Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2018 d0i:10.20944/preprints201805.0109.v1

Complex Wave Solutions to Mathematical Biology
Models II: Two Dimensional Fisher and Nagumo
Equations

Alper Korkmaz*

Cankir1 Karatekin University, Department of Mathematics, 18200, Cankiri, Turkey.

Abstract

We extended the usage of the expansion method based on Sine-Gordon
equation to the two dimensional Fisher equation. The relation between the
trigonometric and hyperbolic functions are derived from the Sine-Gordon
equation defined in two space dimension. The complex-valued traveling
wave solutions to the two dimensional Fisher and Nagumo equations are set
in forms a finite series of multiplications of powers of sech(.) and tanh (.)
functions.
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1 Introduction

Since Fisher [1] defined the deterministic form of a stochastic model [2] in one

dimension as
Ut + PUsyz, +qu(v —$) =0 (1)

where real p denotes linear diffusion coefficient and ¢ is the rate of reproduction,
various forms of reaction-diffusion equations have been described to explain dif-
ferent biological, physical or chemical phenomena. Fisher’s equation (FE) defined
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in (1) describes spatial spread of an advantageous gene in a population living in
a linear one dimensional habitat [1-3]. A more general form of the FE (2) was
studied by Kolmogorov et al. at the same year [4]. A two-dimensional form of the
same model is given in the form

U + PUgyzy + Uy, + 17U(u — 5) =0 (2)

where p, ¢ diffusion coefficients in x; and x5 directions, respectively, r and s are
non zero parameters. Independent on its space dimension, a general form of the
equation is also known as Kolmogorov-Petrovsky-Piskunov (KPP) or Fisher-KPP
equation. In the two dimensional form of the FE, we have relaxed the coefficients p
and ¢ denoting diffusion in x; and x5 dimensions, respectively, instead of defining
the diffusion term Awu where A represents Laplace operator.

General solution for a particular wave speed was determined in the case having
Painlevé type solutions [5]. Some exact solutions to the FE were constructed
in terms of powers of hyperbolic tangent functions [6]. Wave type solutions were
found by using exp-function approach in [7]. Some more exact solutions in complex
forms were suggested by the first integral method [8]. Kudryashov method was
also implemented to the FE to generate some traveling wave type exact solutions
in some rational function forms of exponential function series in both numerator
and denominator [9].

The Nagumo Equation (NE) of the form

U + Plgye, + qu(l —u)(u—1r) =0 (3)

where p is the coefficient of diffusion, ¢ and r real non-zero parameters [10,11]. The
constant solutions u = 1 and u = r to the NE (3) are stable and u = 0 is unstable
for —1 < r < 0. On the other hand, v = 0 and u = 1 both are stable while u = r
is unstable in € [0,1) [11]. Various techniques are implemented to the NE (3)
to set the solutions. Exp-function [12,13], Cole-Hopf transformation [14], direct
method [15], simple equation approach [16], the method of first integral [17] are
well known approaches to derive traveling single or multi wave solutions. Since the
aim of this study does not examine the stability of constant solutions, r is relaxed
by assuming only a non-zero constant.

Different from classical approaches in literature, an expansion technique based on
Sine-Gordon equation is constructed to find the traveling wave solutions to the
2D-Fisher’s equation and the Nagumo equation. Before deriving the solutions,
some preliminaries are given below.
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2 Expansion Method based on Sine-Gordon Equa-
tion
Consider a general form of the Sine-Gordon equation in N dimension:
Au — uy = m?sinu, m is constant (4)
where u = u(xy, za,...,xN,t). The traveling wave transform
w(xy, To, .., TN ..., 1) = U(E)
E=a(ry+x9+ ...+ 2N — V1)
reduces the SGE (4) to
d*U m?
= inU 6
a2~ (N —2) " (6)

where v is the parameter of velocity of the traveling wave defined in the compatible
traveling wave transform [18]. Some calculations reduces the previous equation to

<d(g_§/2)) :msirﬁUﬂ—i—é (7)

where C is constant of integration that is assumed zero in the study. The assump-
tions w(¢) = U(€)/2 and unit m?/(a*(N — v/?)) leads the conversion of (7) to the

form J
% = sinw (8)
Thus, (8) gives the following relations
. 2cet
Sin U}(f) = m - = Sechf (9)
o 2e? — 1 b
COSU)(f) = m - = —tan f (10)

where ¢ # 0 is integral constant.

