Article

A Single-Stage Asymmetrical Half-Bridge Flyback Converter with Resonant Operation

Chung-Yi Ting ${ }^{2}$, Yi-Chieh Hsu ${ }^{2}$, Jing-Yuan Lin ${ }^{1, *}$ and Chung-Ping Chen ${ }^{2}$
1 Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taiwan, ROC; jylin@mail.ntust.edu.tw (J.L.)
2 Graduate Institute of Electronics Engineering, National Taiwan University; d01943002@ntu.edu.tw (C.T.); d02943003@ntu.edu.tw (Y.H.); cpchen@ntu.edu.tw (C.C.)
* Correspondence: jylin@mail.ntust.edu.tw (J.L.); Tel.: x-886-2-27376419

Abstract

This paper proposes a single-stage asymmetrical half-bridge fly-back (AHBF) converter with resonant mode using dual-mode control. The presented converter has an integrated boost converter and asymmetrical half-bridge fly-back converter and operates in resonant mode. The boost-cell always operates in discontinuous conduction mode (DCM) to achieve high power factor. The presented converter operates simultaneously using a variable-frequency-controller (VFC) and pulse-width-modulation (PWM) controller. Unlike the conventional single-stage design, the intermediate bus voltage of this controller can be regulated depending on the main power switch duty ratio. The asymmetrical half-bridge fly-back converter utilizes a variable switching frequency controller to achieve the output voltage regulation. The asymmetrical half-bridge fly-back converter can achieve zero-voltage-switching (ZVS) operation and significantly reduce the switching losses. Detailed analysis and design of this single-stage asymmetrical half-bridge fly-back converter with resonant mode is described. A wide AC input voltage ranging from 90 to $264 V_{r m s}$ and output $19 \mathrm{~V} / 120 \mathrm{~W}$ prototype converter was built to verify the theoretical analysis and performance of the presented converter.

Keywords: fly-back converter; zero-voltage-switching (ZVS); Variable-frequency-controller (VFC); single-stage

1. Introduction

A conventional power supply was designed with a two-stage scheme that can be divided into two parts. The first stage achieves power-factor-correction (PFC) to reduce the input current harmonics. The second stage is a DC/DC converter that regulates the output voltage. However, the two-stage scheme has several defects, such as high cost and power supply system complexity. In recent years, a single-stage scheme was proposed [1-5] that integrates a boost stage and a DC/DC stage to share a common switch. The boost-cell stage operates in discontinuous conduction mode (DCM) to provide high power factor while the DC/DC stage can be responsible for output voltage regulation. Unfortunately, the single-stage scheme presents major problems in which the intermediate bus voltage cannot be regulated, such as the BIFRED converter, single-stage fly-back converter and single-stage LLC resonant converter [6-10]. When voltage is input for universal applications, the intermediate bus voltage could be as high as 1000 V , causing difficulty in selecting converter components, with voltage stress issues throughout the capacitors and switches. The wide intermediate bus voltage variation will cause output voltage regulation design difficulty and also cause lower conversion efficiency though the DC/DC stage. The single-stage scheme intermediate bus voltage cannot be regulated at light loads and universal input voltage. The zero-voltage-switching (ZVS) fly-back converters have been used widely in industry and are
suitable for low-to-medium power applications, such as LED-driver and desktop computer power supplies. Various kinds of ZVS schemes have been proposed, such as the active-clamp network and asymmetrical half-bridge circuit [11,12]. The active-clamp fly-back converter [13] employs the active clamp network to achieve ZVS operation; however, the voltage stresses on the switches are greater than input voltage which will cause high conduction losses in the power switches. The asymmetrical half-bridge fly-back converter (AHBF) with resonant mode [14-17] was developed to achieve ZVS and reduce the voltage stresses on the switches to less than that of the active-clamp fly-back converter, so the power density and conversion efficiency can be effectively increased. Furthermore, it can operate under changed duty cycles or variable switching frequencies for regulated output voltage.

This paper proposes a new single-stage asymmetrical half-bridge fly-back converter with resonant mode. The proposed converter integrates a boost converter and an asymmetrical half-bridge fly-back converter with resonant mode using dual-mode control. The converter intermediate bus voltage can be regulated by the pulse-width-modulation control (PWM). The variable-frequency-controller (VFC) can regulate the converter output voltage. Therefore, this proposed converter can operate in universal input voltage and solves the voltage stress issues throughout the capacitors and switches. The proposed converter utilizes the ZVS technique to decrease the switching losses, resulting in high conversion efficiency. The operational principle for the proposed converter is analyzed, a prototype converter with AC input voltage of 90-264 Vrms and output voltage/current of $19 \mathrm{~V} / 8 \mathrm{~A}$ is built to verify the analytical results.

