Use of decision tables to simulate management in ecohydrological models 1

- 2
- J.G. Arnold^{1*}, K. Bieger², M.J. White³, R. Srinivasan⁴, J.A. Dunbar⁵, and P.M. Allen⁶ 3
- ¹ Grassland Soil and Water Res. Lab, USDA-ARS, Temple, Texas; jeff.arnold@ars.usda.gov 4
- 5 ² Texas A&M AgriLife, Temple, Texas; <u>kbieger@brc.tamus.edu</u>
- 6 ³ Grassland Soil and Water Res. Lab, USDA-ARS, Temple, Texas; mike.white@ars.usda.gov
- 7 ⁴ Texas A&M AgriLife, College Station, Texas; r-srinivasan@tamu.edu
- 8 ⁵ Baylor University, Waco, Texas; John Dunbar@baylor.edu
- 9 ⁶ Baylor University, Waco, Texas; Peter_Allen@baylor.edu
- 10 * Correspondence: jeff.arnold@ars.usda.gov; Tel.: +1-254-770-6502
- 11

13

12 Abstract

Decision tables have been used for many years in data processing and business applications to simulate complex rule sets. Several computer languages have been developed based on rule systems and they are 14 easily programmed in several current languages. Land management and river-reservoir models simulate 15 complex land management operations and reservoir management in highly regulated river systems. 16 17 Decision tables are a precise yet compact way to model the rule sets and corresponding actions found in 18 these models. In this study, we discuss the suitability of decision tables to simulate management in the river basin scale Soil and Water Assessment Tool (SWAT+) model. Decision tables are developed to 19 simulate automated irrigation and reservoir releases. A simple auto irrigation application of decision 20 21 tables was developed using plant water stress as a condition for irrigating corn in Texas. Sensitivity of 22 the water stress trigger and irrigation application amounts were shown on soil moisture and corn yields. 23 In addition, the Grapevine Reservoir near Dallas, Texas was used to illustrate the use of decision tables to

- simulate reservoir releases. The releases were conditioned on reservoir volumes and flood season. The 24
- 25 release rules as implemented by the decision table realistically simulated flood releases as evidenced by a
- daily NSE (Nash-Sutcliffe Efficiency) of 0.52 and a percent bias of -1.1%. Using decision tables to 26
- simulate management in land, river and reservoir models was shown to have several advantages over 27
- current approaches including: 1) mature technology with considerable literature and applications, 2) 28
- 29 ability to accurately represent complex, real world decision making, 3) code that is efficient, modular and
- easy to maintain, and 4) tables that are easy to maintain, support, and modify. 30

31

32

- 33 Keywords: rule-based system, reservoir management model, land management model, SWAT (Soil and Water Assessment Tool) 34
- 35

36 1. Introduction

37 1.1 Land Management Models.

Land management models are used to determine the impact of agricultural and urban management on 38 39 water quantity, quality, and agricultural productivity. Most agricultural land management models have an operations file to schedule planting, harvest, tillage, irrigation, and fertilizer and pesticide application by 40 month and date. In some models, including EPIC (Erosion Productivity Impact Calculator; [1]), APEX 41 (Agricultural Policy Extender; [2,3]), and SWAT+ (Soil and Water Assessment Tool; [4,5]), land 42 43 management operations can be "automatically" scheduled based on accumulated heat units. However, current algorithms in these models do not use modern rule-based coding and do not use structured 44 decision tables to input the conditions and action. 45

46 *1.2 River and Reservoir Management Models.*

River-reservoir models are designed to simulate the distribution of water within a highly regulated river 47 48 system with multiple objectives. Hydrologists use river-reservoir models to understand the impact of operational changes to the system that result in changes in water deliveries, reservoir storage, in-stream 49 flows, and power production [6.7]. Operational changes include water transfers and changes in reservoir 50 operation rules. Some of the more commonly used models for river basin management include MODSIM 51 [8], RiverWare [9], MIKEBASIN [10], RIBASIM [11], and WEAP [12]. All of these models have been 52 53 successfully applied around the world and have proven useful in water resources planning. However, each lacks effective customization capability, which limits their applicability to unique river basin 54 55 conditions and complex rules and policy [8]. RiverWare is customized using the RiverWare Policy Language (RPL) for developing operational policy. A rule editor allows users to enter expressions in 56 57 RPL and relationships between river basin objects. RPL is computationally inefficient and unable to adequately simulate conjunctive use of surface and groundwater resources [8]. MODSIM contains a 58 59 Custom Code Editor that can interface with MODSIM and access all public variables and object classes.

