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Target Recognition in SAR Image via Keypoint
based Local Descriptor—Foundation
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Abstract—This paper considers target characterization and
recognition in radar images with keypoint-based local descriptor.
Most of the preceding works rely on the global features or
raw intensity values, and hence produce the limited recognition
performance. Moreover, the global features are sensitive to the
real-world sources of variability, such as aspect view, configu-
ration, and incidence angle changes, clutter, articulation, and
occlusion. Keypoint-based local descriptor was developed as a
powerful strategy to address invariance to contrast change and
geometric distortion. This property inspires us to investigate
whether the family of local features are relevant for radar
target recognition. Most of the preceding works typically devote
to finding the correspondences between a collected image and
a reference one. The representative applications include image
register and change detection. Little work was pursued to
target recognition in SAR images. This is because the huge
number of local descriptors resulting from radar images make
the computational cost and memory consumption unacceptable.
To handle the problems, this paper develops two families of
methods. The proposed methods are used to achieve target
recognition by means of local descriptors. Our first solver refers
to building multiple linear regression models, and addresses the
problem by the theory of sparse representation. The second
scheme rebuilds a new feature by the feature quantization skill,
from which the inference can be drawn. Multiple comparative
studies are pursued to verify the performance of detectors and
descriptors popularly used. The source code was publicly released
on https://ganggangdong.github.io/homepage/.

Keywords—Target recognition, SAR, keypoint, local descriptor,
sparse representation, feature quantization, classification.

I. INTRODUCTION

ITH the development of integrated circuit and manufac-

turing technology, the resolution of synthetic aperture
radar in range and azimuth is capable to achieve target recog-
nition. However, images taken from various sensor platforms
are too huge to be handled by analyst timely. This situation
produces an urgent need for automatic image interpretation [1],
[2]. Though many works have been initiated to provide a base-
line knowledge of target scattering characteristics, automatic
target recognition in radar image is still far from being solved
due to the complicated imaging condition. It is nevertheless
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worth to be addressed because this technology gives great
potential for the civil use as well as the military application.

The typical system for radar target recognition is usually
composed of three separate phases, prescreening, discrimina-
tion, and classification [3]. The work mechanism is shown in
Fig. 1, where the input is a scenery of radar image, and the
output are the target types. The prescreening stage produces
the candidate targets by examining the amplitude of radar
signal pixel by pixel [4]. The discrimination stage locates the
candidate accurately and generates the orientations [5]. The
natural clutter false alarms are rejected by texture features.
The classification stage predicts the identifications.
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The mechanism of automatic target recognition from radar image.
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Fig. 1.

A. Background

This paper considers the classification subsystem. The input
is a chip image cropped from the scenery, while the output is
the identification. The chip image inputted usually contains a
single target, radar shadow, and background, as visually shown
in Fig. 2. In the conventional methods, the prediction of target
type is achieved by feeding a designed feature into a trained
classifier. The recognition performance is therefore dependent
on the representation and classification scheme.

Fig. 2. Tllustration of target and radar shadow for radar chip image.

1) Feature Representation: The signature information that
distinguishes one target from another is fundamentally deter-
mined by the interactions between the incident radar waveform
and target physical structure. For radar imagery, the backscat-
tered signal results from multiple scattering mechanisms, e.g.,
direct backscatter, single-direction double bounce, return-direct
multi-bounce, and high-order multiple bounce. The unique
imaging mechanism makes feature extraction from radar image
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much more difficult. The present approaches can be reviewed
as follows.

Intensity values. The early methods achieve target recog-
nition by the raw intensity values or the enhanced image.
The distance between two sets of pixel values (or enhanced
values) are used to make the decision. L. Novak et al. pro-
pose a new super-resolution image-processing technique that
enhances SAR image resolution [6]. The enhanced image is fed
into a MSE-classifier to predict the target type. Q. Zhao and J.
Principle design a support vector machine, into which the raw
intensity values are pushed directly [7]. J. Thiagarajan propose
to feed the randomly projected coefficients of image into sparse
representation-based classifier [8]. This kind of methods are
dependent on the trained classifier more and on feature less.

Projection coefficients. This kind of methods refer to con-
structing a linear subspace by the intensity vectors. A feature
representation is then defined by the projected coefficients,
such as principal component analysis, independent component
analysis. The physical meaning is therefore ambiguous. M.
Liu et al. present a statistical model embedding the locality
preserving property to extract the maximum amount of desired
information from the data [9]. Y. Huang et al. propose to
preserve the global and local discriminative information based
on the tensor representation [10]. Z. Cui et al. generate the
pattern feature of SAR image by a variant of non-negative
matrix factorization [11].

Filter banks. In some works, the feature is defined by a set
of filter banks, such as Fourier transform, Gabor filters, and
the analytic signal. R. Patnaik and D. Casasent achieve target
recognition by the correlation patter recognition strategy [12],
[13]. A set of correlation filters are first generated by Fourier
transformed coefficients of the training. The decision is made
according to the correlation response between the query and
the generated filters. G. Dong et al. develop a new method for
target recognition [14]-[16]. The target signature information
is characterized by an extended analytic signal, the monogenic
signal [17], [18]. Sparse representation modeling is built to
implement target classification.

Geometric features. The geometric feature means the shape,
edge, size of target or radar shadow. This family of features
are mainly dependent on the fine segmentation of radar image,
which is still an open problem now. J. Park et al. discriminate
target from clutter by some designed geometric features, such
as the minimum projected length, the contrast of the projected
length, the energy of the projected length in the frequency
domain [19]. J. Zhu et al. introduce a famous trick of computer
vision, shape context, to exploit the distinguishing characters
of the ship targets from radar image [20]. They jointly consider
the topology and intensity of scattering points of ship.

Statistical feature. Some researchers employ the image
statistics for target recognition, such as the various statistical
moment. J. Singh and M. Datcu utilize a chirplet-derived
transform and fractional Fourier transform to generate a com-
pact feature descriptor for single-look SAR images [21]. The
statistical response resulting from the projections on different
planes of the joint time-frequency space is easy to be ana-
lyzed. M. Anoon and G. Rezai-rad generate a representation
by the Zernike moments [22]. The resulting feature is of

d0i:10.20944/preprints201805.0116.v1

linear transformation invariance and robustness in the presence
of the noise. The similar thought was employed in [23].
P. Bolourchi et al. propose a feature descriptor by Radial
Chebyshev moment, a discrete orthogonal moment with some
distinctive advantages [24].

