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Abstract: Whenever vegetated areas are monitored over time, phenological changes in land cover
should be decoupled from changes in acquisition conditions, like atmospheric components, sun
and satellite heights, and imaging instrument. This especially holds when the multispectral (MS)
bands are sharpened for spatial resolution enhancement by means of a panchromatic (Pan) image of
higher resolution, a process referred to as pansharpening. In this paper, we provide evidence that
pansharpening of visible/near-infrared (VNIR) bands takes advantage from a correction of the path
radiance term introduced by the atmosphere, during the fusion process. This holds whenever the
fusion mechanism emulates the radiative transfer model ruling the acquisition of the Earth’s surface
from space, that is, for methods exploiting a multiplicative, or contrast-based, injection model of
spatial details extracted from the panchromatic (Pan) image into the interpolated multispectral (MS)
bands. The path radiance should be estimated and subtracted from each band before the product by
Pan is accomplished. Both empirical and model-based estimation techniques of MS path radiances are
compared within the framework of optimized algorithms. Simulations carried out on two GeoEye-1
observations of the same agricultural landscape at different dates highlight that the de-hazing of MS
before fusion is beneficial for an accurate detection of seasonal changes in the scene, as measured by
the normalized differential vegetation index (NDVI).

Keywords: Atmospheric path-radiance; change analysis; detail injection modeling; haze; data fusion;
normalized differential vegetation index (NDVI); pan-sharpening; radiative transfer; vegetation.

1. Introduction

The term panchromatic sharpening or pansharpening denotes the process by which the geometric
resolution of a multi-band image is increased by means of a single-band panchromatic observation
of the same scene having greater spatial resolution. Pansharpening techniques take advantage of the
complementary spatial and spectral resolutions of multi-/hyper-spectral (MS/HS) and panchromatic
(Pan) images to synthesize a unique fusion product that exhibits as many spectral bands as the MS/HS
image, each with same spatial resolution as the Pan image [1]. It is important, however, to highlight
that pansharpening cannot increase the spatial resolution of the spectral information of the original
data, but is simply a means to represent such an information at a finer spatial scale, more suitable for
visual or automated analysis tasks [2].

Recent achievements in MS pansharpening mostly exploit concepts of superresolution [3]. Despite
the formal mathematical elegance of some approaches, all such methods exhibit very subtle increments
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in performance (decrements, in some cases) over the state-of-the-art, obtained at an exorbitant
computational cost of massive constrained numerical minimizations, with plenty of adjustable
parameters. Superresolution-based, or more generally optimization based variational methods, either
model-based [4] or not [5], are unconceivable for practical applications requiring routine fusion of tens
of Mpixels of data, for which traditional approaches are pursued [2]. Especially, their performance is
crucial, being subordinated to a proper optimization of its running parameters on a local basis, e.g., on
small blocks partially overlapped to avoid discontinuities in fusion effects. What was believed would
become the third generation of pansharpening methods, is still far to come.

Conversely, the current second generation of pansharpening methods, which approximately
started twenty years ago and was established ten years later [6], features methods all following the
same flowchart. After the MS bands have been superimposed, that is, interpolated and co-registered,
to the Pan image, the spatial details of each pixel is extracted from the latter and added to the
MS bands according to a certain injection model. The detail extraction step can follow the spectral
approach, originally known as component substitution (CS), or the spatial approach, which may rely
on multiresolution analysis (MRA) [7], but not necessarily on a linear shift-invariant filtering, e.g., on
morphological filtering [8]. The Pan image is preliminarily histogram-matched, that is, radiometrically
transformed by constant gain and offset in such a way that its lowpass version, having the same
spatial frequency content as the MS bands, exhibits mean and variance equal to those of the spectral
component that shall be replaced, e.g., the intensity component, for CS methods, or the MS band that
shall be sharpened for MRA methods [9,10].

The injection model rules the combination of the lowpass MS image with the spatial detail
extracted from Pan. Such a model is stated between each of the co-registered MS bands and the
lowpass version of the Pan image. A wide variety of injection models has been proposed in the
literature [11–13]. However, the most popular ones are:
i) the projection model, which may be derived from the Gram-Schmidt (GS) orthogonalization
procedure, representing the basis of the GS spectral sharpening [14] and of the context-based decision
(CBD) [15];
ii) the multiplicative or contrast-based model, which is the basis of such techniques as high-pass
modulation (HPM) [16], Brovey transform (BT) [17], synthetic variable ratio (SVR) [18], UNB pansharp
[19], smoothing filter-based intensity modulation (SFIM) [20] and spectral distortion minimizing (SDM)
injection model [21,22].

Unlike the projection model, which may be either global, as for GS, or local [23], as for CBD, the
contrast-based model is inherently local, or context-adaptive [24], because the injection gain changes at
each pixel [25].