2. Circuit Description and Principle Operation of Proposed Converter

Figure 1 shows the circuit configuration for the single-stage asymmetrical half-bridge fly-back converter with resonant mode. The primary switches Q_{1} and Q_{2} operate at asymmetrical duty ratio. $D_{b 1}$ and $D_{b 2}$ are the anti-paralleled power MOSFETs. The primary side diode $D_{i n}$ is a braking diode. The $L_{b o o s t}$ is a boost-cell inductor. The resonant inductor L_{r}, resonant capacitor C_{r} and magnetizing inductor L_{m} for are the resonant tank for the asymmetrical half-bridge fly-back converter. The secondary diode D_{r} is a rectifier diode, the $C_{b u s}$ is boost cell output capacitor and $C o$ is the asymmetrical half-bridge fly-back converter output capacitor.

Figure 1. Schematic of the proposed single-stage asymmetrical half-bridge fly-back converter with resonant mode.

The following assumptions were made to analyze the proposed single-stage asymmetrical half-bridge fly-back converter.

- The conduction losses of all switches, diodes and layout traces, and the copper losses of the transformer are neglected.
- The turn ratio of the transformer windings is $n=N_{1} / N_{2}$.
- The resonant inductor L_{r} is composed of a leakage inductor and external inductor, where

$$
L_{r}=L_{\text {eakage }}+L_{e x} .
$$

- The conduction times for Q_{1} are (1-D) T_{s} and Q_{2} is $D T_{s}$, respectively, where D is the duty cycle for Q_{2}, and T_{s} denotes the switching period. In addition, the dead time is much smaller than that other of conduction times.
- In the steady state the bus capacitance $C_{b u s}$ and output capacitance $C o$ are large enough so that the bus voltage $V_{b u s}$ and output voltage $V o$ are a constant value.

Both the boost-cell stage and asymmetrical half-bridge fly-back converter stage share the common switches Q_{1} and Q_{2}, and furthermore there is bus capacitor $C_{b u s}$ between the two stages. The boost-cell stage was presented in [18]. When the switch Q_{2} is turned on and the switch Q_{1} is turned off, this results in a positive voltage $V_{\text {Lboost }}=V_{\text {IN }}$ across the inductor Lboost causing a linear increase in the inductor current $i_{\text {Lboost }}$. Conversely, when the switch Q_{1} is turned on and the switch Q_{2} is turned off, the inductor Lboost is releases energy to the bus capacitor $C_{b u s}$. Therefore, from the flux-balance of Lboost under the steady-state, $V_{b u s}$ can be determined as

$$
\begin{equation*}
\frac{V_{b u s}}{V_{I N}}=\frac{1}{2}+\frac{\sqrt{1+2 \cdot \frac{D^{2} \cdot R_{L b u s}}{L \cdot f_{s}}}}{2} \tag{1}
\end{equation*}
$$

In the $\mathrm{DC} / \mathrm{DC}$ stage, when the switch Q_{1} is turned on, the intermediate bus voltage $V_{b u s}$ will charge C_{r}, L_{r} and L_{m}. Conversely, when the switch Q_{2} is turned on, the secondary diode D_{r} conducts and L_{m} is releases energy to the output load. When the asymmetrical half-bridge fly-back converter operates in resonant mode, the voltage transfer ratio can be expressed as

$$
\begin{equation*}
M=\frac{n V_{O}}{V_{b u s}}=\frac{(1-D) \cdot \frac{1-\cos \left[\omega_{r} \cdot\left(\frac{D}{f_{s}}\right)\right]}{Z_{r} \cdot \omega_{r}}}{\frac{1-D}{\omega_{r}}\left[\frac{1}{n^{2} R_{o}}+\frac{D}{2 L_{m} f_{s}}\right] \cdot \sin \left[\omega_{r} \cdot\left(\frac{D}{f_{s}}\right)\right]+\frac{(1-D)^{2}}{n^{2} R_{o} f_{s}}+\frac{1-\cos \left[\omega_{r} \cdot\left(\frac{D}{f_{s}}\right)\right]}{Z_{r} \cdot \omega_{r}}} \tag{2}
\end{equation*}
$$

Where

$$
\begin{equation*}
\omega_{r}=\frac{1}{\sqrt{C_{r} \cdot L_{r}}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
Z_{r}=\sqrt{\frac{L_{r}}{C_{r}}} \tag{4}
\end{equation*}
$$

From equation (2), the voltage transfer ratio of the asymmetrical half-bridge fly-back converter includes relation between the duty ratio D and switching frequency f_{s} simultaneously. Figure 2 shows the relation between the duty ratio D, switching frequency f_{s} and voltage transfer ratio. It shows that when the duty-ratio D is decreased from 0.35 to 0.65 , to maintain fixed voltage gain, the switching frequency can shift from f_{c} to f_{a} correspondingly. However, Figure 2 also shows that when the switching frequency f_{s} or duty ratio D decreases the voltage gain will be increased. In contrast, when the switching frequency f_{s} or duty ratio D increase, the voltage gain will be decreased.

