

1 **Human demonstration does not facilitate the performance of horses (*Equus caballus*) in
2 a spatial problem-solving task**

3

4 Joan-Bryce Burla^{1*}, Janina Siegwart², Christian Nawroth^{3*}

5 ¹ Centre for Proper Housing of Ruminants and Pigs, Federal Food Safety and Veterinary Office
6 FSVO, Agroscope Tänikon, 8356 Ettenhausen, Switzerland

7 ² Kantonsschule Kollegium Schwyz, Kollegiumstrasse 24, 6430 Schwyz

8 ³ Leibniz Institute for Farm Animal Biology, Institute of Behavioural Physiology, Wilhelm-
9 Stahl-Allee 2, 18196 Dummerstorf, Germany

10

11 *** Corresponding authors**

12 Joan-Bryce Burla, Centre for Proper Housing of Ruminants and Pigs, Federal Food Safety and
13 Veterinary Office FSVO, Agroscope Tänikon, Ettenhausen 8356, Switzerland, joan-
14 bryce.burla@agroscope.admin.ch

15 Christian Nawroth, Leibniz Institute for Farm Animal Biology, Institute of Behavioural
16 Physiology, Dummerstorf, Germany, nawroth.christian@gmail.com

17

18 **Simple Summary**

19 Horses were confronted with a spatial problem-solving task in which they had to detour an
20 obstacle. Individuals that observed a human demonstrating how to solve the task did not solve
21 the task faster compared with a control group without demonstration. However, horses of both
22 the treatment and control group detoured the obstacle faster over trials. Together with previous
23 research, our results illustrate that horses do not seem to rely on social information when
24 solving a spatial problem-solving task.

25

26 Abstract

27 Horses' ability to adapt to new environments and to acquire new information plays an
28 important role in handling and training. Social learning in particular would be very adaptive
29 for horses as it enables them to flexibly adapt to new environments. In the context of horse
30 handling, social learning from humans has been rarely investigated but could help to facilitate
31 management practices. We assessed the impact of human demonstration on spatial problem-
32 solving abilities in horses using a detour task. In this task, a bucket with a food reward was
33 placed behind a double-detour barrier and horses (n = 16) received a human demonstration or
34 no demonstration. Horses were allocated to two test groups of 8 horses each, which experienced
35 the two treatments in a counterbalanced order. We found that horses did not solve the detour
36 task faster with human demonstration. However, both test groups improved rapidly over trials.
37 Our results suggest that horses prefer to use individual rather than social information when
38 being confronted with a spatial problem-solving task.

39

40 Keywords

41 detour task; equids; social cognition; social learning; spatial cognition

42 INTRODUCTION

43 The management of horses is key to provide them with adequate welfare [1,2]. An important
44 role in these management practices, such as handling and training, is horses' ability to adapt to
45 new environments and to acquire new information, either individually or from others [3,4]. In
46 the context of horse handling, social learning from humans could help to facilitate management
47 practices but has been rarely investigated yet [5]. As horses often experience frequent
48 interactions with humans, either due to training or general husbandry practices, potential
49 heterospecific information transfer from handlers to horses might thus help to improve their
50 welfare [6].

51

52 Animals are able to obtain solutions to novel problems by trial-and-error learning or via social
53 learning, i.e. by observing or interacting with other individuals [7,8]. However, research on
54 social learning in horses found contradictory results on their ability to solve novel problems by
55 the observation of conspecific demonstrators. Horses that observed a conspecific manipulating
56 an apparatus to receive a food reward spent more time close to the test apparatus but did not
57 learn to operate the apparatus more quickly compared with horses that did not receive a
58 demonstration [9]. In addition, horses that observed a demonstrator horse solving a spatial
59 problem were not faster in solving this task than horses that did not receive a social
60 demonstration [10]. Younger, lower-ranking, and more explorative horses showed improved
61 learning abilities when observing a conspecific solving a certain task [11]. Horses also copied
62 specific following behaviours towards humans when a familiar and dominant conspecific was
63 used as demonstrator, but not when the demonstrator was a subordinate or unknown
64 conspecific [12]. However, older and dominant demonstrators did not enhance the performance
65 of observer horses in a spatial problem-solving task in comparison to observer horses with age-
66 matched demonstrators or control horses without a demonstration [10]. Given these ambiguous

67 results, researchers have stressed that tasks must be ecologically relevant and, further, that
68 dominance and age effects should be taken into account in social learning [13].

