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1 Abstract: Zero-Knowledge Proofs ZKP provide a reliable option to verify that a claim is true without
> giving detailed information other than the answer. A classical example is provided by the ZKP based
s in the Graph Isomorphism problem (GI), where a prover must convince the verifier that he knows an
« isomorphism between two isomorphic graphs without publishing the bijection. We design a novel
s ZKP exploiting the NP-hard problem of finding the algebraic ideal of a multivariate polynomial
s set, and consequently resistant to quantum computer attacks. Since this polynomial set is obtained
»  considering instances of GI, we guarantee that the protocol is at least as secure as the GI based
s  protocol.

»  Keywords: Graph Isomorphism Problem, Multivariate Polynomial System, Zero-Knowledge Proof

10 1. Introduction

1 First presented in [1] by Goldwasser, Micali and Rackoff, interactive proof systems are introduced
1z as a method that allows an entity (the prover) to prove the truth of a proposition to a second party (the
1z verifier) without releasing additional information. The parties involved interact in a challenge-response
12 process until the verifier is convinced that the prover’s claim is correct, or concludes that the claim is
s false. This kind of proofs are commonly used in authentication and identification systems, allowing
16 an entity to prove ownership of a valid credential (ie, credit card number or password) without
1z transmitting or storing this information.

18 As for now, many of the authentication schemes used in the industry make use of protocols
1o based on PKI by means of digital certificates. A vast majority of these schemes are based on either the
20 factorization problem (RSA) or the DLP, both susceptible to quantum computer attacks. To address this
=z issue, we propose a ZKP whose security relies on M Q, known to be NP-hard, and GI, both resistant
22 against quantum computer attacks up to now.

2 Recently, suitable instances of M Q have been used for proposing novel PKC schemes, since
2a  they are considered resistant to quantum computers attacks [2], a feature that popular cryptographic
= algorithms, such as RSA, DSA and ECDSA, do not share. Frequently, algorithms for key generation in
s MPKC involve two major phases:

27 e Private key generation. The private key consists of a set of polynomials F = {f1,..., fu} such
28 that the problem of finding a common root is easy.
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20 o Public key derivation. Starting with the private key F we create another set of polynomials
30 F={f,,...,f,} Finding a common root of the set F must be a computationally difficult task
a1 since this set must be publicly exhibited without weakening the cryptosystem.
32 Public key is usually derived from the private key by performing compositions with affine

ss  bijective transformations, say Sy, 52, by performing F=5,0F05. Consequently, S; and S; are also
s« kept secret, since they can be easily inverted, and are considered part of the private key. Many other
s methods for public key generation are explained with detail in [3, 1.2].

36 One of the first attempts to exploit multivariate polynomials in cryptography can be found in [4,5],
sz where a cipher system, known as the Matsumoto-Imai cryptosystem, is proposed but unfortunately
s broken shortly after being published [6]. However, this effort set the basis for a number of other families
s of cryptographic schemes, such as the Unbalanced Oil-Vinegar (UOV) [7], the Faugere’s Hidden Field
s Equations (HFE) [8] and the Rainbow signature schemes [9]. A list of the most promising post-quantum
a1 cryptographic algorithms can be found in [10].

a2 We may distinguish cryptanalytic attacks on multivariate schemes (and in public cryptosystems
«3  in general) according to two main purposes:

” o Attacks on ciphertext, where the primary goal is to get the plaintext from the ciphertext. These
a5 attacks make use of polynomial system solvers such as the Buchberger Algorithm [11] to compute
46 Groebner bases. The algorithm must be executed each time a ciphertext is gathered.

a7 o Attacks to recover the private key, consisting of the private set F and the affine transformations
48 51,S2. Example of this algorithms are: High Rank, MinRank and Separation of Oil and
49 Vinegar [12](see Section [V1.5.4]).

50 The method we define in this work produces key pairs from an associated isomorphism between

s a pair of graphs. The public key will consist of a system of polynomial equations. The private key will
s2 consist of a solution to this system. We will show that finding this solution is at least as difficult as
ss finding an isomorphism between the associated graphs. At present, the fastest algorithm for solving
s« the GI problem runs in quasi-polynomial time [13], but an authentic prover will be able to provide a
ss  solution efficiently.