3 The initial step

The compatible wave transform explained above reduces the governing PDE

QU Ugyy Uy -+ oy Ugy Ug gy - --) = 0 (11)
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to an ODE 3
QU U U",..)=0 (12)

with the transform variable £ = a(xy + 22 + ... + 2y — vt). Suppose that

Q
U(&) = Ao+ Ztanhi_l(g) (B;sech& 4+ A; tanh ) (13)

=1

solves (12). Then, the relations (9)-(10) changes the form of the solution in terms
of w as

Q
= Ao+ Z cos' Hw) (B;sinw + A; cosw) (14)
=1

The determination of upper index () requires the balancing procedure between the
highest ordered nonlinear and the highest ordered derivative terms. Determining
@ gives the degree of the finite power series solution in the form of multiplication
of sin and cos functions. The predicted solution (14) is substituted into (12), the
coefficients of powers of trigonometric functions are equated to zero. The resultant
system of algebraic equations are solved for non zero a and v with at least one of
Ag or By is non zero. The next step is to set the solutions U(w) by using the
relations between the determined parameters. Returning back to ¢ changes the
solutions to hyperbolic functions. In the final step, the solutions are expressed in
the original variables x;,1 <7 < N and t.

4 Solutions to the Fisher Equation in two dimen-
sion
The traveling wave transform
u(zy, xe,t) = U(E), & = a(xy + 29 — vt) (15)
reduces the two dimensional FE (2) to
—avU' + (p+ q)a*U" +rU(U —5) =0 (16)

where prime notation denotes the derivative order in £&. The balancing procedure
between U” and U? gives () = 2. Thus, the predicted solution should be of the
form

U(w) = Ag + A; cosw + By sinw + Ay cos® w + By cos w sinw (17)

d0i:10.20944/preprints201805.0109.v1
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with A% + B3 # 0. Substitution of the predicted solution (17) into (16) gives

w (£))
) (cos (w (€)))”

r As? (cos (w (€)' + ((p + q) @Bz + 27 By As) (cos (w (£)))” sin (
+27 A Az (cos (w (€))) + (=4 (p+ q) a® Ay + 1 By?) (sin (w (€))
+ (—av By + (p + q) * By + 27 B1 Ay + 271 A1 Bs) (cos (w (€))% sin (w (€))

(T AgAg +1 A2 +1r Ay (—s+ AO)) (cos (w (& )))2 —5 (p+q)a*Bycos (w (€)) (sin (w (5)))3
(2av Ay — 2 (p+ q) @Ay + 21 By Bs) cos (w (€)) (sin (w (€) £)))?

(—av By +1r AgBy + 21 BiA; + 1 By (—s + Ap)) cos (w (€)) sin (w (£))

(r AgAs + 7 Ay (=5 + Ag)) cos (w (€)) +2 (p + q) @ Az (sin (w (€)))"

(ay By — (p+q) a2Bl) (sin (w (f)))3 + (ay A+ 312) (sin (w (5)))2

(rAoBy + 1 Bi(—s+ Ap))sin (w (§)) +r Ay (—s+ Ag) =0

(@]

n
N
n
n
4

(18)
Using the relation between cos (.) and sin (.) functions the number of coefficients
is easily reduced. Equating each coefficient of powers of multiplication cos (.) and
sin (.) functions in the resultant equation, the following system of equations are
constructed:

2a%Agp +2a*Asqg+av Ay — 1 Ags +1r Ay  +r B2 =0
—a*p By —a®>q¢By +av By —1rsB; +21r AgB; =0
6a*p By + 6a’qg By + 21 AsBy =0
2a°p By +2ad%¢By —2av By +2r A1 By + 21 AyB; =0
—5a?pBy —5a*qBy —av By — 17 5By + 21 AgBo 4+ 21 A1 By =0
—8a?Agp — 8a*Asq —av Ay —r Ass + 21 AgAs + 1 A2 —r B2 + 1 B2 =0
6a?Asp +6a*Asqg +1 A% —1r B2 =0
20°A1p+2a*A1q—2av Ay +21r AjAs —2r B1By =0
—2a%A1p—2ad*A1q+2av Ay — 1 Ays + 21 AgAy + 27 B1By = 0
Solving the system given above for a, v, Ay, Ay, Az, By and By by considegilr?;
A% + B2 # 0 gives the solutions satisfying required conditions on parameters

expressed above. The acceptable solutions are tabulated in Table 1. Using the
relations between the parameters given in Table 1, the solutions of two dimensional
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Table 1: The solution of the algebraic system of equations derived for two dimen-

