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Abstract: The fact that real dissipative (entropy producing) processes may be detected by
non—comoving observers (tilted), in systems that appear to be isentropic for comoving observers, in
general relativity, is explained in terms of the information theory, in analogy with the explanation of
the Maxwell’s demon paradox.
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1. Introduction

Observers play an essential role in in quantum mechanics where the very concept of reality
is tightly attached to the existence of the observer, as ingeniously illustrated by the well known
Schrodinger’s cat paradox. In the quantum mechanics terminology, we say that the observer produces
the collapse of the wave function.

However, it is generally assumed that observers do not play a similar role in classical (non
quantum) theories. But is this assumption really justified? As we shall see here, the answer to such
a question is negative. Indeed, the role of observers in General Relativity is a fundamental one, and
reminds in some sense its role in quantum physics, namely: A complete understanding of some
gravitational phenomena requires the inclusion of the observers in the definition of the physical system
under consideration.

In order to make our case, let us first recall that in relativistic hydrodynamics different observers
assign different four—velocities to a given fluid distribution. This simple fact is at the origin of an
ambiguity in the description of the source of the gravitational field (whenever it is represented by a
fluid distribution).

Thus one may face the situation when one of the congruences corresponds to comoving observers,
whereas the other is obtained by applying a Lorentz boost to the comoving observer’s frame (this
Lorentz boosted congruence is usually referred to as the tilted congruence).

The strange fact then appears, that systems that are isentropic for comoving observers, may
become dissipative for tilted observers (see [1]-[10] and references therein).

We shall illustrate this situation with some examples, and shall provide an explanation based
on the theory of information. More specifically, we shall see that an argument similar to the one
put forward by Bennet [11] to solve the Maxwell’s demon paradox [12], may be used to explain the
very different pictures of a given system, presented by different congruence of observers in general
relativity.

As we shall see, the essential fact is that when we pass from comoving observers (which assign
zero value to the three-velocity of any fluid element) to tilted observers, for whom the three-velocity
represents another degree of freedom, the erasure of the information stored by comoving observers
(vanishing three velocity), explains the presence of dissipative processes (gravitational radiation
included) detected by tilted observers.
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2. Comoving and tilted observers

In order to grasp the essence of the problem under consideration, is important to understand how
the tilted (non-comoving) congruence may be obtained from the comoving one. In what follows we
present the general scheme for doing that. Thus, let us consider a congruence of observers which are
comoving with an arbitrary fluid distribution, then the four—velocity for that congruence, in some
globally defined coordinate sytem, reads

vk =(v°0,0,0). 1

In order to obtain the four-velocity corresponding to the tilted congruence (in the same globally
defined coordinate system) one proceeds as follows.

We have first to perform a (locally defined) coordinate transformation to the Locally Minkowskian
Frame (LMF). Denoting by L‘}’l the local coordinate transformation matrix and by V* the components
of the four velocity in such LMFE we have:

v =Ly, )

Next, let us apply a Lorentz boost to the LMF associated to V*, to obtain the (tilted) LMF with
respect to which a fluid element is moving with some, non-vanishing, three-velocity.
Then the four—velocity in the tilted LMF is defined by:

Vg = A§Ve, )

where A% denotes the Lorentz matrix.

Finally, we have to perform a transformation from the tilted LMF, back to the (global) frame
associated to the line element under consideration. Such a transformation, which obviously only exists
locally, is defined by the inverse of L}, and produces the four—velocity of the tilted congruence in our
globally defined coordinate system, say V%.

In the following sections we shall present several examples of tilted space-times, that illustrate
the sharp differences in their interpretations, with respect to the picture obtained by the comoving
observers.

3. Tilting the Lemaitre-Tolman-Bondi congruence

The Lemaitre-Tolman-Bondi spacetimes (LTB) [13-15], as seen by a congruence of comoving
observers, describe spherically symmetric distributions of geodesic, shearing, and vorticity free,
inhomogeneous non—dissipative dust. The magnetic part of the Weyl tensor vanishes, whereas its
electric part may be defined through a single scalar function. If we put the shear or the the Weyl tensor
equal to zero, the LTB spacetime becomes the Friedman-Robertson-Walker spacetime.

