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Abstract: Accurate and stable cost forecasting of substation projects is of great significance to ensure 
the economic construction and sustainable operation of power engineering projects. In this paper, a 
forecasting model based on the improved least squares support vector machine (ILSSVM) 
optimized by wolf pack algorithm(WPA) is proposed to improve the accuracy and stability of the 
cost forecasting of substation projects. Firstly, the optimal features are selected through the data 
inconsistency rate (DIR), which helps reduce redundant input vectors. Secondly, the wolf pack 
algorithm is used to optimize the parameters of the improved least square support vector machine. 
Lastly, the cost forecasting method of WPA-DIR-ILSSVM is established. In this paper, 88 substation 
projects in different regions from 2015 to 2017 are chosen to conduct the training tests to verify the 
validity of the model. The results indicate that the new hybrid WPA-DIR-ILSSVM model presents 
better accuracy, robustness and generality in cost forecasting of substation projects. 

Keywords: cost prediction of substation projects; improved least square support vector machine; 
wolf pack algorithm; data inconsistency rate 

1. Introduction 

Poor control over the cost of substation projects is easily lead to the high cost, which seriously 
affects the economics and sustainability of power engineering projects [1]. The forecasting of cost 
level is an important part of the cost control of substation projects, and it also has important guiding 
significance for the cost saving of substation projects. However, the attributes of historical data 
indicators are numerous due to the influence of factors such as the overall planning of the power 
grid, total capacity, topographical features, design and construction level, and the comprehensive 
economic level of the construction area, etc. Simultaneously, the number of construction projects in 
the same period is limited and it’s impossible to collect more comparable engineering projects in a 
short time, which leads to less sample data and higher difficulty for the cost forecasting of substation 
projects [2]. Therefore, the construction of cost forecasting model and the realization of accurate cost 
forecasting results of substation projects is of great significance to the sustainability of power 
engineering investment.  
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At present, few scholars have studied the cost forecasting of substation projects, but many 
have studied the cost forecasting of other engineering projects. The forecasting methods are mainly 
divided into two categories, one is the traditional forecasting method and the other is the modern 
intelligent forecasting method. The traditional forecasting methods mainly include time series 
prediction [3], regression analysis [4], Bayesian model [5], fuzzy prediction [6], etc. A time series 
method for cost forecasting of projects based on the bill of quantities pricing model was built in the 
reference [3], which could control the forecasting error within 5%. In the reference [4], a forecasting 
model based on the integral linear regression of multiple structure according to the features of 
building project cost was established, and the principal component factor method was introduced to 
solve the problem of multicollinearity among variables. The reference [5] proposed a Bayesian project 
cost forecasting model that adaptively integrates preproject cost risk assessment and actual 
performance data into a range of possible project costs at a chosen confidence level. The two common 
models of GM (1,1) and GM (1, N) in the grey system theory were used in the reference [6] to construct 
a gray forecasting model of project cost. Basic theory and the verification way of this method is 
relatively mature and perfect, and the calculation process is also relatively simple. However, the 
method is often suitable for a single object and the forecasting accuracy is not ideal. 

    Therefore, in the background of the rapid development of artificial intelligence technology, the 
use of intelligent forecasting methods to predict the cost of substation projects has a more important 
significance. Intelligent forecasting methods mainly include artificial neural networks (ANNs) and 
support vector machines (SVM) [7]. The artificial neural networks, such as back propagation neural 
network (BPNN), radial basis function neural network (RBFNN), general regression neural network 
(GRNN), etc. are mainly used in the forecasting field [8]. A forecasting method of transmission line 
engineering cost based on BP neural network was proposed in the reference [9], which analyzed and 
found out the influencing factors of transmission line engineering cost. These factors were used as 
input variables of BP neural network to establish a 3-layer structure, and the forecasting model was 
proved by training the actual engineering data. In the reference [10], a cost forecasting model of 
engineering projects based on BPNN and RBFNN was constructed, in which the radial basis function 
(RBF) neural network was proved to have higher forecasting accuracy on the basis of the training test 
with sample data from 55 engineering projects. The reference [11] proposed a forecasting model for 
transmission line ice coating based on generalized regression neural network and fruit-fly 
optimization algorithm, and achieved good forecasting results. However, the artificial neural 
network also has the disadvantages of slow convergence rate, and it’s easy to fall into local 
optimization, as a result, the forecasting accuracy is greatly reduced. The reference [12] proposed that 
the SVM model could avoid the neural network structure selection and local minima problems. 
Therefore, the SVM model has been widely used in the research of projects cost forecasting. The 
influencing factors of substation projects cost were determined through literature review and other 
methods and the cost forecasting model of substation projects was established based on the theory of 
SVM in the reference [13]. In the reference [14], parameters of the SVM forecasting model was 
optimized by the improved firefly algorithm, which achieved a higher accuracy of the forecasting 
effect. Compared with the neural network, a better forecasting performance of substation projects 
cost can be obtained by applying the SVM model. When the traditional support vector machine is 
used for cost forecasting, the solution process needs to be converted into a quadratic programming 
process through the kernel function, which reduces the efficiency and the convergence precision is 
not high. However, the least squares support vector machine (LSSVM) avoids the quadratic 
programming process by using the least squares linear system as the loss function. Meanwhile, the 
forecasting problem is transformed into the equation sets and the inequality constraints are 
transformed into equality constraints by means of using the kernel function, which increases the 
accuracy and speed of the forecasting [15]. Therefore, some scholars have tried to use LSSVM to carry 
out the cost forecasting of engineering projects [16 -17]. In the reference [16], the variable importance 
in projection (VIP) was used to extract the features of multiple factors that affect the project cost. And 
the LSSVM was used as the nonlinear approximator to establish the cost forecasting model of 
engineering projects. The reference [17] proposed a cost forecasting model of projects based on 
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chaotic theory and least squares support vector machine, which aimed at the time-varying and 
chaotic of the cost change. 

