

1 *Review*

2 **Eradicate Rabies with Mass Parental Vaccination, Human 3 Post-Exposure Prophylaxis, and Gene Therapy: A 4 Systematic Review**

5 **Martin L. Nelwan**

6 Department of Animal Science – Other
7 Nelwan Institution for Human Resource Development
8 Jl. A. Yani No. 24, Palu, Indonesia
9 E-mail: mlnelwan2@gmail.com

10 **Abstract:** Rabies is one of the neglected tropical diseases, almost 100% fatal, but preventable. Rabies virus
11 causes the disease and causes about 59000 human deaths annually. The author searched the Pubmed
12 Database at NCBI for articles on rabies disease published between 2007 and 2018. All articles are open
13 access, free for redistribution and in English. To examine rabies virus, Seller's test was used. In this
14 article, references written by the author were included and relevant publications were also included. The
15 author reviewed a rabies dog case kept at Nelwan Institution for Human Resource Development. The
16 dog showed clinical signs such as aggressive behavior, in-appetence, and soaking in water. Currently,
17 there are no drugs to treat rabies. Vaccination is the best way to prevent the disease. To eradicate rabies,
18 mass vaccination in dogs, post-exposure prophylaxis, and gene therapy can be used. To prevent rabies
19 disease, minimum 70% of the dog population should receive vaccination. Humans with category II
20 exposure should receive rabies vaccine and rabies immunoglobulin. For treatment, *in vivo* experiment
21 showed that gene therapy can eliminate rabies from the infected neurons by using rAAV-N796. To fight
22 rabies virus, induced pluripotent cells in combination with CRISPR/Cas9 system can also be beneficial.
23 Furthermore, it needs US\$ 8.6 billion to fight rabies annually.

24 **Trial registration:** Registration number: PROSPERO (CRD42018084448)

25 **Keywords:** rabies, zoonotic, lyssavirus, RABV

27 **1. Introduction**

28 Rabies is one of the oldest diseases on the globe and most feared zoonotic disease known to
29 humankind. The disease is hazardous, progressive and practically deadly encephalomyelitis [1].
30 *Lissavirus* is the most important rabies virus (RABV) [2]. Rabies can infect both humans and domestic
31 animals. Most cases of rabies in animals arise among bats, carnivores, cats, raccoons, [3], mongooses, and
32 wolves [4]. In addition, a natural rabies infection in birds has also been reported [5]. Dog (*Canis lupus*
33 *familiaris*) [6, 7] is the source of more than 99% of rabies cases in humans. [8, 9].

34 Animal transmits RABV from animal to human through bites, or mucous membranes from saliva
35 [2, 6] or other potentially infectious material such as neural tissue. In domestic animals, the incubation
36 time is normally around 1-3 months. It can range from several days to months, rarely more than 6 months
37 [2]. This incubation time in humans is usually several weeks to more than one year [3]. Non-bite sources

38 of rabies are salivating, scratches [8, 10], and corneal transplantation [10]. Once symptoms of rabies begin,
39 the disease is around 100% deadly [4, 6].

40 There are currently no drugs for rabies [2]. Rabies disease is 100% avoidable [9]. To prevent
41 rabies, vaccines can be used. It needs to vaccine minimum 70% of the dog population to eradicate rabies
42 in an endemic region. Some countries have succeeded to eradicate rabies. These countries are such as
43 Indonesia (Bali), KwaZulu-Natal (South Africa), and Mexico. Rabies in human is avoidable through
44 vaccination. To prevent rabies in post-exposure prophylaxis (PEP), rabies vaccine administrations and
45 immunoglobulin following contamination should be used.

46 Two ways are very promising for treating rabies disease. These include use of λ -Carrageenan (λ -
47 CG) P32 and gene therapy. Luo *et al.* stated that λ -CG P32 is an anti-RABV agent that can slow down
48 RABV infection *in vitro*. It affects viral internalization and cell fusion mediated by viral G protein. The λ -
49 CG P32 stops viral uncoating during the viral post-absorption stage [11]. Gene therapy can include
50 induced pluripotent stem cells (iPSCs), and CRISPR/Cas9 system. CRISPR/Cas9 is an abbreviation of
51 clustered regularly palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. With the
52 development of the gene therapy, the therapy of rabies treatment is also developing. To date, gene
53 therapy has made important progress to fight rabies disease. In animal model, gene therapy can cure
54 mice with one-day infection in the central nervous system (CNS).