sional Fisher equation
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Fisher equation (2) are written in explicit forms:

s s . s s . 6rs 54/67s(p + q)
ui(z1,22,t) = s — - tanhk — —isechk — — tanh? k — —itanhksechk,k = ———— (21 + 29 — —— )¢
1(@1,22,0) 2 2 2 2 N E 6 )
V6 54/6
uz(z1,x2,t) = s — ftanhﬁ — fisechm _2 tanh? Kk — iitanhllfsechrf,rf = —i(xl + 20 + M)t
2 2 2 2 64D+ q 6
s s . s s . 6rs 54/67s(p + q)
us(z1,22,t) = s — - tanhk + —isechk — — tanh? k + —itanhksechk,k = ———— (21 + 29 — —— )¢
3(@1,32,t) 2 2 2 2 N E 6 )
6 54/6
ua(z1,x2,t) =5 — gtanhn—i- gisechn — ;tanh2m+ ;itanhnsechn,n = —6\/%(961 + x2 + W)t
s s . s s . 6rs 54/67s(p + q)
us(z1,22,t) = s+ - tanhk + —isechk — — tanh? k — ~itanhksechk,k = ———— (21 + 29 + —— )¢
s(@1,22,%) 2 2 2 2 N E 6 )
6 54/6
ug(x1,x2,t) = s+ ;tanhn—l— gisechﬁ — gtanhQH — ;itanhnsechn,n = _6\/%(961 + o — W)t
6 54/6
ur(z1,x2,t) = s+ Etanhn — fisech/{ _s tanh? k + Eitanhnsechn,n = i(zl + o + M)t
2 2 2 2 6y/p+ q 6
6 54/6
ug(z1,x2,t) = s+ gtanhn — %isechﬁ — %tanhzn—&- %itanhnsechn,n = —ﬁ(m 4+ x9 — W)t
6 54/6
ug(z1,x2,t) = gtanh/{ - gisecthr %tanh2 K — gitanhnsechn,n = ﬁ:sql(:vl + 9 — W)zt
V6 5./6
uio(z1, z2,t) = ftaunh/i — fz’sechm-{- ftath2 K — iitanhnsechn,n = —ii(m + o + M)it
2 2 2 2 6P T q 6
V6 54/6
uii(z1,z2,t) = ftanh/{ - fiSBChI{+ ita,nh2 K+ fitanh/{sech/{,n = ii(xl + 29 — M)zt
2 2 2 2 6D T q 6
V6 5./6
ui2(z1, z2,t) = gtanhn — ;isechfi-i- ;tanh2 K+ %itanhnsechn,n = —W%i(m + o + %)zt
V6 54/6
u1s(z1,z2,t) = 72 tanh k + gisecthr g tanh? Kk — %itanhﬁsechﬁ,ﬁ = ﬁfql(xl +x0 + W)zt
V6 54/6
ura(z1,z2,t) = —gtanhn—l- %isechn—f— gtanh2n — ;itanhnsechn,n = —W%i(m 4+ x9 — W)zt
V6 5,/6
uis(z1,z2,t) = 72 tanh k — gisecthr g tanh? Kk + %itanhnsechn,n = ﬁﬁqz(:m +x0 + W)zt
s s . s s . \V6rs . 5./6rs(p+q)..
,x2,t) = —= tanh k — ~isechx 4+ - tanh? k + ~i tanh hk, k= —— — T it
uie(z1,x2,t) 5 anh K 2zsec n+2 an n+21 anh ksech k, Kk 6\/mz(a:1+z2 G )i
V6 54/6
ur7(z1,x2,t) = Z + g‘canhnqL Ztanh2 K,k = ﬁz(azl 4+ x0 — W)zt
s s s 6rs . 5/6rs(p+q) ..
uig(z1,z2,t) = 1 + Etanhn-i- Ztamh2 K,k = —mz(m + z9 + T)zt
V6 54/6
uig(z1,x2,t) = Z — gtanhnqL Ztanh2 Ky K = ﬁz(a}l +x0 + W)zt
6 54/6
ugo (21, x2,t) = Z + gtanhn—i- Ztaunh2 k= - —— %i(% + a2 — W)it
3 V6 5,/6
u21(z1,x2,t) = ZS + gtanhn — Ztanh2 KK = r};j_qz(xl + zo + W)Zt
3 6 54/6
u2z(z1,22,t) = Is + %tanhn — Ztanh2 KK = —127;;?(]1(331 4+ x9 — W)zt
3 V6 54/6
u23(z1,x2,t) = 25 itanhm — ftanh2 KyK = ii(xl + x0 — w)zt
4 2 4 12/p+¢q 6
3 6 54/6
uz24(z1,22,t) = Zs — %tanhn — Ztanh2 Ky K = —Fﬂi(wl + xo + W)zt