56 The general layout of this paper is as follows. In Section 2 some basic concepts as well as notation
sz necessary for the development of the zero-knowledge proof is introduced. Next, Section 3 is appointed
ss to the construction of the polynomial sets arising from the GI problem as a reduction exercise. The
s construction of the ZKP will be explained in 4. Finally, in Section 5 we exhibit evidence supporting the
e viability of the algorithm by estimating the theoretic complexity of the polynomial set construction.

e1 2. Mathematical Background

62 We recall the basic concepts needed to develop the translation from instances of the GI problem
es in instances of the M Q problem.

sa 2.1. Graphs

o5 A graph consists of a set V = {v1,...,0v,}, the vertices and a subset E of V(2) = {e C V| #e = 2},
es the edges. The number of elements of V and E are known as the order and the size of G respectively.
ez We say that two vertices uy, up with u; # uy, are adjacent if they are joined by an edge. Similarly, two
es different edges 1, e, € E are said to be adjacent if they are joined by a vertex. The complementary graph
s G of Gisdefinedas G = (V/,E’) with V/ = Vand E' = {v;0; € V@|v;v; ¢ E}.

70 Whenever there exist two disjoint subsets Vi, V, of V such that V; |J V, = V and every edge has
= vertices in both sets V; and V, the graph is called bipartite. Additionally, we say G is complete bipartite
72 provided that every vertex in V; is connected to every vertex in V, and vice versa.

73 Given a pair of graphs G = (U, D) an H = (V,E) a bijection ¢ : U — V that preserves edges
s is an isomorphism between G and H. If such a bijection exists between G and H, they are said to be
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s isomorphic and we denote it G =~ H. Thus, we can define the GI problem as the task of finding one of
7 the possibly many isomorphisms between G and H or deciding that this bijection does not exist.

77 Finally, we define a matching as a subset M C E where no to edges e, € M share a common
7e vertex. If every vertex of G is an extreme of some edge in M, then the matching is perfect.

70 2.2. Polynomial Idelas and Algebraic Sets

80 Let I, be the finite field of g elements and R the ring of polynomials in 7 variables over [F;. An
e1 ideal is a subset I C R such that for every f,¢g € I thesum f + g € [ and for every f € I, h € R the
.2 product if € I. Then by considering a finite set F = {f1,..., fu} C R we can define the ideal generated
es by F as follows

(F) ={mfi+...+hufulhi € Ri=1,...,m}.

" It can be seen without too much effort that a common root for the polynomials f;,i =1,...,mis
ss also aroot for any f € (F). The zero-set of the ideal I consists of all the points (x1,...,x,) € IFZ such
ss that f(xq,...,x,) = 0forall f € I, denoted Vi(F;). If we consider any algebraic extension of [, then
ez the zero-set is known as the algebraic set of I.

a8 We can now formalize M Q as a decision problem. Additionally, we state the related search
s problem.

o1  DECISION PROBLEM

= Instance: Anideal I C Fy[Xy,..., Xy]

1 ifVi(Fy) #@

Solution:
% { 0 otherwise

sa SEARCH PROBLEM

s Instance: Anideal I C Fy[Xy,..., X;].

ss  Solution: Either a proof that V| (IF;) = @ or a point x € F}j such that x € V|(IFy).

97

o A solution of the search problem gives an immediate solution for the decision problem. If we are
e able to find a solution for the polynomial system f; =0, ..., f, = 0 we conclude that V;(IF;) # @ and
1o the value 1 is returned. On the other hand, if we can show that no solution exists then we return 0.
11 This implies that the search problem is at least as difficult as the decision problem, which is known to
102 be NP-complete.