Figure 2. Voltage transfer ratio versus normalized switching frequency.
From Figure 1, Q_{2} is the boost-cell stage main switch, therefore the intermediate bus voltage $V_{b u s}$ is regulated by the D to Q_{2} duty ratio. Unfortunately, changing the D to Q_{2} duty ratio will affect the asymmetrical half-bridge fly-back converter output voltage. For example, when the D to Q_{2} duty ratio is increased, the asymmetrical half-bridge fly-back converter output voltage will decrease. Conversely, when the D to Q_{2} duty ratio is decreased, the asymmetrical half-bridge fly-back converter output voltage will increase. To overcome the change in D to Q_{2} duty ratio causing unstable asymmetrical half-bridge fly-back converter output voltage, a VFC has been added to the feedback control loop. When the asymmetrical half-bridge fly-back converter output voltage is decreased, the switching frequency f_{s} will decrease to provide larger voltage gain for regulated output voltage. Conversely, when the output voltage is increased, the switching frequency f_{s} will be increased to provide lower voltage gain. According to the above analysis, the intermediate bus voltage $V_{b u s}$ and output voltage V_{0} of the proposed converter can be regulated simultaneously from the PWM control and VFC.

Figure 3 depicts the key waveforms of the proposed single-stage asymmetrical half-bridge fly-back converter with resonant mode. Six states are required to complete a switching cycle. The conduction paths for each operating state are illustrated in Figure 4.

Figure 3. Key waveforms of the proposed single-stage asymmetrical half-bridge fly-back converter with resonant mode.

State 1: $t_{0}<t<t_{1}$

As shown in Figure 4, Q_{2} is turned on with the ZVS operating condition. In the meantime the rectifier diode D_{r} is conducted and the energies stored in the transformer magnetizing inductors are transferred to the output load. The output voltage is reflected to the primary side, therefore, the primary transformer is clamped to $-n V o$, and $i_{L m}$ decreases linearly. During this period, the resonant inductor L_{r} and resonant capacitor C_{r} begin to resonate. On the other hand, the diode $D_{\text {in }}$ is conducted and the voltage across the input inductor Lbost is equal to the input voltage $V_{\text {IN }}$ so the input inductor current $i_{\text {Lboost }}$ increases linearly. The input current $i_{\text {Lboost }}$ can be expressed as

$$
\begin{equation*}
i_{\text {Lboost }}(t)=\frac{V_{\text {bus }}}{L_{\text {boost }}}\left(t-t_{0}\right) \tag{5}
\end{equation*}
$$

The resonant inductor current i_{Lr} and the resonant capacitor voltage $v \mathrm{Cr}$ are given as

$$
\begin{equation*}
i_{L r}(t)=i_{L r}\left(t_{0}\right) \cdot \cos \left[\omega_{r}\left(t-t_{0}\right)\right]-\frac{v_{C r}\left(t_{0}\right)+n V_{o}}{Z_{r}} \cdot \sin \left[\omega_{r}\left(t-t_{0}\right)\right] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
v_{C r}(t)=n V_{O}+\left[v_{C r}\left(t_{0}\right)+n V_{O}\right] \cdot \cos \left[\omega_{r}\left(t-t_{0}\right)\right]+Z_{r} i_{L r}\left(t_{0}\right) \cdot \sin \left[\omega_{r}\left(t-t_{0}\right)\right] \tag{7}
\end{equation*}
$$

The magnetizing current $i_{L m}$ of transformer can be expressed as

$$
\begin{equation*}
i_{L m}(t)=i_{L m}\left(t_{0}\right)-\frac{n V_{O}\left(t-t_{0}\right)}{L_{m}} \tag{8}
\end{equation*}
$$

This interval is ended when itr equals $i_{L m}$ at t_{1}.
State 2: $t_{1}<t<t_{2}$
At time t_{1} the input inductor current $i_{\text {Lboost }}$ increases linearly. The resonant inductor current $i_{L r}$ is the same as the magnetizing current $i_{L m}$ therefore, no current is transferred to the secondary side so the rectifier diode D_{r} is turned off. During this mode, the resonant circuit is composed of C_{r}, L_{r} and L_{m}. Moreover, L_{m} is equal to series with L_{r} and L_{m} is much larger than L_{r}, so that the resonant cycle is much longer than the previous state. The $i_{L m}, i_{L r}$ and v_{Cr} are expressed as

$$
\begin{align*}
i_{L r}(t)= & i_{L r}\left(t_{1}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{1}\right)\right]-\omega_{r 2} C_{r} v_{c r}\left(t_{1}\right) \cdot \sin \left[\omega_{r 2}\left(t-t_{1}\right)\right] \tag{9}\\
v_{C r}(t)= & v_{C r}\left(t_{1}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{1}\right)\right]+L_{m} i_{L r}\left(t_{1}\right) \omega_{r 2} \cdot \sin \left[\omega_{r 2}\left(t-t_{1}\right)\right] \tag{10}\\
& +L_{r} i_{L r}\left(t_{1}\right) \omega_{r 2} \cdot \sin \left[\omega_{r 2}\left(t-t_{1}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
i_{L m}(t)=i_{L r}(t) \tag{11}
\end{equation*}
$$

Where

$$
\begin{equation*}
\omega_{r 2}=\frac{1}{\sqrt{C_{r} \cdot\left(L_{m}+L_{r}\right)}} \tag{12}
\end{equation*}
$$

When Q_{2} is turned off this interval is ended.