Learned feature. Target recognition via the learned fea-
ture is a recent research hotspot. S. Chen et al. propose
to learn the hierarchical features from massive training data
by convolutional neural networks [25]. The similar thoughts
can be found in [26]-[28]. S. Deng et al. introduce stacked
autoencoder for target classification [29]. The reshaped image
is specified as the visible layer, while the latent states are
used to classification. Though performed well, this family
of features are computationally unattractive. In addition, they
present a heavy demand for the hardware configuration.

Scattering center model. Radar energy backscattered from
the object contains the key information that distinguishes one
target from another. An intuitive idea is to define a feature by
the scattering center models. L. Potter and R. Moses pursue
the preliminary studies [1]. They present a framework for
feature extraction predicated on parametric models for the
radar returns. The developed models are motivated by the
scattering behavior predicted by the geometrical theory of
diffraction. J. Zhou et al. propose a global scattering center
model established offline using range profiles at multiple
viewing angles, with which features at different target poses
can be conveniently predicted. B. Ding et al. introduce a new
statistics-based metric to measure the distance between the
attributed scattering center models [30]. This family of features
are difficult to be flexibly generalized.

Though multiple schemes were presented previously, feature
extraction is still far more to be solved, especially for the real-
word applications. The invariance to the real-world sources of
variability should be further studied.

2) Classification Learning: The extracted feature is used to
determine the class to which a detected target belongs by the
knowledge learned from the training. It is a typical application
of patter recognition in radar image. The current approaches
are reviewed as follows. KNN is of the most fundamental and
explicit strategy. It predicts the class membership according
to the similarity between the probe and the gallery. The key
is how to define an appropriate distance metric for the de-
signed feature. Kernel-based Classifier. This family of method
projects the original data into an implicit feature space whose
dimension can be as high as possibly or even infinite. The class
separability can be then enhanced. The most representative is
support vector machine learning [7]. Regression analysis skills
are popularly used in neural network configuration [25], [29].
It models the relationship between a scalar dependent variable
and a set of explanatory variables. The response is the target
type, whose output is the probability of the class label taking
one each of the possible values. Sparse representation-based
classification is a specialty of regression analysis [32].

B. Contributions
Though many studies were pursued over the years, most

of them rely on the global feature, resulting in limited per-
formance. In addition, this kind of feature are sensitive to
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the real-world source of variability. To handle the problems,
this paper considers keypoint-based local descriptor for target
recognition. Two families of methods, following the thought of
sparse representation and feature quantization, are developed.
The pipeline is displayed in Fig. 3. To our knowledge, the
relevance of keypoint-based scheme in target recognition has
been investigated seldom. We aim at studying to which extent
the local descriptor can improve the recognition performance.
We intend to open a new door for target recognition under the
non-literal conditions. Our contributions therefore include:

e the comprehensive review of the preceding works on
feature extraction from radar image,

e the tune of keypoint-based local descriptor for radar
target recognition,

e the development of two families of schemes to imple-
ment target classification with the local descriptor,

e the evaluation of proposed strategy with multiple com-
parative studies.
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Pipeline of proposed framework.
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Fig. 3.

C. Organization

The rest of this paper is organized as follows. Section II
reviews the representative keypoint detectors and local descrip-
tors. Section III develops two families of methods for target
recognition. Section IV verifies the proposed schemes with
multiple comparative experiments. Section V concludes this

paper.

II. KEYPOINT-BASED LOCAL DESCRIPTOR

Most of the previous studies achieve target recognition by
the global feature. They are not effective to the non-literal
conditions. The recent development on machine learning prove
that the local region description could produce very powerful
cues. Compared to the global feature, the keypoint-based
local descriptor is much more robust to real-world source
of variability. This property motivates us to achieve target
recognition with the local descriptor. This section provides a
simple review of related studies from two aspects, the detection
of keypoint and the representation of local feature.

A. The Detection of Keypoint

Keypoint detection refers to checking image pattern which
differs from the immediate neighborhood. The fashion of rep-
resentation could yield a high repeatability, i.e., the keypoints
can be extracted reliably and are often found again at the
similar locations in other images of the same object or scene.
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For radar chip image, the keypoints are undoubtedly located
in the target imaging region, or radar shadow. The popularly
used approach to keypoint detection includes difference of
Gaussian (DoG), Harris corner detector, Hessian blob-like
structure detector, and the variants.

1) Difference of Gaussian: DoG is an approximation of
Laplace of Gaussian [33], and much faster to compute. A scale-
space S(x,y, o) is first built by convolving the image I(z,y)
with a Gaussian low-pass filter G(x,y, o) parameterized by a
standard deviation o,

S(xvyags) = g(ac,y,as) * I(Iay)

where o is a function of index s = {0,1, ..., Sjpaz-1}. DoG
images is the difference between two successive layers

D(.’)L‘7 Y, Us) = S(‘T> Y, Uerl) - S(:I?, Y, Us)'

To achieve scale-invariance, image pyramids are usually built.
The number of octave is determined by the size of image.
Image in the higher-order octave is obtained by downsampling
the one of the previous octave in a factor of 2. Keypoint is
defined as the local extrema in 3-dimension space (z,y, o). It
is checked by comparing every pixel to the eight neighboring
pixels in the current scale and the nine pixels in the scales
above and below. If a pixel is larger or smaller than all of its
neighbors, it is accepted as a preliminary keypoint candidate.
The implementation flow of DoG is pictorially shown in Fig. 4.

Gaussian

DoG

IR

26-Neighbor

Fig. 4. The illustration of DoG detector. The pixel (in red) is compared to
the eight neighbors in current scale, and the nine neighbors in the previous
and next scales.

2) Harris Detector: Harris corner detector is probably one
of the earliest method for keypoint detection [34]. It is based
on the eigenvalues of second-moment matrix (or autocorrela-
tion). The candidates with low contrast are then filtered by
thresholding the values of the built matrix,

M(z,y,0) = det(Hao(2,y,0)) — X - trace(Ha(z,y, 0))%.
The Harris matrix is
_ Sz (x,y,0)
{Sy ' Sﬂf}('ra Y, U)

where S, S, are the convolution of the Gaussian first-order
derivative %g, a%g with image I(z,y). The parameter )\ is to
balance the determinant and trace of Harris matrix, and usually
set between 0.04~0.06.

