprocally. For example, TGF- β signaling is generally pro-fibrotic whereas BMP signaling is anti-fibrotic and pro-calcific. Sex-specific differences occur in many diseases including cardiovascular pathologies. Differing ratios of fibrosis and calcification in stenotic valves suggests that BMP/TGF- β signaling may vary in men and women. In this review, we focus on the current understanding of the interplay between sex and BMP/TGF- β signaling and pose several unanswered questions.

Keywords: BMP, TGF-β, signaling, sex, chromosomes, XIST, genomic imprinting, hormones, fibrosis

1. Introduction

The distinct developmental mechanisms that bring about the dramatic differences in male and female characteristics are well studied. However, the impact of sex-associated signaling on the bone morphogenetic protein (BMP), transforming growth factor (TGF)- β , and other pathways in developing animals and during the adult life is incomplete. Cardiac valvulogenesis is just one of the many complex developmental processes where both BMP and TGF- β signals – along with WNT, fibroblast growth factor (FGF), NOTCH, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) signals – orchestrate differentiation and morphology [1-3]. As in many adult diseases, processes that control normal embryonic processes also are involved in valve pathologies. Recent reports described dissimilarities in the ratios of fibrotic to calcified tissue in equally stenotic valves from men *versus* women [4-7]. Because TGF- β signaling is generally pro-fibrotic and BMP signaling is generally anti-fibrotic, we wondered if sex-associated changes in this balance contributed to the skewed sex distribution of valvular heart disease [4,7-11]. Here we review the current state of understanding regarding the impact of sex on BMP and TGF- β signaling and identify several unanswered questions.

2. Sex Chromosomes. Most biological discussions of sex start with the X- and Y-chromosomes. Basic mechanisms that may influence BMP and TGF- β signaling would include X- or Y-linked inheritance of variant alleles and differences in X-chromosome inactivation. Of 64 mammalian BMP/TGF- β ligands, receptors, canonical signal mediators, and extracellular and intracellular antagonists, only *Bmp15* (GDF9B) maps to the X chromosome (Supplemental Table 1 and [12-15]). BMP15, an oocytederived growth and differentiation factor, is essential for folliculogenesis and granulosa cell function and thus female fertility [16]. Of greater overall impact to female biology, both the BMP and TGF- β signaling pathways regulate a key factor in X-chromosome inactivation. This critical process assures similar ratios of X to autosome gene expression between XY males and XX females. In female cells, one of the two X chromosomes is transcriptionally inactivated by a mechanism involving the

noncoding RNA XIST. Six members of the BMP/TGF-β signaling pathway were identified in a screen for X-chromosome inactivation modulators [17]. Chromatin immunoprecipitation experiments determined that BMP signaling directly induced the expression of XIST. In contrast, TGF-β1 down-regulated XIST *in vitro* and *in vivo*. Antagonism between these two pathways would profoundly influence X-chromosome dosage compensation and thus female biology on a cellular level [17].

Unanswered questions. Human X-chromosome inactivation and reactivation have profound consequences on cellular reprogramming and disease [18]. Likewise, BMP/TGF- β signaling strongly impacts pluripotency and differentiation. How does the upstream modulation of XIST expression by BMP/TGF- β signaling impact the downstream processes affected by these pathways? Does the ratio of BMP/TGF- β signaling affect the 15% of X-linked genes that escape from X-inactivation in human females, many in a tissue-specific pattern [19]? What is the relationship between pathological conditions that alter X-chromosome inactivation and BMP/TGF- β signaling?

3. Genetic imprinting is another influential cellular process controlled by sex, in this case, that of the parents. Imprinted genes are expressed on either the maternal or paternal allele, but not both. This monoallelic expression causes a variant or mutated allele to produce a different phenotype based on the parental origin of that imprinted gene. 250 human and 150 mouse imprinted genes were surveyed (Supplemental Table 1 and [20,21]). The ligand, BMP8B, is predicted to have a paternal genetic imprint in humans. The extracellular antagonist, Decorin, is maternally imprinted in mouse, but not humans [21]. Furthermore, at least two imprinted long noncoding (Inc) RNAs (H19 and MEG3) and their miRNA derivatives (e.g., miR-675-3p and -5p) have been shown to regulate key BMP/TGF- β ligands and signaling intermediaries, including BMP4, SMAD1, and SMAD5 [22,23]. These two lncRNAs are imprinted in both humans and mice and have been shown to influence mesenchymal stem cell lineage decisions such as myogenesis, adipogenesis, and osteogenesis that BMP/TGF- β also direct.