Although LSSVM shows the better forecasting performance than SVM in cost forecasting, there 
is still the problem of blind selection of the penalty parameter and the kernel parameter. Therefore, 
it is necessary to select appropriate intelligent algorithms to optimize the parameters. The common 
intelligent algorithms mainly include genetic algorithm [18], ant colony algorithm [19], fruit fly 
optimization algorithm [20], and particle swarm algorithm [21], etc. Although the above algorithms 
all have their own advantages, there are still some corresponding flaws. The genetic algorithm has 
the problems of easy precocity, complicated calculation, small processing scale, difficult to deal with 
nonlinear constraints, poor stability and so on. The ant colony algorithm and the firefly algorithm 
cannot guarantee convergence to the best point, and it’s easy to fall into a local optimum, leading to 
a decrease in the forecasting accuracy. And the particle swarm algorithm cannot fully satisfy the 
optimization of parameters in the LSSVM due to the insufficient local search accuracy. Based on the 
above analysis, the wolf pack algorithm (WPA) was applied to optimize the parameters of LSSVM in 
this paper. The performance of WPA will not be affected by a small change in parameters and the 
selection of parameters is relatively easy, so it has a good global convergence and computational 
robustness, which is suitable for solving the high-dimensional, multi-peak complex functions, 
especially [22]. Otherwise, the number of influencing factors of substation projects cost is very large. 
If all the influencing factors are used as the input indicators of the forecasting model, then a large 
amount of redundant data appears, so feature selection is also important. The feature selection refers 
to the identification and selection of appropriate input vectors in the forecasting model to reduce 
redundant data and improve the computational efficiency [23]. The DIR model refers that the feature 
set is divided into several subsets, and the minimum inconsistency rate is calculated by the feature 
subsets to determine the optimal feature subset and complete the feature selection [24]. Both Ref. [25] 
and [26] adopted the DIR model for feature selection and obtained effective forecasting results. The 
use of DIR model for feature selection can eliminate redundant features based on the data set 
inconsistency, and the characteristics of the correlation between features are also taken into account 
at the same time. The selected optimal feature can represent all data information perfectly because 
the relationship between features is not ignored. Therefore, the data inconsistency rate(DIR) was 
chosen for the feature selection in this paper. 

 According to the above research, a ILSSVM model integrated DIR with WPA is proposed. It is 
the first time to combine these three models in cost forecasting and several comparing methods are 
utilized to validate the effectiveness of the proposed hybrid model. The paper is organized as follows: 
Section 2 introduces the implementation process of DIR and ILSSVM optimized by FOA. Section 3 
provides a case to validate the proposed model. Section 4 obtains the conclusion in this paper. 

2. Basic theory 

2.1. Wolf pack algorithm 

Wolf pack algorithm (WPA) is derived from the study of wolf hunting behaviors. During the 
hunting process, different divisions of labor are assigned to wolves according to their respective roles. 
Wolves in the pack are divided into three types: the leader wolf, the scout wolf and the ferocious wolf. 
And these three wolves work together to complete the hunting process. The wandering behavior, 
summoning behavior and siege behavior of WPA are the three main behaviors, which are bionic 
based on the behavioral features of the wolves in the hunting process. Simultaneously, the generation 
of leader wolf and the replacement of wolf pack are followed by the rules of ‘survival of the fittest’ 
and ‘winner-take-all’, respectively [27]. The optimal solution is obtained through continuous iterations 
of the bionic behaviors. The bionic model of wolf pack algorithm is as shown in Figure.1. 
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Figure 1. Bionic graph of Wolf pack algorithm 

：The principle and steps of wolf pack algorithm are as follows  

(1) Initialization of the wolf pack. Suppose that there are N artificial wolves in the D-dimensional 
space, and the location of the i th wolf is shown as follows: 

1 2( , ,..., ),1 ,1i i i idX x x x i N d D                           (1) 

The initial position is generated by the Equation (2). 

min max min( )idx x rand x x                               (2) 

Where rand  is a uniformly distributed random number in [0,1], maxx  and minx  are the upper 
and lower limits of the search space respectively. 

(2) Generation of the leader wolf. The wolf at the optimal position of the target function value is 
chosen as the leader wolf. The leader wolf neither updates the position of the hunting process nor 
participate in hunting activities, but directly iterates. If lead iY Y , then lead iY Y ，namely the scout 
wolf becomes a leader wolf at this time. Conversely, if the scout wolf i  migrates towards h  
directions until the maximum H  is obtained or location cannot be further optimized, and the search 
stops at this moment. Among the h  positions searched by the wolf i , the position of the j th point 
at the d th dimension is shown as follows： 

ijd id ay y rand step                                  (3) 

(3) Close to the prey. The location update of the wolf pack is promoted by the summoning 
behavior of the leader wolf. Driven by the summoning behavior, the new location is obtained by 
wolves based on the summons of the leader wolf. The updated position of wolf i  at the d th 
dimension is shown ：as follows  

( )id id b id lidz x rand step x x                            (4) 

Where astep  is the length of the wolf's stride in the search process, bstep  is the length of stride 
when the wolf moves to the target, idx  is the current position of the wolf i  at the d th dimension 
and lidx  is the position of the leader wolf at the d th dimension. 