69

70 Social learning is not restricted to conspecifics but can also take place with heterospecifics [e.g.
71 14]. Domestic animals, in particular, might be well adapted to learn from humans through
72 observation [e.g. 15]. When horses were given the opportunity to frequently observe a human
73 solving an instrumental task, more individuals learned the task and further also learned it faster
74 than horses that did not receive a human demonstration [16].

75

76 Spatial problem-solving tasks are often used to investigate social learning abilities between
77 conspecifics and heterospecifics [17,18]. For example, the ability of dogs to solve tasks in
78 which they have to walk around obstacles to reach a food reward has been widely investigated
79 in the context of social learning [17]. Although horses can solve these so-called detour tasks
80 on an individual level [19–21], a first study on the use of social information in this specific task
81 indicates that horses do not benefit from a demonstration by a conspecific [10].

82

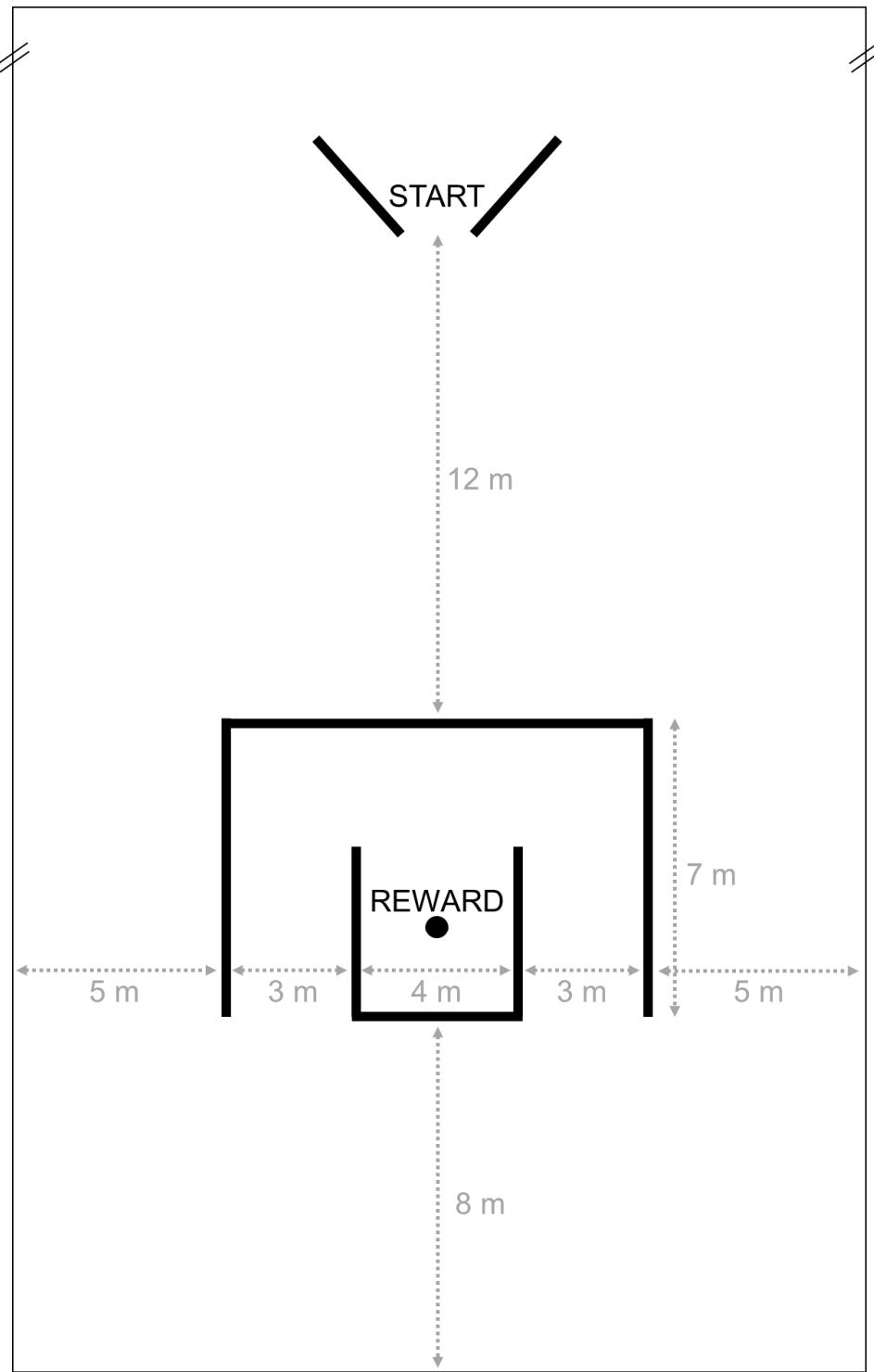
83 In the present study, we investigated the effect of a human demonstrator on the performance
84 of horses in a spatial problem-solving task. We presented horses with a series of ten trials with
85 either the presence or absence of a human demonstrator. We expected horses which observed
86 a human demonstration to perform better in the detour task than horses that did not observe a
87 demonstration [17,18]. We further expected horses to improve over trials [17], independently
88 of the presence or absence of a human demonstrator.