Unanswered questions. The epigenetic regulation of imprinted genes controls fetal and postnatal growth, with lifelong metabolic consequences such as obesity that impact health [24]. BMP and TGF- β signaling govern the differentiation of cells into myoblasts, adipocytes, chondrocytes, or osteoblasts. How do parentally imprinted regulators impact critical differentiation choices controlled by BMP/TGF- β signaling?

4. Hormones. Beyond the cell-intrinsic impact of the sex chromosomes and imprinting, hormones such as estrogen and androgens are essential drivers of female and male characteristics and function. Furthermore, the natural developmental variation in hormonal milieu, for example during puberty, pregnancy, lactation, and menopause, is substantial. In contrast to X-chromosome inactivation and imprinting which alter the intrinsic nature of each cell, hormones are extrinsic factors that coordinate cell behaviors on a physiological scale. Unsurprisingly, sex hormones directly regulate many members of the BMP/TGF- β signaling pathways (Table 1). For example, estrogen directly induces *Bmp2* and *Bmp6* transcription [25,26]. In contrast, estrogen inhibits TGF- β signaling by stimulating SMAD2/3 protein degradation [27]. Testosterone was shown to significantly alter the expression of 20 members of the BMP/TGF- β pathway in skeletal muscle progenitors (satellite cells, [28]). Perhaps

fueled by the long history of reproductive endocrinology - anti-Müllerian hormone (AMH) also known as the Müllerian-inhibiting substance (MIS) was discovered in 1947 [29] – an exceedingly complex network of estrogen and androgen interactions with BMP/TGF- β pathways has been described in reproductive organs. Estrogen and androgens interact with nearly all the members of the TGF- β superfamily (TGF- β s, BMPs, activin, inhibins, anti-Müllerian hormone, growth differentiation factors (GDFs), LEFTY, and NODAL) in females [16]. The system of BMP/TGF- β signaling may be only slightly less vast in males [30,31].

Table 1: BMP/TGF- β signaling pathway members with molecular evidence of direct regulation by sex-related steroids.

I							
Protein	Effector	Evidence	Cell or Tissue type	Reference			
Ligands		1					
AMH (MIS)	Estrogen	Luciferase reporter assay	KK1 cells	[20]			
BMP2	Estrogen	Luciferase reporter assay, ovariectomy	C3H10T1/2 cells, bone marrow mesenchymal stem cells	[25,32]			
ВМР6	Estrogen	Luciferase reporter assay	MCF-7, T47- D cells, and HepG2 cells	[26]			
INHβA (ACTA)	Estrogen	Luciferase reporter assay	GRMO2 granulosa cells	[33]			
INHβB (ACTB)	Estrogen	Luciferase reporter assay	GRMO2 granulosa cells	[33]			
TGF-β1	Dihydrotestosterone, R1881 synthetic androgen	Luciferase reporter assay, Chromatin Immunoprecipitation	PC3mm2 cells, LNCaP cells, primary osteoblasts	[34-36]			
TGF-β3	Estrogen	Chloramphenicol Acetyl Transferase (CAT) reporter assay	Human MG63 osteosarcoma cells	[37]			
Extracellular Inhibitors							
Decorin	Progesterone, Dienogest synthetic progestin	Chromatin Immunoprecipitation	EMOsis cc/TERT and	[38]			

Peer-reviewed version available at J. Dev. Biol. 2018, 6, 14; doi:10.3390/jdb6020014

			CRL-4003				
			cells.				
Receptors							
TGFβR1	Estrogon	Luciferase reporter	osteoblasts	[39]			
(ALK5)	Estrogen	assay	osteobiasts				
Intracellular Signal Transducers							
SMAD3	Dihydrotestosterone	Dihydrotestosterone Luciferase reporter assay prostate cancer cel		[40]			
Intracellular Inhibitors							
SMURF1	Mibolerone synthetic androgen	Chromatin Immunoprecipitation	LNCaP cells	[41]			

97 98

99

100

Unanswered questions. A daunting web of BMP/TGF- β additive, synergistic, and antagonistic actions among members of the ligand superfamily and signal mediators occurs in reproductive tissues. Each interaction within this panapoly "may" occur in other tissues. The challenge is to identify which interactions also occur in other tissues.