State 3: $t_{2}<t<t_{3}$

The mode begins when Q_{2} is turned off at $t=t$. The magnetizing current $i_{L m}$ charges the Q_{2} junction capacitors and discharges the Q_{1} junction capacitors until the Q_{2} junction capacitors equal $V_{\text {bus }}$ and the Q_{1} body diode conducts. Therefore, at time t_{3}, Q_{1} can be turned on to achieve ZVS. During this period, which is used to allow enough time to achieve ZVS, as well as prevent shoot through in the two switches, the $i_{L r}$ and $v_{C_{r}}$ are expressed as

$$
\begin{equation*}
i_{L r}(t)=i_{L r}\left(t_{2}\right) \cdot \cos \left[\omega_{r 1}\left(t-t_{2}\right)\right]-\omega_{r 2} C_{r} v_{c r}\left(t_{1}\right) \cdot \sin \left[\omega_{r 1}\left(t-t_{2}\right)\right] \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
v_{C r}(t)=\frac{i_{L r}\left(t_{2}\right)}{\omega_{r 1} C_{r}} \cdot \sin \left[\omega_{r 1}\left(t-t_{2}\right)\right]+v_{c r}\left(t_{2}\right) \cdot \cos \left[\omega_{r 1}\left(t-t_{2}\right)\right] \tag{14}
\end{equation*}
$$

Where

$$
\begin{equation*}
\omega_{r 1}=\frac{1}{\sqrt{\left(L_{m}+L_{r}\right) \cdot\left(C_{e q} \| C_{r}\right)}}, C_{o s s 1}=C_{o s s 2} ; C_{e q}=C_{o s s 1}=C_{o s s 2} \tag{15}
\end{equation*}
$$

The input current $i_{\text {Lboost }}$ can be expressed as

$$
\begin{equation*}
i_{\text {Lboost }}(t)=-\frac{V_{\text {IN }}-V_{\text {bus }}}{L_{\text {boost }}}\left(t-t_{2}\right) \tag{16}
\end{equation*}
$$

State 4: $t_{3}<t<t_{4}$
In this state, Q_{1} is turned on which carries the resonant inductor current $i_{L r}$ and input inductor current $i_{\text {Lbosst. }}$. The voltage across the input inductor $L_{b o o s t}$ is about ($V_{I N}-V_{b u s}$) so the input inductor current $i_{\text {Lboost }}$ linearly decreasing. Referring to Figure $4(\mathrm{~d})$, the rectifier diode D_{r} is reverse-biased and in the meantime the input energy is stored in the primary magnetizing inductance $L m$, while the output capacitors Co provide energy to the output load. The resonant inductor current $i_{L r}$, magnetizing inductance current $i_{L m}$ and resonant capacitors voltage $v_{c_{r}}$ can be expressed as

$$
\begin{align*}
i_{L r}(t)= & i_{L r}\left(t_{3}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{3}\right)\right]+\omega_{r 2} C_{r} v_{b u s} \cdot \sin \left[\omega_{r 2}\left(t-t_{3}\right)\right] \tag{17}\\
& -\omega_{r 2} C_{r} v_{c r}\left(t_{3}\right) \cdot \sin \left[\omega_{r 2}\left(t-t_{3}\right)\right] \\
v_{C r}(t)= & v_{c r}\left(t_{3}\right)+i_{L r}\left(t_{3}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{3}\right)\right]+\omega_{r 2} C_{r} v_{b u s} \cdot \sin \left[\omega_{r 2}\left(t-t_{3}\right)\right] \tag{18}\\
& -\omega_{r 2} C_{r} v_{c r}\left(t_{3}\right) \cdot \sin \left[\omega_{r 2}\left(t-t_{3}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
i_{L m}(t)=i_{L r}(t) \tag{19}
\end{equation*}
$$

The input current $i_{\text {Lboost }}$ are given as

$$
\begin{equation*}
i_{\text {Lboost }}(t)=-\frac{V_{\text {IN }}-V_{\text {bus }}}{L_{\text {boost }}}\left(t-t_{3}\right) \tag{20}
\end{equation*}
$$