Although considerations on atmospheric effects were already present in SVR [18] and unspecified
empirical adjustments in the baseline of UNB pansharp [19], the paper that introduced SFIM [20]
firstly gave an interpretation of the multiplicative injection model in terms of the radiative transfer
model ruling the acquisition of an MS image from a real-world scene [26]: a low spatial-resolution
spectral reflectance, preliminarily estimated from the MS bands and the lowpass filtered Pan image,
is sharpened through multiplication by a high spatial-resolution solar irradiance, represented by the
high-resolution Pan image.

Currently, very few authors [27–30] have explicitly considered the path radiance of the MS band,
which is an undesired energy scattered by different atmospheric constituents that reaches the aperture
of the instrument without being reflected by the Earth’s surface. Such an atmospheric path-radiance,
which appears as a haze in an RGB true-color visualization, should be estimated and subtracted from
each band before modulation and possibly re-inserted later, to get an unbiased sharpened image. The
pansharpened bands are left de-hazed in all cases, in which spectral reflectance or analogous products
are calculated.

Calculation of path-radiances may follow image-based approaches or rely on models of the
atmosphere and its constituents, as well as on knowledge of acquisition parameters, such as actual

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2018                   doi:10.20944/preprints201805.0149.v1

http://dx.doi.org/10.20944/preprints201805.0149.v1


3 of 17

Sun-Earth distance, sun height angle and observation angle of the satellite platform. Image-based
atmospheric corrections [31,32] are a series of statistical methods based on some general assumptions
and empirical criteria. The goal is that of estimating the atmospheric effects on acquisition without
requiring acquisition parameters or making assumptions on atmospheric constituents.

In this paper, after deriving the haze-corrected versions of contrast-based spectral (CS) and
spatial (MRA) pansharpening methods, starting from physical considerations of radiative transfer,
several methods for estimating the path radiances of individual bands are reviewed. Image-based
and model-based estimates of path-radiances are correlated. To this purpose, the Fu-Liou-Gu (FLG)
radiative transfer model [33] has been considered. Model-enforced empirical image-based haze
estimation criteria attain the fusion performance of the theoretical model and of an exhaustive search
for the unknown path-radiance values, performed at a degraded spatial scale [34]. Experiments carried
out on a couple of GeoEye-1 images of the same agricultural landscape at different dates highlight
that the de-hazing of MS is beneficial for an accurate detection of seasonal changes in the scene, as
measured by the normalized differential vegetation index (NDVI), from pansharpened imagery. It is
proven that the calculation of NDVI is unaffected by fusion, provided that the multiplicative model
with haze correction is employed. In fact, since NDVI is a purely spectral index, any sharpness of
its map introduced by fusion is unlikely and artificial. Ultimately, the proposed NDVI-preserving
pansharpening method, besides featuring excellent fusion scores [34], exhibits an extremely fast
algorithm and may be thus recommended for agricultural applications, especially detection of
vegetation cover changes.

2. Spectral and spatial pansharpening methods

The math notation used in the following is explained here. Vectors are indicated in bold lowercase
(e.g., x) with the ith element indicated as xi. Two- and three-dimensional arrays are expressed in bold
uppercase (e.g., X). An MS image M = {Mk}k=1,...,N is a three dimensional array composed by N
bands indexed by the subscript k = 1, . . . , N; hence, Mk denotes the kth band of M. The Pan image is a
2-D array and will be indicated as P; its version histogram-matched, e.g., to the intensity component
ÎL, as P̌ÎL

. Also, M̃k and M̂k indicate interpolated and sharpened MS bands, respectively. Unlike
conventional matrix product and ratio, such operations are intended as product and ratio of terms of
same positions within the array.

2.1. Spectral or component-substitution methods

The class of CS, or spectral, methods is based on the projection of the MS image into another
vector space, by assuming that the forward transformation splits the spatial structure and the spectral
diversity into separate components.

Under the hypothesis of substitution of a single component that is a linear combination of the
input bands, the fusion process can be obtained without the explicit calculation of the forward and
backward transformations, but through a proper injection scheme [1], thereby leading to the fast
implementations of CS methods, whose general formulation is:

M̂k = M̃k + Gk ·
(
P̌IL − IL

)
, k = 1, . . . , N (1)

in which k is the band index, G = [G1, . . . , Gk, . . . , GN ] the 3-D array of injection gains, which in
principle may be one per pixel per band, while the intensity, IL, is defined as

IL =
N

∑
i=1

wi · M̃i (2)
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in which the weight vector w = [w1, . . . , wi, . . . , wN ] is the 1-D array of spectral weights, corresponding
to the first row of the forward transformation matrix. The term P̌IL is P histogram-matched to IL

P̌IL , (P− µP) ·
σIL

σPL

+ µIL (3)

in which µ and σ denote mean and square root of variance, respectively, and PL is a lowpass version of
P having the same spatial frequency content as I [9,35].