(4) Encirclement of the prey. After discovering the prey, the surrounding wolves will complete 
the reclamation of the target prey according to the signals issued by the leader wolf. Equations of the 
reclamation and the reclamation steps are as follows: 

1 ,                 

,

t
i mt

i
i m

X r θ
X

X rand ra r θ


  
  

                           (5) 
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min maxln( / )
( )

max
min max min( ) ( )

ra ra
tra t ra x x e                        (6) 

Where t  is the number of iterations, ra  is the length of the wolf's stride during the reclamation, 
iX is the position of the leader that issued the signals and t

iX  is the position of the wolf i  in the t
th iteration. 

(5) Update mechanism of wolves competition. Wolves will be eliminated without food in the 
process of reclamation hunting, instead the wolves that survived are the first to obtain food. Weak 
wolves that without food will be eliminated while an equal number of new wolves that are randomly 
generated will be added into the wolf pack. 

2.2. Data inconsistency rate (DIR) 

The feature selection of many historical cost data of substation projects takes aim at 
distinguishing the most relevant data features, which makes the input vector of the power projects 
cost forecasting model with a strong pertinence and reduces the redundancy of the input information 
in order to improve the accuracy of the cost forecasting of the substation projects. The inconsistency 
rate of data can accurately describe the discrete characteristics of the input features. Different feature 
characteristics can be obtained by different division modes and different division modes can obtain 
different frequency distributions. The discrimination ability of data categories can be distinguished 
by the inconsistency rate of calculation. The higher the inconsistency rate of data, the stronger the 
classification ability of feature vectors. 

It’s necessary to know the specific calculation formula of the inconsistency rate for selecting the 
features by means of the inconsistency rate method. Therefore, it is assumed that the collected cost 
data of substation projects have g  features, such as main transformer capacity, floor space, main 
transformer unit price, etc. which are respectively represented by the values of 1,  2, ,  G G Gg .   is 
the feature set and L  is a subset of the feature set. Next, set the standard class M with c categories 
and N data instances. The feature value corresponding to the feature Fi is represented as jiz . i  is 
the class value of M , then the data instance can be represented as [ ],j iz  , where

1 2 3[ , , , , ]j j j j jgz z z z z  . The calculation formula of the inconsistency rate is shown as follows: 

1 1
max{ }

p c

kl kllk l
f f

N
  

 
 

 
                               (7) 

Where klf  is the number of data instances that centrally belongs to the feature subset of the kx  
mode. kx  is the data set with a total of P feature partition modes, where ( 1,2, ,k p   and p N ). 
The feature selection on the basis of the inconsistency rate ：is shown as follows  

(1) Initialize the optimal feature subset   to an empty set. 

(2) Calculate the inconsistency rate of datasets 1,  2, ,  G G Gg  which belongs to the subset 
mode that consists of the subset   and each remaining feature.  

(3) Calculate the inconsistency rate statistical table of the feature subsets and rank the 
inconsistent data from small to large. 

(4) Select the feature subset L  with the smallest number of features. If L   or ' /L L   is the 
minimum of all adjacent inconsistency rate, then the optimal feature subset is L , where 'L  is the 
last feature subset adjacent to L . 

By calculating the inconsistency rate, on the one hand, redundant features can be eliminated 
based on the inconsistency of data set. On the other hand, it can also take into account the correlation 
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between features in the selection process, which has a better presentation of all data information 
through the selected optimal features. 

2.3. Improved least squares support vector machine (LSSVM) 

2.3.1. Least squares support vector machine 

Least squares support vector machine (LSSVM) is an extension of support vector machine (SVM). 
It constructs the optimal decision surface by projecting the input vector into the high-dimensional 
space non-linearly. Next, the inequalities of SVM are inverted into the equation sets by applying the 
risk minimization principle, which reduces complexity and speeds up the rate of calculation [28].  

Suppose that    1
,

N
i i i

T x y


  is the given sample set, N is the total number of samples. The 

regression model of the sample is shown as follows： 

   Ty x x bw                                  (8) 

Where     is the function that projects training samples into a high-dimensional space, w  is 
the weighted vector and b  is the offset parameter. 

The optimization problem of LSSVM can be converted into the following function to solve [29]. 

2

1

1 1min
2 2

N
T

i
i

w w γ 


                               (9) 

s t     , 1,2,3,T
i i iy x b i Nw                         (10) 

Where   is the penalty coefficient, which is used to balance the complexity and accuracy of the 
model. i  is the estimation error. The above equations can be solved by converting them into the 
Lagrangian function, which is detailed in 2.3.3. 

2.3.2. Improved method of LSSVM 

(1) Horizontal weighting of input vectors 

The cost forecasting of substation projects is mostly a multi-input and single-output model. The 
values of the input vectors are horizontally distributed with the item serial number. And the influence 
of the actual value of the substation projects cost influencing factors on the final forecasting value can 
be reflected by means of the weighted processing. Therefore, the weighted processing of input vectors 
is shown as follows: 

 ˆ 1 , 1,2, ,n i
i kix x k l                             (11) 

Where ˆix  is the weighted input vector, kix  is the original input vector, k  is the dimension 
number of input vector and   is a constant. 

(2) Longitudinal weighting of the training sample sets 

The cost forecasting value is not only related to the elements in the input vectors, but also has a 
certain correlation with the sample groups, which means that the close sample has a greater influence 
on the forecasting value and the long-range sample has less influence on the forecasting value. 
Therefore, it’s necessary to reduce the influence of close samples on the forecasting model by 
assigning different degrees of subordination to the influencing factors of the current substation 
projects cost, but enhance the influence of the long-range samples on the forecasting model at the 
same time. The linear membership degree i  is used to calculate the degree of the given 
membership and the equation is shown as follows [30]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2018                   doi:10.20944/preprints201805.0120.v1

http://dx.doi.org/10.20944/preprints201805.0120.v1


 7 of 20 

(1 ) / ,0 1i ii N                                   (12) 

Where i  is the degree of membership,   is a constant between [0,1] and 1,2, ,i N  . 