89

90 **MATERIALS AND METHODS**91 *Subjects and housing*

92 The study was conducted with 16 horses at a riding stable in Switzerland during August and
93 September 2012. The 9 mares and 7 geldings were between 4 to 19 years ($\bar{x} 9.9 \pm 4.9$) old and
94 of various common riding horse breeds. All horses were owned by private owners and used to
95 being handled and exercised on a daily basis. They were housed in individual box stalls (3.5 ×
96 3.5 m) with straw bedding, had several times per week access to a paddock or pasture, and
97 feeding of hay and concentrates took place 2 and 3 times a day, respectively. Routine care
98 remained unchanged during the period of experiments and was provided by stable employees
99 and their owners.

100


101 *Ethical Note*

102 Animal care and experimental procedures were in accordance with the Swiss animal welfare
103 legislation [22,23]. Daily experimental procedures took place in a familiar environment and
104 lasted no more than 20 min per horse. The experiments would have been terminated if a horse
105 had shown signs of stress (e.g. increased alertness, locomotion, or vocalization) but all
106 individuals adapted well and participated voluntarily.

107

108 *Experimental set up*

109 The experiments were conducted at the stable's indoor riding arena (20 × 40 m), which was
110 familiar to all horses. A double-detour task was set up by two nested U-shapes (Fig. 1).
111 Equestrian jump standards, wooden rails, and barrier tape were used as barriers for the labyrinth
112 (Fig. 2). The starting point was marked with two cavaletti jumps, which were positioned in an
113 intermittent V-shape (Fig. 1). A bucket with a reward (a hand full of concentrates) was placed
114 in the middle of the labyrinth (Fig. 1, 2).

115

116 **Figure 1:** Overview of the experimental set up in the test arena.

117

118 **Figure 2:** Horse feeding from the rewarded bucket after successfully completing the detour
119 task.

120

121 *Training phase*

122 Horses were habituated to the barriers of the labyrinth by leading them through an L-shaped
123 labyrinth each 10 times on 5 days; no food reward was present during the habituation. The
124 operant conditioning to the neon-green bucket (\varnothing 28 cm) was carried out during a period of 4
125 weeks by feeding each horse a hand full of concentrates from the bucket once a day in their
126 individual box stalls.