(20)
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All determined solutions to the two dimensional Fisher equation are of the forms
of various powers of multiplications of sech (.) and tanh (.) functions. Moreover,
most of the solutions are of complex-valued traveling wave forms that change
their position as time proceeds. One should note that some of the solutions given
hyperbolic function forms can be represented in trigonometric forms by choosing

compatible parameters.
In order to illustrate the complex-valued solutions, we chose a particular solution

(@, wa, 1) = 1/5 — i/10sec (1/30 V65 (xl i 61'0%@:))
+i/10tan (1/30 N (x bast %\/5\/515))
—1/10 ¢an (1/30 VBB (ml tt %\/@\/Et)) (1/30 VBB (ml tt %ﬁﬁt))
+1/10 (tan (1/30 NG (:61 - 6%\/6\/50))2

by using the parameter set ¢ = —1/10,7 = —1/10,p = 1/5,s = 1/5 in ug(x1, x2, t).

The projections of real and imaginary components of the solution on the (z[1], ¢, u(x1,0,t))-
space are depicted in Fig 1(a) and Fig 1(b), respectively. The plots are generated

in the finite domain z; € [—100, 100] in the time interval 0 < ¢ < 1.

A couple of initial solitary waves with different heights moves along x;-axis as

time proceeds in the real component of the solution, Fig 1(a). The highest one is
observed to fade out as time goes. On the other hand, the highest solitary wave

in the imaginary component gets higher as time proceeds, Fig 1(b).

(a) real component (b) imaginary component

Figure 1: The real and imaginary components of the particular solution uy(z1, 0, t)
for {¢ = —=1/10,r = =1/10,p = 1/5,5 = 1/5}
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5 Solutions to the Nagumo Equation
The one dimensional form of the traveling wave transform
u(z,t) = U(§),& = a(z — vt), (= is used instead of 1 only for simplicity) (21)
reduces the Nagumo equation (3) to
—avU’ + pa’U" 4+ qU(1 = U)(U —7) =0 (22)

where ’ denotes derivative wrt £ in classical meaning. Since the balance procedure
between U” and U3 results Q = 1, the predicted solution to the Nagumo equation
(3) is constructed in the form:

U(w(§)) = Ag + Ay cos (w(§)) + Bysin (w(§)) (23)

Substitution of the predicted solution (23) into (22) and some simplifications using
basic trigonometric identities is followed by rearranging the coefficients of trigono-
metric expressions. Equating each coefficient to zero leads

qrAg® + qrB® — qAy® —3qAyBi2 +av Ay — qriy + qA + ¢Bi2 =0
—pa’By +2qrAyB; — 3qAy*By — ¢By® — qrB1 +2qAyB; =0
pa’B, —3qA*B; +¢B =0

2qrA1By —6qAyA1B —av By +2¢qA1B; =0 (24)
2pa’A, — qA® +3¢B*A; =0
qAr — qrBy? — 3qA2Ag + 3qA0B2 —av Ay + qA — B2 =0
—2pa’A; + 2qrAgA, — 3qA2 AL — 3¢B12A; — qrA; +2qAA =0

The solution of this algebraic system for a # 0, v # 0, Ay, A; and B; at least one

of Ay and B; are non zero tabulated in Table 2. The solutions to the Nagumo
equation are constructed in finite series form of tanh (.) and sech (.) functions.

d0i:10.20944/preprints201805.0109.v1
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Table 2: The solution of the algebraic system of equations derived for Nagumo
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These solutions are expressed explicitly as