The general form of LTB metric is defined by:

ds? = —dt* + B2dr? + R*(d6* + sin® 0d¢?), (4)
where B(r,t) and R(r, t) are functions of their arguments, and
R
1+ k()]

where k is an arbitrary function of r and prime denotes derivative with respect to r.
The energy momentum tensor describing a dust distribution with energy density y in comoving
coordinates takes the usual form:

B(t,r) = ®)

Ty = UV Vi (©)
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Obviously for the comoving observer the fluid is geodesic .

However if we now tilt the comoving observer, then as it has been shown, the spacetime appears
to be sourced by a dissipative anisotropic fluid distribution, and furthermore the fluid is no longer
geodesic [5]. The important point to stress here is that the tilted observer detects a real dissipative
process (entropy producing) as it follows from the discussion on the generalized Gibbs equation (see
[5] for details).

Obviously, due to the spherical symmetry, the magnetic part of the Weyl tensor also vanishes for
the tilted observer, implying that no gravitational radiation is detected by the latter.

4. Tilting the Szekeres congruence

In the example analyzed in the previous section the fluid distribution was spherically symmetric,
thus it is interesting to wonder what happens when we consider fluid distributions non restricted by
this symmetry. For doing so let us consider the Szekeres spacetime [16,17].

Indeed, Szekeres dust models have no Killing vectors and therefore represent an interesting
generalization of LTB spacetimes. When analyzed from the point of view of comoving observers, the
Szekeres spacetime is sourced by a geodesic non-dissipative dust, without vorticity. Also, as in the LTB
case the magnetic part of the Weyl tensor vanishes, implying that there is no gravitational radiation.

In this case the line element is given by:

(RE-RE'?* , R* , 2
7}52(64_]() dr= + 2 (dp” +dg°) (7)

where a prime denotes derivative with respect tor, R = R(t,7),e = £1,0 and f = f(r) > —eisan

ds? = —df* +

arbitrary function of r. We number the coordinates W=txl=rx2= v, ¥ = q.
The function E is given by

_S{(p=P\, (1-Q)°
E(r,p,q)—zl( 3 ) +( 5 +e ®)
where S = 5(r), P = P(r) and Q = Q(r) are arbitrary functions.
From Einstein equations it follows that R satisfies the equation
. 2M
R? = = T/ ©)

where a dot denotes derivative with respect to t, and M = M(r) is an arbitrary function. From the
above equation it follows that

R="—1 (10)

from where the meaning of M as an effective gravitational mass becomes evident.

However the above picture drastically changes when the matter content is analyzed by a tilted
congruence.

Indeed, as shown in [6], tilted observers detect a dissipative, anisotropic fluid which is no longer
geodesic and furthermore is endowed with vorticity. As for the LTB case, the dissipation detected
by tilted observers is “real” in the sense that there is an increasing of entropy. However, even in the
tilted version, the magnetic part of the Weyl tensor vanishes, and so tilted observers do not detect
gravitational radiation.

5. Tilted shear—free axially symmetric fluids

In the examples analyzed in the two previous sections the Lorentz boost applied to the comoving
congruence in order to obtain the tilted one, was always directed along one of the coordinate axis
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(r). We shall now consider a much more general situation, where the the boost is applied along two
independent directions.

We shall consider axially symmetric fluids, which for the comoving observer are geodesic,
shear—free non—dissipative, and vorticity free.

The line element reads [18]

ds? = —dt* + B2(t) [drz +r2do* + Rz(r,e)dqﬂ ) (11)

where B(t) and R(r, ) are functions of their arguments satisfying the Einstein equations, and
from regularity conditions at the origin we must require R(0,6) = 0.
For the comoving observer the energy momentum-tensor in the “canonical” form reads:

Ttxﬂ = (“M‘FP)VaV‘B +Pgtxﬂ+naﬁr (12)

where as usual, y, P, 11,5, Vg denote the energy density, the isotropic pressure, the anisotropic stress
tensor and the four velocity, respectively.

For the comoving congruence the anisotropic tensor depends on a single scalar function, and the
four-velocity vector reads:

V& =(1,0,0,0); Vi=(-1,0,0,0), (13)

(see [18] for details).

Also, as shown in [18], the magnetic part of the Weyl tensor calculated by means of the
four—velocity vector (13) vanishes and the electric part is defined through a unique scalar function.