In GS spectral sharpening, the fusion process is described by (1), with the injection gains are
spatially uniform for each band, and thus denoted as {gk}k=1,...,N . They are given by [14]:

gk =
cov(M̃k, IL)

var(IL)
k = 1, . . . , N (4)

in which cov (X, Y) indicates the covariance between X and Y, and var (X) is the variance of X. In [14]
a multivariate linear regression is exploited to model the relationship between the lowpass-filtered
Pan, PL, and the interpolated MS bands:

PL = ŵ0 +
N

∑
i=1

ŵi · M̃i + ε , ÎL + ε (5)

in which ÎL is the optimal intensity component and ε the least squares (LS) space-varying residue. The
set of space-constant optimal weights {ŵk}k=0,...,N is calculated as the minimum MSE (MMSE) solution
of (5). A figure of merit of the matching achieved by (5) is given by the coefficient of determination, R2,
defined as

R2 , 1− σ2
ε

σ2
PL

(6)

in which σ2
ε and σ2

PL
denote the variance of the (zero-mean) LS residue, ε, and of the lowpass filtered

Pan image. Histogram-matching of Pan to the MMSE intensity component, ÎL, should take into account
that µP = µPL = µÎL

, from (5). Thus, from the definition of CD (6)

P̌ÎL
= (P− µP) · R + µP. (7)

Also methods different from GS, based on adaptive MMSE estimation of the component that shall
be substituted together with the detail-injection gains, have been proposed [36,37].

The multiplicative or contrast-based injection model is a special case of (1), in which space-varying
injection gains, G, are defined such that

Gk =
M̃k
IL

, k = 1, . . . , N. (8)

The resulting pansharpening method is described by

M̂k = M̃k +
M̃k
IL
· (P̌IL − IL) = M̃k ·

P̌IL

IL
, k = 1, . . . , N (9)

which, in the case of spectral weights all equal to 1/N, is the widely known BT pansharpening method
[17]. An evolution of BT is SVR [18], in which the parameters {wk} are obtained through a supervised
regression analysis carried out on five simulated classes, with a known atmospheric model. After
construction of IL, a linear histogram matching is performed to force the Pan image to match the mean
and variance of IL, in order to eliminate atmospheric and illumination differences. An evolution of
SVR is the baseline of UNB pansharp [19], which exploits an unsupervised multivariate regression
of original Pan to interpolated MS bands to yield the set of {wk}. Histogram matching is performed
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analogously to SVR. Thus, BT, SVR and UNB pansharp fit the model (1) with the choice of injection
gains (8).

2.2. Spatial or multiresolution-analysis methods

The spatial approach relies on the injection of high-pass spatial details of Pan into the resampled
MS bands [7,38].

The most general MRA-based fusion may be stated as:

M̂k = M̃k + Gk ·
(

P̌(k) − P̌(k)
L

)
, k = 1, . . . , N. (10)

in which the Pan image is preliminarily histogram-matched to the interpolated kth MS band [9,20]

P̌(k) , P̌M̃k
= (P− µP) ·

σM̃k

σPL

+ µM̃k
(11)

and P̌(k)
L the lowpass-filtered version of P̌(k). It is noteworthy that according to either of (3) and (11),

histogram matching of P always implies the calculation of its lowpass version PL.
According to (10) the different approaches and methods belonging to this class are uniquely

characterized by the lowpass filter employed for obtaining the image PL and by the set of space-varying
injection gains, either spatially uniform, {gk}k=1,...,N or space-varying, {Gk}k=1,...,N .

The contrast-based version of MRA pansharpening is

M̂k = M̃k +
M̃k

P̌(k)
L

·
(

P̌(k) − P̌(k)
L

)
= M̃k ·

P̌(k)

P̌(k)
L

, k = 1, . . . , N. (12)

It is noteworthy that, unlike what happens for (9), (12) does not preserve the spectral angle of M̃k,
because the multiplicative sharpening term depends on k.

Eq. (12) accommodates HPM [16], SFIM [20] and SDM [22], which differ from one another by the
lowpass filter used to achieve PL.

In some cases, the spectral transformation of CS methods is cascaded with MRA to extract the
spatial details that are injected. The resulting methods are called hybrid methods. According to a
recent study [7], they behave as either spectral or spatial, depending on whether the detail extracted is
P̌IL − IL or P̌(k) − P̌(k)

L . The most popular hybrid method with multiplicative injection model is the
additive wavelet luminance proportional (AWLP) [15,39], which has been recently improved [9] by
changing its histogram matching from (3) to (11).