When input current $i_{\text {Lboost }}$ reach zero level, this interval is ended.
State 5: $t_{4}<t<t_{5}$
During this stage, Q_{1} remains turned on so that the direction of $i_{L r}$ is reversed. As with Stage 4 the primary magnetizing inductance L_{m} stores energy and the output capacitors Co continue to provide energy through the output load. The current in $L_{b o o s t}$ stays at zero (DCM operation) so the PFC feature can be achieved. In the meantime, diode $D_{i n}$ is in reverse bias. The resonant inductor current $i_{L r}$, magnetizing inductance current $i_{L m}$ and the resonant capacitor voltage $v_{c_{r}}$ are given as

$$
\begin{equation*}
-\omega_{r 2} C_{r} v_{c r}\left(t_{4}\right) \cdot \sin \left[\omega_{r 2}\left(t-t_{4}\right)\right] \tag{21}
\end{equation*}
$$

$$
\begin{align*}
v_{C r}(t)= & v_{c r}\left(t_{4}\right)+i_{L r}\left(t_{4}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{4}\right)\right]+\omega_{r 2} C_{r} v_{b u s} \cdot \sin \left[\omega_{r 2}\left(t-t_{4}\right)\right] \tag{22}\\
& -\omega_{r 2} C_{r} v_{c r}\left(t_{4}\right) \cdot \sin \left[\omega_{r 2}\left(t-t_{4}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
i_{L m}(t)=i_{L r}(t) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{r 2}=\frac{1}{\sqrt{C_{r} \cdot\left(L_{m}+L_{r}\right)}} \tag{24}
\end{equation*}
$$

When Q_{1} turned off, this interval is ended.
State 6: $t_{5}<t<t_{6}$
In this stage, Q_{1} and Q_{2} are turned off and the input current $i_{\text {iboost }}$ remains at zero, while the output capacitors continue to provide energy through the output load. At this interval, the resonant current $i_{L r}$ charges the Q_{1} junction capacitors and discharges the $Q^{2} j u n c t i o n ~ c a p a c i t o r s . ~ W h e n ~ Q_{1}$ equals $V_{\text {bus }}$ and the body diode across Q_{2} conducts, this interval is ended and the operating state returns to Stage 1 to begin the next switching cycle. The resonant inductor current $i_{L r}$, magnetizing inductance current $i_{L m}$ and resonant capacitor voltage $v \mathrm{Cr} \mathrm{can}$ be expressed as

$$
\begin{equation*}
i_{L r}(t)=i_{L r}\left(t_{5}\right) \cdot \cos \left[\omega_{r 1}\left(t-t_{5}\right)\right]+\omega_{r 1} C_{r} v_{C r}\left(t_{5}\right) \cdot \sin \left[\omega_{r 1}\left(t-t_{5}\right)\right] \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
v_{C r}(t)=\frac{I_{L r}\left(t_{5}\right)}{\omega_{r 1} C_{r}} \cdot \sin \left[\omega_{r 1}\left(t-t_{5}\right)\right]+v_{C r}\left(t_{5}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{5}\right)\right] \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
i_{L m}(t)=i_{L r}(t) \tag{27}
\end{equation*}
$$

When Stage 6 ends the operating state returns to Stage 1 and the next switching cycle begins.
State 6: $t_{5}<t<t_{6}$
In this stage, Q_{1} and Q_{2} are turned off and the input current $i_{\text {Llbosst }}$ remains at zero, while the output capacitors continue to provide energy through the output load. At this interval, the resonant current $i_{L r}$ charges the Q_{1} junction capacitors and discharges the $Q_{2} j u n c t i o n ~ c a p a c i t o r s$. When Q_{1} equals $V_{\text {bus }}$ and the body diode across Q_{2} conducts, this interval is ended and the operating state returns to Stage 1 to begin the next switching cycle. The resonant inductor current itr, magnetizing inductance current $i_{L m}$ and resonant capacitor voltage $v_{C r} c^{c}$ be expressed as

$$
\begin{equation*}
i_{L r}(t)=i_{L r}\left(t_{5}\right) \cdot \cos \left[\omega_{r 1}\left(t-t_{5}\right)\right]+\omega_{r 1} C_{r} v_{C r}\left(t_{5}\right) \cdot \sin \left[\omega_{r 1}\left(t-t_{5}\right)\right] \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
v_{C r}(t)=\frac{I_{L r}\left(t_{5}\right)}{\omega_{r 1} C_{r}} \cdot \sin \left[\omega_{r 1}\left(t-t_{5}\right)\right]+v_{C r}\left(t_{5}\right) \cdot \cos \left[\omega_{r 2}\left(t-t_{5}\right)\right] \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
i_{L m}(t)=i_{L r}(t) \tag{30}
\end{equation*}
$$

When Stage 6 ends the operating state returns to Stage 1 and the next switching cycle begins.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Operation Modes of the proposed single-stage asymmetrical half-bridge fly-back converter during one switching period: (a) State 1; (b) State 2; (c) State 3; (d) State 4; (e) State 5; (f) State 6.