The above picture is drastically changed when the system is analyzed by a tilted congruence of
observers, as we shall now see (see [20] for details).

For doing so, we have to obtain first the tilted congruence and all the associated kinematical
variables, applying the procedure sketched above, for the case when the boost is applied along the r
and the 6 directions.

Thus we obtain for the tilted four-velocity (see [20] for details):

l"vl r?)z

o . o o T
Vo, = (=T, BTvy, BrTvy,0); V' (T, B B’

0). (14)

ﬁ, 2 = v% + v%, and vy, vy are the two non-vanishing components of the three—velocity

of a fluid element as measured by the tilted observer.

We can now calculate all the kinematical variables for the tilted congruence. The result shows that
now the four—acceleration, as well as the shear and the vorticity are non vanishing (see [20] for details).

Also, for the tilted congruence the electric part of the Weyl tensor has three independent
non-vanishing components and the magnetic part of the Weyl tensor is non-vanishing, and defined
through two components. Thus we may write these two tensors in terms of five tetrad components (g 1,
&, Exr, Hy, H) respectively.

For the tilted observers the fluid distribution is described by the energy momentum tensor:

whereI' =

T = (s P)Va Vg + Pgup + Tap + 2V + g Vi (15)

It should be noticed that now the system appears to be dissipative, with the heat flux vector

defined through two independent scalar functions q(y), () and the anisotropic tensor is defined by
three independent scalars Ty, ITj;, T

From the above expressions we can calculate the super-Poynting vector in terms of only two
scalar functions P(y), P(;), where
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5 2H, 4 N s By
Puy = Tz (2&11 + &) +2H1 8k + 32712¢7(1) (ﬁ +DP+ 31>
+ 3212 Tke, 16)
5 2H, .~ s O
P = —Tl (281 + &) — 20,8k, + 32724 ) (ﬁ + P+ 311)
+ 3 M (17)

In (16) and (17) we can identify two different types of contributions. On the one hand we have
contributions from the heat transport process. These are independent on the magnetic part of the Weyl
tensor, and appear in the tilted versions of LTB and Szekeres, as well as in the case analyzed in this
section.

Next we have contributions related to the gravitational radiation. These require, both, the electric
and the magnetic part of the Weyl tensor to be different from zero. Of course they vanish for LTB and
Szekeres, but do not vanish in the present case.

The association of a state of gravitational radiation to a non-vanishing component of the
super-Poynting vector, is enforced by the link between the super-Poynting vector and the news
functions in the context of the Bondi-Sachs approach [21].

Thus, we have in the case analyzed in this section that for the comoving observer and the line
element (11) the magnetic part of the Weyl tensor vanishes identically and the fluid is non—dissipative,
implying at once that P(;) = Py = 0. In other words, no gravitational radiation, or dissipative
processes of any kind, are detected by the comoving observer .

However, for the tilted congruence calculations show that the magnetic part of the Weyl tensor is
not vanishing and, more specifically, the sum of the first two terms in (16) and (17) does not vanish,
except for the conformally flat case [20].

Thus, we face again the intriguing question: how it is possible that tilted observers may detect
irreversible processes, whereas comoving observers describe an isentropic situation ?

As we shall see, the above quandary becomes intelligible if we appeal to the discussion on the
Maxwell’s demon presented by Bennet.

6. The Maxwell’s demon and the observers in general relativity

The main moral emerging from the three cases analyzed here (and from many others included
in the list of references) is that tilted observers may detect dissipation in systems that appear
non—dissipative for comoving observers.

It is worth mentioning that in the case analyzed in the previous section the difference between the
pictures described by both congruences of observers is still sharper since the tilted observer not only
detects a dissipative process, but also gravitational radiation.

This last point is not alien to the fact that the tilted observer also detects vorticity, and as has
been pointed out in [21], vorticity and gravitational radiation are tightly associated. At any rate,
gravitational radiation is also a dissipative process, accordingly the basic explanation of its presence in
the system analyzed by the tilted observer is basically the same as the one for any dissipative process.

As conjectured in [22], the basic fact that explains the above mentioned differences in the
description of a given system, as provided by different congruences of observers, is that both
congruences of observers store different amounts of information.