3. A review of the radiative transfer model

The radiative transfer model [26] relates the at-sensor spectral radiance to the surface reflectance,
top-of-atmosphere (TOA) solar irradiance, upward and downward atmospheric transmittances and
upward scattered radiance, a.k.a. path radiance:

L(λ) =
ρ(λ) · τu(λ) · (Es(λ) · cos(θS) · τd(λ) + Ed(λ))

d2
ES · π

+ LP(λ) (13)

in which

• λ: wave length of the electromagnetic radiation [µm]
• L(λ): at-sensor spectral radiance [W ·m−2 · sr−1 · µm−1]
• ρ(λ): surface reflectance [unitless]
• τu(λ): upward transmittance of atmosphere [unitless]
• ES(λ): mean TOA solar irradiance [W ·m−2 · µm−1]
• θS: solar zenith angle [degrees]
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• τd(λ): downward transmittance of atmosphere [unitless]
• Ed(λ): diffuse irradiance at the surface [W ·m−2 · µm−1]
• dES: Earth-Sun distance [astronomical units]
• LP(λ): upward scattered radiance at TOA [W ·m−2 · sr−1 · µm−1]

The upward transmittance τu(λ) depends on the satellite zenith angle, or observation angle θo, same as
the downward transmittance τd(λ) depends on the solar zenith angle, θS. Both transmittances roughly
decrease with the cosines of the respective angles, as the angles increase [26].

Estimation of surface spectral signature or reflectance requires a preliminary correction of the
offset (path radiance) of the kth spectral band, LP(k), corresponding to a certain wavelength interval,
and then rescaling by the product of the atmospheric upward transmittance, τu(k), and by the total
solar irradiance measured in the kth spectral interval of the instrument. The latter equals the sum of
the solar, i.e. direct, and diffuse irradiances at the Earth’s surface:

ET(k) ,
(ES(k) · cos(θS) · τd(k) + Ed(k))

d2
ES

, k = 1, . . . , N (14)

The reflectance, under the assumption of Lambertian surface, may be written as

ρ(k) =
(L(k)− LP(k)) · π

τu(k) · ET(k)
, k = 1, . . . , N (15)

in which ρ(k)/π is the average of a Lambertian bidirectional reflectance distribution function (BRDF),
with maximum ρ(k).

Figure 1. Spectral responsivity functions of GeoEye-1 (4-bands MS + Pan). Notice that the bandwidth
of Pan encompasses part of the wavelengths of the rightmost NIR band and the red edge around 730
nm.

All quantities in (13) that are functions of the wavelength are integrated over the relative spectral
responsivity function of the kth spectral channels of the instrument to yield the corresponding quantity
measured by the kth spectral band of the instrument. Fig. 1 shows the spectral responsivity functions
for a typical MS scanner having blue, green, red, near infra-red (NIR), and Pan channels.

Remote sensing optical data, specifically MS and Pan, are generally distributed in spectral radiance
format, that is, radiance normalized to the width of spectral interval of the imaging instrument. The
advantage of the spectral radiance format over the radiance format is that the former exhibits dynamic
ranges of levels that are practically equal for both the narrow bands and the broadband Pan, the latter
does not, the radiance of one pixel of Pan being approximately equal to the sum of the radiances of the
underlying MS bands. In order to distribute fixed-point data (11/12 bits per pixel per band), more
compact and practical than floating-point data, the spectral radiance values are rescaled to completely
fill the 2048 or 4096 digital numbers (DN) of the representation. In some cases a negative offset is
introduced to force the minimum radiance value in the zero DN. The reciprocal of the scaling factors
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and the negative of the offsets of the various bands are placed in the header as metadata and are used
to restore exact spectral radiance values from the DNs. In many cases the offsets are set equal to zero,
for all bands including Pan. In this case, path radiances can be directly estimated from DNs by using
image-based methods.

In applications concerning different acquisition dates, e.g., change detection [40] and
multitemporal pansharpening [41], corrections for sun elevation and atmospheric effects, both
reductive and diffusive, should be performed according to (15). A typical case is calculation of
the normalized differential vegetation index (NDVI) from multispectral images. If NIR and R denote
the spectral band covering the NIR and red wavelengths, respectively, NDVI is defined as

NDVI ,
NIR− R
NIR + R

(16)

such a definition holds for spectral reflectance data. If the available data are in spectral radiance
format (15), the first correction is subtraction of path-radiance from the measured spectral radiance
values, or de-hazing. The subsequent correction for the total irradiance and upward transmittance is
less crucial, given the fractional nature of NDVI end the fact that spectrally adjacent bands will have
similar irradiances and transmittances.

MS pansharpening, which produces a sharp MS image having the same format as the original
MS image [9], generally does not require any kind of atmospheric corrections, unless a multiplicative
detail-injection model is adopted [18,20]. In this case, the haze-corrected pansharpening is capable of
thoroughly preserving the NDVI map of the original MS data, as it will be proven in Sect. 4.