103 We have seen that a solution of a polynomial system is also a solution for any element in
10a its generated ideal. The idea behind the most common system solvers is to provide a new set of
105 representatives (generators) of the same ideal, but with nicer properties, making it easier to find such a
16 solution. This is the case for solvers based on the problem of finding Grobner Basis. We can mention
107 improved versions of the Buchberger Algorithm, such as F4 and F5. They have been successful to
10s  attack cryptographic schemes such as the HFE and the Matsumoto-Imai [14] an some variations of
10 UOV [15]. Despite this efforts, the complexity of these algorithms on random instances of M Q is fully
10 exponential [16].

w 2.3. Zero-Knowledge Proof Systems

112 A very useful cryptographic tool to provide identification services is the zero-knowledge proofs.
13 In the most basic scenario, it consists of two parties: the verifier performs a series of questions to the
us  prover, who has to answer correctly in each step to convince the verifier. The prover will be capable of
us answering correctly on each trial only if he has legitimate information.

116 For this process to be implemented successfully, some characteristics are desirable. The whole
uz  verification process should be computationally efficient for an authentic verifier, whereas it must be
us infeasible for a malicious entity to impersonate the authentic prover. Furthermore, no information that
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1 permits a tricky verifier to reveal the prover’s information is gathered, though this is commonly relaxed
120 to “no statistically significant information”. Additionally, we require the following characteristics:

121 o Completeness. An authentic prover will always be accepted by an honest verifier.
122 e Soundness. If the prover is not authentic the verifier rejects with high probability.

123 This is, a verifier always accepts an authentic prover, but a malicious prover can impersonate an
124 authentic one with a very small probability.

125 3. Construction of the Polynomial System

126 We exhibit the construction of the polynomial ideal from a graph and an isomorphism between
12z them.
128 Let G and H be two isomorphic graphs of size e and order n with vertex sets U = {uy,...,u,}

12 and V = {vy,...,v,} and edge sets D and E respectively. Let Ki; v denote the complete bipartite
10 graph with bipartition U, V. We get a perfect matching M in Ky, v by selecting u;vy, ujv; into M if and
i only if and only if u;u; € D and v;v; € E. In other words:

132 (i) if u;u; is an edge in G but vy, is not an edge in H, then the edges u;v; and u;v; do not lie
133 simultaneously in M,
1s (i) if 3o, is an edge in H but u;u; is not an edge in G, then the edges u;v; and u;v; do not lie
135 simultaneously in M.

We can identify any perfect matching M built in this way with a bijection ¢ that defines the
isomorphism of graphs. From a set-theoretic point of view, ¢ is treated as a collection of pairs being
their first coordinate elements that belong to the domain of the function, while the second ones belong
to the co-domain [17]. Conditions (i) and (ii) aforementioned constitute an alternative way to assert:

ujuj € D «— <])(ul)¢(u]) € E.

We illustrate what we just explained in figure 1.

U 01

T Xase

(a) An isomorphism between G and H can be seen (b) The edges upv, and wu3vy cannot belong
as a perfect matching in the graph Ki;y , preserving simultaneously to M because uyu3 € D, but vovy & E.
adjacencies between G and H. We add the equation X;,X34 = 0in I.

Figure 1. Process to generate the polynomials set associated to the graph isomorphism.
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137 Now, we perform a suitable reduction from an instance of GI to an instance of M Q following
13s  the same ideas exposed in reductions of several other problems in graphs to Boolean quadratic
130 polynomials [18,19].
First we will consider the set of n2 variables {Xir} fori,k =1,...,n. We restrict any possible
solution to the binary set {0, 1} by introducing the following polynomials:

X7 — Xiy forik € {1,...,n} 1)

120 Now, the following polynomials are introduced to require that one and only one vertex v; from U is
11 connected to one vertex of V and vice versa. This links solutions to the fact that we have a perfect
12 matching in M.

n
Y Xip—1 fori=1,...n )
j=1

n
ZXz‘,k—l forj=1,...n
i=1

Finally, to guarantee that the set of polynomials has a solution related to the chosen isomorphism, we
introduce a third set of polynomials:

Xix X, forany i, j, k, I satisfying
(uiu]- € DAy ¢ E) V
(u,-u]- ¢ D Avy € E) 3)

13 This completes the construction of the polynomial set related to the given GI instance.

1aa 4. Zero-Knowledge Protocol

145 We are ready to explain how we use the theory developed in Section 3 to perform the
16 zero-knowledge proof.
147 Let us start by generating a graph G and a random bijection ¢ of its vertices. We create a second

1es  graph H which is isomorphic to G with isomorphism ¢. Now let F; be the polynomial system resulting
10 from the process of construction shown in Section 3. A solution x; for the system Fj is found by setting
1o Xjr = 1if u;vr € Mand X;; = 0 otherwise. The polynomial set F; will be public and is used as the
151 public key. The private key will be the solution x;.