3. Circuit Design for the Proposed Converter

$D_{\max }$ is the maximum duty cycle for the proposed converter. For to achieve high power-factor the input inductor current must be operated in DCM so the input inductor $L_{\text {boost }}$ can be expressed as

$$
\begin{equation*}
L_{\text {boos }}<\frac{V_{\text {bus }} T_{s}}{2 \cdot i_{I N_{-} \text {peak }} f_{S_{-} \min }} \cdot\left(D_{\max }\right) \cdot\left(1-D_{\max }\right)^{2} \tag{31}
\end{equation*}
$$

Where $i_{I_{-} \text {peak }}$ is the maximum peak-current of the input inductor $L_{b o o s t,}$ and $f_{s_{-} \min }$ is the lowest switching frequency for the proposed converter. From equation (28), when L_{m} is greater than the resonant inductor $L r$, the voltage gain can be approximated as

$$
\begin{equation*}
V_{O}=\frac{1}{n} V_{b u s} \cdot(1-D) \tag{32}
\end{equation*}
$$

Therefore, the turn ratio of the transformer primary winding to secondary winding can be equal to

$$
\begin{equation*}
n=\frac{V_{b u s}}{V_{O}} \cdot(1-D) \tag{33}
\end{equation*}
$$

At $t=t_{3}$, to ensure the ZVS operation for Q_{1}, the magnetizing inductance current $i_{L m}$ must discharge the Coss1 until the voltage is equal to zero so the minimum $i_{L m}$ at t_{3} can be given as

$$
\begin{equation*}
i_{L m\left(t_{3}\right) _\min }=\frac{n V_{O}}{2 L_{m}} \cdot D_{\min } T_{s} \tag{34}
\end{equation*}
$$

According to equation (31), the maximum magnetizing inductance L_{m} can be expressed as

$$
\begin{equation*}
L_{m\left(t_{3}\right) _\max }=\frac{n V_{O} \cdot t_{\text {dead }}}{2 \cdot V_{\text {bus }}\left(C_{o s s 1}+C_{o s s}\right) \cdot f_{s}} \cdot D_{\min } \tag{35}
\end{equation*}
$$

On the other hand, at $t=t_{6}$, to ensure ZVS operation for Q_{2}, the magnetizing inductance current $i_{L m}$ must discharge Coss2 2 until the voltage is equal to zero so the minimum $i_{L m}$ at t_{6} can be given as

$$
\begin{equation*}
i_{L m\left(t_{6}\right)_{-} \min }=\frac{n V_{O}}{2 \cdot L_{m} \cdot f_{s}} \cdot\left(1-D_{\max }\right) \tag{36}
\end{equation*}
$$

According to equation (33), the maximum magnetizing inductance L_{m} can be expressed as

$$
\begin{equation*}
L_{m\left(t_{6}\right)_{-} \max }=\frac{n V_{O} \cdot t_{\text {dead }}}{2 \cdot V_{\text {bus }}\left(C_{o s s 1}+C_{o s s 2}\right) \cdot f_{s}} \cdot\left(1-D_{\max }\right) \tag{37}
\end{equation*}
$$

Form Figure 3a, the resonant capacitor C_{r} and the resonant inductor L_{r} are resonating from t_{0} to t_{1}, this time interval is during the Q_{2} turn-on time, which is about half the resonant period and can be approximately expressed as

$$
\begin{equation*}
C_{r} \leq \frac{\left(\frac{2 \cdot D_{\max }}{\omega_{r}}\right)^{2}}{L_{r}} \tag{38}
\end{equation*}
$$

The output filter capacitance Co can be calculated as

$$
\begin{equation*}
C_{O} \geq \frac{\frac{P_{O}}{V_{O}} \cdot\left(1-D_{\max }\right)}{\Delta V_{O} \cdot f_{s}} \tag{39}
\end{equation*}
$$

Where f_{s} is the switching frequency and ΔV_{o} is the output voltage ripple. The voltage stresses of Q_{1} and Q_{2} are equal to $V_{b u s}$. The voltage stresses of the secondary diode D_{r} is

$$
\begin{equation*}
D_{r}=\frac{D_{\max } \cdot V_{b u s}}{n}+V_{O} \tag{40}
\end{equation*}
$$

The peak secondary diode current is expressed as

$$
\begin{equation*}
I_{D r, \max }=\frac{\pi}{2 \cdot\left(1-D_{\max }\right)} \cdot I_{O} \tag{41}
\end{equation*}
$$

4. Experimental Results

In order to verify the feasibility of the proposed converter, a 120 W prototype converter is built in the laboratory. Figure 5. shows the proposed converter and the experimental parameters are designed in Table 1.

Figure 5. Implementation of the proposed single-stage asymmetrical half-bridge fly-back converter with resonant mode.

Table 1. Experimental parameters of the proposed converter.