4. Contrast-Based Fusion with Haze Removal

In this section, path radiance correction is introduced in (9) and (12) in order to produce estimates
of low spatial resolution spectral reflectance, which is the key to contrast-based pansharpening. To this
purpose, both the MS and Pan bands must be preliminarily de-hazed. While the haze of narrow spectral
bands can be calculated through either model-based or image-based techniques [32], calculation of the
haze of a broad band is less immediate, because phenomena typical of narrow wavelength intervals,
e.g., scattering and absorption, are spread over a large interval and thus less easily quantifiable. A
viable solution consists of inferring the haze of Pan by means of the haze values of individual narrow
bands that have been previously calculated. From (5), since the path radiance is assumed to be spatially
uniform within a scene of moderate size and the LS residue, ε, exhibits minimum nean square error
(MSE) and hence zero mean, the path radiances of ÎL, of PL and, trivially, of P, are identical. The former
can be easily calculated from the set of MMSE spectral weights, ŵk, and the set of extimated path
radiances, LP(k),

LP(P) = LP(PL) = LP(ÎL) = ŵ0 + ∑
k

ŵk · LP(k). (17)

After de-hazing of all the bands, including Pan, histogram-matching is to be accomplished from
de-hazed data. It is noteworthy that the goal of histogram-matching is different for CS and MRA fusion.
In the former case: a) the mean of Pan is forced to be identical to the mean of the intensity component,
in order to avoid injecting spatial details having nonzero mean; b) the standard deviation of PL is
forced to be identical to that of IL, to avoid over-/under-enhancement. For MRA fusion, equalization
of the mean of Pan to that of M̂k was introduce in [20] to perform an implicit adjustment of haze
between MS and Pan. In the present case, in which such an adjustment is explicitly performed, only
equalization of the MS-to-Pan gains should be accomplished.

Upon these premises, from the general model of contrast-based CS fusion (9), the atmospheric
model inversion (15) and the path radiances of the broad bands (17), the haze-corrected version is
given by

M̂k = (M̃k − LP(k)) ·
(

P− LP(ÎL)

ÎL − LP(ÎL)

)
+ LP(k), k = 1, . . . , N. (18)
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With simple manipulations, (18) can be written as an addition of spatial details driven by a
space-varying multiplicative gain that is proportional to the kth de-hazed band:

M̂k = M̃k +

(
M̃k − LP(k)
ÎL − LP(ÎL)

)
· (P− ÎL), k = 1, . . . , N. (19)

Starting from the general model of contrast-based MRA fusion (12), the haze-corrected version is
given by

M̂k = (M̃k − LP(k)) ·
(

P− LP(ÎL)

PL − LP(ÎL)

)
+ LP(k), k = 1, . . . , N. (20)

Note that in (20) the histogram-matching gain factors of Pan (11), σM̃k
/σPL , do not explicitly appear

because they cancel each other in the ratio. Analogously to (19), the additive version of (20) can be
stated as

M̂k = M̃k +

(
M̃k − LP(k)
PL − LP(ÎL)

)
· (P− PL), k = 1, . . . , N. (21)

Eqs. (18) and (20) may be easily explained by watching (15), in which the radiative transfer
model is inverted to yield the spectral reflectance product. Accordingly, the reflectance is given by
the spectral radiance diminished by the path-radiance (offset) divided by a gain that is the product
of the upward atmospheric transmittance by the total solar irradiance. Each pixel of M̃k is a sample
of spectral radiance. The offset is LP(k) and is assumed to be constant over the scene. Each pixel
either of the de-hazed MMSE intensity or of the de-hazed low-resolution Pan image histogram-matched
to the interpolated kth MS band, measures the solar irradiance as reported at the aperture of the
instrument, that is, the denominator of (15). In this way, upward atmospheric transmittance and solar
irradiance are eliminated [18,20]. Once a map of low spatial resolution spectral reflectance is obtained,
it is sharpened by multiplying its pixels by a high spatial resolution irradiance, that is, either Pan
histogram-matched to the MMSE intensity or Pan histogram-matched to the de-hazed kth interpolated
MS band.