60	This allows for specific operating rules to be customized for specific river basins. As with RiverWare,
61	the language has to be easily understandable and computational efficiency is sacrificed.
62	1.3 Decision Table Theory.
63	Decision tables are a precise yet compact way to model complex rule sets and their corresponding
64	actions. Decision tables were originally used in business to represent conditional logic by creating a list
65	of tasks depicting business level rules. They are widely used in data processing applications and have an
66	extensively developed literature [13]. Several computer languages have been developed based on rule
67	systems that use decision trees that can be derived from decision tables. CLIPS (C Language Integrated
68	Production System) was developed at NASA in the 1980's as a tool to define expert systems [14,15].
69	CLIPS is a non-procedural declarative, and rule-based programming language. FORTAB is a decision
70	table language designed to be embedded in FORTRAN, developed by the RAND Corporation in the

71 1980's [16]. Many of the capabilities of CLIPS and FORTAB are now easily programmable in the

72 current C and FORTAN languages.

73 1.4 Objectives.

The aim of this study is to develop a robust and efficient methodology to simulate land and water
management in ecohydrologic models. Specific objectives are: 1) to discuss the suitability of decision
tables to simulate management in the river basin scale Soil and Water Assessment Tool [4,17] model and
to describe an enhanced SWAT+ framework which incorporates decision tables for management and
reservoir operations.

80 2. Materials and Methods

81 *2.1 Decision Table Structure*

Decision tables, like flowcharts and if-then-else and switch-case statements, associate conditions with
actions to perform, but can do so in a more compact and intuitive way. They are divided into four
quadrants: I. Conditions, II. Condition Alternatives, III. Action Entries or Outcomes, and IV. Actions
(Table 1).

86

87

89 Quadrant I - Conditions. For application of the decision table to SWAT+ management, quadrant I contains condition variables and condition limits. A listing of current SWAT+ variables coded for use in 90 91 the decision table is given in Table 2. The variables relate to time of year, soil and plant status, reservoir 92 volumes, and flow in channels. In addition to the conditional variable, the model must also know its 93 associated watershed object. For example, if reservoir volume is used as the conditional variable, the 94 reservoir number in the current simulation must be defined. The model would read the conditional 95 variable as "vol res 1". This example uses the volume of reservoir 1. To develop more generic rules 96 that can be used by multiple reservoirs, res 0 is used to designate the current reservoir being simulated. For reservoirs in series, the outflow from res 1 could be conditioned on volumes of res 2, 3, etc. The 97 98 condition limits are defined using a limit variable, limit operator, and limit constant. If reservoir volume

- 99 is again used as the conditional variable, the principle and emergency volumes may be used as limit
- 100 variables for setting condition limits for reservoir volume. An example

SWAT+ Variable	Object Type	Description	Units
soil_water	soil	total soil water in soil profile	mm
w_stress	plant	water stress on plant	0-1
month	time	current month of year	0-12
jday	time	current julian day of year	0-366
hu_plant	plant	heat units of plant since start of growth	°C
hu_base0	plant	heat units from January 1 with base temperature of zero	°C
year_rot	time	current year of rotation	-
year_cal	time	current calendar year	-
year_seq	time	sequential year from start of simulation	-
prob	-	probability	0-1
land_use	management	land use and management	-
ch_use	management	land use and cover near channel	-
n_stress	plant	nitrogen stress of plant	0-1
soil_n	soil	total nitrate in the soil profile	kg/ha
soil_p	soil	total labile phosphorus in the soil profile	kg/ha
n_applied	management	total nitrogen applied to the current plant	kg/ha
biomass	plant	above ground biomass of current plant	kg/ha
cover	plant	total ground cover (live biomass and residue)	kg/ha
lai	plant	leaf area index	-
vol	reservoir	reservoir water volume	ha-m
flow	channel	average daily flow in channel	m ³ /s
lat	object	latitude of object	-
long	object	longitude of object	-
elev	object	elevation of object	-
day_len	time/object	day length	hours
plant	plant	plant species – ie: corn, soybeans, deciduous forest, etc.	-

