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Abstract: Zero-Knowledge Proofs ZKP provide a reliable option to verify that a claim is true without 
giving detailed information other than the answer. A classical example is provided by the ZKP based 
in the Graph Isomorphism problem (GI), where a prover must convince the verifier that he knows an 
isomorphism between two isomorphic graphs without publishing the bijection. We design a novel 
ZKP exploiting the NP-hard problem of finding the algebraic ideal of a  multivariate polynomial 
set, and consequently resistant to quantum computer attacks. Since this polynomial set is obtained 
considering instances of GI, we guarantee that the protocol is at least as secure as the GI based 
protocol.
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1. Introduction10

First presented in [1] by Goldwasser, Micali and Rackoff, interactive proof systems are introduced11

as a method that allows an entity (the prover) to prove the truth of a proposition to a second party (the12

verifier) without releasing additional information. The parties involved interact in a challenge-response13

process until the verifier is convinced that the prover’s claim is correct, or concludes that the claim is14

false. This kind of proofs are commonly used in authentication and identification systems, allowing15

an entity to prove ownership of a valid credential (ie, credit card number or password) without16

transmitting or storing this information.17

As for now, many of the authentication schemes used in the industry make use of protocols18

based on PKI by means of digital certificates. A vast majority of these schemes are based on either the19

factorization problem (RSA) or the DLP, both susceptible to quantum computer attacks. To address this20

issue, we propose a ZKP whose security relies onMQ, known to be NP-hard, and GI, both resistant21

against quantum computer attacks up to now.22

Recently, suitable instances of MQ have been used for proposing novel PKC schemes, since23

they are considered resistant to quantum computers attacks [2], a feature that popular cryptographic24

algorithms, such as RSA, DSA and ECDSA, do not share. Frequently, algorithms for key generation in25

MPKC involve two major phases:26

• Private key generation. The private key consists of a set of polynomials F = { f1, . . . , fm} such27

that the problem of finding a common root is easy.28
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• Public key derivation. Starting with the private key F we create another set of polynomials29

F = { f 1, . . . , f n}. Finding a common root of the set F must be a computationally difficult task30

since this set must be publicly exhibited without weakening the cryptosystem.31

Public key is usually derived from the private key by performing compositions with affine32

bijective transformations, say S1, S2, by performing F = S2 ◦ F ◦ S1. Consequently, S1 and S2 are also33

kept secret, since they can be easily inverted, and are considered part of the private key. Many other34

methods for public key generation are explained with detail in [3, 1.2].35

One of the first attempts to exploit multivariate polynomials in cryptography can be found in [4,5],36

where a cipher system, known as the Matsumoto-Imai cryptosystem, is proposed but unfortunately37

broken shortly after being published [6]. However, this effort set the basis for a number of other families38

of cryptographic schemes, such as the Unbalanced Oil-Vinegar (UOV) [7], the Faugere’s Hidden Field39

Equations (HFE) [8] and the Rainbow signature schemes [9]. A list of the most promising post-quantum40

cryptographic algorithms can be found in [10].41

We may distinguish cryptanalytic attacks on multivariate schemes (and in public cryptosystems42

in general) according to two main purposes:43

• Attacks on ciphertext, where the primary goal is to get the plaintext from the ciphertext. These44

attacks make use of polynomial system solvers such as the Buchberger Algorithm [11] to compute45

Groebner bases. The algorithm must be executed each time a ciphertext is gathered.46

• Attacks to recover the private key, consisting of the private set F and the affine transformations47

S1, S2. Example of this algorithms are: High Rank, MinRank and Separation of Oil and48

Vinegar [12](see Section [VI.5.4]).49

The method we define in this work produces key pairs from an associated isomorphism between50

a pair of graphs. The public key will consist of a system of polynomial equations. The private key will51

consist of a solution to this system. We will show that finding this solution is at least as difficult as52

finding an isomorphism between the associated graphs. At present, the fastest algorithm for solving53

the GI problem runs in quasi-polynomial time [13], but an authentic prover will be able to provide a54

solution efficiently.55

The general layout of this paper is as follows. In Section 2 some basic concepts as well as notation56

necessary for the development of the zero-knowledge proof is introduced. Next, Section 3 is appointed57

to the construction of the polynomial sets arising from the GI problem as a reduction exercise. The58

construction of the ZKP will be explained in 4. Finally, in Section 5 we exhibit evidence supporting the59

viability of the algorithm by estimating the theoretic complexity of the polynomial set construction.60