101102103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

5. Crosstalk and balance. In just the context of cardiovascular biology, sex profoundly influences heart and vascular health with estrogen generally playing a protective role [42,43]. That a "one size fits all" approach to cardiovascular treatment cannot work for men and women is now widely recognized [43]. Several cardiovascular diseases, including aortic valve stenosis, exhibit sex-specific differential levels of calcified and fibrotic tissues. The reduced blood flow associated with aortic valve stenosis is life-threatening. Unfortunately, treatment is limited to surgical replacement. Both calcification and fibrosis impair valve leaflet mobility. Studies have shown that valves from men typically have greater a ortic valve calcification whereas women have a greater fibrosis score despite equal levels of stenosis and loss of function [5-7]. We postulate that the balance of BMP/TGF-β signaling may differ in the valves from males and females. Many members of the TGF-β superfamily, particularly the founding members TGF-β1 and -β2, but also activin A, myostatin, and BMP9, promote fibrosis in various tissues [4,44]. Others, for example, TGF-β3, BMP2, and BMP7 oppose fibrosis in multiple organs [44-54]. Different ligands often promote alternative lineage choices. For example, TGF-β1 inhibits calcific nodule formation in aortic valves *in vivo* by inducing SOX9, a pro-chondrogenic, anti-osteogenic transcription factor [55]. On the other hand, BMP2 and its downstream effectors, e.g., phosphorylated SMAD1/5/8(9), are potent pro-osteogenic signals strongly implicated in pathological calcification [56-61]. In a few models of organ fibrosis, the antagonistic nature of TGF-β and BMP signaling has been directly observed in the same tissues. In these in vitro and in vivo studies, TGF-β signaling promoted extracellular matrix synthesis and epithelial-mesenchymal transition (EMT), whereas BMP2 negatively regulated these pro-fibrotic Understanding this interplay between BMP and TGF-β signaling will processes [45,62,63]. potentially reveal potential strategies to control fibrotic, calcific, and other pathologies [44,64].

124125126

127

Unanswered questions. Clear sex-specific differences in the relative levels of calcification and fibrosis in aortic valves occur. Although BMP/TGF- β signaling strongly influences these processes,

few studies have addressed the regulation of these pathways in each sex. What are the relative levels of each BMP/TGF- β ligand in healthy and diseased valves in men and woman? How do sex and hormonal status influence the relative activities of signaling mediators and extracellular and intracellular antagonists of signaling? Most importantly, what therapeutic strategies may modulate the balance of BMP/TGF- β signaling optimally for each sex?

6. Concluding remarks. Many factors lead to sex-specific differences in disease incidences and manifestations and to therapeutic efficacy [65]. These include cell-intrinsic genetic and cell-extrinsic physiological dissimilarities as well as environmental circumstances such as healthcare inequities [66]. Although increased attention is now paid to social and organismal contrasts between males and females, far less is known regarding the impact of sex on biochemical signaling mechanisms. Despite extensive differences in many diseases, preclinical studies often ignore sex as an important biological variable. Studies often use only male animals or fail to report sex at all. Full understanding of disease processes will only be possible when the effect of sex on signal crosstalk is elucidated. The potential reward will be therapeutic methods to fine-tune the balance of networks involving BMPs, TGF-βs, and other signals in both men and women.

Supplemental Table 1: Chromosomal locations and genomic imprinting status for members of the BMP/TGF- β signaling pathways.

DWII / I GIp s .	<i>66</i> r	· ·				Charama	
Protein	HNGC ID	Chromo- some (human/ mouse)	Imprinted	Protein	HNGC ID	Chromo- some (human/ mouse)	Imprinted
Ligands		mouse,		Extracellular A	ntagonist		
AMH (MIS)	464	19/10	No	BAMBI	30251	10/18	No
BMP10	20869	2/6	No	BMPER	24154	7/9	No
BMP15 (GDF9B)	1068	X/X	No	Chordin	1949	3/16	No
BMP2	1069	20/2	No	DAND5 (Coco)	26780	19/8	No
ВМР3	1070	4/5	No	NBL1 (DAN)	7650	1/4	No
BMP3B (GDF10)	4215	10/14	No	Decorin	2705	12/10	Maternal for mouse, not human (verified, [21])
BMP4	1071	14/14	No	Follistatin	3971	5/13	No
BMP5	1072	6/9	No	Gremlin	2001	15/2	No
BMP6	1073	6/13	No	LTBP1	6714	2/17	No
BMP7 (OP1)	1074	20/2	No	Noggin	7866	17/11	No
BMP8A	21650	1/4	No	Sclerostin	13771	17/11	No
BMP8B (OP2)	1075	1/4	Predicted for humans	Twisted Gastrulation	12429	18/17	No