	plant_type	plant	plant type – ie: legume, cool season annual, etc.	-
101				
102	Table 2. Conditiona	l variables curr	ently coded in SWAT+ for use in the decision tables.	
103	input would be "evo	l * 0.8", thus se	etting the limits when determining alternatives. For so	oil water, there
104	are currently three li	mit variables, v	vilting point (wp), field capacity (fc), and total porosi	ty (ul). In the
105	example, the user co	uld input "fc *	0.7". The alternatives are compared to this limit thres	hold. Other
106	variables do not have	e operators and	limit variables. For example, using month as the cor	ditional variable,
107	a potential limit coul	ld be "5 – null"	and the alternatives are based on comparing the curre	ent month to 5.
108	Quadrant II - Altern	atives. There a	re four possible alternative operators: $>, <, =, -$. The	alternative is the
109	final piece to constru	ict the "if" state	ement needed to implement the associated rule.	
110		<u>Condition</u>	Alternative	
111	"soil_wa	iter hru 1 fc	* 0.7" ">"	
112				
112				
113	The model will deter	rmine if the soil	l water in hru (hydrologic response unit) 1 is greater t	han 0.7*fc. The
114	"-" symbol is used if	the condition i	s not relevant for a specific alternative.	
115	Quadrant III - Action	n Entries. Actio	on entries or outcomes are either yes or no and specif	y whether or not
116	an action is triggered	I. Each conditi	on within an alternative must be true. If all condition	s specified by an
117	alternative are true, a	and the outcom	e is "y", then the associated action will be performed.	The only
118	options for action en	tries are "y" an	d "n".	
119	Quadrant IV – Actio	ns. The action	type and associated information needed to perform the	ne action are
120	input in quadrant IV	. The actions c	urrently coded in SWAT+ are listed in Table 3. Mos	t of the actions
12 1	are related to land m	anagement incl	uding planting, harvesting, tillage, fertilizer applicati	ons and drainage
122	water management	There are also	currently actions for reservoir release and land use ch	ange. For some
118 119	options for action en Quadrant IV – Actio	tries are "y" an ns. The action	d "n". type and associated information needed to perform the	ne action are
121	are related to land m	anagement incl	uding planting, harvesting, tillage, fertilizer applicati	ons and drainage
122	water management.	There are also	currently actions for reservoir release and land use ch	ange. For some

Peer-reviewed version available at *Water* **2018**, 1<u>0</u>, 713; <u>doi:10.3390/w100607</u>

actions there are multiple options to execute the action. For the reservoir release action, the user can input 123 124 a release rate, a weir equation, or drawdown days. The decision table contains a constant and file pointer 125 for all the management actions. The file pointer corresponds to the application type in the associated data file. The plant action points to plant growth parameters, the harvest operation points to data for the 126 127 method of harvest, and tillage action points to the tillage implement. Fertilizer and irrigation use the 128 constant to specify the amount of fertilizer or water applied and the file pointer corresponds to data 129 needed for the application method (e.g., sprinkler irrigation or broadcast fertilizer). For the land use 130 change actions, the file pointer corresponds to the updated land use.

131

Action	Type of Action	Description	SWAT+ Subroutine
release	reservoir operation	release of water from reservoir – ha-m per day	res_hydro
plant	management	plant the crop	pl_plant
harvest	management	harvest the crop	pl_harv
tillage	management	perform tillage operation	mgt_tillmix
fertilize	management	add nitrogen and/or phosphorous to the soil	pl_fert
irrigate	management	irrigate the crop	pl_irrigate
drainage	management	adjust the depth of subsurface drainage	mgt_dwm
fire	land use	burn the current plants	pl_burnop
lu_change	land use	change land use	pcom_set_parms and update land use
chan_change	land use	change cover near the channel banks	update channel parameters

132

133 Table 3. Actions currently coded in SWAT+ for use in the decision tables.

- 134 2.2 Integration of Decision Table Code with SWAT+
- 135 SWAT+ is written in FORTRAN using F90 constructs and currently compiled using Visual Studio 2015.
- 136 The decision table code consists of three subroutines and is relatively simple and robust.
- 137 Dtable_read Subroutine. This subroutine reads from an input file containing all decision tables. The
- decision table consists of three objects (types in FORTRAN): 1) conditional variables, 2) action variables,
- and 3) decision table variables. The decision table variables include the conditional and action objects
- 140 and also the alternative and outcome (action entries) variables. All variables needed for each quadrant are
- included in the decision table variables and are defined in Figure 1.
- 142