2. Mathematical Background61

We recall the basic concepts needed to develop the translation from instances of the GI problem62

in instances of theMQ problem.63

2.1. Graphs64

A graph consists of a set V = {v1, . . . , vn}, the vertices and a subset E of V(2) = {e ⊂ V| #e = 2},65

the edges. The number of elements of V and E are known as the order and the size of G respectively.66

We say that two vertices u1, u2 with u1 6= u2, are adjacent if they are joined by an edge. Similarly, two67

different edges e1, e2 ∈ E are said to be adjacent if they are joined by a vertex. The complementary graph68

G of G is defined as G = (V′, E′) with V′ = V and E′ = {vivj ∈ V(2)|vivj 6∈ E}.69

Whenever there exist two disjoint subsets V1, V2 of V such that V1
⋃

V2 = V and every edge has70

vertices in both sets V1 and V2 the graph is called bipartite. Additionally, we say G is complete bipartite71

provided that every vertex in V1 is connected to every vertex in V2 and vice versa.72

Given a pair of graphs G = (U, D) an H = (V, E) a bijection φ : U → V that preserves edges73

is an isomorphism between G and H. If such a bijection exists between G and H, they are said to be74
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isomorphic and we denote it G ≈ H. Thus, we can define the GI problem as the task of finding one of75

the possibly many isomorphisms between G and H or deciding that this bijection does not exist.76

Finally, we define a matching as a subset M ⊆ E where no to edges e1, e2 ∈ M share a common77

vertex. If every vertex of G is an extreme of some edge in M, then the matching is perfect.78

2.2. Polynomial Idelas and Algebraic Sets79

Let Fq be the finite field of q elements and R the ring of polynomials in n variables over Fq. An80

ideal is a subset I ⊂ R such that for every f , g ∈ I the sum f + g ∈ I and for every f ∈ I, h ∈ R the81

product h f ∈ I. Then by considering a finite set F = { f1, . . . , fm} ⊂ R we can define the ideal generated82

by F as follows83

〈F〉 = {h1 f1 + . . . + hm fm|hi ∈ R, i = 1, . . . , m}.

It can be seen without too much effort that a common root for the polynomials fi, i = 1, . . . , m is84

also a root for any f ∈ 〈F〉. The zero-set of the ideal I consists of all the points (x1, . . . , xn) ∈ Fn
q such85

that f (x1, . . . , xn) = 0 for all f ∈ I, denoted VI(Fq). If we consider any algebraic extension of Fq then86

the zero-set is known as the algebraic set of I.87

We can now formalize MQ as a decision problem. Additionally, we state the related search88

problem.89

90

DECISION PROBLEM91

Instance: An ideal I ⊂ Fq[X1, . . . , Xn]92

Solution:

{
1 if VI(Fq) 6= ∅
0 otherwise

93

SEARCH PROBLEM94

Instance: An ideal I ⊂ Fq[X1, . . . , Xn].95

Solution: Either a proof that VI(Fq) = ∅ or a point x ∈ Fn
q such that x ∈ VI(Fq).96

97

A solution of the search problem gives an immediate solution for the decision problem. If we are98

able to find a solution for the polynomial system f1 = 0, . . . , fm = 0 we conclude that VI(Fq) 6= ∅ and99

the value 1 is returned. On the other hand, if we can show that no solution exists then we return 0.100

This implies that the search problem is at least as difficult as the decision problem, which is known to101

be NP-complete.102

We have seen that a solution of a polynomial system is also a solution for any element in103

its generated ideal. The idea behind the most common system solvers is to provide a new set of104

representatives (generators) of the same ideal, but with nicer properties, making it easier to find such a105

solution. This is the case for solvers based on the problem of finding Gröbner Basis. We can mention106

improved versions of the Buchberger Algorithm, such as F4 and F5. They have been successful to107

attack cryptographic schemes such as the HFE and the Matsumoto-Imai [14] an some variations of108