127

128 *Experimental procedure*

129 Horses were tested individually in the same order every day. Experiments always took place
130 between 2 h after the last and 1 h before the next feeding time. During testing, subjects were
131 visually isolated from other conspecifics but remained in auditory and olfactory contact. Each
132 horse was tested in two test phases of two consecutive test days, which were 3 weeks apart
133 from each other. Each test day consisted of five consecutive trials; resulting in 10 trials per

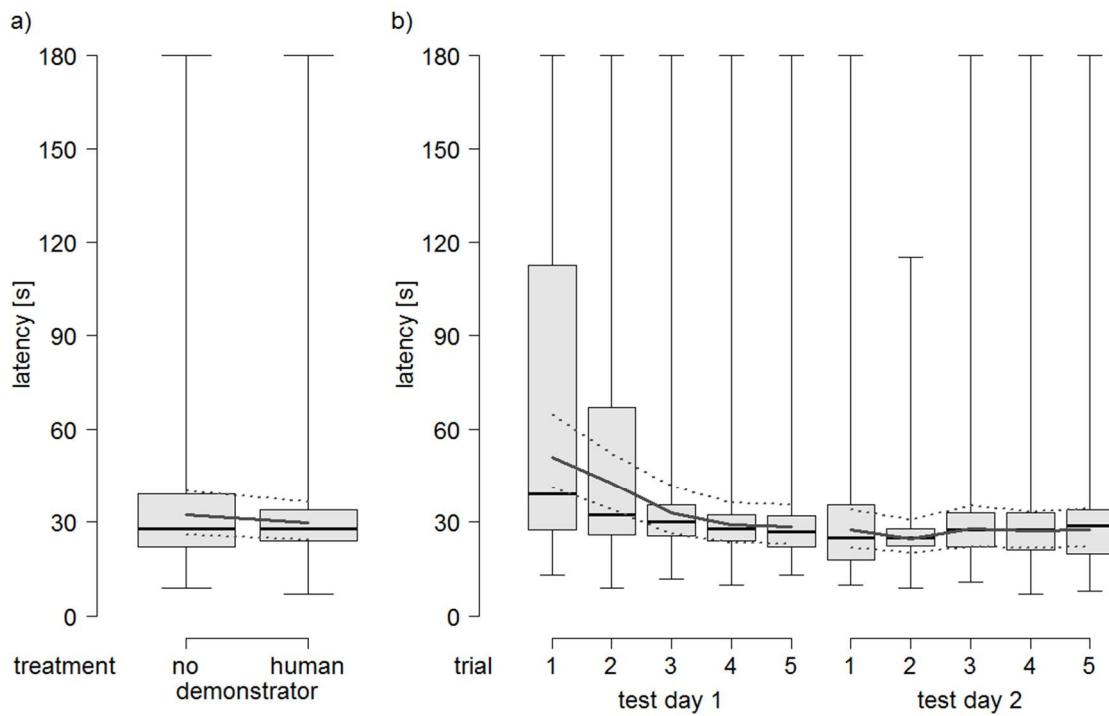
134 horse and test phase. For each trial, the horse was led with a lead rope to the starting point by
135 the experimenter and an assistant (re)filled the food reward in the bucket visibly to the horse
136 and then positioned himself at the wall sideways from the starting point. After waiting for
137 another 5 s, the horse was released by removing the lead rope from the headcollar. During a
138 test phase, all horses experienced one of two different treatments:

139 • No demonstration: After releasing the horse at the starting point, the experimenter stepped
140 back sideways behind the cavaletti jumps marking the starting point.

141 • Human demonstrator: After releasing the horse at the starting point, the experimenter
142 immediately started walking towards the rewarded bucket without further interacting. As
143 soon as the human demonstrator started moving, the horses were free to solve the detour in
144 their own pace and choose their own direction, i.e. left or right side of the detour task. The
145 human demonstrator always chose the direction to the right of the barriers and reached the
146 reward bucket within an approximate latency of 30 s.

147 The 16 horses were allocated to two test groups of 8 horses each, which experienced the two
148 treatments in a counterbalanced order. One test group completed the first test phase with no
149 demonstration and the second test phase with a human demonstrator, whereas the other test
150 group completed the first test phase with a human demonstrator and the second test phase with
151 no demonstration.