143	type conditions var	Condtional Object Variables
144	character(len=16) :: var	! condition variable (ie volume, flow, sw, time, etc)
145	character(len=16) :: ob	! object variable (ie res, hru, canal, etc)
146	integer :: ob num	! object number
147	character(len=16) :: lim var	l limit variable (ie evol. pvol. fc. ul. etc.)
148	character(len=2) :: lim op	limit operator (* + -)
149	real :: lim const	limit constant
150	end type conditions var	
151		
152	type actions var	Action Object Variables
153	character(len=16) :: typ	type of action (ie reservoir release, irrigate, fertilize, etc)
154	character(len=16) :: ob	! object variable (ie res, hru, canal, etc)
155	integer :: ob num	! object number
156	character(len=16) :: name	! name of action
157	character(len=16) :: option	! action option - specific to type of action (ie for reservoir, option to
158		! input rate, days of drawdown, weir equation pointer, etc)
159	real :: const	constant used for rate, days, etc
160	character(len=16) :: file pointer	pointer for option (ie weir equation pointer)
161	end type actions_var	
162		
163	type decision_table	!All Decision Table Object Variables
164	character (len=16) :: name	! name of the decision table
165	integer :: conds	! number of conditions
166	integer :: alts	! number of alternatives
167	integer :: acts	! number of actions
168	type (conditions_var), dimension(:), a	Illocatable :: cond ! conditions
169	character(len=16), dimension(:,:), all	bocatable :: alt ! condition alternatives
170	type (actions_var), dimension(:), allo	catable :: act ! actions
171	character(len=1), dimension(:,:), allo	catable :: act_outcomes ! action outcomes ('y' to perform action; 'n' to not perform)
172	character(len=1), dimension(:), alloca	ttable :: act_hit !'y' if all condition alternatives (rules) are met; 'n' if not
173	integer, dimension(:), allocatable :: ac	t_typ ! pointer to action type (ie plant, fert type, tillage implement, release type, etc)
174	integer, dimension(:), allocatable :: ac	t_app ! pointer to operation (ie harvest.ops, chem_app.ops, weir shape, etc)
175	end type decision_table	
1/6	type (decision_table), dimension(:), all	ocatable :: d_tbl

178 Figure 1. Decision table variables as coded in the SWAT+ model.

179 Conditions Subroutine. This subroutine loops through all conditions and checks all alternatives for each

180 condition. Since all conditions must be met for an alternative to be positive, we start with the alternative

181 being positive and set it to negative if any condition is not met. Inside the conditions loop, a case

- 182 statement is used to identify the appropriate conditional variable. Then appropriate SWAT+ variables are
- used relative to each conditional variable.
- 184 Actions Subroutine. This subroutine loops through all actions and if one (or more) of the alternatives is
- 185 "y" the action will be performed. SWAT+ variables are updated for each action using the constant and
- 186 file pointer. When the variables are set for the specified action, the corresponding SWAT+ subroutine is
- 187 called as shown in Table 3.

188 **3. Results**

189 *3.1 Application of Decision Tables*

190 Two examples of decision tables are presented: 1) automated (auto) irrigation, and 2) reservoir release.

191 Both are kept relatively simple to illustrate the concept. However, additional conditions and actions can

192 easily be added to perform more complex rule sets.

193 3.1.1 Auto Irrigation. The EPIC, APEX and SWAT+ models [18] include provisions for automatic

irrigation. In many agricultural areas it is known that certain fields are irrigated, however, the timing and

amount of irrigation of each application is not readily available. In this case, algorithms were developed

196 to automatically trigger an irrigation application based on water stress on the plant or by soil water deficit.

197 This simplest form of a decision table for irrigation is shown in Figure 2.

198

Name	Conditions	Alternatives	Actions			
auto_irr	1	1	1			
VAR	OBJ	OB_NUM	LIM_VAR	LIM_OP	LIM_CONST	ALT1
w_stress	hru	0	null	-	0.8	<
ACT_TYP	NAME	OBJ	OB_NUM	TYPE	CONST	OUTCOME
irrigate	stress_0.8	hru	0	sprinkler	25.	У

199

200 Figure 2. Decision table for automated irrigation based on plant stress.

201 The name of the decision table is "auto_irr" and it contains one condition, one alternative, and one action.

202 The logic flows clockwise from quadrant I to IV. In quadrant I the conditional variable (w_stress) for hru

203 0 is defined (0 specifies the current hru and thus can be used for any hru in the simulation). The

204 conditional limit is a constant (0.8). A limit variable and operator are not needed in this case. Next, we

use the alternative in quadrant II and determine if $w_{stress} < 0.8$. If the outcome is yes ("y" in quadrant

III), we move clockwise to the action in quadrant IV. The action is to irrigate 25 mm using a sprinklerapplication (found in the irrigation data file).