Then the input sample set can be changed ：as follows  

      1 1 1 2 2 2, , , , , ,N N NT x y x y x y   
 

The determination of   affects the fitting performance of LSSVM directly [31]. The value of   
can be obtained through the gray correlation coefficient and the calculation formulas are shown as 
follows： 

 0
(min) (max)

( ), ( )
(max)

ki ki
i

ki ki

r x k x k



  


                        (13) 

0 ( ) ( ) [0,1]ki ix k x k                               (14) 

 



N

k
ii kxkxr

1
0 )(),(                           (15) 

In this paper, where  0 1 2, , , , Nx Y Y y y y    since the forecasting model for ice transmission 
lines is usually a multi-input and single-output model. 

2.3.3. Weighted least squares support vector machine 

The improvement in the above section is applied to the LSSVM to get the weighted least squares 
support vector machine. The objective function is described ：as follows  

21 1
2 2

N

i i
i 1

min w w γ 


 T ξ                             (16) 

s t     , 1, 2,3,T
i i iy x b i Nw                          (17) 

To solve the above problem, the Lagrangian function is established as follows: 

   2

1 1

1 1, , ,
2 2

N N
T T

i i i i i i i i
i i

L w b α w γ x b yw w     
 

                (18) 

Where i  is the Lagrange multiplier. The variables of the function are deduced and the 
derivation is equivalent to zero. The specific calculation is shown as follows: 

 
1

1

0

0 0

0

0 0

N

i i
i

N

i
i

i i i

T
i i

L w x
w
L
b
L γ

L b ywα

 



  








    
   

   

      


                        (19) 

Convert the equations to the following problem by eliminating w  and i . 

1 1

00 T
n

n

be
a ye I  

     
             

                        (20) 

Where    T
i ix x  ,  1,1,...,1 T

ne  ,  1 2 nα α ,α , ,α   and T
1 2 ny , ,...,y y y    . 
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The Equation (21) is obtained as follows. 

   ,
N

i i
i 1

y x K x x bα


                              (21) 

Where  ,iK x x  is the kernel function. The wavelet kernel function  
'

1
,

N
i i

i i
i

x x
K x x



 
  

 
 is 

selected to replace the Gaussian kernel function in the standard least squares support vector machine 
and the construction of the wavelet kernel function will be detailed in the next section. The wavelet 
kernel function is brought into ( )y x  ：as follows  

 
'

11

NN
i i

i ii i

x x
y x b



 
    

 
                        (22) 

2

( ) cos(1.75 ) exp( )
2
xx x 

                           (23) 

Finally, the regression model of the weighted least squares support vector machine is shown as 
：follows  

 
2

11

1.75( ) ( )
cos[ ] exp[ ]

2

NN
i i i i

i ii i

x x x x
y x b



    
     

 
            (24) 

In this paper, the wavelet kernel function was used to replace the traditional radial basis kernel 
function, which is mainly based on the following considerations. a. The wavelet kernel function has 
the excellent specialty of describing the data information step by step, and the LSSVM that uses the 
wavelet kernel function as the kernel function can simulate any function with high precision. 
However, the traditional Gaussian function is relatively less effective. b. The wavelet kernel function 
is orthogonal or approximately orthogonal, while the traditional Gaussian kernel function is related 
or even redundant. c. The wavelet kernel function can analyze and process the multi-resolution of 
wavelet signals. Therefore, the nonlinear processing ability of the wavelet kernel function is better 
than the Gaussian kernel function, which can improve the generalization ability and robustness of 
the LSSVM regression model. 

2.3.4. Construction of the wavelet kernel function 

The kernel function of LSSVM is the inner product of two input spatial data points in a spatial 
feature and it has two obvious features. Firstly, ( , ) ( , )k x x k x x   is the symmetric function of inner 
product kernel variables. Secondly, the sum of the kernel functions on the same plane is a constant. 
In short, only when the kernel function satisfies the following two theorems can it become the kernel 
function of the least squares support vector machine [32]. 

(1) Mercer’s theorem   

( , )k x x  is the continuous symmetric core that can be extended to the following form: 

     ' '

1
, i i i

i
k x x g x g x





                            (25) 

Where i  is a positive value. The following necessary and sufficient conditions need to be met 
to ensure complete convergence of the above extensions. 

' ' '( , ) ( ) ( ) 0, , nk x x g x g x dxdx x x R                       (26) 
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For all the functions of ( )g  , the condition that 2

( ) 0

( )
nR

g

g d 

 
  

 needs to be satisfied. 

Where ( )ig x  is the feature function, i  is the eigenvalue and all of them are positive. Therefore, 
it’s known that the kernel function '( , )k x x   is a positive definite function. 

(2) Smola and Scholkopf theorem 

When the kernel function satisfies the Mercer's theorem, ( , )k x x  can be used as the kernel 
equation of the least square support vector machine when it is proved to satisfy the following 
Equation (27). 

/2( )( ) (2 ) exp( ( )) ( ) 0,
n

n n

R
F x J x k x dx x R                  (27) 

(3) Construction of the wavelet kernel function 

When the wavelet kernel equation satisfies conditions that 2 '( ) ( ) ( )x L R L R    and ˆ ( ) 0x  , 
and ˆ ( )x  is the Fourier transform of ( )x . Then ( )x  can be defined as follows[33]. 