UOV [15]. Despite this efforts, the complexity of these algorithms on random instances ofMQ is fully109

exponential [16].110

2.3. Zero-Knowledge Proof Systems111

A very useful cryptographic tool to provide identification services is the zero-knowledge proofs.112

In the most basic scenario, it consists of two parties: the verifier performs a series of questions to the113

prover, who has to answer correctly in each step to convince the verifier. The prover will be capable of114

answering correctly on each trial only if he has legitimate information.115

For this process to be implemented successfully, some characteristics are desirable. The whole116

verification process should be computationally efficient for an authentic verifier, whereas it must be117

infeasible for a malicious entity to impersonate the authentic prover. Furthermore, no information that118
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permits a tricky verifier to reveal the prover’s information is gathered, though this is commonly relaxed119

to “no statistically significant information”. Additionally, we require the following characteristics:120

• Completeness. An authentic prover will always be accepted by an honest verifier.121

• Soundness. If the prover is not authentic the verifier rejects with high probability.122

This is, a verifier always accepts an authentic prover, but a malicious prover can impersonate an123

authentic one with a very small probability.124

3. Construction of the Polynomial System125

We exhibit the construction of the polynomial ideal from a graph and an isomorphism between126

them.127

Let G and H be two isomorphic graphs of size e and order n with vertex sets U = {u1, . . . , un}128

and V = {v1, . . . , vn} and edge sets D and E respectively. Let KU,V denote the complete bipartite129

graph with bipartition U, V. We get a perfect matching M in KU,V by selecting uivk, ujvl into M if and130

only if and only if uiuj ∈ D and vkvl ∈ E. In other words:131

(i) if uiuj is an edge in G but vkvl is not an edge in H, then the edges uivk and ujvl do not lie132

simultaneously in M,133

(ii) if vkvl is an edge in H but uiuj is not an edge in G, then the edges uivk and ujvl do not lie134

simultaneously in M.135

We can identify any perfect matching M built in this way with a bijection φ that defines the
isomorphism of graphs. From a set-theoretic point of view, φ is treated as a collection of pairs being
their first coordinate elements that belong to the domain of the function, while the second ones belong
to the co-domain [17]. Conditions (i) and (ii) aforementioned constitute an alternative way to assert:

uiuj ∈ D ⇐⇒ φ(ui)φ(uj) ∈ E.

We illustrate what we just explained in figure 1.

u2 v2

u1 v1

u3 v3

u4 v4

X2,2

X4,3

X4,4

(a) An isomorphism between G and H can be seen
as a perfect matching in the graph KU,V , preserving
adjacencies between G and H.

u2 v2

u1 v1

u3 v3

u4 v4

X2,2

X4,3

(b) The edges u2v2 and u3v4 cannot belong
simultaneously to M because u2u3 ∈ D, but v2v4 /∈ E.
We add the equation X2,2X3,4 = 0 in I.

Figure 1. Process to generate the polynomials set associated to the graph isomorphism.

136
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Now, we perform a suitable reduction from an instance of GI to an instance ofMQ following137

the same ideas exposed in reductions of several other problems in graphs to Boolean quadratic138

polynomials [18,19].139

First we will consider the set of n2 variables {Xi,k} for i, k = 1, . . . , n. We restrict any possible
solution to the binary set {0, 1} by introducing the following polynomials:

X2
i,k − Xi,k for i, k ∈ {1, . . . , n} (1)

Now, the following polynomials are introduced to require that one and only one vertex vi from U is140

connected to one vertex of V and vice versa. This links solutions to the fact that we have a perfect141

matching in M.142

n

∑
j=1

Xi,k − 1 for i = 1, . . . n (2)

n

∑
i=1

Xi,k − 1 for j = 1, . . . n

Finally, to guarantee that the set of polynomials has a solution related to the chosen isomorphism, we
introduce a third set of polynomials:

Xi,kXj,l for any i, j, k, l satisfying(
uiuj ∈ D ∧ vkvl /∈ E

)
∨(

uiuj /∈ D ∧ vkvl ∈ E
)

(3)

This completes the construction of the polynomial set related to the given GI instance.143