208 This is the simplest case and could be input and coded without the use of a decision table. However,

209 users typically need to add additional conditions – i.e. only irrigate certain crop in the rotation, only

210 irrigate during a certain growth stage, or when reservoirs or aquifers are at specified level. The decision

table allows the addition of conditions and actions in a simple and robust structure.

212 3.1.2 Auto Irrigation Application. The SWAT+ model was parameterized to simulate continuous corn

with the Houston Black soil series from 2007-2016. Daily precipitation and maximum and minimum

temperatures were input from the USDA-ARS station in Temple, Texas. The auto irrigation decision

table as shown in Figure 2 was used in this example, with a stress trigger of 0.8 and 25 mm applied at

each irrigation. Figure 3 shows soil moisture, precipitation and irrigation applications from 2014-2016.

In 2014 and 2015, typical dry spring and summer periods triggered 11 and 10 irrigation applications,

respectively. In 2016, adequate rainfall during critical growing periods only triggered one irrigation

application. Irrigation increased corn yields by 3.1, 5.1, and 0.1 t/ha in 2014, 2015, and 2016,

220 respectively. To assess the sensitivity of the decision table parameters, we increased the irrigation

amount per application to 50 mm and lowered the plant stress trigger to 0.6 (figure 3). This resulted in

fewer applications, more total water applied each year (25 mm), and slightly higher corn yields (0.1 t/ha).

Figure 3. Soil moisture, precipitation, and irrigation of continuous corn at Temple, Texas using: 1) a plant stress trigger of 0.8 and application of 26 mm and 2) a plant stress trigger of 0.6 and application of 50 mm.

227

228 3.1.3 Reservoir Release. Large reservoirs are managed for multiple uses including irrigation, power 229 generation, flood control, recreation, and municipal use [19]. Operating rules can be extremely complex and in this example, we focus on flood control as the primary use. The first step in developing the 230 231 decision table is deciding on the number of actions or release rates. We chose to divide releases based on three storage volumes: 1) principal volume, 2) emergency volume, and 3) 1.3*principal. The release rate 232 is also a function of flood and non-flood season resulting in five alternatives and five outcomes. The five 233 conditions are used to determine storage class and flood season class. Alternative 1 only checks one 234 condition - if volume is less that principal volume. If the outcome is yes, the corresponding action is to 235 release at "below principal" rate of 2 m³/s. Alternatives 2 and 3 are in the non-flood season with 236 237 reservoir volumes between principal and 1.3 * principal volumes. Alternative 4 is during flood season at any volume between principal and emergency, while Alternative 5 is for volumes above emergency, 238 239 regardless of the season.

3.1.4 Reservoir Release Application. Grapevine Reservoir is a 2,674 hectare impoundment constructed
on Denton Creek near Dallas, a tributary of the Trinity River by the U.S. Army Corps of Engineers in
1952 to provide flood control, municipal and industrial water, and recreation. The reservoir contains
22,626 ha-m of water at conservation elevation and was used to illustrate the reservoir release rules. The
decision table is shown in Figure 4.

The release rules as implemented by the decision table realistically simulated flood releases as evidenced by a daily NSE (Nash-Sutcliffe Efficiency) of 0.52 and a percent bias of -1.1% [20]. Measured and simulated daily flows are shown in Figure 5. However, low flow releases were difficult to simulate accurately due to uncertainty in specific local conditions and without understanding of reservoir specific release rules. We are developing simple generic rules that can be applied to reservoirs across the U.S. for national policy simulations. With local knowledge of individual reservoir release rules, the decision table could be modified to simulate very specific rules and test and optimize alternative rule set parameters.