152 Next, we create a second random bijection 1 and the graph K isomorphic to G defined by this
13 isomorphism. We get a chain of isomorphisms as follows:
pod
m
G H K.

We apply the same process to generate a second set F, of polynomials and find a solution in the exact
same way as we did for the first set. We can avoid the process of graph generation by applying the
permutation directly into the public system. We note that from the bijection ¢ : U — V we can derive
a permutation oy of the set {1,...,n} defined by oy (i) = kif ¢(u;) = vy. This creates a mapping of
variables by sending X\ to X; . o (k) We write the polynomials of F; satisfying condition (3) as

Xy () Xy (1) “)

155 A solution for the system F, is provided by applying the permutation ¢y to reorder x;. A third set
15 Of polynomials F; can be obtained if we consider ¢y = ¢ o ¢.
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1z Authentication protocol. The following steps are performed between Alice (the prover) and Bob (the
s verifier):
159 Key Generation:

=
o

160 e Alice picks a graph G and randomly generates a permutation of the set {1,...,n}. This

161 permutation is used to create the isomorphic graph H together with its isomorphism . Then
162 the public key F; is computed as we have established. The private key is a solution to the public
163 system Fj.

168 Authentication:

165 1. Alice generates a permutation ¢ for the set {1,...,n} at random and computes the polynomial
166 system F,, which is sent to Bob as a compromise.

167 2. Bob creates a challenge by selecting at random b € {0,1}. Bob sends b to Alice.

168 3. Once Alice has received b she must answer accordingly:

169 e if b = 0, she sends the solution x; of the system F, to Bob,

170 e if b =1, shesends c.

i 4. According to the value of b Bob performs the following to authenticate Alice:

172 e if b = 0, he checks whether x, is a solution for F, or not,

173 e if b = 1, he computes the system Fj applying ¢ to F; and checks if he obtains the system F.

17 4.1. Possible attacks

175 We will consider that a malicious entity (Eve) wants to play the role of Alice. Then she can try the
e following strategy.
177 Eve flips a coin to decide which value b will send Bob as a challenge. If the resultis b = 0, then

17 she randomly generates a system F, with a known solution for her. Then Eve sends the system F}
17e and waits for the challenge. If Bob selects b = 0 the Eve is able to provide an answer to the challenge.
10 Otherwise, if b = 1 she will fail to provide the permutation. Now if the result of the flip is b = 1, the
11 she selects a permutation at random to transform the system F1 into F}. Now she will have the answer
12 for the challenge if Bob chooses to send b = 1, but she fails if this is not the case.

163 Now we suppose that Eve wants to obtain information about the secret key, so she plays the role
1ea  Of Bob. She can try asking several times and hope that she can get the same set of polynomials twice.
1ss  The first time she challenges Alicia with r = 0 so she can get the permutation. The second one she
s sends r = 1 and gets the solution. Applying the inverse permutation to the solution she can get the
w7 private key. However, there are n! different elements, and since n! > 2" this strategy is not a good one,
1ee  since the running time will be exponential.

180 We can try to solve these problems to break the protocol with more sophisticate tools:

190 o MQ: An efficient polynomial system solver to find a solution for F; would break completely the
191 scheme by exhibiting the private key (even a different solution xj would work).

102 e Solving the Isomorphism of Polynomials Problem (IP), which consists of finding two affine
103 transformations S, Sy such that, for two quadratic transformations F,F,wehave F=S,0F085,.
108 In our case, the variable permutation can be regarded as a special case of IP where S, is the
195 identity and S; a permutation matrix.