As an example of the accurate spectral preservation of the haze-corrected pansharpening, let us
calculate NDVI from the pansharpened red and NIR bands. Denote with R̃ and ˜NIR the interpolated
red and NIR bands and with R̂ and ˆNIR their pansharpened versions. Then, (16) written for de-hazed
pansharpened spectral radiance values, e.g., MRA (20), yields:

NDVI =
( ˆNIR− LP( ˜NIR))− (R̂− LP(R̃))

( ˆNIR− LP( ˜NIR)) + (R̂− LP(R̃))

=
( ˜NIR− LP( ˜NIR)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
− (R̃− LP(R̃)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
( ˜NIR− LP( ˜NIR)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
+ (R̃− LP(R̃)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
=

( ˜NIR− LP( ˜NIR))− (R̃− LP(R̃))

( ˜NIR− LP( ˜NIR)) + (R̃− LP(R̃))
. (22)

The proof is analogous for CS pansharpening (18). Thus, contrast-based pansharpening, either
CS or MRA, with haze correction is capable of thoroughly preserving the NDVI of the original
(interpolated) MS data. This is not surprising because NDVI depends on the reflectance and a correct
pansharpening cannot increase the spatial resolution of the original reflectance, but simply enhances
the geometrical information of the scene without increasing the associated color information. On the
contrary, Eq. (22) suggests that if the contrast-based fusion model is not haze-corrected or, worse, if the
red and NIR bands are not properly de-hazed before calculating the NDVI, an unlikely high-frequency
spatial pattern will appear in the NDVI map calculated from pansharpened data.
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(a) (b)

Figure 2. 2048×2048 details of the GeoEye-1 Pan images acquired on (a): 27 May 2010; (b): 13 July 2010.

5. Experimental Results

5.1. Methods

Path-radiance correction (PRC) has been considered for two optimized contrast-based methods,
one relying on CS; another on MRA [9]. The two methods with path-radiance correction are labeled as
CSw/PRC (19), MRAw/PRC (21). The two versions without path-radiance correction, CSw/oPRC
and MRAw/oPRC, are given by (9) with MMSE intensity (5) and by (12), respectively. All spatial
filters are separable Gaussian with amplitude at Nyquist equal to 0.25 [7]. To allow for homogeneous
comparisons, interpolation of MS data to yield M̃k is performed in two steps by means of the 23-taps
filter described in [42], which is suitable for 1:2 interpolation. The method labeled as Exp denotes plain
interpolation without injection of details.

5.2. Data set

Two GeoEye-1 observations of the same scene have been acquired on the area of Collazzone, a
small town in Central Italy, on different dates of the same year, that is, on May 27, 2010 and July 13,
2010. The spatial sampling interval (SSI) is 2 m for MS (Blue, Green, Red, and NIR bands) and 0.5
m for Pan, respectively. The DNs of the 11-bit fixed-point representation are proportional to spectral
radiances through a set of floating-point calibration gains (metadata). All offsets are equal to zero.
The area investigated in the following is approximatively 1 Km2 (2048 × 2048 Pan and 512 × 512
MS). All the images have been orthonormalized by using a digital terrain model (DTM) available
at a 10-m resolution for all spatial coordinates. In particular, the second data set (slave) has been
coregistered on the first one (master). The lack of a digital surface model (DSM) including also
buildings and man-made structures in general is not crucial for the analysis of vegetation, because
residual mis-registrations (Pan-to-MS and date-to-date) are confined in the urban area.

Figure 2 shows 2048 × 2048 close-ups of the panchromatic images acquired on May (Fig. 2(a))
and July (Fig. 2(b)). Figure 3 shows the 512×512 MS images, resampled to the Pan scale, for the two
dates, both in true (3-2-1) and false (4-3-2) color compositions.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2018                   doi:10.20944/preprints201805.0149.v1

http://dx.doi.org/10.20944/preprints201805.0149.v1


10 of 17

(a) (b)

(c) (d)

Figure 3. 512×512 details of the original GeoEye-1 MS images acquired on (a),(c): 27 May 2010; (b),(d):
13 July 2010. (a),(b): 3-2-1 true color display; (c),(d): 4-3-2 false color composite display.

5.3. Assessments

Quality evaluations have been carried out at the full spatial scale (0.50 m for GeoEye-1 products)
equel to that of the original Pan. The check at full scale foresees separate measurement of spectral
consistency, which may be defined according to Wald’s protocol [43], and spatial consistency, which
may be defined according to either QNR [44] and Khan’s [45] protocols. Spectral consistency is the
one’s complement of the normalized spectral distortion that is defined as Dλ according to the QNR
protocol or D(K)

λ according to Khan’s protocol. Analogously, spatial consistency is defined as the

one’s complement of the normalized spatial distortion, either DS or D(K)
S , respectively. The spectral

consistency of Khan’s protocol strictly implements the guidelined of Wald’s consistency property.
However, the spatial consistency of Khan’s protocol is artificial and sometimes inconsistent. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. True-color compositions of 256×256 fragments of the GeoEye-1 pansharpened images
acquired (a)-(d): on 27 May 2010; (e)-(h): on 13 July 2010. (a),(e): OBT; (b),(f): OBT with haze correction;
(c),(g): MRA; (d),(h): MRA with haze correction.

crossed coupling of the QNR and Khan’s protocols is preferable, and a global index, referred to as
hybrid QNR (HQNR), was recently introduced and validated [46]

HQNR ,
(

1− D(K)
λ

)
· (1− DS) . (23)

5.4. Estimation of Path Radiances

The haze-corrected versions of CS (19) and MRA (21) require one value of path radiance estimated
for each band. In principle, also image-based methods are feasible because band offset metadata
in the file header are all identically zero. In this case the path-radiance values estimated for each
band will not be expressed in physical units, but as DNs. Conversion to spectral radiance units,
typically [W ·m−2 · sr−1 · µm−1] or [mW · cm−2 · sr−1 · µm−1] requires subsequent multiplication by
the calibration gain metadata.