1/2
, ( ) ( ) ( ),m

x mx x R  



                         (28) 

Where   is the shrinkage coefficient, m  is the horizontal float coefficient and 0,m R   . 

When ( )f x  satisfies 2( ) ( )f x L R , then ( )f x  can be wavelet transformed as follows： 

1/2 *( , ) ( ) ( )x mW m f x dx  







                      (29) 

Where *( )x  is the complex conjugate function of ( )x . The wavelet transform function 
( , )W m  is reversible and can be used for reconstructing the original signals, then the following 

formula can be obtained. 

1
, 2( ) ( , ) ( )m

df x C W m x dm 
 


 

 
                      (30) 

Where 
2ˆ| ( ) |

| |
wC dw
w




    and ˆ ( ) ( ) exp( )w x Jwx dx   . 

In the above equation, C   is a constant. The wavelet decomposition theory is an infinite 
approximation to a set of functions based on linear combination of the wavelet functions. Suppose 
that ( )x  is a one-dimensional function, then the multidimensional wavelet equation can be 
described according to the tensor theory ：as follows  

1
( ) ( ), ,

l
lxd d

l i ii
x x x R x R 


                          (31) 

In this way, the horizontal floating kernel function is constructed as follows： 

'
'

1
( , ) ( ) 0

l
i i

ii
i

x x
k x x  




  ，                        (32) 

The kernel equation needs to satisfy the Fourier transform in the least squares support vector 
machine. Therefore, the wavelet kernel function can be used as the kernel function of LSSVM when 
it satisfies the Fourier transform. It’s necessary to prove that the following equation is established. 
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  / 2( ) (2 ) exp( ( )) ( ) 0
l

l

R
F k w J wx k x dx                 (33) 

In this paper, the Morlet wavelet mother function is chosen to prove the above equation, which 
ensures the generalization of the wavelet kernel function. Namely,  

2( ) cos(1.75 )exp( / 2)x x x                          (34) 

And ( , )k x x  ：can be expressed as follows  

2 2' '
'

2 21

2 2

1

( , ) cos 1.75( ) exp
2 2

1.75
cos( )exp( / 2 )

l i i i i

i

l
i

ii

x x x x
k x x

X
x

 








                    

  

            (35) 

Where   can be obtained through the sample fitting. Nx R  and , N
ix R  . It can be seen 

from the above equation that the multi-dimensional wavelet function can be used as a kernel function 
of the multi-dimensional least squares support vector machine. And the mathematical proof process 
is shown as follows: 

2''

21

2 2

1

2

21

exp( ) ( )

exp( ) ( cos[1.75( )]exp( ) )
2

exp( 1.75 / ) exp( 1.75 / )
exp( ) ( ) exp( / 2 )

2

1 1.75exp ( ) e
2 2

l

l

l

R

l i ii i

R i

l
i i

i i i iRi

l
i

i ii

Jwx k x dx

x xx x
Jwx dx

j x x
Jw x x dx

x j jw x

 

 













       
  

 
     

 
       

  






2

2

2 2

1

1.75xp ( )
2

2 (1.75 ) (1.75 )exp( ) exp( )
2 2 2

l

i
i i iR

l
i i

i

x j jw x dx

w w




   


        
    

  
     

 



(36) 

Finally, ：the equation is obtained as follows  

2 2

1

(1.75 ) (1.75 )
( )( ) ( )(exp( ) exp( ))

2 2 2

l
i i

i

w wF x w
  



 
               (37) 

Where 0 , so    0wxF . In addition, it can be concluded that the wavelet kernel 
function can be used as the kernel function of least squares support vector machine. 

2.4. DIR-ILSSVM Optimized by the WPA Algorithm 

The cost forecasting model of substation projects combining WPA, DIR and ILSSVM is 
constructed as illustrated in Fig.3. As is shown from the figure, the cost forecasting model of 
substation projects proposed in this paper mainly includes three sections. The first section is the 
feature selection based on the inconsistency rate. The second section is the sample training based on 
the ILSSVM model. The third section is the ice coating forecasting based on the ILSSVM model. When 
the established feature subset L cannot satisfy stopping conditions of the algorithm, the program will 
continue to loop until it reaches the desired precision, and an optimal feature subset is output. 
Therefore, in the cost forecasting model of the substation projects constructed in this paper, the 
purpose of the first section is to find the optimal feature subset and the optimal regression model 
parameters by iterative calculations. The purpose of the second section is to calculate the forecasting 
accuracy of the training sample in each iteration, so that the fitness function value can be calculated. 
The third section will make use of the optimal feature subsets and parameters obtained in the above 
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two sections. And finally, the substation projects cost of the test sample can be forecasted through 
retraining of the W-LSSVM regression model. 

The specific steps for cost forecasting of substation projects are listed as follows： 

(1) Determine the initial candidate feature values. By combing the related references [34]-[36], in 
this paper, the candidate features of the influencing factors of substation projects cost are selected as 
follows, including the floor space, construction properties, substation voltage level, main transformer 
capacity, number of outlets on the high-voltage side, number of outlets on the low-voltage side, 
topography, duration, substation type, number of transformers, economic development level of the 
construction area, inflation rate, transformer single unit price, high-side circuit breaker unit price, 
high-side circuit breaker unit, low-voltage capacitor quantity, high-voltage fuse price, current 
transformer price, power capacitor price, reactor price, power bus price, arrester price, measuring 
instrument price, relay protection device price, signal system price, automatic device price, site 
leveling fee, foundation treatment fee, designer's skill level, number of accidents, deviation rate of 
project volume, construction progress level, days of rain and snow, etc. In the IR algorithm, the 
optimal feature subset needs to be initialized to an empty set, namely {}  . 