To achieve scale-invariance, Lindeberg introduced the con-
cept of automatic scale selection [35]. He propose to assign-
ment the detected interest points with their own characteristic

{SI i Sy}(.%', y7(7)

Ha(xvyva) S;(x,y,a)
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scale. Mikolajczyk and Schmid further present a refined strat-
egy, Harris-Laplace detector, by which scale-invariant feature
detectors with high repeatability can be created [36]. The
location of keypoint is selected by the determinant, while the
scale is determined by the Laplacian operator.

3) Hessian Detector: Hessian detector defines the keypoints
as the ones localized in space at the local maxima of the
Hessian determinant and in scale at the local maxima of the
Laplacian-of-Gaussian. For 2-D function I(x),x = [z, y], the
second-order Taylor’s expansion is expressed as

I(xg + Ax) = I(x0) + AxTVI(x0) + AxTH(xo) Ax
The Hessian matrix at each point location is

Soa(@,y,0)  Suy(z,y,0)
Sym(xayao—) Syy(xay70)
where Szz, Sy, Syy are the convolutlon of Gaussian second-

order derivative 6129 a Q o 2Q with image I(x,y). The
blob-like structures are detected by the determinant of Hessian
matrix and the trace of Hessian matrix (Laplacian),

det(He) = SauSyy — N - SuySye

,He(xayvo-) =

where )\ is a weight parameter. For the 9x9 filter in size and
o = 1.2, the weight parameter is approximated as

182y (1-2)[| 7| D () 2
182y (1-2)l| £l Day (9) [ 7

where D, Dmy, Dy, are the approximations of Sz, Suy,
Syy . By assigning each detected keypoints its own character-
istic scale, the scale invariance can be achieved.

To boost the computational efficiency, H. Bay et al. also
present a fast version of Hessian-Laplace detector, Fast-
Hessian [37], [38], where the integral image is used to cir-
cumvent image derivative operations.

4) Features from Accelerated Segment Test: E. Rosten and
T. Drummond propose a novel efficient approach to corner
detection, features from accelerated segment test (FAST) [39],
[40]. The designed segment test criterion operates by consid-
ering a circle of sixteen pixels around the keypoint candidate,
as illustrated in Fig. 5.

=0.912=x0.9

Fig. 5. Illustration of FAST. The pixel in red is the center of a candidate
corner, while the 16 pixels in circle are considered in corner detection.

The detail derivation can be found in the preceding works [37].
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A corner p is defined if there exists a set of n contiguous
pixels in the circle which are all brighter than the intensity of
the candidate pixel I, plus a threshold 7, or all darker than
I, — 7. The parameter of n is set as twelve, with which a
very large number of candidates can be excluded. Considering
the computational efficiency, only four neighborhood pixels at
{1, 5,9, 13}-site are tested. Therefore, if a keypoint is detected,
then at least three of these values should all be brighter than
I, + 7 or smaller than I,, — 7. For a candidate p, these sixteen
sites on the circle are noted as s1, S, . . ., 16 € N,,. The pixels
at those sites can be categorized as one of three states,

darker I, <[, —T
I;;, = < similar [, —7<I, <I,+7
brighter I, > I, —7
The detected keypoints are then refined by non-maximal sup-
pression trick.

B. Feature Representation around Keypoint Detected

Have detected keypoint, a pair of pixel coordinates, another
key issue is how to characterize the neighborhood around the
point, i.e., define an invariant feature descriptor.

1) SIFT: SIFT may be the most popularly used descrip-
tor [41]. It is defined as the histogram of gradient orientation
weighted by magnitude and a Gaussian window. The dominant
orientation is estimated to achieve rotational invariance.

For image pyramid S(z,y, o), the gradient magnitude and
orientation are computed at all scales and octaves,

Magnitude = /82 + S2

S
Orientation = arctan (—y)
T

where S, = ‘g— and S = g—s are the partial derivatives along

z- and y-axis directions. The gradlent orientation weighted by
magnitude and a Gaussian window is used to produce a 3-D
histogram. The first two dimensions correspond to the spatial
location, and the additional dimension to gradient orientation.
Each pixel within the local region contributes to the histogram
depending on the location, gradient orientation and magnitude.
Image gradient computed around every keypoint is integrated
to the 3D histogram, resulting 2 x 2 x 2 bins, each of which
is incremented by gradient magnitude multiplied by a weight
inversely related to distance between the location and keypoint.

The peak value of histogram and those ones larger than
80% peak are defined as the dominant orientation. A square
neighborhood around each point with a size depending on
the scale is cropped. It is inversely rotated by the dominant
orientation. To assure the scale invariance, image gradients are
calculated at the same scale to which the keypoint belongs.
Local descriptor is obtained by concatenating the histograms,
producing a 128-element-vector, as shown in Fig. 6.

2) GLOH: GLOH is an extended version of SIFT [42], in
which a new quantization of location is developed. It defines
the local patch as a log-polar grid with 3 bins in radial direction
and 8 bins along the angular direction, and hence results in
8+8+1=17 bins of location. The radius for the outer circulars
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Fig. 6. The generation of SIFT descriptor.

are set according to the task at hand. The central circle regior
is handled as a single bin, while the outer circular region:
are divided into 8 bins equally distributed along angula
direction, in each of which the gradient orientation weightec
by magnitude is quantized into 8 levels. The generation o
histogram is similar to SIFT. The local descriptor is obtainec
by concatenating the histograms of all sectors. GLOH refine:
the division of location, and hence results in an improvement
on performance, as proved in [42]. The comparison of SIFT
and GLOH are pictorially shown in Fig. 7.
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Fig. 7. Square grid for SIFT and log-polar sector for GLOH.

3) Adaptive Binning Strategy: The conventional descriptor
usually divides the neighborhood around keypoint into some
fixed cells, e.g., 4x4 grids for SIFT, 1+8+8+8 sectors for
GLOH, in each of which the gradient orientation is quantized.
The levels of quantization for gradient orientation is also
fixed. This mode of quantization may reduce the discriminative
power. A. Sedaghat and H. Ebadi propose to separate the inner
circle and the outer circular regions into different radial sectors.
The gradient orientations within each sector is quantized into
different levels [43].

For each keypoint detected, its neighborhood is divide into n
non-overlapping circular rings, R1, Ro, ..., Ry, as similar to
GLOH. Each circular region R; is then divided into N; cells
equally distributed along the angular direction {Rl(j)}j\;‘1
The gradient orientations in R;(j) are further quantized into
k; levels of histogram, i.e., the level of quantization is different
from cell to cell, as shown in Fig. 8. The descriptor is
obtained by combining the histograms. The dimension of
feature descriptor is ). N;k;.