The path radiance is arguably a fraction of the minimum of spectral radiance attained over the
scene. If the scene is large enough and hence statistically consistent, setting the actual minimum equal
to the 1-percentile of the histogram ensures robustness to noise (fluctuations of the dark signal around
its average; outliers originated by pattern-gain correction of the instrument). The rationale is that the
minimum attained over a certain spectral band generally depends on the spatial scale of representation,
whereas the path radiance does not, at least for a wide range of metric or sub-metric scales. Invariance
to scales between 2 m, 8 m is attained with p-tile values between 0.5 and 1. Below 0.5 the invariance
is weak; above one, the invariance is almost perfect. Thus, the path radiance of the B band, which is
usually approximated by the minimum over the scene [31], may be approximated by the 1-ptile.

Once the path-radiance of the blue channel, LP(B), is known, the intercept of the G-to-(B–LP(B))
scatterplot yields an estimate of LP(G); analogously for the R channel, LP(R) may be estimated from
the R-to-(G - LP(G)) scatterplot. This empirical/statistical approach holds for the visible bands [32].
For calculating the path radiance of NIR, which is practically uncorrelated with the visible bands [47]
in the presence of vegetation, the scatterplot method may fail, unless its calculation, either supervised
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Fales-color compositions (4-3-2 as R-G-B) of 256×256 fragments of the GeoEye-1
pansharpened images acquired (a)-(d): on 27 May 2010; (e)-(h): on 13 July 2010. (a),(e): OBT; (b),(f):
OBT with haze correction; (c),(g): MRA; (d),(h): MRA with haze correction.

or unsupervised, e.g. NDVI-enforced, is performed on non-vegetated areas. Otherwise, a reasonable
physical approximation is that the LP of NIR is set equal to zero.

Also a modeling of the atmosphere was considered. In this case the DNs must be preliminarily
calibrated my means of the gain metadata. The Fu-Liou-Gu (FLG) radiative transfer model [33] requires
acquisition year, month, day, local time, longitude, latitude, and possibly type of landscape for setting
aerosols [48,49] (advected [50,51] or local) both in the boundary layer [52,53] or upper troposphere.
The content of water vapor may be inferred from the presence of cirrus clouds in the visible bands
[54]. Such a model directly yields values of path radiance in predefined bands, roughly corresponding
to those of MS scanners, like Landsat 8 OLI. With small adjustments to fit the R and NIR bands of
GeoEye-1, it was found that the modeled path radiance is well approximated by 95% of the 1-ptile of
B, 65% of the 1-ptile of G, 45% of the 1-ptile of R and 5% of the 1-ptile of NIR. Path-radiance values are
correlated to one another because the scattered radiance is inversely proportional to the fourth power
of the wavelength.

The results reported in Sect. 5.5 are the best attainable varying with the estimated path radiances.
An exhaustive search at steps of one DN was performed for each dataset: the optimal path radiances
are those that optimize with-reference fusion scores, in average, at the degraded spatial scale, i.e., when
the ground truth is available as reference. With FLG-modeled path radiances and model-enforced
image-based path-radiances, the performance is about 0.1 % lower than that achieved with the
exhaustive search. Therefore, i) the radiative transfer model actually rules the performance of
contrast-based MS pansharpening; ii) the accuracy of path radiance estimation is not crucial, at
least for clear atmospheres.

5.5. Fusion Simulations

The GeoEye-1 pansharpened images at 0.5 m scale are portrayed in Figs. 4 and 5, for true- and
false-color displays. What immediately stands out is that the synthesis of vegetated areas is much more
realistic and accurate for the haze-corrected methods. This is mostly noticable in true-color display,
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whose bands are more largely affected by haze than those of false color. Without correction, the texture
of the canopies, which appears in Pan, being originated from the red-edge and NIR wavelengths,
but would be much less noticeable in the bands covering the visible spectrum, is transplanted in the
fusion products and originates an unlikely over-enhancement, accompanied by a blueish texture. In
fact, the blue band exhibits the largest path radiance over the visible spectrum. The visual quality of
non-vegetated areas is generally good for all methods. While the difference between corrected and
non-corrected methods stands out, especially in the true-color display, the difference between the CS
and MRA approaches, both with or without correction, is imperceivable.

Table 1. Full-scale spectral/spatial distortion indexes and cumulative scores for the May acquisition.