Peer-reviewed version available at J. Dev. Biol. 2018, 6, 14; doi:10.3390/jdb6020014

GDF1	4214	19/8	No	Receptors			
GDF11 (BMP11)	4216	12/10	No	ACVR2B	174	3/9	No
GDF15	30142	19/8	No	ACVRL1 (ALK1)	175	12/15	No
GDF2 (BMP9)	4217	10/14	No	ACVR1 (ALK2)	171	2/2	No
GDF3	4218	12/6	No	ALK4 (ACVR1B)	172	12/15	No
GDF5 (BMP14)	4220	20/2	No	AMHR2	465	12/15	No
GDF6 (BMP13)	4221	8/4	No	BMPR2	1078	2/1	No
GDF9	4224	5/11	No	BMPRIA (ALK3)	1076	10/14	No
ΙΝΗα	6065	2/1	No	BMPRIB (ALK6)	1077	4/3	No
INHβA (ACTA)	6066	7/13	No	TGFβR2	11773	3/9	No
INHβB (ACTB)	6067	2/1	No	TGFβR3	11774	1/5	No
INHβC (ACTC)	6068	12/10	No	Intracellular Signal Transducers			
INHβE (ACTE)	24029	12/10	No	SMAD1	6767	4/8	No
LEFTYA	3122	1/1	No	SMAD2	6768	18/18	No
LEFTYB	6552	1/1	No	SMAD3	6769	15/9	No
MSTN (GDF8)	4223	2/1	No	SMAD4	6770	18/18	No
NODAL	7865	10/10	No	SMAD5	6771	5/13	No
TGF-β1	11766	19/7	No	SMAD9(8)	6774	13/3	No
TGF-β2	11768	1/1	No	Intracellular Inhibitors			
TGF-β3	11769	14/12	No	SMAD6	6772	15/9	No
				SMAD7	6773	18/18	No
				SMURF1	16807	7/5	No
				SMURF2	16809	17/11	No

Author Contributions: T.A.S. and M.B.R. wrote the manuscript.

Acknowledgments: This work was funded by National Heart, Lung, and Blood Institute R01HL114751 and National Institutes of Aging R56AG050762 awards to M.B.R.

Conflicts of Interest: The authors declare no conflict of interest.

152 References

40-47.