4) DAISY: Engin Tola et al. develop a new local descrip-
tor, DAISY [44], [45]. Tt circumvents the weighted sums of
gradient norms by convolutions of the gradients in specific
directions with Gaussian filters.
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Fig. 8. Illustration of GLOH and AB-SIFT. GLOH only divides the outer
circular regions along angular directions, while AB-SIFT separates both the
inner circle and the outer circulars into several sectors.

For chip image I(x,y)| a set of] orientation maps can be

defined, O;(z,y) = (%>+

and (-)* = max{-,0}. The orientation maps are convolved
with Gaussian kernel parameterized by o to generate different
size of local regions,

07 (z,y) = Oi(z,y) * Go (2, y).

DAISY is defined as a vector whose entries are the coefficients
resulting from the convolved orientation maps located on
concentric circles centered on the location,

he(z,y) = [O7 (7,9), 05 (z,y), ..., O (2, y)].

Considering M circular cells, the descriptor is obtained by
concatenating the normalized vectors

[h;{l (SL’,y), hgjl (dl(xa Y, Rl))? SR hgjl (dn(xa Y, Rl))
hzj;g (dl(ﬂ?,y, RQ))? sy hgz (dn(ﬂf,y, RQ))

,where’s is the quantized direction,

hZM (d1($7y7 RM))’ SERE) h?;M (dn(m7ya RM))]

where d;(z,y, R;) denotes the sites with R; distance from
(x,y) along the j-direction. The orientations are quantized into
n levels.

5) SURF: H. Bay et al. present an improved version of
Hessian detector, Fast-Hessian, by which a local descriptor,
Speeded-Up Robust Features is defined [37], [38]. They first
detect blob-like structure with the Hessian matrix, i.e., a
second-order derivative of Gaussian filtered image. The deriva-
tive operation is achieved by means of integral image. The
local descriptor is defined as the distribution of first-order Haar
wavelet response.

Given image I(x,y), the Haar-like wavelet response is
calculated along the x- and y- axis direction in a circular neigh-
borhood around the keypoint. The wavelet response weighted
with a Gaussian centered at the keypoint is represented as
vectors in a space. The horizontal response strengthens along
the abscissa, while the vertical response strengthens along the
coordinate. The Haar-like wavelet responses within a sliding
orientation window covering an angle of % are summed to
estimate the dominant orientation. The local descriptor is
defined on a square region centered around the keypoints, and
oriented along the dominant orientation. The region is further
split up into smaller 4 x 4 square cells, in each of which two
simple features at 5 x 5 spaced sampling points are computed.
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Denote by h,, h, the Haar wavelet response in horizontal and
vertical directions. The local descriptor is formed as

(DY gy el [yl

III. CLASSIFICATION

Keypoint-based local descriptor is initially developed to
find the correspondences between a pair of images. The
representative application includes image register and change
detection. Though studied widely, little work is devoted to
radar target recognition. The local descriptors resulting from
radar images may be the order of millions, and hence could not
be handled as usual. To solve the problem, this paper proposes
two methods. The first casts the recognition problem as one
of classifying among multiple linear regression models [32].
The latter produces a single new feature for each image by
encoding the local descriptors.

Given N labeled images Iy, 1ls,...,In from K distinct
classes, the task of target recognition is to predict the class
membership of query using the knowledge learned from the
labeled ones. For image I;, we extract the local descriptors
VI V2, ..., V" around n; keypoints. The total number of
local descriptors available for training is n = ), n;. Target
recognition refers to predict the class identity of I, according
to its local descriptors Vi, Vg, V,? “,

A. Solver 1: Sparse Representation

Our first solver proposes to build multiple linear regression
models with the local descriptors. The descriptors available for
training play the role of regressor, while the one of query is the
response. The regression coefficients is obtained by optimizing
¢1-norm minimization. The theory of sparse representation
offers the key to address the problem [32]. We first represent
the descriptors extracted from query Vé as a linear combination
of those resulting from the training,

Vi =Viai +Viat 4+ Ve +
Vyaz + V3o + -+ V32ah? + - ey
Vyay +Viak + -+ VNaiy

where [ad, af, ..., ad, a3, ..., ak,ak,...,ay"] are the
regression coefficients. This problem is incapable to be handled
directly due to the huge number of descriptors, making the
computation and memory unacceptable. A feasible method
is to represent the query only by the related descriptors,
and ignore the remaining. Following this thought, this paper
develops a prescreener, with which the descriptors unrelated
are filtered out. The preserved samples are used to represent
the query. The key issue is therefore to design the prescreener.

For each descriptor of query Vé, this paper first computes
the linear correlation response with all of the local descriptors
available for training,

ri= VOV VT VLV VR VR

The (dis)similarity between a pair of local descriptors is mea-
sured by the Euclidean distance metric. The other measurement
could play a similar role. To filter the redundancy out, only the

d0i:10.20944/preprints201805.0116.v1

most correlated descriptors are kept, while the remaining are
ignored. We sort the correlation response 7; in a descending
order, and hold the former descriptors P = by, bo, ...,
by. They are employed as the basis vectors to represent the
descriptor of query

Vi=bia; +bsaz+ - +bray =Pa 2)

where o, aw, ..., ap, are the weights. The number of atoms in
‘P is much smaller than the ones available for training, L < n.
The computational cost is then greatly alleviated. Notedly, the
dictionary P is different from descriptor to descriptor.

According to the theory of sparse representation, we expect
that most of the entries for o are zero except those associated
with the real class identity of query. This is realized by op-
timizing £y-norm minimization problem. Thanks to the recent
development of compressed sensing [46], the solution of /-
norm minimization is equal to the one of ¢;-norm minimization
if v is parsimonious enough,

min [|ally st V) —Pali<e 3)
[e3

where ||-||; sums the absolute value of entries. It can be further

converted to the unconstrained optimization problem,

min {||als + Al[V; = Pal3} 4)

where the parameter )\ balances the fidelity and the sparsity.
The optimal representation & is used to calculate the recon-
struction error

¢ =V, — 6;(P)a;,

i i=1,2,....K 5)

where the function 6, (7P) is designed to select those atoms as-
sociated with the j-th class, and ¢; is the corresponding weight
coefficients. The overall residual is obtained by accumulating
(5) over the descriptors, e = [ > 7 el, S eZ, ..., Y0 K.
The class membership of query I, is estimated by finding the
J

Since only a small portion of descriptors related are em-
ployed to build the multiple linear regression models, the
proposed method has the advantage of simplicity and com-

putational efficiency.

minimum overall reconstruction error arg min; { ; €

B. Solver 2: Feature Quantization

Different from the first method, we propose another solver
by feature quantization. It treats an image as a collection
of unordered descriptors extracted from the local region, and
quantizes them over the “visual words” [47]. A new compact
histogram is produced by a predefined codebook for semantic
classification.