Here we shall delve deeper into this question, by resorting to the resolution of the well known
paradox of the Maxwell’s demon [12].

Let us first recall the Maxwell’s demon paradox and how it was solved by Bennet, using the
theory of information. Let us take a look at Figure 1.
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Figure 1. The Bennet scheme.

Initially (stage A) we have a cylinder containing one molecule with two pistons at either side. At
this point the demon does not know where in the cylinder is the molecule. We shall refer to this state
of the demon’s mind as S. Next, at stage B, the demon inserts a partition wall in the middle of the
cylinder, trapping the molecule in one side or the other. At this stage the demon still ignores on what
side of the cylinder is the molecule, therefore the state of his mind is still S.

At stage C, the demons performs a reversible measurement allowing him to know whether the
molecule is on the left or the right side of the cylinder. En each case the state of the demon’s mind
changes to L or R respectively.

At D, depending on the result of the previous measurement, the demon moves the left piston to
the right (if the molecule is in the right), or the right piston to the left (if the molecule is in the left), and
removes the partition wall. Doing so he allows the molecule to freely expands against the piston, and
thereby doing work.

At E, the pistons are at their original position and the molecule fill the whole cylinder. Thus, one
is tempted to say that we have returned to the initial state A, but work has been done and therefore
such a conclusion would imply the violation of the second law of thermodynamics.

The solution to the above, apparent, paradox, comes up when we realize that the demon’s mind
state in A and E are different. Indeed, in E the demon knows where the molecule was before the
expansion. In order to truly return to A, the information acquired by the demon has to be erased.

However, according to the Landauer principle [23], the erasure of one bit of information stored in
a system requires the dissipation into the environment of a minimal amount of energy, whose lower
bound is given by

AE=kTIn2, (18)


http://dx.doi.org/10.20944/preprints201805.0153.v1
http://dx.doi.org/10.3390/e20050391

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2018 d0i:10.20944/preprints201805.0153.v1

7 of 8

where k and T denotes the Boltzman constant and the temperature of the environment, respectively.

In other words, to get the demon’s mind back to its initial state (S), generates dissipation, after
which the system is in F. Thus, all the work obtained by the expansion of the molecule in D is converted
to heat in order to return the demon’s mind to the state S, in F.

Therefore, Bennet solved the paradox by showing that the irreversible act which prevents the
violation of the second law is not the reversible measurement allowing him to know where is the
molecule, but the restauration of the measuring apparatus to the standard state previous to the state
where the demon knows where is the molecule. Therefore, if we consider the whole system (demon +
the gas in the cylinder), we must keep in mind that the information possesed by the demon before
knowing where is the molecule, is smaller than the information after this process has been achieved.
Accordingly, in order to return to the initial state of the demon, the acquired information has to be
erased.

A somehow similar picture appears when we apply the operation transforming comoving
observers, which assign zero value to the three-velocity of any fluid element, into tilted observers,
for whom the three-velocity represents another degree of freedom. The erasure of the information
stored by comoving observers (vanishing three velocity), when going to the frame of tilted observers,
explains the presence of dissipative processes (included gravitational radiation) observed by the latter.

Thus, we can say that the state S of the demon, when he does not know where is the molecule, is
analogous to tilted observers: for both, a piece of information is lacking. On the other hand, the state L
or R when the demon knows where is the molecule, is equivalent to comoving observers: in both cases
additional information has been acquired

7. Discussion

With the three examples analyzed in the previous sections we have clearly illustrated the relevance
of observers in the physical description of a given system.

To explain the detection of dissipation by the tilted congruence, in a system which appears
isentropic for comoving observers, we have noticed that passing from comoving to tilted observers,
or returning the demond’s mind to its initial state, requires the erasure of the acquired information,
leading to the observed dissipative processes. This explains, on the one hand, why the second law of
thermodynamics is not violated by the Maxwell’s demon, and on the other, why tilted observers detect
dissipation there where comoving observers only see an isentropic system.

In other words, observers storing different ammounts of information, provide different pictures
of the same phenomenon.

At the light of the comments above, the statement by Max Born [25] “Irreversibility is a consequence
of the explicit introduction of ignorance into the fundamental laws”, becomes fully intelligible.
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