152


153 *Data recording and analysis*

154 Latency time between the release of the horse at the starting point until the horse touched the
155 reward bucket served as outcome variable. If a horse was not successful to obtain the food
156 reward within 180 s, the trial was terminated by leading the horse back to the starting point and
157 a latency of 180 s was recorded for the unsuccessful trial. All data were recorded directly by
158 one observer; all trials were video recorded for controls. Statistical analysis was conducted in

159 R (version 3.4.3; [24]). The outcome variable ‘latency’ was analysed using linear mixed-effects
160 models (lmer; package lme4; [25]). The explanatory variables included treatment (factor with
161 2 levels: no demonstration, human demonstrator), test day (factor with 2 levels: 1, 2), trial
162 (factor with 5 levels: 1, 2, 3, 4, 5), and their interactions (3-way and all possible 2-way) as fixed
163 effects and, to account for dependencies in the data structure, test day nested in the test phase
164 nested in the horse nested in the test group as random effect. The p-values were calculated
165 using parametric bootstrap (PBmodcomp; package pbkrtest; [26]). For the bootstrap, the
166 number of 1000 samples was chosen. Therefore, a p-value of 0.001 is the lowest value that
167 could result from this method, although the actual p-value might have been even lower. Model
168 assumptions were checked by graphical analysis of residuals (normal distribution,
169 homoscedasticity); the outcome variable was log transformed. The final model was
170 accomplished by a stepwise backwards reduction (the smallest model included the main effects
171 only) with a p-value of 0.05 as criterion of exclusion and model estimates and 95% confidence
172 intervals of the fixed effects were calculated.

173 RESULTS

174 In the first test phase, 14 trials by 4 horses (test day 1: 10 trials by 3 horses; test day 2: 4 trials
175 by 3 horses) were unsuccessful (i.e. horses did not detour the obstacle within 180 sec) in the
176 test group that received no demonstration, whereas only 1 horse was unsuccessful once (in the
177 first trial on test day 1) in the test group with a human demonstrator. In the second test phase,
178 all trials were successful in both test groups. Horses did not show shorter latency in solving the
179 detour task with a human demonstrator in comparison with no demonstrator ($p = 0.061$; Fig.
180 3a); there was no effect by any interaction between treatment, test day, and trial ($p = 0.55$),
181 treatment and test day ($p = 0.37$), or treatment and trial ($p = 0.42$). However, in both test groups,
182 the latency to reach the reward bucket decreased from trial 1 to 3 and levelled off from trial 3
183 to 5 on test day 1, whereas it remained on an equivalent level in trial 1 to 5 on test day 2 (test
184 day \times trial: $p < 0.001$; Figure 3b).

185

186 **Figure 3:** Latency to reach the rewarded bucket in a) the two different treatments and b) trial

187 1 to 5 on test day 1 and 2.

188

189 **DISCUSSION**

190 We investigated the ability of horses to socially learn from humans in a spatial problem-solving
191 task. Contrary to our hypothesis, we did not find that horses which observed a demonstration
192 by a human solved a detour task faster than those without a demonstration [10]. However,
193 horses in both test groups improved over trials; a finding which is in line with previous studies
194 on spatial problem-solving in horses [17,21]. Our results indicate that horses do not prefer the
195 use of social information provided by humans when being confronted with a spatial problem.
196 The use of social information in horses thus seems to be context-specific and limited to
197 instrumental tasks [5,9,11].

198

199 Horses are very sensitive in interpreting human communicative and attention cues. They use
200 human pointing gestures to find food [27] and adjust their begging behaviour to the attentive
201 states of humans [28]. Horses also tend to choose a potentially baited container when it was
202 located next to a human, independent of the person's attentive state, indicating that horses can
203 use humans as a local enhancement cue alone [29]. In the current study, seeing a human
204 demonstrating how to detour an obstacle did not affect the horses' detour performance. This is
205 surprising, given horses inclination to attend to even subtle human cues [30]. However, our
206 findings are in agreement with the performance of other domestic ungulates in spatial problem-
207 solving task using conspecific demonstrators; e.g. horses in similar detour tasks [10] or goats
208 in maze learning tasks [31]. Human demonstration, in turn, led to improved detour performance
209 in goats and dogs [17,18], raising the question why horses did not improve with demonstration
210 in a similar task.