4. Zero-Knowledge Protocol144

We are ready to explain how we use the theory developed in Section 3 to perform the145

zero-knowledge proof.146

Let us start by generating a graph G and a random bijection φ of its vertices. We create a second147

graph H which is isomorphic to G with isomorphism φ. Now let F1 be the polynomial system resulting148

from the process of construction shown in Section 3. A solution x1 for the system F1 is found by setting149

Xi,k = 1 if uivk ∈ M and Xi,k = 0 otherwise. The polynomial set F1 will be public and is used as the150

public key. The private key will be the solution x1.151

Next, we create a second random bijection ψ and the graph K isomorphic to G defined by this152

isomorphism. We get a chain of isomorphisms as follows:153

G H K.
φ ψ

ψ ◦ φ

154

We apply the same process to generate a second set F2 of polynomials and find a solution in the exact
same way as we did for the first set. We can avoid the process of graph generation by applying the
permutation directly into the public system. We note that from the bijection ψ : U → V we can derive
a permutation σψ of the set {1, . . . , n} defined by σψ(i) = k if ψ(ui) = vk. This creates a mapping of
variables by sending Xi,k to Xi,σψ(k). We write the polynomials of F2 satisfying condition (3) as

Xi,σψ(k)Xj,σψ(l). (4)

A solution for the system F2 is provided by applying the permutation σψ to reorder x1. A third set155

of polynomials F3 can be obtained if we consider γ = ψ ◦ φ.156
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Authentication protocol. The following steps are performed between Alice (the prover) and Bob (the157

verifier):158

Key Generation:159

• Alice picks a graph G and randomly generates a permutation of the set {1, . . . , n}. This160

permutation is used to create the isomorphic graph H together with its isomorphism ψ. Then161

the public key F1 is computed as we have established. The private key is a solution to the public162

system F1.163

Authentication:164

1. Alice generates a permutation σ for the set {1, . . . , n} at random and computes the polynomial165

system F2, which is sent to Bob as a compromise.166

2. Bob creates a challenge by selecting at random b ∈ {0, 1}. Bob sends b to Alice.167

3. Once Alice has received b she must answer accordingly:168

• if b = 0, she sends the solution x2 of the system F2 to Bob,169

• if b = 1, she sends σ.170

4. According to the value of b Bob performs the following to authenticate Alice:171

• if b = 0, he checks whether x2 is a solution for F2 or not,172

• if b = 1, he computes the system F′2 applying σ to F1 and checks if he obtains the system F2.173

4.1. Possible attacks174

We will consider that a malicious entity (Eve) wants to play the role of Alice. Then she can try the175

following strategy.176

Eve flips a coin to decide which value b will send Bob as a challenge. If the result is b = 0, then177

she randomly generates a system F′2 with a known solution for her. Then Eve sends the system F′2178

and waits for the challenge. If Bob selects b = 0 the Eve is able to provide an answer to the challenge.179

Otherwise, if b = 1 she will fail to provide the permutation. Now if the result of the flip is b = 1, the180

she selects a permutation at random to transform the system F1 into F′2. Now she will have the answer181

for the challenge if Bob chooses to send b = 1, but she fails if this is not the case.182

Now we suppose that Eve wants to obtain information about the secret key, so she plays the role183

of Bob. She can try asking several times and hope that she can get the same set of polynomials twice.184

The first time she challenges Alicia with r = 0 so she can get the permutation. The second one she185

sends r = 1 and gets the solution. Applying the inverse permutation to the solution she can get the186

private key. However, there are n! different elements, and since n! > 2n this strategy is not a good one,187

since the running time will be exponential.188

We can try to solve these problems to break the protocol with more sophisticate tools:189

• MQ: An efficient polynomial system solver to find a solution for F1 would break completely the190

scheme by exhibiting the private key (even a different solution x′1 would work).191

• Solving the Isomorphism of Polynomials Problem (IP), which consists of finding two affine192

transformations S1, S2 such that, for two quadratic transformations F, F, we have F = S2 ◦ F ◦ S1.193