Dλ Dλ
(K) DS DS

(K) QNR QNR(K) HQNR
EXP 0.0000 0.0376 0.1160 0.0535 0.8840 0.9109 0.8507
CSw/oPRC 0.1033 0.0600 0.1471 0.0140 0.7648 0.9268 0.8017
CSw/PRC 0.0507 0.0467 0.0674 0.0209 0.8853 0.9334 0.8890
MRAw/oPRC 0.1043 0.0445 0.1514 0.0126 0.7601 0.9434 0.8109
MRAw/PRC 0.0523 0.0379 0.0666 0.0212 0.8846 0.9418 0.8981

Table 1 reports the scores achieved by the two CS and MRA contrast-based methods, with and
without path-radiance correction. The interpolated low-resolution MS is included in the comparison as
Exp. The benefits of the path-radiance correction are evaluated in term of decrement in both spectral
and spatial distortions, as measured according to the QNR [44] (Dλ, DS) and Khan’s [45] (D(K)

λ , D(K)
S )

protocols. For the QNR protocol, both distortion are approximately halved thanks to the haze corrected
injection. For Khan’s protocol, the spectral distortions benfits by 20-25% from the correction, while
the spatial distortion almost doubles in size with the correction. Since both in visual assessments and
in with-reference measurement at degraded scale [34] the spectral and spatial quality improvements
are balanced, there is the suspect that the spatial distortion of Khan’s protocol is inconsistent in some
cases. A match with visual quality suggests that the spatial distortion of QNR and Khan’s spectral
distortion should be coupled together to yield a global quality index (23). The QNR and Khan’s quality
indexes are reported together with HQNR in the last three columns of Table 1. QNR detects a high
improvement of the corrected versions, both CS and MRA, over the uncorrected ones. Unfortunately,
the unfused image (Exp) exhibits a quality almost identical to those of the corrected CS and MRA,
while the uncorrected versions are fare worse. The global index of Khan’s protocol is extremely flat,
almost insesitive to the haze-correction detail injection. However, the unfused image is somewhat
poorer than all the fused images, and this is reasonable. The mixed index HQNR detects significant
improvements of the corrected versions and places the quality of the unfused image Exp quite in the
middle of corrected and uncorrected CS/MRA. This result is consistent with the tests at degraded
scale carried out in [34].

Eventually, NDVI has been calculated from pansharpended images and found to be identical to
NDVI calculated from original interpolated MS bands, as otherwise proven in (22). Figure 6(a) shows
the NDVI maps of the May and July observations. While the area of the town is moderately affected by
changes in the vegetation cover, the surrounding agricultural area is greatly changed after the cutting
of crops. Woods and trees in general are less interested by seasonal changes. This behavior is highlited
by the seasonal difference of NDVI shown in Figure 6(b), in which changes of July over May and
vice-versa are reported. The conclusion is that pansharpening cannot improve the spatial resolution of
NDVI, which a pure spectral information, but can impair the fidelity of the NDVI map calculated from
original data. The proposed haze-corrected contast-based detail injection model is a viable solution
that thoroughly preserves the spectral information of the original MS data.
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(a)

(b)

Figure 6. Normalized Differential Vegetation Index (NDVI) of pansharpened images on 27 May 2010
and 13 July 2010. (a): NDVI of pansharpened image acquired on (left) May and (right) July; (b): Map of
differences in NDVI values: (left) July-to-May; (right) May-to-July.

6. Conclusions

In this study, we pointed out that the step of MS path-radiance estimation and correction is the key
to attain improved performance from traditional pansharpening methods based on spatial modulation.
Whenever the bandwidth of Pan encompasses the MS bands, an optimized intensity component can be
achieved through multivariate regression of lowpass-filtered Pan to MS and optimal injection of spatial
details can be achieved through haze removal. The path radiance of each band, LP(k), is estimated,
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subtracted before the spatial modulation and reinserted after fusion. The empirical trick of setting the
path radiance of the kth band equal to a fraction of the 1-percentile of its histogram is consistent to a
model based path-radiance estimation and to an exhaustive search of the set of LP(k) that maximizes
fusion performance at a degraded spatial scale. Both visual and numerical assessments highlight
improvements, especially noticeable in true-color display of vegetated areas. The explanation is that
the haze correction, most relevant in the blue band, prevents textures of tree canopies, collected by the
broadband Pan in the NIR wavelengths, from being injected in the visible bands, thereby originating
an unlikely overenhancement marred by a blueish texture. As a further result of this study, it is proven
that the haze-corrected multiplicative method, either CS or MRA, indentically preserves the NDVI,
or any other normalized differential index, of the original MS data. The procedure may need minor
adjustments, e.g. for WorldView-2 data, in which the outermost bands are not encompassed by Pan.
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