(2) Initialize the parameters of WPA. Set the total number of wolf N = 50, the number of 
iterations t = 100, step a = 1.5, step b = 0.8, q = 6, h = 5. 

(3) Calculate the inconsistency rate. After step (1) and step (2) are completed, the candidate 
features are gradually substituted into the IR feature selection model. Calculate the inconsistency rate 
of datasets 1 2,  , ,  gG G G  which belongs to the subset mode that consists of the subset   and each 
remaining feature. The feature iG  corresponding to the minimum inconsistency rate is selected as 
the optimal feature.  , iG   is the updated optimal feature set. 

(4) Determine the optimal feature subset and parameters of the optimal regression model. The 
current feature subset is substituted into the ILSSVM model to calculate the forecasting accuracy 
 r j  in the learning process of the current cycle training sample, and the fitness function value 

 Fitness j  of each cycle can be obtained. The optimal feature subset can be determined through the 
comparison of fitness function values between each generation. Determine whether each iteration 
reaches the stopping condition of the algorithm. If it is not satisfied, the new feature subset is 
reinitialized and the new cycle is entered until the optimal subset of the global optimal feature is 
obtained. It is important to note that the parameters of the ILSSVM model also need to be optimized 
and the initial value of   and   will be allocated randomly. The fitness function based on double 
factors of forecasting accuracy and feature selection quantity is constructed as follows: 

1( ) ( ( ) )
( )

Fitness j a r j b
Numfeature j

                           (38) 

Where  iNumfeature x  is the optimal number of features selected for each iteration, a  and b  
are constants between [0,1]. The optimal feature quantity and the fitness function value are 
proportional to each other in each iteration, and the cost forecasting accuracy of substation projects 
is inversely proportional to the fitness function value. 

(5) Stop optimization and start the cost forecasting. Circulation ends at the maximum number of 
iteration. Here, the optimal feature subset and the best value of   and   can be substituted into 
ILSSVM model for cost forecasting of substation projects. 
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Figure 2. The flow chart of WPA-DIR-ILSSVM 

3. Case Study 

3.1. Collection and processing of data 

The relevant cost data of substation projects from 2015 to 2017 in different regions is collected in 
this paper, including 88 voltage level substation projects. The cost levels and the influencing factors 
of the first 66 substation projects are used as the training set, and the last 22 data sets are used as the 
test set. The collected original data of the substation projects cost is shown in Table 1. 

Table 1. The collected original data of the substation projects cost (Unit: Yuan/kV·A) 

Serial 

Number 
Cost 

Serial 

Number 
Cost 

Serial 

Number 
Cost 

Serial 

Number 
Cost 

1 299.3 23 980.6 45 346.8 67 271.7 

2 285.6 24 286.8 46 349.5 68 262.6 

3 305.5 25 279.5 47 352.1 69 253.5 

4 310.3 26 308.6 48 394.7 70 244.5 

5 405.6 27 312.8 49 405.6 71 235.4 

6 358.3 28 315.9 50 428.2 72 326.3 

7 256.9 29 364.2 51 449.3 73 217.2 

8 305.8 30 372.5 52 470.4 74 208.1 

9 356.9 31 383.9 53 491.5 75 199.1 

10 1058.6 32 295.6 54 212.6 76 390.0 
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11 501.2 33 270.2 55 353.7 77 280.9 

12 208.6 34 260.8 56 254.8 78 285.1 

13 356.2 35 239.3 57 375.9 79 289.4 

14 401.5 36 381.7 58 397.0 80 293.7 

15 378.6 37 406.9 59 418.1 81 297.9 

16 369.5 38 315.6 60 335.3 82 402.2 

17 301.6 39 285.5 61 326.2 83 306.4 

18 325.8 40 333.7 62 317.1 84 310.7 

19 337.1 41 336.3 63 308.0 85 274.9 

20 368.9 42 309.0 64 298.9 86 319.2 

21 370.2 43 341.6 65 289.9 87 283.4 

22 450.1 44 244.2 66 280.8 88 369.5 

The explanation of the processing of input indicators is shown as follows. The data of the 
construction properties of substation projects are mainly divided into three categories, in which the 
assignment of new substation is 1, the main transformer is 2 and t the interval project is 3. The data 
of the substation types are mainly divided into three categories, in which the assignment of the indoor 
type is 1, the half indoor type is 2 and the outdoor type is 3. The topography and landform are mainly 
divided into the following eight situations, in which the assignment of hillock is 1, slope is 2, plain is 
3, flat ground is 4, paddy is 5, dry land is 6, mountain is 7 and muddy land is 8. The level of economic 
development in the construction area is based on the data of the local GNP and the technical level of 
the designers is based on the proportion of employees with bachelor degree or above in this project. 
The difference between the actual progress of the construction and the scheduled progress plan is 
selected to represent the construction progress level. And the data is normalized according to formula 
(39). 

  min

max min

1, 2,3,. ,i
i

x x
Y y i n

x x


  


                        (39) 

Where ix  is the actual value, minx  and maxx  are the minimum and maximum values of the 
sample data, and iy  is the normalized value. 

3.2. Evaluation indicators of the forecasting results 

Evaluation indicators of the cost forecasting results of substation projects adopted in this paper 
are shown as follows. 