252

Name	Conditions	Alternates	Actions							
res_release	5	5	5							
VAR	OBJ	OB_NUM	LIM_VAR	LIM_OP	LIM_CONST	ALT1	ALT2	ALT3	ALT4	ALT5
vol	res	0	pvol	*	0.8	<	>	-	>	-
vol	res	0	pvol	*	1.3	-	<	>	-	-
vol	res	0	evol	*	1	-	-	<	<	>
month	null	0	null	-	5	-	>	>	<	-
month	null	0	null	-	9	-	<	<	>	-
ACT_TYP	OBJ	OB_NUM	NAME	TYPE	CONST	OUTCOME				
release	res	0	below_principal	days	150.	У	n	n	n	n
release	res	0	non-flood<1.3	days	100.	n	У	n	n	n
release	res	0	non-flood>1.3	days	50.	n	n	У	n	n
release	res	0	flood	days	25.	n	n	n	У	n
release	res	0	over_emergency	days	5.	n	n	n	n	У

253

Figure 4. Decision table for reservoir release focusing on flood control.

Figure 5. Measured and simulated daily reservoir releases for Grapevine Reservoir near Dallas, Texas.

This is a relatively simple example focusing on flood control. More complex rules can easily be added to
simulate reservoirs managed in series by including conditions for other reservoirs and river flow.
Watershed conditions including irrigation demand, plant conditions, and soil water can be added to the
conditions. Also, weir outflow as a function of storage can replace the constant outflow shown in this
example.

262

3.2 Management optimization. The use of a decision table as an external control on SWAT+ model runs 263 also makes it possible to find decision tables that optimize certain SWAT+ model outputs. Some choices 264 of condition variable limits and the actions they trigger will result in more favorable outcomes from the 265 266 SWAT+ model, such as increased crop yield or reductions in contaminant outputs. Other choices of decision table parameters will produce less favorable outcomes. Finding a set of decision parameters that 267 268 optimize the output of SWAT+ in a specified way has the form of a non-linear optimization problem. In optimization problems one formulates an objective function to be minimized that consists of a 269 270 combination of model outputs, with assigned weights to specify the relative importance placed on the 271 different outputs. For example, it would be possible to define an objective function that decreases in 272 amplitude as predicted crop yields increase and contaminant outputs decrease, with the two competing 273 factors weighted according to their relative importance. The solution of the optimization problem is the set of free variables that produce the smallest possible objective function. In this case, the free variables 274 would be the decision table condition limits and their associated actions, such as conditions under which 275 276 crops are irrigated and fertilized and how much water and fertilizer are applied. Non-linear optimization 277 problems such as this, in which the derivatives of the objective function with respect to the free variables 278 are not easily computed, are commonly solved by the method of simulated annealing, which requires only 279 repeated calculation of the objective function for different sets of free variables [21]. Combining 280 simulated annealing with decision table controlled SWAT+ simulations could be used to optimize management practices to fit different competing performance criteria. 281

282 4. Summary and Conclusions

Decision table theory was developed in the 1960's for data processing and business level rules. CLIPS 283 284 and FORTAB were computer languages developed in C and FORTRAN, respectively, to define expert systems using a decision table structure. Land, river and reservoir management models often use 285 286 embedded expert systems to determine land management and operations (such as plant/harvest, tillage, 287 and fertilization), reservoir releases, and water transfer in canals. In this study, we incorporated decision 288 table data and algorithms into a river basin scale ecohydrologic model (SWAT+). Using decision tables 289 to simulate management in land, river and reservoir models has several advantages over current 290 approaches including: 291 1) The structure of a decision table can be easily understood by model users. Decision tables were 292 developed over 50 years ago, and there is considerable literature and tutorials available on-line related to developing decision tables. 293 294 2) Decision tables accurately represent complex, real world decision making. 295 3) The code is more modular and easier to maintain than code to simulate management in existing land 296 management models. 297 4) The code to implement decision tables is more efficient than languages developed for specific river 298 and reservoir models. 299 5) Decision tables can be easily maintained and supported. 300 6) It is relatively simple to add the decision tables approach to legacy land, river and reservoir models. 301 As incorporated into SWAT+, the decision table is a robust and efficient method to simulate complex, 302 rule-based management. Examples of automated irrigation and reservoir release were shown and other 303 304 management operations simulated with decision tables were listed. In addition, decision tables have the potential for use in water rights and water transfers, state and transition of natural ecosystems, and 305 306 management of animal herds. 307