1 1-— —1 -1 1
u1(Zy7f)=T+ — " tanhk 4+ _ isechn,n:(T )\/q(zi(T‘F )\/I-’th)
2 2 2 V2p V2
u2(27t):r+ - " tanh + - isechn,n:_(T )\/g(z+(7"+ )\/ﬁlt)
2 2 2 V2p V2
1 1-— -1 -1 1
uz(z,t) = el " tanhk — . isechk,k = (r )\/g(z_ (r+ )\/th)
2 2 2 V2p V2
1 1— —1 -1 1
U4(Z:t)=T+ — TtanhnfT iSeChl{,[{:—(r )ﬁ(z+(r+ )\/Ith)
2 2 2 /2p \@
1 1-— —1 -1 1
us(z,t) = el " tanhw — isechk,k = (r )\/a(z+ (r+ )J]th)
2 2 2 V2p V2
1 1-— —1 -1 1
ug(2,t) = Tt + 7"talflhli+ r isechk, k = 7(7, )\/a(Z, (r+ )\/pqt)
2 2 2 /2p \/ﬁ
1 1-— —1 —1 1
ur(z,t) = rel T tanhk — — isechk,k = (r )\/a(z-i— (r+ )\/Ith)
2 2 2 V2p V2
ug(z,t) = Tt + " tanhw — isechk,k = _(T )\/a(z— (r+ )\/pqt)
2 2 2 /—21) \/i
— -2
ug(z,t) = 24 Zltanhk+ fisechm,m = (r)\/q(27 (r )\/Pqt)
202 2 V2p V2
— -2
uio(z,t) = g + %tanhn—l— %isechn,n = _(r)gf)a(z+ (r \/)5\/107170
— —2)/
u11(z,t) = 24 “Ctanhk — Cisechn,ﬁ: (T)‘/a(z_ (r=2) Pqt)
2 > vap V2
_ -2
ui2(z,t) = r + ltanhnf risech;’;,,‘q = 7(T)\/6(2+ (r )\/I)Tlt)
22 2 V2 vz
— —2)y/
u13(z,t) = U ltanhm-ﬁ- Iisechn,n = (r)\/q(z+ (r ) Pqt)
22 2 V2p V2
— -2
wia(z,t) = & — L tanhr + Lisechr,x = -V, (T Z2VPE,,
22 2 V2p V2
_ —2)y/
uis(z,t) = g — %tanhn— zisechm,m = (7\“}2!5(24_ (r \/)5 pqt)
p
— —2
ute(z,t) = = — " tanh s — “isechr, k = _(T)ﬁ(z_ (r )\/th)
- ? v2p V2
1 1 1 2% — 1) /Da
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2 2 2 V2p V2
11 1 2r — 1
'u,lS(Z,t):7—*tanhn—‘,—7isechn’n:_ﬂ(z+mt)
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2 2 2 v2p V2
1.1 1 2r —1
u20(z,t) = 5 — —tanhk — —isechk,k = 7%(Z+ %ﬂ
vV ep
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()7, =2)yPa,

u29(z,t) = g + gtanhn,ﬁ =

4/p NG
uzo(z,t) = g + gtanhn,n - (2\/\/?@ n (r _j)imt)
usi(z,1) = £ — = tanhr, x = (2\\271(2, NG —j%Vqut)
usa(z,t) = g - gtanhn,n - (Tif(H (r —5)5\/1710
uzs(z,t) = % - %tanhn,n - %(Z _ (2“#0
uza(z,t) = % - %tanhn,n - _%(H %t)
ugs (2,t) = % + %tanhm,n - ;/iz(z_ %t)
uze(z,t) = % + %tanhn,n - _g(z n %t)

Real and imaginary components of the particular solution wus(z,t) for the param-
eters ¢ = 1,r = —i/2,p = —1 are depicted in Fig 2(a)-2(b), respectively. The
finite problem domain z € [0,25] is used during first 20 unit times, Fig 2(a). The
real component of the solution is a positive pulse positioned between 0 < z < 5
approximately. It gets larger for a while. Then, suddenly it becomes a negative
pulse. It fades out after some time. It comes into existence at about t = 5 with
positive height positioned at about z = 11. It shows the same behavior, and fades
out again. The occurrence and fade out are repeated after ¢ = 20. A similar
graphic is also observed in the imaginary component plot, Fig 2(b).

a) real component b) imaginary component
(a) p ginary comp

Figure 2: The real and imaginary components of the particular solution wus(z,t)
for {g=1,r=—1/2,p=—1}
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6 Conclusion

The extension method based the Sine-Gordon equation is extended to multi di-
mension. Compatible traveling wave transforms are used to reduce the governing
equations to some ODEs. The predicted solutions solving the resultant ODEs are
substituted into the equations to determine the relations among the parameters.
The homogeneous balancing procedure has a significant role on the shape of the
solutions.

The complex-valued solutions to two dimensional Fisher and one dimensional
Nagumo equations are explicitly expressed in finite series form in terms of multi-
plications of some hyperbolic functions with different powers.

Some particular solutions of both equations are depicted to illustrate the motions.
Both real and imaginary components are examined briefly in both cases.
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