1) Bag of Visual Words (Bow): BoW represents the local
descriptors by a set of visual words. A codebook composing
of visual words is first generated by a batch of descriptors.
They can be the overall descriptors available, or randomly
selected from the training set. Denote by V(l), V(Q), e V(n/)
the batch of feature selected from the training set. K-means
clustering algorithm is employed to generate a codebook

ming Z;il min;—1,...m || Vi) — Cjl|%, where Cy, Ca, ..., Cp,
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are the clustering centers. The prototype of BoW commits
each descriptor to the nearest atom. The hard assignment is
too restrictive, and hence produces a coarse reconstruction.
Yang et al. [48] propose to relax the constraint by sparse
coding (SC), enforcing the representation to be with a small
number of nonzero entries,

’

min >~ { V) = Call3 + Allaf } ©)
o &

Wang et al. [49] present another trick, locality-constrained
linear coding (LLC) by projecting the descriptor into its local-
coordinate system with a locality constraint,

’

rg’ianzgllvm = Call3 + Alld; ® alf3 @)
J:

where ® denotes the element-wise multiplication, and

[d(V(j),C1), d(V(j),Ca), - . ., d(Vy), Cm)]T>

ag

d; = exp(

is a constraint composing of the distance to atoms.

2) Fisher Vectors (FV): Since building an universal and
compact vocabulary seems irreconcilable, an alternative idea is
to depart the generation of codebook. F. Perronnin et al. pro-
pose to apply Fisher kernels for image categorization [50],
[51]. The core is to characterize a signal with a gradient
vector derived from a probability density function which
models the generation process of the signal. Gaussian Mixture
Models which approximates the distribution of image features
is usually employed.

Denote by V = [Vi,Va,..., V] a set of local descriptors
available, and © = {w;, u;, 2}, the GMM parameters to
be estimated, corresponding to weight, mean, and covariance
matrix. Each Gaussian distribution represents a word of visual
vocabulary. Under an independence precondition, it is capable
to produce

J J N
F(VIO) = logp(V;]0) = Zlog(Z wipi(V;|©)) (8)

j=1

where the component p;(-) is the é-th Gaussian distribution

pi(x]©) = exp(—0.5(x — i) ", (@ — p1a)).

1
(2m) P[5
Assuming the diagonal covariance matrices, 0? = diag(%;),
only the derivatives 6]:8(5‘@), Bfa(zf‘le), 8}:§:|®) are consid-
ered. This leads to the representation which captures the aver-
age first and second order differences between local features
and each of the GMM centers,

N\l/@;@p(k)(vp;cuw

d0i:10.20944/preprints201805.0116.v1

where oy, (k) is the soft assignment weight of the p-th feature
to the k-th Gaussian distributi({n. Tl;e new feature is obtained
by stacking the difference [<I>§ ), <I>§ L (I)S\l,), (I)S\z,)].

IV. EXPERIMENTS AND DISCUSSIONS

This paper develops two kinds of methods to implement
target classification by local descriptor. The proposed strategy
is validated on MSTAR SAR images, a database collected by
a 10 GHz SAR sensor with 1 x 1-foot resolution in range
and azimuth. Images of four military vehicles, BMP2, T72,
BTR70, and T62 are employed, among which BMP2 and
BTR60 are armored personnel carriers, while T72 and T62
are main-battle tanks. BMP2 and T72 have several variants
with the structural modifications, noted by the series number,
SN_9563, SN_9566, SN_c21 for BMP2, SN_132, SN_812,
SN_s7 for T72. BTR60 and T62 are of single configuration.
The standard, SN_9563 and SN_132 taken at a 17° depression
angle are used for training, while the remaining collected at
a 15° depression angle comprise the testing set. Significant
changes of configuration and depression angle are present,
as detailed in TABLE 1. The original images are of around
128 x 128 pixels in size, and standardized as 96x96 pixels by
cropping the center patches. All experiments are performed on
Matlab 2015a.

TABLE 1. THE NUMBER OF ASPECT VIEW IMAGES FOR BMP2,
BTR70, T62, AND T72.
Depr. BMP2 T72 BTR60 T62 Total
17° (Gallery) | 233 (SN_9563) | 232 (SN_132) 256 299 1020
° 196 (SN_9566) 195 (SN_812)
15° (Probe) 196 (SN_c21) 191 (SN_s7) 195 273 1246

A. The Detection of Keypoint

We first evaluate the performance of representative detectors.
We aim to studying whether these methods could seek keypoint
from radar image, and whether the local descriptors around the
keypoints could exploit target signature information.

We provide a set of instance on keypoint detection. Fig. 9
draws the detection maps obtained using DoG, Hessian, Harris-
Laplace, and Hessian-Laplace’. We found that the keypoints
detected are mainly located in target imaging region, cor-
responding to the local scattering centers. The number of
keypoints produced by DoG is much more than the other
detectors. Keypoints generated by Hessian-Laplace detector are
more than Hessian. Those points located in main gun of tank
have also been detected.

Fig. 10 shows the detection chart of FAST on the same
image3. The threshold value 7 is set as 0.25, 0.2, 0.15, and 0.1.
With the threshold value decreased, the number of keypoints
detected are increased. The smaller the threshold, the more
the number of keypoints detected. Most of these keypoints are
located in target imaging region, similar to the previous maps.
The small threshold value usually produces some keypoints in
the site of speckle.

2VLFeat toolkit is used to implement the detectors.
3The function ‘fast9” is employed. More information can be found in the
homepage at http://mi.eng.cam.ac.uk/~er258/work/fast.html.
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Fig. 9. The detection maps obtained by DoG, Hessian, Harris-Laplace, and
Hessian-Laplace. The keypoints are marked by pentagram in red.

Fig. 10.
The keypoints detected are noted by asterisk in yellow.

Keypoints detected by FAST with four different threshold values.