(1) Relative error (RE)  

ˆ
100%i i

i

x x
RE

x


                                  (40) 

(2) Root mean square error (RMSE) 

2

1

ˆ1 ( )
n

i i

i i

x x
RMSE

n x


                              (41) 

(3) Mean absolute percentage error (MAPE) 
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1

1 ˆ( ) / 100%
n

i i i
i

MAPE x x x
n 

                        (42) 

(4) Average absolute error (AAE) 

1 1

1 1ˆ( ) / ( )
n n

i i i
i i

AAE x x x
n n 

                          (43) 

In Equations (40) - (43) above, x  is the actual value of the substation projects cost, x̂  is the 
forecasting value of the substation projects cost and n  is the number of data groups. The smaller the 
value of above indicators, the higher the accuracy of cost forecasting. 

3.3. Feature selection  

The main content of this section is the selection of the optimal feature subset based on the DIR 
model, which helps determine the input indicators of the forecasting model. In this paper, Matlab 
R2014b is used to carry on the programming computation. The test platform environment is based 
on Intel Core i5-6300U, 4G memory and Windows 10 Pro edition system. 

The iterative process diagram of the extraction of training sample features based on the WPA-
DIR-ILSSVM model is shown as Figure 3. The accuracy curve shown in the figure describes the 
forecasting accuracy of ILSSVM for training samples in different iterations. The fitness curve 
describes the fitness function value calculated during each iteration. The selected number is the 
optimal number of features calculated by the DIR model in the process of convergence. And the 
reduced number of features refers to the number of features eliminated by the WPA algorithm during 
the convergence process. 

 

Figure 3. The curve of convergence for feature selection 

From the figure above, it can be seen that the WPA algorithm converges when the number of 
iterations is 39 and the optimal fitness function value is -0.91 at this time. The forecasting accuracy of 
the training sample is 98.9% at the 39th iteration, which shows that the fitting ability of ILSSVM is 
enhanced through the learning and training of the algorithm and the forecasting accuracy of the 
training sample is the highest. Meanwhile, the number of selected features also tends to be stable 
when WPA reaches the 39th time. The algorithm eliminates 26 redundant features from the 33 
candidate features, and the final selected features are construction properties, substation voltage level, 
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main transformer capacity, substation type, number of transformers, main transformer single unit 
price and floor space. 

3.4. Cost forecasting of substation projects and results analysis  

 The input vectors are substituted into the ILSSVM model for training and testing after obtaining 
all the optimal features of the sample data. In this paper, the self-written program is used to run and 
calculate in Matlab software. It’s worth that the wavelet kernel function is chosen as the kernel 
function of the ILSSVM regression model in this paper. And the important parameters of the model 
are obtained through optimization based on WPA algorithm to ensure the accuracy of ILSSVM. The 
parameter settings of WPA have been given in section 2.4 and parameters of ILSSVM calculated by 
running the program are 43.0126   and 19.0382  . 

The unoptimized ILSSVM, LSSVM, SVM and BP neural networks (BPNN) are also selected to 
conduct the cost forecasting of substation projects, which helps prove the forecasting performance of 
the ice thickness forecasting model proposed in this paper. The topological structure of the BPNN 
model is 7-5-1, the transfer functions of the hidden layer and the output layer adopt the tansig 
function and purelin function, respectively. The maximum number of training is 200, the minimum 
error of the training target is 0.0001, the training rate is 0.1, and the initial weight and threshold are 
obtained by its own training. In the SVM model, the penalty parameter c  is 10.276, the kernel 
function parameter   is 0.0013 and the loss function parameter   is 2.4375. In the LSSVM model, 
c  is 10.108,   is 0.0026 and   is 0.0018. And in the ILLSVM model, c  is 16.263,   is 0.0012 and 
  is 0.0015. 

The forecasting results of BPNN, SVM, LSSVM, ILSSVM and the model constructed in this paper 
for cost forecasting of the test set are shown in Table 2. 

Table 2. The forecasting values and actual values of the test set (Unit: Yuan/kV·A) 

Serial 
Number 

Actual 
Value 

BPNN SVM LSSVM ILSSVM WPA-DIR-ILSSVM 

67 271.7 286.4 287.1 284.6 280.5 268.6 

68 262.6 251.3 273.1 255.3 269.6 264.2 

69 253.5 270.0 239.6 264.0 259.6 255.9 

70 244.5 225.6 254.5 259.5 239.7 247.2 

71 235.4 251.4 245.9 246.5 243.1 236.7 

72 326.3 335.6 335.2 341.1 335.7 330.5 

73 217.2 208.3 201.8 203.6 211.6 215.6 

74 208.1 219.0 216.5 218.0 213.9 209.5 

75 199.1 210.2 195.2 208.6 204.9 200.6 

76 390.0 376.9 395.6 398.5 381.6 387.6 

77 280.9 296.1 294.8 269.6 285.6 280.5 

78 285.1 302.8 269.6 296.9 295.0 288.0 

79 289.4 271.9 302.1 303.2 280.2 293.1 

80 293.7 310.5 281.0 285.6 302.8 291.3 
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81 297.9 313.7 312.3 311.1 307.6 298.1 

82 402.2 412.5 389.5 385.6 413.6 405.9 

83 306.4 325.3 321.6 322.6 303.7 309.7 

84 310.7 298.7 327.0 292.7 320.2 309.1 

85 274.9 290.3 287.2 288.6 283.2 276.7 

86 319.2 338.1 302.9 323.5 307.5 318.6 

87 283.4 300.1 295.7 270.6 293.2 283.6 

88 369.5 350.2 385.9 387.1 380.9 372.0 

 