196 o Solving the GI Problem. For this approach we need to retrieve the initial isomorphic graphs from
107 the polynomial set and find an isomorphism.

108 For the time being, there is no quantum algorithm that solves efficiently any of the aforementioned

199 problems.
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200 5. Computational complexity

201 We analyse the cost of creating the sets of polynomials, which is the main step in the key generation
> process. For the first and second sets of polynomials given in (1) and (2) we have to consider the pairs
s (i,k) forik € {1,...,n}. The asymptotic time complexity for these is O(n?).

204 We include now the polynomials of the form (3). We need also the solution for this system, we
205 complete the construction with these steps:

2

o

N
o

206 e For every edge u;u; € D, we look for every edge viv; in the complementary graph H. We add
207 the corresponding polynomials X; X, to the system. B

208 e For every edge vv; € D, we walk over every edge v;v; in the complement G. We add the
200 corresponding polynomials X; ;X;; to the system.

210 o With the chosen isomorphism ¢ : G — H we create the complete bipartite graph Ki; v an the
211 matching M = {u;¢(u;)|u; € U}.

22 These equations comprise a total number bounded by 1n2e, where e is size of G. Then we can build the
213 complete system in time O(n%¢), which is polynomial on the order of G.

zna 5.1, Toy example

We will show the construction of a polynomial set with a small example. Let us consider the
graph G = (U, D) with U = {1,2,3,4},D = {(1,2),(1,4),(2,3),(3,4)} and the permutation

(1234
132 4

215 By applying ¢ to the vertex set U we get the isomorphic graph H = {V,E} where V = U and
E={(1,3),(1,4),(2,3),(2,4)}. The graphs G, H are shown in Fig. 2. The dashed lines are the edges in
a7 the corresponding complementary graphs.

N
n
o

1 2 1- 3
4— 3 4 5
(a) Graph G (b) Graph H

Figure 2. Isomorphic graphs. Dashed lines correspond to the complementary graphs

218 To build the polynomial set, we start with the edges in G and H. For instance, considering
(1,2) € Gand (3,4) € H, we get the polynomials X; X3 4. Once we walk over all the edges of G in
220 this fashion, we get the polynomials

N
[
©

X11X00, X1,1X42, X01X32, X31X42
X13X04, X13Xa4, X23X34; X33Xa4.

21 Now, by considering the edges G and H, we get another set of 8 polynomials:

X11X43, X1,1X42, X01X32, X31X42
X01X33, X23X34, X23X34; X33Xa4.
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222 The roots of these polynomials related to the isomorphism between these graphs can be computed
223 by letting Xio(i) = 1fori=1,2,3,4and 0 in other case. Then x1; = x14 = X203 = xp4 = 1 andxl-,]- =0
224 for the rest of the elements.

225 6. Conclusions

226 We have built an alternative zero-knowledge authentication protocol whose security relies in the
22z difficulty of solving M Q. A solution for this set of polynomials represents an isomorphism between
228 graphs. Then we guarantee that the protocol is at least as secure as the classical ZKP based solely in
220 the GI problem. We have also shown that the construction is feasible in terms of time complexity, and
230 since only a permutation of length 1 or a binary vector of size #n? is sent in response at every step,
21 most of the information interchanged on every interaction consists of the set of polynomials, which
232 is a bit string in the order of O(n*). We leave as a future work to verify the possibility of reducing
233 the number of polynomials in the system without weakening the proof system, as well as a complete
23 implementation of the authentication protocol.
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220 Abbreviations

241 The following abbreviations are used in this manuscript:
242

DLP Discrete Logarithm Problem
DSA Digital Signature Algorithm
GI Graph Isomorphism Problem
ECDSA  Elliptic Curve Digital Signature Algorithm
MQ Multivariate Quadratic Problem
243 NP Non-deterministic Polynomial Time
PKI Public Key Infrastructure
PKC Public Key Cryptography
MPKC  Multivariate Public Key Cryptography
RSA Rivest, Shamir and Adleman (a public key cryptographic scheme)
ZKP Zero-Knowledge Proof
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