The average number of keypoints detected from the whole
training set is then given. To study whether the number of
keypoint is related to target pose, the aspect view is divided
into four ranges, as detailed in TABLE II. We found that
Harris-Laplace detector produces the least number of keypoints
consistently, while FAST detector always seeks the most
number of points. For BMP2, the number of detected points
produced from Angles is much more than the remaining angle
range. For BTR60, T72, and T62, the number of detected
points is irregular. Hence, we could come the conclusion that
the number of keypoints detected is not related to target pose.

TABLE II. THE NUMBER OF KEYPOINTS DETECTED FROM FOUR

CLASSES OF RADAR IMAGES. ANGLE] , ANGLE2, ANGLE3, ANGLE4

REFERS TO IMAGES WITH POSE FALLEN IN THE RANGE OF 0° ~ 90°,
91° ~ 180°, 181° ~ 270°, 271° ~ 360°.

Detector DoG Hessian HarrisL ~ HessianL FAST?! FAST?
Angley 14.84 12.98 6.07 19.72 31.77 42.59

Angles 14.73 14.65 6.87 22.18 36.07 48.02

BMP2 | Angles 18.06 17.69 8.51 26.33 40.06 52.57
Angley 17.23 12.49 6.41 18.31 28.95 39.05

Overall 16.14 14.31 6.90 2143 33.95 45.24

Angley 15.34 19.87 8.79 30.52 40.47 55.24

Angles 14.88 17.96 8.46 27.39 41.57 55.13

BTR60 | Angles 14.92 18.73 8.53 31.67 48.41 63.53
Angley 18.05 18.95 8.75 29.19 44.68 59.81

Overall 15.87 18.91 8.64 29.66 43.63 58.28

Angley 15.40 16.63 7.50 21.63 37.18 48.21

Angles 17.16 16.72 8.09 23.13 39.74 51.40

T72 Angles 16.65 16.28 7.15 22.43 39.25 51.93
Angley 13.65 13.22 6.57 18.25 31.80 42.77

Overall 15.75 15.77 7.36 2143 37.08 48.65

Angley 12.45 21.55 11.38 37.45 56.07 72.19

Angles 12.43 19.12 10.43 38.08 55.30 71.14

T62 Angles 13.09 22.38 11.16 41.78 62.65 79.33
Angley 13.50 24.10 12.06 38.43 58.79 75.71

Overall 12.87 21.78 11.25 39.00 58.29 74.69

We further quantitatively assess the detectors on recognition
performance. The local descriptors extracted from the training

d0i:10.20944/preprints201805.0116.v1

images are used to predict the class membership of query. Our
first proposed solver is employed to implement classification.

We first evaluate FAST detector by SIFT descriptor. There
is a free parameter to be determined, the threshold value
7. We test four different values, 0.25, 0.2, 0.15, and 0.1.
The recognition accuracy as a function of threshold value is
drawn in Fig. 11. The recognition performance is inversely
proportional to the threshold value. The bigger the threshold,
the lower the recognition rate. This is because FAST with
smaller threshold value usually results in much more number
of keypoints than the one with big threshold. Simultaneously,
the computational cost (CPU-Time) is increased sharply with
the decrease of threshold. The CPU-Time for FAST with
0.10-threshold is even 8 times longer than FAST with 0.25-
threshold. Therefore, it is needed to balance the computational
cost and recognition accuracy.

0.88 T
X
0.875 AR
g 087 e
< K
S .
§, 0.865 *'
0.86 e
L
0.855 -
o
Ry 0.20 0.15 0.10
Threshold(t)
T [ 0.25 0.20 0.15 0.10
CPUTime [ 490s 792s 1465s  4015s

Fig. 11. Recognition accuracy over the threshold value 7 (FAST).

All of the detectors are compared with in Fig. 12. SIFT
and DAISY descriptors are employed to achieve target clas-
sification. We can see that DoG detector tends to perform
better than Harris and Hessian detector when SIFT descriptor
is used to represent the local pattern. The most likely reason
for this difference is that the Laplacian detector tends to extract
two or three times more keypoints per image than Harris-
Laplace (verified in TABLE II), and hence produce a richer
representation. On the contrary, the performance obtained
using FAST, Hessian-Laplace, and Hessian detectors are much
better than DoG and Harris-Laplace detectors when DAISY
descriptor is employed. The results prove that the performance
of detector is related to the choice of descriptor. Hence, the
further comparison of descriptors is needed.

B. The Representation of Local Pattern

The detected keypoint serves the generation of local de-
scriptor, from which target classification can be achieved. This
section devotes to the verification of local descriptor.

For AB-SIFT descriptor, there are three parameters to be
determined, the level of radial quantization, the number of
angular quantization, and the bin of histogram. To evaluate the
effect of these parameters, we pursue a set of experiments. Two
detectors, Hessian and DoG, are evaluated. The neighborhood
around the detected keypoint is represented by several adaptive
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even results in 500-D feature, greatly higher than the preceding
descriptors. As for the radius of rings, it is proportional to
the recognition accuracy. The longer the radius, the better the
performance. The performance reaches a plateau when the
radius is beyond 20. To make a balance between efficiency
and accuracy, we set the radius as 20, and the number of bins
as 8. The running times of different settings are reported. We
can see that the computational cost is acceptable.

Fig. 12. Recognition performance obtained using different detectors.

binning histograms. The experimental results are given in
TABLE III*, where GLOH descriptor is employed as the
baseline (fixed binning). The results prove that the recognition
performance can be improved by adaptive binning compared
to fixed fashion of quantization. The 2-level radial quantization
provides a much poor performance. Some improvement is
achieved when the level of radial quantization is increased
from 3 to 4, especially when DoG detector is employed. The
result also proves that the performance of local descriptor is
related to the choice of detector. Considering efficiency and
accuracy, the angular {6, 6,6,6} and the histogram {6,6,6,6}
are configured.

TABLE IV. THE PERFORMANCE OF DAISY OVER THE RADIUS AND
QUANTIZATION LEVEL.
Bins DAISY;, DAISYs DAISY;» DAISY;s DAISYs
Dim. 100 200 300 400 500
Radiusig | 0.8740 0.8909 0.8884 0.8900 0.8909
Radiusys | 0.8836 0.9005 0.8997 0.8989 0.9005
Radiusso | 0.8892 0.9005 0.9021 0.9021 0.9037
Radiusz> | 0.8886 0.8997 0.8989 0.8997 0.9013
Times 82s 137s 205s 2625 344s

TABLE III. THE PERFORMANCE OF AB-SIFT UNDER DIFFERENT
SETTINGS.