In our case, the variable permutation can be regarded as a special case of IP where S2 is the194

identity and S1 a permutation matrix.195

• Solving the GI Problem. For this approach we need to retrieve the initial isomorphic graphs from196

the polynomial set and find an isomorphism.197

For the time being, there is no quantum algorithm that solves efficiently any of the aforementioned198

problems.199
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5. Computational complexity200

We analyse the cost of creating the sets of polynomials, which is the main step in the key generation201

process. For the first and second sets of polynomials given in (1) and (2) we have to consider the pairs202

(i, k) for i, k ∈ {1, . . . , n}. The asymptotic time complexity for these is O(n2).203

We include now the polynomials of the form (3). We need also the solution for this system, we204

complete the construction with these steps:205

• For every edge uiuj ∈ D, we look for every edge vkvl in the complementary graph H. We add206

the corresponding polynomials Xi,kXj,l to the system.207

• For every edge vkvl ∈ D, we walk over every edge vkvl in the complement G. We add the208

corresponding polynomials Xi,kXj,l to the system.209

• With the chosen isomorphism φ : G → H we create the complete bipartite graph KU,V an the210

matching M = {uiφ(ui)|ui ∈ U}.211

These equations comprise a total number bounded by n2e, where e is size of G. Then we can build the212

complete system in time O(n2e), which is polynomial on the order of G.213

5.1. Toy example214

We will show the construction of a polynomial set with a small example. Let us consider the
graph G = (U, D) with U = {1, 2, 3, 4}, D = {(1, 2), (1, 4), (2, 3), (3, 4)} and the permutation

σ =

(
1 2 3 4
1 3 2 4

)

By applying σ to the vertex set U we get the isomorphic graph H = {V, E} where V = U and215

E = {(1, 3), (1, 4), (2, 3), (2, 4)}. The graphs G, H are shown in Fig. 2. The dashed lines are the edges in216

the corresponding complementary graphs.217

1 2

4 3

(a) Graph G

1 3

4 2

(b) Graph H

Figure 2. Isomorphic graphs. Dashed lines correspond to the complementary graphs

To build the polynomial set, we start with the edges in G and H. For instance, considering218

(1, 2) ∈ G and (3, 4) ∈ H, we get the polynomials X1,2X3,4. Once we walk over all the edges of G in219

this fashion, we get the polynomials220

X1,1X2,2, X1,1X4,2, X2,1X3,2, X3,1X4,2

X1,3X2,4, X1,3X4,4, X2,3X3,4; X3,3X4,4.

Now, by considering the edges G and H, we get another set of 8 polynomials:221

X1,1X4,3, X1,1X4,2, X2,1X3,2, X3,1X4,2

X2,1X3,3, X2,3X3,4, X2,3X3,4; X3,3X4,4.
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The roots of these polynomials related to the isomorphism between these graphs can be computed222

by letting xi,σ(i) = 1 for i = 1, 2, 3, 4 and 0 in other case. Then x1,1 = x1,4 = x2,3 = x2,4 = 1 andxi,j = 0223

for the rest of the elements.224

6. Conclusions225

We have built an alternative zero-knowledge authentication protocol whose security relies in the226

difficulty of solvingMQ. A solution for this set of polynomials represents an isomorphism between227

graphs. Then we guarantee that the protocol is at least as secure as the classical ZKP based solely in228

the GI problem. We have also shown that the construction is feasible in terms of time complexity, and229

since only a permutation of length n or a binary vector of size n2 is sent in response at every step,230

most of the information interchanged on every interaction consists of the set of polynomials, which231

is a bit string in the order of O(n4). We leave as a future work to verify the possibility of reducing232

the number of polynomials in the system without weakening the proof system, as well as a complete233

implementation of the authentication protocol.234
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Abbreviations240

The following abbreviations are used in this manuscript:241

242

DLP Discrete Logarithm Problem
DSA Digital Signature Algorithm
GI Graph Isomorphism Problem
ECDSA Elliptic Curve Digital Signature Algorithm
MQ Multivariate Quadratic Problem
NP Non-deterministic Polynomial Time
PKI Public Key Infrastructure
PKC Public Key Cryptography
MPKC Multivariate Public Key Cryptography
RSA Rivest, Shamir and Adleman (a public key cryptographic scheme)
ZKP Zero-Knowledge Proof

243
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