- 153 Wu, B.; Wang, Y.; Xiao, F.; Butcher, J.T.; Yutzey, K.E.; Zhou, B. Developmental Mechanisms of Aortic 154 Valve Malformation and Disease. Annu Rev Physiol 2017, 79, 21-41.
- 155 2. Kruithof, B.P.; Duim, S.N.; Moerkamp, A.T.; Goumans, M.J. TGFbeta and BMP signaling in cardiac 156 cushion formation: lessons from mice and chicken. Differentiation 2012, 84, 89-102.
- 157 Dutta, P.; Lincoln, J. Calcific Aortic Valve Disease: a Developmental Biology Perspective. Curr Cardiol 3. 158 Rep 2018, 20, 21.
- 159 4. Sritharen, Y.; Enriquez-Sarano, M.; Schaff, H.V.; Casaclang-Verzosa, G.; Miller, J.D. Pathophysiology 160 of Aortic Valve Stenosis: Is It Both Fibrocalcific and Sex Specific? Physiology (Bethesda) 2017, 32, 182-161 196.
- 162 5. Aggarwal, S.R.; Clavel, M.A.; Messika-Zeitoun, D.; Cueff, C.; Malouf, J.; Araoz, P.A.; Mankad, R.; 163 Michelena, H.; Vahanian, A.; Enriquez-Sarano, M. Sex differences in aortic valve calcification 164 measured by multidetector computed tomography in aortic stenosis. Circ Cardiovasc Imaging 2013, 6, 165
- 166 6. Thaden, J.J.; Nkomo, V.T.; Suri, R.M.; Maleszewski, J.J.; Soderberg, D.J.; Clavel, M.A.; Pislaru, S.V.; 167 Malouf, J.F.; Foley, T.A.; Oh, J.K., et al. Sex-related differences in calcific aortic stenosis: correlating 168 clinical and echocardiographic characteristics and computed tomography aortic valve calcium score 169 to excised aortic valve weight. Eur Heart J 2016, 37, 693-699.
- 170 7. Simard, L.; Cote, N.; Dagenais, F.; Mathieu, P.; Couture, C.; Trahan, S.; Bosse, Y.; Mohammadi, S.; 171 Page, S.; Joubert, P., et al. Sex-Related Discordance Between Aortic Valve Calcification and
- 172 Hemodynamic Severity of Aortic Stenosis: Is Valvular Fibrosis the Explanation? Circ Res 2017, 120, 173 681-691.
- 174 8. Andell, P.; Li, X.; Martinsson, A.; Andersson, C.; Stagmo, M.; Zoller, B.; Sundquist, K.; Smith, J.G. 175 Epidemiology of valvular heart disease in a Swedish nationwide hospital-based register study. Heart 176 **2017**, 103, 1696-1703.
- 177 9. Kong, W.K.; Regeer, M.V.; Ng, A.C.; McCormack, L.; Poh, K.K.; Yeo, T.C.; Shanks, M.; Parent, S.; 178 Enache, R.; Popescu, B.A., et al. Sex Differences in Phenotypes of Bicuspid Aortic Valve and 179 Aortopathy: Insights From a Large Multicenter, International Registry. Circ Cardiovasc Imaging 2017, 180 10.
- 181 10. Michelena, H.I.; Mankad, S.V. Sex Differences in Bicuspid Aortic Valve Adults: Who Deserves Our 182 Attention, Men or Women? Circ Cardiovasc Imaging 2017, 10.
- 183 11. Porras, A.M.; McCoy, C.M.; Masters, K.S. Calcific Aortic Valve Disease: A Battle of the Sexes. Circ Res 184 **2017**, 120, 604-606.
- 185 12. Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat 186 Rev Endocrinol 2016, 12, 203-221.
- 187 13. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on 188 genomes, pathways, diseases and drugs. Nucleic Acids Res 2017, 45, D353-D361.
- 189 14. Qiagen Ingenuity Pathway Analysis. Available online:
- 190 https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/. Accessed on 7th May 191 2018..
- 192 15. Sanchez-Duffhues, G.; Hiepen, C.; Knaus, P.; Ten Dijke, P. Bone morphogenetic protein signaling in 193 bone homeostasis. Bone 2015, 80, 43-59.