308 309 310 311	Author White; Method review	• Contributions : Conceptualization, Jeffrey Arnold and Peter Allen; Data curation, Michael Formal analysis, Raghavan Srinivasan; Investigation, Jeffrey Arnold and Michael White; lology, John Dunbar; Validation, Katrin Bieger; Writing – original draft, Jeffrey Arnold; Writing – & editing, Katrin Bieger, Michael White, Raghavan Srinivasan, John Dunbar and Peter Allen.
312		
313		
314		
315	Refere	nces
316 317	1.	Williams, J.R., Jones, C.A., and Dyke, P.T. 1984. A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE. 27(1):0129-0144.
318		
319 320 321 322	2.	Williams, J.R., Izaurralde, R.C., Williams, C. and Steglich, E.M. 2015. Agricultural policy/environmental extender model – theoretical documentation version 0806. Texas A&M AgriLife Research. <u>http://epicapex.tamu.edu/files/2017/03/THE-APEX0806-theoretical-documentation-Oct-2015.pdf</u> .
323		
324 325 326	3.	Tuppad, P., Winchell, P.M., Wang, X., Srinivasan, R., and Williams, J.R. 2009. ArcAPEX: ArcGIS interface for agricultural policy environmental extender (APEX) hydrology/water quality model. International Agricultural Engineering Journal 2009, 18(1-2):59-71.
327		
328 329 330	4.	Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D., Allen, P.M., Volk, M., and Srinivasan, R. 2017. Introduction to SWAT+, a completely revised version of the Soil and Water Assessment Tool. J. of American Water Resources Association 53(1):115-130.
331		
332 333 334	5.	Arnold, J.G., Moriasi, D., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4): 1491-1508.
335		
336 337	6.	Wurbs, R.A. 2012. Reservoir/river systems management models. Texas Water Journal. 3(1):26-41.
338		

339 340	7.	Wurbs, R.A. 1996. Modeling and Analysis of Reservoir System Operations. Prentice-Hall, Upper Saddle River, NJ, USA, ISBN 0-13-605924-4.
341		
342 343 344	8.	Labadie, J.W. 2006. MODSIM: Decision support system for integrated river basin management. iEMS Intl. Congress on Environmental Modelling and Software. Burlington, VT. (<u>http://scholarsarchive.byu.edu/iemssconference</u>).
345		
346 347 348	9.	Zagona, E.A., Fulp, T.J., Shane, R., Magee, T., Goranflo, H.M. 2001. RiverWare: a generalized tool for complex reservoir system modeling. J. American Water Resources Assoc. 37(4):913-929.
349		
350	10.	DHI. 2006. MIKE BASIN user's manual. DHI Water and Environment, Copenhagen, Denmark.
351		
352 353	11.	Sulis, A. and Sechi, G.M. 2013. Comparison of generic simulation models for water resource systems. Environmental Modelling & Software. 40(2013):214-225.
354		
355 356	12.	Yates, D., Sieber, J., Purkey, D., and Huber-Lee, A. 2005. WEAP21 – a demand-, priority-, and preference-driven water planning model. Water International. 30(4):487-500.
357		
358 359	13.	Gildersleeve, T.R. 1970. Decision tables and their practical application in data processing. Prentice Hall ISBN-13: 978-0131973763.
360		
361 362	14.	Giarratano, J.C., Riley, G. 1998. Expert systems. 3 rd , PWS Publishing Co. Boston, MA, USA©1998. ISBN:0534950531.
363		
364 365	15.	Giarratano, J.C. 1991. CLIPS user's guide: volume 1, rules, CLIPS version 5.0. Software Technology Branch. Lyndon B. Johnson Space Center, Houston, TX.
366		

367	 Amerding, G.W. 1962. FORTAB: a decision table language for scientific computing
368	applications. TR RM-3306-PR. RAND Corporation
369	
370	 Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. 1998. Large area hydrologic
371	modeling and assessment part I: model development. J. American Water Resources Association
372	34(1):73 89.
373	
374	 Williams, J.R., Arnold, J.G., Kiniry, J.R., Gassman, P.W., Green, G.J. History of model
375	development at Temple, Texas. Hydrologic Sciences 53(5):948-960. 2008.
376	
377	 U.S. Army Corps of Engineers. 1996. Developing seasonal and long-term reservoir system
378	operation plans using HEC-PRM. Report RD-40. Hydrologic Engineering Center, 445 pp.
379	
380	 Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T. 2007.
381	Model evaluation guidelines for systematic quantification of accuracy of watershed simulations.
382	Transactions of the ASABE 50(3):885-900.
383	
384	 Sen, M. K. and Stoffa, P. L. 1991. Nonlinear one-dimensional seismic waveform inversion using
385	simulated annealing, Geophysics, vol. 56. No. 10 (October).
386	