Parameters	Value
Input ac voltage range:	$85 \sim 264 V_{r m s}$
Output voltage:	$V_{o}=19 \mathrm{~V}$
Output voltage ripple:	$\Delta V_{o}=0.95 \mathrm{~V}$
Intermediate bus voltage:	$V_{b u s}=420 \mathrm{~V}$
Maximum output current:	$I_{o}=6.32 \mathrm{~A}$
Input inductor:	$L_{b o o s t}=200 \mu \mathrm{H}$
Magnetizing inductance:	$L_{m}=450 \mu \mathrm{H}$
Turns ratio:	$n=N_{p} / N_{s}=3 \mathrm{~T}$
Resonant inductor:	$L_{r}=100 \mu \mathrm{H}$
Maximum duty cycle:	$D_{m a x}=0.75$
Resonant capacitors:	$C_{r}=40 \mathrm{nF}$
Switching frequency:	$f_{s}=60 \sim 150 \mathrm{kHz}$
Output capacitor:	$C o=1200 \mu \mathrm{~F}$

A PQ26/20 TDK core is used for the input inductor. The PQ32/30 core is used for the isolation transformer and the transformer turn ratio is calculated from (29). The magnetizing inductance L_{m} is designed from (32) at approximately $450 \mu \mathrm{H}$. The IPP60R99 MOSFET is used producing output capacitance Coss of about 130 pF at a 430 V drain-to-source voltage, including the output capacitances of Q_{1} and Q_{2} it is about 260 pF . Therefore, to ensure ZVS operations, 330 ns dead time was inserted between the Q_{1} and Q_{2} gate signals. The resonant frequency f_{r} is placed at about 80 kHz so the resonant capacitor C_{r} and resonant inductor L_{r} can be calculated from (35). The output voltage
ripple ΔV ois required to be smaller than 0.95 V . The output capacitor C_{o} is calculated to be greater than $474 \mu \mathrm{~F}$ from equation (36). Therefore, a $1200 \mu \mathrm{~F}$ output capacitor is used.

Figure 6 shows the experimental results for $v_{G S 1}, v_{G S 2}, i_{L b o o s t}$ and $i_{L r}$ at different output currents
 turned on and Q_{2} is turned off, the $i_{\text {Lboost }}$ linearly decreases and $i_{L r}$ linearly increases. When Q_{1} and Q_{2} are turned off, ZVS operation can be achieved. During the Q_{1} turned off and Q_{2} turned on period, the $i_{\text {Lboost }}$ increases linearly and the resonant inductor L_{r} and resonant capacitor begin to resonate. On the other hand, Figure 6 also shows that when the output load increases from light load to full load, the duty ratio of Q_{2} increases from 0.5 to 0.75 for regulated bus voltage $V_{b u s,}$ and the switching frequency decreases from about 125 kHz to 62 kHz for regulated output voltage Vo. Figure 7 shows the measured input voltage $v_{a c}$, input current $i_{a c}$ and input inductor current $i_{\text {Lboost }}$ under full load conditions. The input current near sinusoidal waveform and input inductor current are shown operated in DCM so that high power factor can be achieved.

(a)

(b)

(c)

(d)

Figure 6. Waveforms for $v_{G S 1}, v_{G S 2}, i_{L b o s t}$ and $i_{L r}$ at different load current: (a) 1.6 A; (b) 3.2 A; (c) 4.7 A; (d) 6.3 A.

Figure 7. Waveforms for $v_{a c}, i_{a c}$ and $i_{\text {Lboost }}$ at $v_{a c}=230 V_{r m s}$.

Figure 8 shows the gate-to-source waveforms and drain-to-source voltages for primary switches Q_{1} and Q_{2} at the full-load. The waveform shows that $V_{D S 1}$ and $V_{D S 2}$ reach zero levels after Q_{1} and Q_{2} are turned on. Therefore, ZVS conduction is achieved so that overall conversion efficiency is increased. The transient output voltage $V o$ during a step load current from 1.6 to 6.3 A and 6.3 to 1.6 A are shown in Figure 8 when input voltage of $230 V_{r m s}$, which shows that $V o$ can still be regulated. Figure 10 depicts the bus voltage variation under $25 \%, 50 \%, 75 \%$ and 100% load condition and the bus voltage is regulated around 430 V . Figure 11 also depicts the input current power factor. It indicates that the power factor is greater than 0.9 at different load conditions. Figure 12 shows the measured efficiencies of the proposed single stage asymmetrical half-bridge fly-back converter through different outputs. The average efficiency is around 86% above which the rated full load efficiency is about 90%.

Figure 8. Zero-voltage turn-on switching for Q_{1} and Q_{2}.

(a)

(b)

Figure 9. Load transient response under different loads: (a) 20% to 100%; (b) 100% to 20%.

Figure 10. $V_{b u s}$ voltage variation curve for $115 V_{r m s}$ and $230 V_{r m s}$.

Figure 11. PF curve for $115 V_{r m s}$ and $230 V_{r m s}$.

5. Conclusions

This paper presented a single stage asymmetrical half-bridge fly-back converter with resonant mode. The switches operate simultaneously in the variable-frequency-controller (VFC) and pulse-width-modulation (PWM) control to regulate the bus voltage and output voltage. The operating modes in a complete switching cycle were analyzed and discussed in detail. The key equations were derived and the design procedures formulated. The experimental results on an AC input voltage 90 to $264 V_{r m s}$ with output 120 W prototype were recorded to verify the theoretical scheme. The measured results show that the power factor is above 0.9 , the average efficiency is around 86% and the highest conversion efficiency is about 90%. The proposed single stage asymmetrical half-bridge fly-back converter is especially suitable for low-to-medium power level applications.
Author Contributions: Chung-Yi Ting designed, simulated the work, and wrote the paper; Yi-Chieh Hsu implemented the work and performed the experiment; Jing-Yuan Lin and Chung-ping Chen provided all material for implementing the work, supervised the design, circuit simulation, analysis, experiment, and correct the paper.