55 To prevent rabies, billion of dollars are needed. These costs can be greater if the disease is not
56 prevented. The evidence shows that the cost of mass vaccination plus PEP is lower than PEP only. Costs
57 for rabies prevention may include mass vaccination, PEP, and studies. Studies may include vaccine
58 development and gene therapy studies.

59 A systematic literature review is the heart of this study. This study includes rabies disease,
60 vaccinations, gene therapy, and costs for fighting rabies. The gene therapy is for animal models only.

61 **2. Methods**

62 *2.1. Systematic review*

63 The present report follows the instructions of the PRISMA extension statement for systematic
64 review [12]. These instructions also correspond to PROSPERO instructions such as searches and risk of
65 bias assessment [13]. Below, the author quoted items from the PROSPERO written by the author.

66 *2.2. Searches*

67 The author searched articles for rabies in only one database; that is, Pubmed Database at National
68 Center for Biotechnology Information (NCBI). These included free PMC articles for open access, and
69 creative common (CC). The author only selected articles in English that published between 2007 and 2018.
70 Keywords comprise: “canine rabies, human rabies, rabies PEP in human, rabies and vaccination, gene
71 therapy, or iPSCs and CRISPR/Cas9 system, and costs for fighting rabies.”. The author’s articles
72 regarding gene therapy were also comprised. Other articles derived from relevant publications.

73 *2.3. Types of study to be included*

74 The study included a rabies case kept at the Nelwan Institution for Human Resource
75 Development. It was a canine rabies. In this study, Seller's test was used. This study included mass
76 vaccination, PEP, treatment and costs for fighting rabies disease. Articles included such as research
77 articles and case study reports.

78 *2.4. Population*

79 The population includes people all ages.

80 *2.5. Intervention(s), exposure(s)*

81 1) Mass parental vaccination. All things, frequencies, and dosages were eligible for inclusion.
82 2) PEP. All things, frequencies, and dosages were eligible for inclusion.
83 3) Gene therapy. All things, frequencies and dosages were eligible for inclusion.
84 4) Costs for fighting rabies. Total costs, cost saving and cost effective were eligible for inclusion.

85 *2.6. Primary outcomes*

86 Rabies disease kills about 59000 people annually. Vaccination to the 70% of the dog population is
87 enough to eradicate rabies disease in a region [14]. In a canine rabies-free country, this 70% requirement
88 is not needed. However, vaccination for dogs older than 12 weeks is recommended [15].

89 The World Health Organization (WHO) recommends injectable inactivated vaccines for domestic
90 dogs. Injectable inactivated vaccines in combination with bacterins and other viral antigens can be used
91 [16]. To determine vaccine efficacy, fluorescent focus inhibition test (FFIT) and fluorescent virus
92 neutralization (FAVN) can be used [4]. It needs at least 0.5 IU/mL of serum in both humans and dogs.
93 WHO recommends cell culture and embryonated egg-based rabies vaccines (CCEEVs) for PEP. People
94 with category II exposure should receive both CCEEVs and rabies immunoglobulins (RIGs) for passive
95 protection. RIGs consist of equine rabies immunoglobulins (ERIG) and human rabies immunoglobulins
96 (HRIG). In addition, current technology can guide to use of monoclonal antibodies (MAbs) [16].

97 In the future, gene therapy can be a very useful tool to treat rabies after clinical sings arise. Wu *et*
98 *al.* injected AAV2-mediated RNAi (rAAV2-N796) into mice intra-cerebral. These mice were in the CNS
99 form of the disease. The research results were 62% alive [17]. It seems that to cure rabies, gene therapy
100 can be used.

101 Rabies causes around 3.7 million disability-adjusted life years (DALYs), and US\$ 8.6 billion
102 economic losses annually [15].

103 *2.7. Data extraction (selection and coding)*

104 The author screened titles and abstract using the search strategy to identify studies that
105 potentially met the inclusion. Fifty-eight references for assessment were identified. The author entered
106 extracted text in the main body of the systematic review.

107 *2.8. Risk of bias (quality) assessment*

108 The author worked all items such as risk of bias assessment and data analysis. In the Results
109 section, review results such as figure and tables were included. This is according to the PRISMA
110 recommendation, namely, "assessment of risk of bias" [12].