211

212 A possible explanation for our inability to find an effect of human demonstration on the detour
213 performance in horses might be a potential basement effect of the latency time over trials for

214 both test groups. Horses from both test groups rapidly improved in their time to detour the
215 obstacle, with latency times levelling off after the third trial of each test phase. Individual
216 improvement in detour tasks, although on a slower level, has been previously shown for horses
217 [19,21]. One explanation for our negative findings between both test groups might be that a
218 ceiling effect appeared because horses could simply not solve the spatial problem faster, which
219 masked potential treatment effects between test groups. Adding more complexity to a different
220 spatial problem-solving task might improve the detection of potential treatment differences in
221 future studies.

222

223 CONCLUSIONS

224 Our results show that horses do not seem to use information from humans in a spatial problem-
225 solving task. The use of social information in horses thus seems to be context-specific and
226 limited to instrumental tasks.

227

228 ACKNOWLEDGMENTS

229 The authors are grateful to [PD Dr. Lorenz Gygax](#) for his valuable advice with the statistical
230 analysis. We thank all horse owners for allowing the participation of their horses in the study
231 and, especially, [Gian-Luca Tanner](#) and [Melissa Wohler](#) for their support with the handling of
232 the horses during data collection. The publication of this article was funded by the Open Access
233 Fund of the Leibniz Association and the Open Access Fund of the Leibniz Institute for Farm
234 Animal Biology (FBN).

235

236 AUTHORS' CONTRIBUTION

237 [Joan-Bryce Burla](#) and [Janina Siegwart](#) conceived and designed the study, [Janina Siegwart](#)
238 performed the experiments, [Joan-Bryce Burla](#) analysed the data, [Joan-Bryce Burla](#) and
239 [Christian Nawroth](#) wrote the manuscript. All authors read and approved the final manuscript.

240

241 CONFLICTS OF INTEREST

242 The authors declare that they do not have any competing interest.

243 **REFERENCES**

244 1. Mills, D.; McDonnell, S. M. *The Domestic Horse: The Evolution, Development and*
245 *Management of its Behaviour*; Cambridge University Press: Cambridge, 2005.

246 2. McGreevy, P. *Equine behavior: a guide for veterinarians and equine scientists.*; Saunders
247 Limited: London, 2004.

248 3. Nicol, C. . Equine learning: progress and suggestions for future research. *Appl. Anim.*
249 *Behav. Sci.* **2002**, *78*, 193–208.

250 4. McCall, C. A. A Review of Learning Behavior in Horses and its Application in Horse
251 Training. *J. Anim. Sci.* **1990**, *68*, 75–81.

252 5. Schuetz, A.; Farmer, K.; Krueger, K. Social learning across species: horses (*Equus*
253 *caballus*) learn from humans by observation. *Anim. Cogn.* **2016**, *20*, 567–573.

254 6. McGreevy, P. D.; Oddie, C.; Burton, F. L.; McLean, A. N. The horse–human dyad: Can
255 we align horse training and handling activities with the equid social ethogram? *Vet. J.* **2009**,
256 *181*, 12–18.

257 7. Heyes, C. M. Social Learning in Animals: Categories and Mechanisms. *Biol. Rev.* **1994**,
258 *69*, 207–231.

259 8. Galef, B. G.; Laland, K. N. Social Learning in Animals: Empirical Studies and Theoretical
260 Models. *Bioscience* **2005**, *55*, 489.

261 9. Ahrendt, L. P.; Christensen, J. W.; Ladewig, J. The ability of horses to learn an
262 instrumental task through social observation. *Appl. Anim. Behav. Sci.* **2012**, *139*, 105–113.

263 10. Rørvang, M. V.; Ahrendt, L. P.; Christensen, J. W. Horses fail to use social learning when
264 solving spatial detour tasks. *Anim. Cogn.* **2015**, *18*, 847–854.

265 11. Krueger, K.; Farmer, K.; Heinze, J. The effects of age, rank and neophobia on social
266 learning in horses. *Anim. Cogn.* **2014**, *17*, 645–655.