- 194 16. Ni, N.; Li, Q. TGFbeta superfamily signaling and uterine decidualization. Reprod Biol Endocrinol 2017, 195 15, 84.
- 196 17. Sripathy, S.; Leko, V.; Adrianse, R.L.; Loe, T.; Foss, E.J.; Dalrymple, E.; Lao, U.; Gatbonton-Schwager,
- 197 T.; Carter, K.T.; Payer, B., et al. Screen for reactivation of MeCP2 on the inactive X chromosome
- 198 identifies the BMP/TGF-beta superfamily as a regulator of XIST expression. Proc Natl Acad Sci U S A 199 **2017**, *114*, 1619-1624.
- 200 18. Cantone, I.; Fisher, A.G. Human X chromosome inactivation and reactivation: implications for cell 201 reprogramming and disease. Philos Trans R Soc Lond B Biol Sci 2017, 372.
- 202 19. Disteche, C.M.; Berletch, J.B. X-chromosome inactivation and escape. J Genet 2015, 94, 591-599.
- 203 20. Grynberg, M.; Pierre, A.; Rey, R.; Leclerc, A.; Arouche, N.; Hesters, L.; Catteau-Jonard, S.; Frydman,
- 204 R.; Picard, J.Y.; Fanchin, R., et al. Differential regulation of ovarian anti-mullerian hormone (AMH) by 205 estradiol through alpha- and beta-estrogen receptors. J Clin Endocrinol Metab 2012, 97, E1649-1657.
- 206 21. Monk, D.; Arnaud, P.; Apostolidou, S.; Hills, F.A.; Kelsey, G.; Stanier, P.; Feil, R.; Moore, G.E. Limited 207 evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A 2006, 103, 208 6623-6628.
- 209 22. Dey, B.K.; Pfeifer, K.; Dutta, A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p 210 and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 2014, 28, 491-211 501.
- 212 23. Peng, S.; Cao, L.; He, S.; Zhong, Y.; Ma, H.; Zhang, Y.; Shuai, C. An Overview of Long Noncoding 213 RNAs Involved in Bone Regeneration from Mesenchymal Stem Cells. Stem Cells. Int 2018, 2018, 214 8273648.
- 215 24. Cassidy, F.C.; Charalambous, M. Genomic imprinting, growth and maternal-fetal interactions. J Exp 216
- 217 25. Zhou, S.; Turgeman, G.; Harris, S.E.; Leitman, D.C.; Komm, B.S.; Bodine, P.V.; Gazit, D. Estrogens 218 activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol 219 Endocrinol 2003, 17, 56-66.
- 220 26. Ong, D.B.; Colley, S.M.; Norman, M.R.; Kitazawa, S.; Tobias, J.H. Transcriptional regulation of a BMP-221 6 promoter by estrogen receptor alpha. J Bone Miner Res 2004, 19, 447-454.
- 222 27. Ito, I.; Hanyu, A.; Wayama, M.; Goto, N.; Katsuno, Y.; Kawasaki, S.; Nakajima, Y.; Kajiro, M.;
- 223 Komatsu, Y.; Fujimura, A., et al. Estrogen inhibits transforming growth factor beta signaling by 224
- promoting Smad2/3 degradation. J Biol Chem 2010, 285, 14747-14755.
- 225 28. Braga, M.; Bhasin, S.; Jasuja, R.; Pervin, S.; Singh, R. Testosterone inhibits transforming growth factor-226 beta signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role
- 227 of follistatin in mediating testosterone action. Mol Cell Endocrinol 2012, 350, 39-52.
- 228 29. Teixeira, J.; Maheswaran, S.; Donahoe, P.K. Mullerian inhibiting substance: an instructive
- 229 developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev 2001, 22, 230 657-674.
- 231 30. Murashima, A.; Kishigami, S.; Thomson, A.; Yamada, G. Androgens and mammalian male 232 reproductive tract development. Biochim Biophys Acta 2015, 1849, 163-170.
- 233 31. Ciller, I.M.; Palanisamy, S.K.; Ciller, U.A.; McFarlane, J.R. Postnatal expression of bone
- 234 morphogenetic proteins and their receptors in the mouse testis. Physiol Res 2016, 65, 673-682.

- 235 32. Zhou, S.; Zilberman, Y.; Wassermann, K.; Bain, S.D.; Sadovsky, Y.; Gazit, D. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem
- cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl 2001, Suppl 36, 144-155.
- 238 33. Kipp, J.L.; Kilen, S.M.; Bristol-Gould, S.; Woodruff, T.K.; Mayo, K.E. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. *Endocrinology* **2007**, *148*, 1968-1976.
- 240 34. Qi, W.; Gao, S.; Wang, Z. Transcriptional regulation of the TGF-beta1 promoter by androgen receptor.
 241 *Biochem J* 2008, 416, 453-462.
- McCarthy, T.L.; Centrella, M. Androgen receptor activation integrates complex transcriptional effects in osteoblasts, involving the growth factors TGF-beta and IGF-I, and transcription factor C/EBPdelta.
- 244 *Gene* **2015**, 573, 129-140.
- 245 36. Chipuk, J.E.; Cornelius, S.C.; Pultz, N.J.; Jorgensen, J.S.; Bonham, M.J.; Kim, S.J.; Danielpour, D. The androgen receptor represses transforming growth factor-beta signaling through interaction with
- 247 Smad3. *J Biol Chem* **2002**, 277, 1240-1248.
- 248 37. Yang, N.N.; Bryant, H.U.; Hardikar, S.; Sato, M.; Galvin, R.J.; Glasebrook, A.L.; Termine, J.D. Estrogen and raloxifene stimulate transforming growth factor-beta 3 gene expression in rat bone: a potential mechanism for estrogen- or raloxifene-mediated bone maintenance. *Endocrinology* **1996**, *137*, 2075-
- 251 2084.
- Ono, Y.J.; Terai, Y.; Tanabe, A.; Hayashi, A.; Hayashi, M.; Yamashita, Y.; Kyo, S.; Ohmichi, M. Decorin induced by progesterone plays a crucial role in suppressing endometriosis. *J Endocrinol* **2014**, 223, 203-
- 254 216.
- 255 39. McCarthy, T.L.; Chang, W.Z.; Liu, Y.; Centrella, M. Runx2 integrates estrogen activity in osteoblasts. *J* 256 *Biol Chem* **2003**, *278*, 43121-43129.
- 257 40. Song, K.; Wang, H.; Krebs, T.L.; Wang, B.; Kelley, T.J.; Danielpour, D. DHT selectively reverses
 258 Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in
- prostate epithelial cells. *Mol Endocrinol* **2010**, 24, 2019-2029.
- 260 41. Gang, X.; Wang, G.; Huang, H. Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion. *Prostate* **2015**, *75*, 561-572.
- 262 42. Boese, A.C.; Kim, S.C.; Yin, K.J.; Lee, J.P.; Hamblin, M.H. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. *Am J Physiol Heart Circ*264 *Physiol* 2017, 313, H524-H545.
- den Ruijter, H.M.; Haitjema, S.; Asselbergs, F.W.; Pasterkamp, G. Sex matters to the heart: A special issue dedicated to the impact of sex related differences of cardiovascular diseases. *Atherosclerosis* **2015**, 241, 205-207.
- Walton, K.L.; Johnson, K.E.; Harrison, C.A. Targeting TGF-beta Mediated SMAD Signaling for the Prevention of Fibrosis. *Front Pharmacol* **2017**, *8*, 461.
- Wang, S.; Sun, A.; Li, L.; Zhao, G.; Jia, J.; Wang, K.; Ge, J.; Zou, Y. Up-regulation of BMP-2 antagonizes
 TGF-beta1/ROCK-enhanced cardiac fibrotic signalling through activation of Smurf1/Smad6 complex. *I Cell Mol Med* 2012, *16*, 2301-2310.
- 273 46. Izumi, M.; Masaki, M.; Hiramoto, Y.; Sugiyama, S.; Kuroda, T.; Terai, K.; Hori, M.; Kawase, I.; Hirota,
- 274 H. Cross-talk between bone morphogenetic protein 2 and leukemia inhibitory factor through ERK 1/2
- and Smad1 in protection against doxorubicin-induced injury of cardiomyocytes. J Mol Cell Cardiol
- **2006**, 40, 224-233.