Figure 4. Comparison of forecasting results of the test sets 

The forecasting results in Table 2 are plotted as shown in Figure 4 to facilitate the analysis more 
intuitively. The RE of each forecasting model is shown in Figure 5. It can be seen from Table 2, Figure 
4 and Figure 5 that the forecasting error of all WPA-DIR-ILSSVM models is within [-3%, 3%], and the 
minimum value of the absolute relative errors is 0.06% and the maximum value is 1.30%. Among 
them, the number of errors outside [-1%,1%] is 5, which are substation projects with serial numbers 
67, 70, 72, 79, and 83, with relative errors of -1.14% and 1.13%, 1.30%, 1.28%, and 1.08%, respectively. 
The relative errors of the 11 sample points in the ILSSVM forecasting model is controlled within the 
range of [-3%, 3%], and the error range of 3 sample points is [-2%, 2%], with the serial number of 70,77 
and 83 respectively. For the substation projects above, the relative errors are -1.94%, 1.68%, and -0.89% 
respectively, and the minimum value of the absolute relative error is 0.89% and the maximum is 
3.66%. The relative errors of the 4 sample points in the LSSVM forecasting model is controlled within 
the range of [-3%, 3%], which are substation projects with serial numbers 68, 76, 72, 80, and 86, with 
relative errors of -2.78% and 2.19%, -2.74% and 1.36%, respectively. However, all of them are outside 
the range of [-1%, 1%], and the minimum value of the absolute relative error is 1.36% and the 
maximum is 6.27%. The minimum value of the absolute relative error in the SVM forecasting model 
is 1.44% and the maximum is 7.10%, in which the errors of most sample points are between [-6%, -
4%] and [4%, 6%]. The minimum value of the absolute relative error in the BPNN forecasting model 
is 2.57% and the maximum is 7.71%, in which the errors of most sample points are between [-7%, -
5%] and [5%, 7%]. Meanwhile, the fluctuation range of errors is relatively large in the BPNN model. 
According to the results of the absolute relative error, the WPA-DIR-ILSSVM model has the highest 
forecasting accuracy, next are the ILSSVM, LSSVM and SVM model, and the worst is the BNPP model. 
Therefore, the forecasting accuracy and stability of WPA-DIR-ILSSVM model is the best, which 
reflects that the WPA algorithm can effectively enhance the training and learning process so as to 
avoid falling into a local optimum and improve the global searching ability of ILSSVM. 
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Simultaneously, satisfactory forecasting results can be obtained by using the input vectors based on 
the DIR model. Additionally, ILSSVM presents more satisfactory performance than LSSVM, SVM 
and BPNN. This result indicates that the more accurate forecasting results can be achieved by means 
of the improvement of LSSVM. 

 

Figure 5. RE of the forecasting results of the test set 

The RMSE, MAPE and AAE of BPNN, SVM, LSSVM, ILSSVM and WPA-DIR-ILSSVM are 
shown in Figure 6. From Figure 6, we can conclude that the RMSE, MAPE and AAE of the proposed 
model are 0.8025%, 0.7159% and 0.7157%, which are all the smallest among the above five models. In 
addition, the RMSE, MAPE and AAE of the ILSSVM model are 2.6858%, 2.7961% and 2.7956%, 
respectively. The RMSE, MAPE and AAE of the LSSVM model are 4.5163%, 4.3614% and 4.2778%, 
respectively. The RMSE, MAPE and AAE of the SVM model are 4.5558%, 4.3895% and 4.3203%. The 
RMSE, MAPE and AAE of the BPNN model are 5.5044%, 5.2589% and 5.1402%, respectively. The 
overall forecasting error of model the degree of error dispersion can be reflected through these 
indicators. Therefore, the overall forecasting effect of ILSSVM is better than that of LSSVM, SVM and 
BPNN, and the overall forecasting effect of LSSVM is better than that of SVM and BPNN, which 
indicates that the overall forecasting performance of LSSVM is significantly improved after the 
weighted improvement. The forecasting accuracy of WPA-DIR-ILSSVM is better than that of ILSSVM, 
which proves that the parameters   and   of ILSSVM selected by the WPA algorithm have a good 
optimization effect. And the DIR model ensures the integrity of the input information while reducing 
redundant data, in which the ideal forecasting results are achieved. 

 

Figure 6. RMSE, MAPE and AAE of the forecasting results 
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4. Conclusions 

 This paper presents a hybrid cost forecasting model that combines DIR with ILSSVM optimized 
by WPA. First, in order to forecast the substation projects cost, the DIR combined with the WPA is 
employed to select the input feature. Furthermore, the WPA is also adopted to optimize the 
parameters of the ILSSVM. Finally, after obtaining the optimized input subset and the best value of 
  and  , the proposed model is utilized for the cost forecasting of substation projects. Several 
conclusions based on the studies can be obtained as follows: (a) by the utilization of DIR, the influence 
of unrelated noises can be reduced and the forecasting performance can be effectively improved. (b) 
the optimization algorithm WPA adds the model with strong global searching capability and the 
ILLSVM model optimized by WPA shows good performance. (c) based on the error valuation criteria. 
Compared with LSSVM, a better forecasting results can be achieved based on ILSSVM, which shows 
that the method of improving LSSVM by replacing the traditional radial basis kernel function with 
wavelet kernel function is effective. (d) Through the example verification of substation projects in 
different regions, different voltage grades and different scales, an ideal forecasting effect is obtained, 
which shows that the model proposed in this paper is more adaptable and stable. Hence the proposed 
cost forecasting method of WPA-DIR-ILSSVM is effective and feasible, and it may be an effective 
alternative for the cost forecasting in the electric-power industry. 
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