Radial Angular Histogram  Dim. Hessian DoG
{6,10} {10,6} 120 | 0.8467  0.8483
2 {8,12} {8,6} 136 | 0.8563  0.8571
{10,14} {6,6} 144 | 08579  0.8491
{4,6,8} {10,8,6} 136 | 0.8612  0.8860
3 {5.8,10} {8,6,4} 128 0.8740  0.8965
{6,8,12} {8,6,4} 144 | 08740  0.8957
{4,6,8,10} {8,644} 136 | 0.8876  0.8989
4 {5,6,8,10} {6,644} 138 0.8892 0.8965
{6,6,8.8} {6,644} 136 | 0.8949  0.8949
{6,6,6,6} {6,6,6,6} 144 0.8860 0.9045
GLOH {188} {888} 136 0.8740 0.8892

DAISY involves four parameters, radius, the number of ring,
the division of sector, and the level of quantization. We set the
rings and sectors as 3 and 8, and change the radius and the
quantization level. Hessian detector is employed to seek the
keypoints. Effect of the parameters on performance are tabu-
lated in TABLE IV. As can be seen, the recognition accuracy
has been improved with the number of bins increased. The
bigger the number of bins, the better the performance. Mean-
while, the dimension of feature is also increased. DAISYoq

4The source code of AB-SIFT was not available. We implement it by only
changing the log-polar sector and the level of quantization. In each cell, the
generation of histogram is similar to previous work.

SDAISY is a dense descriptor to wide-baseline stereo. We first compute the
descriptors pixel by pixel, and then extract the ones in the site of keypoints.
It is detailed in http://cvlab.epfl.ch/~tola.

Fig. 13 compares with all of the local descriptors. Hessian-
Laplace and Harris-Laplace detectors are employed to search
the keypoints. The neighborhood around the detected key-
points are characterized by the representative descriptors, SIFT,
GLOH, AB-SIFT, DAISY, and SURF®. In the prototype of
SIFT, the neighborhood is quantized into a 4x4 square grids,
and the gradient angle is quantized into 8 orientations, resulting
in a 128D descriptor. The implementation of GLOH is slightly
different from the original work [42]. We assign a log-polar
location grid with 3 bins in the radial direction and 8 bins in
the angular direction. The central bin is not divided in angular
directions. The gradient orientations are further quantized into
8 bins, generating a 17x8=136D feature. SURF quantizes the
neighborhood around keypoint into a 4x4 square grids, in
each of which four Haar-like wavelet responses are extracted,
resulting in a 64D representation.

[ B surF I siFT [0 GLon 1 aBsiFT C_ pAisy |
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Fig. 13. Recognition performance obtained using various descriptors.

As can be seen, the recognition performance may be relevant
to whatever the keypoint detector is considered. For DoG
detector, the performance obtained using DAISY is poorer
than SIFT and GLOH. For the remaining detectors, Hessian,
Hessian-Laplace, and Harris-Laplace, DAISY outperforms the

6The source codes and more details can be found at Chris Evans’s
homepage, http://www.chrisevansdev.com/opensurf/.
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other local features, with a gain greater than 3%~8% over
than SIFT and GLOH. SURF generates the lowest recognition
accuracy, even 11.63%, 12.40%, and 15.81% lower than SIFT,
GLOH, and DAISY when Hessian detector is employed. This
result can be attributed to the fashion of keypoint detection
and feature representation. To boost the computational effi-
ciency, SURF circumvents image convolutions by means of
integral images. Fig. 14 provides a pair of detection maps
generated by ‘Fast-Hessian’ and the prototype of Hessian
detector. As can be seen, the keypoints detected by ‘Fast-
Hessian’ are irregularly scattered in the whole image. Con-
trarily, the keypoints produced by Hessian detector are mainly
concentrated in target imaging region. They are representative
to reflect the target scattering phenomenology. Furthermore,
SURF represents the local pattern by the Haar-like wavelet
response, hg, Ry, |ha|, |hy|, resulting in a 64-D feature. The
discriminative ability is limited in comparison to SIFT, GLOH,
and DAISY, whose representations are 128-, 136-, and 200-
dimension. The experimental results also prove that the ap-
proximation of convolution with integral image is not effective
to radar image due to the multiplicative noise.

We can see that AB-SIFT tends to perform better than
GLOH, while GLOH always outperforms SIFT. It is not
surprising that SIFT performs poorly than GLOH, since GLOH
employs a much finer division of location, log-polar sectors. As
for the performance rank between DAISY and the remaining
descriptors, it depends on the choice of detector. Overall, the
combination of FAST detector with DAISY descriptor is the
preferable choice in terms of recognition accuracy.

Fig. 14. The detection map produced by ‘Fast-Hessian” and Hessian detectors.
Keypoints defined by ‘Fast-Hessian’ are marked by diamond in yellow, while
the ones produced by Hessian are noted by circle in red.

C. Classification

This paper proposes two kinds of methods to target classifi-
cation. The effect of related factors on recognition performance
is studied. Our first proposed method, sparse representation
over neighbor descriptors is abbreviated as NSR.

1) Sparse Representation: Our first proposed scheme refers
to building multiple linear regression models. The regression
coefficients are obtained according to the thought of sparse
representation. Different from the preceding works, where the
query (feature) is directly represented by the whole training set
(features), this paper develops a prescreener procedure, with
which only the nearest neighbor descriptors are kept. The local
descriptors far away from the query are ignored. The related
factors therefore include the number of neighbor descriptor L
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and the regularization parameter \. To study their effect, we
perform two sets of experiments. Hessian detector is used to
search keypoints, while SIFT and GLOH are evaluated.

Fig. 15 draws the recognition accuracy across the number of
neighbor descriptor (the prescreener). We tune the number of
neighbor descriptor from [20, 40, 60, 80, 100, 120, 160, 200].
The recognition accuracies are slightly varied with the number
of neighbors changed. For SIFT, the best recognition rate is
obtained using sparse representation over 60-nearest-neighbor
descriptors, while the best performance for GLOH descriptor is
produced by sparse representation over 120-nearest-neighbor
descriptors. The recognition performance reaches the plateau
when the number of neighbor is bigger than 60 and less
than 120. To draw a balance, 120-nearest-neighbor strategy
is employed to build a dictionary, over which the descriptors
of query can be represented.
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Fig. 15. Recognition accuracy across the number of neighbor descriptor. (a)

SIFT, (b) GLOH.