- 277 47. Ebelt, H.; Hillebrand, I.; Arlt, S.; Zhang, Y.; Kostin, S.; Neuhaus, H.; Muller-Werdan, U.; Schwarz, E.;
- Werdan, K.; Braun, T. Treatment with bone morphogenetic protein 2 limits infarct size after
- 279 myocardial infarction in mice. *Shock* **2013**, 39, 353-360.
- 280 48. Lepparanta, O.; Tikkanen, J.M.; Bespalov, M.M.; Koli, K.; Myllarniemi, M. Bone morphogenetic
- protein-inducer tilorone identified by high-throughput screening is antifibrotic in vivo. *Am J Respir*
- 282 *Cell Mol Biol* **2013**, 48, 448-455.
- 283 49. Koli, K.; Myllarniemi, M.; Vuorinen, K.; Salmenkivi, K.; Ryynanen, M.J.; Kinnula, V.L.; Keski-Oja, J.
- Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis.
- 285 *Am J Pathol* **2006**, 169, 61-71.
- Myllarniemi, M.; Lindholm, P.; Ryynanen, M.J.; Kliment, C.R.; Salmenkivi, K.; Keski-Oja, J.; Kinnula,
- V.L.; Oury, T.D.; Koli, K. Gremlin-mediated decrease in bone morphogenetic protein signaling
- promotes pulmonary fibrosis. *Am J Respir Crit Care Med* **2008**, 177, 321-329.
- De Langhe, E.; Cailotto, F.; De Vooght, V.; Aznar-Lopez, C.; Vanoirbeek, J.A.; Luyten, F.P.; Lories, R.J.
- 290 Enhanced endogenous bone morphogenetic protein signaling protects against bleomycin induced
- pulmonary fibrosis. Respir Res 2015, 16, 38.
- 292 52. Gao, X.; Cao, Y.; Staloch, D.A.; Gonzales, M.A.; Aronson, J.F.; Chao, C.; Hellmich, M.R.; Ko, T.C. Bone
- 293 morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. *PLoS One* **2014**,
- 294 9, e89114.
- Myllarniemi, M.; Vuorinen, K.; Pulkkinen, V.; Kankaanranta, H.; Aine, T.; Salmenkivi, K.; Keski-Oja,
- 296 J.; Koli, K.; Kinnula, V. Gremlin localization and expression levels partially differentiate idiopathic
- interstitial pneumonia severity and subtype. *J Pathol* **2008**, 214, 456-463.
- 54. Farkas, L.; Farkas, D.; Gauldie, J.; Warburton, D.; Shi, W.; Kolb, M. Transient overexpression of
- Gremlin results in epithelial activation and reversible fibrosis in rat lungs. Am J Respir Cell Mol Biol
- **2011**, *44*, 870-878.
- Huk, D.J.; Austin, B.F.; Horne, T.E.; Hinton, R.B.; Ray, W.C.; Heistad, D.D.; Lincoln, J. Valve
- 302 Endothelial Cell-Derived Tgfbeta1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial
- 303 Cells Associated With Attenuated Calcification. *Arterioscler Thromb Vasc Biol* **2016**, *36*, 328-338.
- Bostrom, K.; Watson, K.E.; Horn, S.; Wortham, C.; Herman, I.M.; Demer, L.L. Bone morphogenetic
- protein expression in human atherosclerotic lesions. *J Clin Invest* **1993**, *91*, 1800-1809.
- Kaden, I.I.; Bickelhaupt, S.; Grobholz, R.; Vahl, C.F.; Hagl, S.; Brueckmann, M.; Haase, K.K.; Dempfle,
- 307 C.E.; Borggrefe, M. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific
- 308 aortic stenosis. *J Heart Valve Dis* **2004**, *13*, 560-566.
- 309 58. Yang, X.; Meng, X.; Su, X.; Mauchley, D.C.; Ao, L.; Cleveland, J.C., Jr.; Fullerton, D.A. Bone
- 310 morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial
- 311 cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J Thorac Cardiovasc Surg 2009, 138,
- 312 1008-1015.
- Balachandran, K.; Sucosky, P.; Jo, H.; Yoganathan, A.P. Elevated cyclic stretch induces aortic valve
- 314 calcification in a bone morphogenic protein-dependent manner. *Am J Pathol* **2010**, 177, 49-57.
- Miller, J.D.; Weiss, R.M.; Serrano, K.M.; Castaneda, L.E.; Brooks, R.M.; Zimmerman, K.; Heistad, D.D.
- Evidence for active regulation of pro-osteogenic signaling in advanced aortic valve disease.
- 317 *Arterioscler Thromb Vasc Biol* **2010**, 30, 2482-2486.