267 12. Krueger, K.; Heinze, J. Horse sense: Social status of horses (*Equus caballus*) affects their

268 likelihood of copying other horses' behavior. *Anim. Cogn.* **2008**, *11*, 431–439.

269 13. Nicol, C. How animals learn from each other. *Appl. Anim. Behav. Sci.* **2006**, *100*, 58–63.

270 14. Dawson, E. H.; Chittka, L. Conspecific and heterospecific information use in

271 bumblebees. *PLoS One* **2012**, *7*, 1–6.

272 15. Range, F.; Virányi, Z. Social learning from humans or conspecifics: differences and

273 similarities between wolves and dogs. *Front. Psychol.* **2013**, *4*, 868.

274 16. Schuetz, A.; Farmer, K.; Krueger, K. Social learning across species: horses (*Equus*

275 *caballus*) learn from humans by observation. *Anim. Cogn.* **2017**, *20*, 567–573.

276 17. Pongrácz, P.; Miklósi, A.; Kubinyi, E.; Gurobi, K.; Topal, J.; Csányi, V. Social learning

277 in dogs : the effect of a human demonstrator on the performance of dogs in a detour task.

278 *Anim. Behav.* **2001**, *62*, 1109–1117.

279 18. Nawroth, C.; Baciadonna, L.; McElligott, A. G. Goats learn socially from humans in a

280 spatial problem-solving task. *Anim. Behav.* **2016**, *121*, 123–129.

281 19. Osthaus, B.; Proops, L.; Hocking, I.; Burden, F. Spatial cognition and perseveration by

282 horses, donkeys and mules in a simple A-not-B detour task. *Anim. Cogn.* **2013**, *16*, 301–305.

283 20. Baragli, P.; Vitale, V.; Paoletti, E.; Sighieri, C.; Reddon, A. Detour behaviour in horses

284 (*Equus caballus*). *J. Ethol.* **2011**, *29*, 227–234.

285 21. Baragli, P.; Vitale, V.; Sighieri, C.; Lanata, A.; Palagi, E.; Reddon, A. R. Consistency and

286 flexibility in solving spatial tasks : different horses show different cognitive styles. *Sci. Rep.*

287 **2017**, 1–12.

288 22. FSVO Federal Food Safety and Veterinary Office Switzerland Animal Welfare Act

289 (TSchG 455) 2005.

290 23. FSVO Federal Food Safety and Veterinary Office Switzerland Animal Welfare Ordinance

291 (TSchV 455.1) 2008.

292 24. R Core Team R: A language and environment for statistical computing 2017.

293 25. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models
294 Using lme4. *J. Stat. Softw.* **2015**, *67*, 1–48.

295 26. Halekoh, U.; Højsgaard, S. A Kenward-Roger Approximation and Parametric Bootstrap
296 Methods for Tests in Linear Mixed Models - The R Package pbkrtest. *J. Stat. Softw.* **2014**, *59*,
297 32.

298 27. Proops, L.; Walton, M.; McComb, K. The use of human-given cues by domestic horses,
299 *Equus caballus*, during an object choice task. *Anim. Behav.* **2010**, *79*, 1205–1209.

300 28. Proops, L.; McComb, K. Attributing attention: the use of human-given cues by domestic
301 horses (*Equus caballus*). *Anim. Cogn.* **2010**, *13*, 197–205.

302 29. Krueger, K.; Flauger, B.; Farmer, K.; Maros, K. Horses (*Equus caballus*) use human local
303 enhancement cues and adjust to human attention. *Anim. Cogn.* **2011**, *14*, 187–201.

304 30. Smith, A. V.; Proops, L.; Grounds, K.; Wathan, J.; McComb, K. Functionally relevant
305 responses to human facial expressions of emotion in the domestic horse (*Equus caballus*).
306 *Biol. Lett.* **2016**, *12*, 20150907.

307 31. Baciadonna, L.; McElligott, A. G.; Briefer, E. F. Goats favour personal over social
308 information in an experimental foraging task. *PeerJ* **2013**, *1*, e172.

309