Acknowledgments: The authors would like to acknowledge the financial support of the Ministry of Science and Technology of Taiwan through grant number MOST 106-2221-E-011-095-MY3.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qian, J.; Lee, F.C. A high-efficiency single-stage single-switch high-power-factor AC/DC converter with universal input. IEEE Trans. Power Electron. 1998, 13, 699-705. [CrossRef]
2. Kang, F.S.; Park, S.J.; Kim, C.U. ZVZCS single-stage PFC AC-to-DC half-bridge converter. IEEE Trans. Industrial Electron. 2002, 49, 206-216. [CrossRef]
3. Zhang, J.; Lee, F.C.; Jovanovic, M.M. An improved CCM single-stage PFC converter with a low frequency auxiliary switch. IEEE Trans. Power Electron. 2003, 18, 44-50. [CrossRef]
4. Ogata, M.; Nishi, T. Graph-theoretical approach to 2-switch DC-DC converter. International Journal of Circuit Theory and Applications. 2005, 33, 161-173. [CrossRef]
5. O'Sullivan, D. L.; Egan, M.G.; Willers, M. J. A Family of Single-Stage Resonant AC/DC Converters with PFC. IEEE Trans. Power Electron. 2009, 24, 398-408. [CrossRef]
6. Willers, M.J.; Egan, M.G.; Daly, S.; Murphy, J.M.D. Analysis and design of a practical discontinuous-conduction-mode BIFRED converter. IEEE Trans. Industrial Electron. 1999, 46, 724-733. [CrossRef]
7. Shu, Y.; Lin, B.T. Add active clamping and soft switching to boost flyback single stage isolated power factor corrected power supplies. IEEE Trans. Power Electron. 2011, 26, 3144-3152. [CrossRef]
8. Chen, S.Y.; Li, Z.R.; Chen, C. L. Analysis and Design of single stage AC/DC LLC resonant converter. IEEE Trans. Industrial Electron. 2012, 59, 1538-1544. [CrossRef]
9. Luo, S.; Wei, H.; Zhu, G.; Batarseh, I. Several schemes of alleviating bus voltage stress in single stage power factor correction converters. In Proceedings Power Electronics and Drive Systems Conference, Hong Kong, 27-29 July 1999; pp. 921-926.
10. Wu, X.; Yang, J.; Zhang, J.; Xu, M. Design Considerations of Soft-Switched Buck PFC Converter with Constant On-Time (COT) Control. IEEE Trans. Power Electron. 2011, 26, 3144-3152. [CrossRef]
11. Wu, X.; Zhang, J.; Ye X.; Qian, Z. Analysis and Derivations for a Family ZVS Converter Based on a New Active Clamp ZVS Cell. IEEE Trans. Industrial Electron. 2008, 55, 773-781. [CrossRef]
12. Choi, B.; Lim, W.; Bang, S.; Choi, S. Small-signal analysis and control design of asymmetrical half-bridge DC-DC converters. IEEE Trans. Industrial Electron. 2006, 53, 511-520. [CrossRef]
13. Watson, R.; Hua, G.C.; Lee, F.C. Characterization of an active clamp flyback topology for power factor correction applications. IEEE Trans. Power Electron. 1996, 11, 191-198. [CrossRef]
14. Kim, K.T.; Kwon, J.M.; Lee, H.M.; Kwon, B.H. Single-stage high-power factor half-bridge flyback converter with synchronous rectifier. IET Trans. Power Electron. 2014, 7, 1755-4535. [CrossRef]
15. Buso, S.; Spiazzi, G.; Sichirollo, F. Study of the asymmetrical half-bridge flyback converter as an effective line fed solid state lamp driver. IEEE Trans. Industrial Electron. 2014, 61, 6730-6738. [CrossRef]
16. Song, W.; Zhong, Y.; Zhang, H.; Sun, X.; Zhang, Q.; Wang, W. A Study of Z-Source Dual-Bridge Matrix Converter Immune to Abnormal Input Voltage Disturbance and with High Voltage Transfer Ratio. IEEE Trans. Industrial Informat. 2013, 9, 828-838. [CrossRef]
17. Li, H.; Zhou, W.; Zhou, S.; Yi, X. Analysis and design of high frequency asymmetrical half bridge flyback converter. Electrical Machines and Systems International Conference, Wuhan, China, 17-20 October 2008; pp. 1902-1904.
18. Tse, C.K.; Chow, M.H.L. New single-stage power-factor-corrected regulators operating in discontinuous capacitor voltage mode. In Proceedings of the 28th IEEE Power Electronics Specialists Conference, Saint Louis, MO, USA, 27-27 June 1997; pp. 371-377.