Peer-reviewed version available at J. Dev. Biol. 2018, 6, 14; doi:10.3390/jdb6020014

- 318 61. Seya, K.; Yu, Z.; Kanemaru, K.; Daitoku, K.; Akemoto, Y.; Shibuya, H.; Fukuda, I.; Okumura, K.; 319 Motomura, S.; Furukawa, K. Contribution of bone morphogenetic protein-2 to aortic valve calcification in aged rat. *J Pharmacol Sci* **2011**, *115*, 8-14.
- Flechsig, P.; Dadrich, M.; Bickelhaupt, S.; Jenne, J.; Hauser, K.; Timke, C.; Peschke, P.; Hahn, E.W.;
 Grone, H.J.; Yingling, J., *et al.* LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. *Clin Cancer Res* 2012, *18*, 3616-3627.
- Yang, Y.L.; Liu, Y.S.; Chuang, L.Y.; Guh, J.Y.; Lee, T.C.; Liao, T.N.; Hung, M.Y.; Chiang, T.A. Bone
 morphogenetic protein-2 antagonizes renal interstitial fibrosis by promoting catabolism of type I
 transforming growth factor-beta receptors. *Endocrinology* 2009, 150, 727-740.
- 328 64. Akhurst, R.J.; Hata, A. Targeting the TGFbeta signalling pathway in disease. *Nat Rev Drug Discov* 329 **2012**, *11*, 790-811.
- Institute of Medicine. Exploring the Biological Contributions to Human Health: Does Sex Matter? The
 National Academies Press: Washington, DC, 2001; p 288.
- Shaw, L.J.; Pepine, C.J.; Xie, J.; Mehta, P.K.; Morris, A.A.; Dickert, N.W.; Ferdinand, K.C.; Gulati, M.; Reynolds, H.; Hayes, S.N., *et al.* Quality and Equitable Health Care Gaps for Women: Attributions to Sex Differences in Cardiovascular Medicine. *J Am Coll Cardiol* **2017**, *70*, 373-388.