Fig. 16 plots the recognition performance as a function of
regularization parameter. The results are similar to the above
experiments. The recognition accuracy is varied when the
regularization parameter is changed. The best recognition rate
for SIFT is obtained by 0.18, while the best performance for
GLOH is produced by 0.16. The performance is robust for both
two descriptors when the parameter value is beyond 0.1 and
below 0.2. To obtain a tradoff, this paper set the regularization
parameter as 0.18.
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Fig. 16. Recognition accuracy across the regularization parameter. (a) SIFT,
(b) GLOH. Performance plateaus when A is bigger than 0.1.
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2) Encoding: Our second proposed scheme involves feature
quantization. Two encoding tricks, BoW and FV are employed.
The local descriptors resulting from a chip image are encoded


http://dx.doi.org/10.20944/preprints201805.0116.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2018

to define a new single feature. The new defined feature is
fed into a trained discriminative classifier. We evaluate several
different experimental settings. Hessian detector is used to
produce the keypoint, while DAISY descriptor is employed
to characterize the local pattern.

BoW. We verify two tricks, LLC [49] and SC [48], popularly
studied in the preceding works. We manually change the
number of neighbors from 4 to 20 (LLC). The results are
displayed in Fig. 17, where the performance obtained using
SC is given as the baseline. We can see the recognition
performance is changed with the size of codebook increased.
For 1024-atom codebook, the recognition accuracy obtained
using SC is much better than all settings of LLC. On the
contrary, the recognition rate obtained using linear coding is
better than sparse coding when 3072-atom codebook is gen-
erated. For 2048-atom codebook, the recognition rate for SC
is better than LLC(10) and LL.C(20), and poorer than LLC(4),
LLC(5), LLC(6), and LLC(8). The recognition performance is
proportional to the size of codebook. For locality-constrained
linear coding, the number of neighbors plays an important role.
The little neighbor (5) produces the better performance. In
addition, linear coding is computationally more attractive than
sparse coding.
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Fig. 17. Performance obtained using LLC and SC.

FV. Fisher vectors approximates the distribution of low-level
features with Gaussian mixture model. The related factor to be
decided is the number of Gaussian components. We change
the number of Gaussian components from 32 to 144. Since
the parameters, mean, covariance, and prior are randomly
initialized, the recognition accuracies are not deterministic. We
implement FV with the same setting repeatedly for 10 times.
The recognition performance as a function of the number of
Gaussian components is shown in Fig. 18, in which NSR
and BoW are employed as the baseline. Two descriptors,
SIFT and DAISY are assessed. We found the recognition
performance is different for two descriptors when the number
of Gaussian components is changed. For SIFT, FVs with all of
Gaussian components perform poorly than NSR and BoW. FV
with 96-Gaussian-component produces the better and robust
performance. For DAISY, most settings of FV perform better
than NSR, and poor than BoW with 3072-atom-codebook.
Again, FV with 96-Gaussian-component achieves the better
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Fig. 18. Recognition accuracy of FV across the number of Gaussian
components. Performance plateaus when A is bigger than 0.1.

The experimental results prove that 120-nearest-neighbor is
appropriate for NSR, while 2048- and 3072-atom-codebook is
suitable for BoW. NSR and BoW are the preferable classifier
for SIFT, GLOH, and AB-SIFT, while FV is more appropriate
for DAISY.

D. The Validation of Recognition Performance

This paper achieves radar target recognition by keypoint-
based local descriptor. Two kinds of methods are proposed
to implement classification. The effect of related factors are
studied previously. The recognition performance of proposed
strategy is validated. State-of-the-art global features are em-
ployed as the baseline. Support vector machine learning (SVM)
is popularly studied over the years [7]. Sparse representation-
based classification (SRC) is a recently developed method [8],
[32]. Both of them input the raw pixel values for classifi-
cation’. Furthermore, the preceding works achieve distortion
and translation invariance by Fourier transformed spectrum.
The representative includes optional tradeoff synthetic dis-
criminant function (OTSDF) [52]. Another family of filter
banks, the monogenic signal, has also been used for target
classification [14]-[16] (MSRC). These methods are employed

"The feature dimension is reduced by downsampling, principal component
analysis, and random projection.
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to compared with the proposed strategy. The experimental
results are given in Fig. 19.
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Fig. 19. Comparison to the preceding works.

From Fig. 19, we found the recognition performance ob-
tained using four kinds of local descriptors are sharply differ-
ent. For SIFT, GLOH, and AB-SIFT, NSR performs better than
FV, and poorly than BoW. Differently, the recognition accuracy
obtained using FV with DAISY is better than NSR, and poorly
than BoW. On the other hand, DAISY with NSR, BoW, and
FV, outperforms all baseline algorithms, even 2.57%, 3.85%,
and 3.79% better than the main competitor, MSRC. Similarly,
AB-SIFT with NSR and BoW also performs better than the
baselines. The performance obtained by SIFT is poor than
SRC and MSRC, and better than SVM and OTSDE. The
recognition accuracy for GLOH is poorer than MSRC, and
better than SVM, SRC, and OTSDF. The results prove that
the local descriptor could achieve comparable or even better
performance compared to the global feature.

V. CONCLUSION

This paper considers radar target recognition with keypoint-
based local descriptor. We develop two kinds of schemes
to implement classification. Multiple comparative experiments
are performed, from which several different combinations
of detectors and descriptors are evaluated. The experimental
results prove:

e keypoint-based local descriptor could be fully tuned to
target recognition,
e it is important to configure the related factors appropri-
ately,
e the proposed strategy could achieve comparable or even
better performance than the preceding studies,
e the proposed strategy provides great potential for target
recognition under the non-literal conditions,
e the local descriptors can be further refined according to
the imaging mechanism of radar.
However, some issues are needed to be further considered. We
plan to study whether the advantage of our proposed strategy
will persist under the non-literal conditions.
We design a prescreener procedure for sparse representation.
It makes the computational cost and memory consumption
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acceptable. The linear correlation response is employed to
measure the (dis)similarity. An important future research di-
rection is to develop the specific metric. The study on the
measurement of similarity has been noticed in [53], [54] and
more recently explored in [55]. The further research in target
recognition is yet to be uncovered.

On the other hand, this paper verifies the generic model of
local descriptor by some fundamental experiments. The mech-
anism of radar imaging is not yet considered in the phase of
detection, or representation. We believe the performance can be
improved if the specificity of SAR image has been exploited.
Moreover, addressing the problem of target recognition under
the less constrained conditions is another interesting direction
for future work.
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