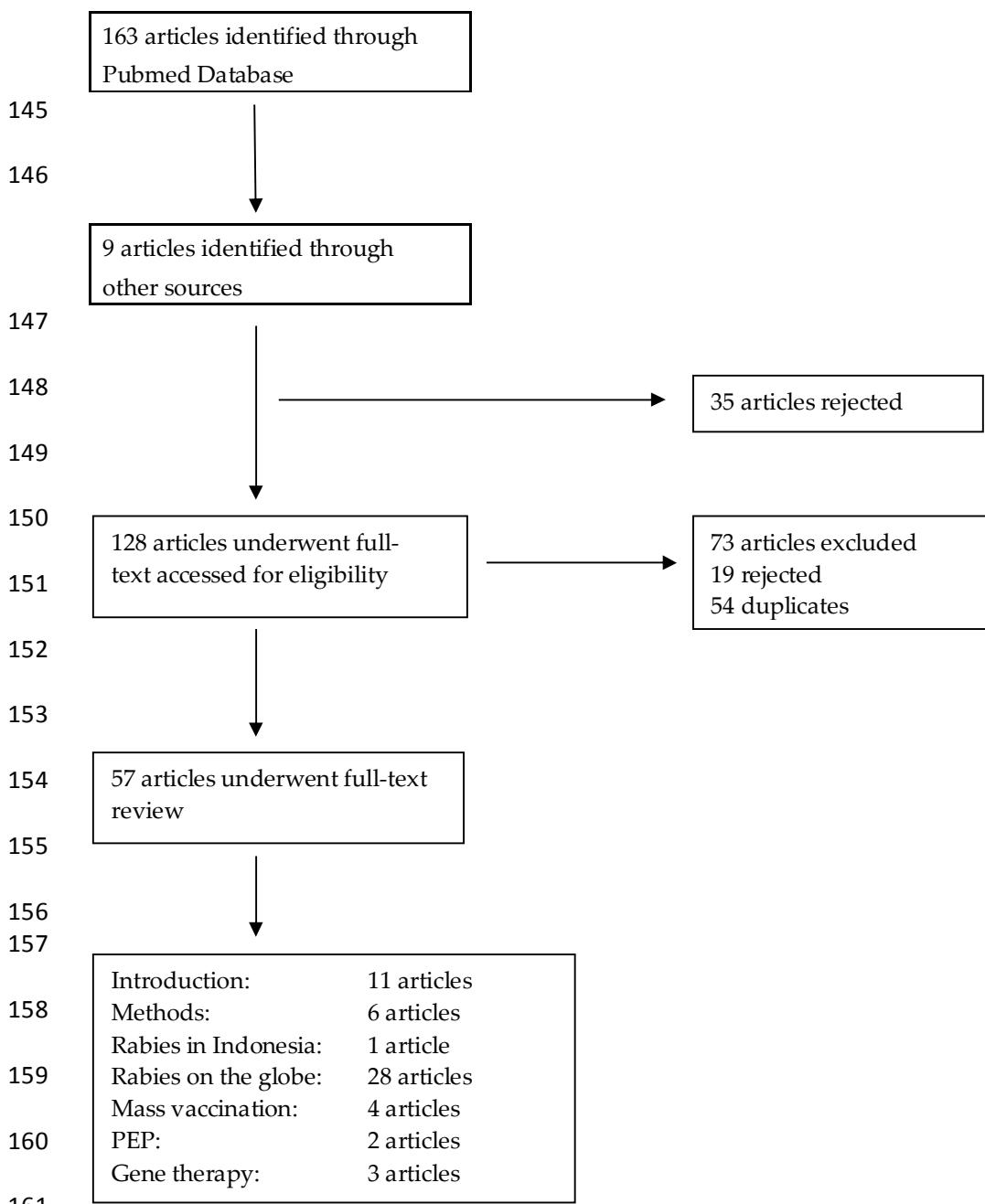
111 *2.9. Strategy for data synthesis*

112 A narrative summary of all selected studies, and quality synthesis of the study is introduced. The
113 author entered search results in a single figure (Figure 1). Table 1 shows the total amount of human deaths
114 due to rabies. Thirty-four references are findable in this table. Table 2 displays the percentage of total
115 dogs receiving the rabies vaccination into. In Table 2, decrease in cases or percentage of human deaths
116 was also included. Five references are findable in this table. The author shows recommendations for PEP
117 into a single table (Table 3). These recommendations include the frequencies and doses of vaccination
118 administration. Table 4 shows extraction results for gene therapy. These results consisted of the
119 percentage of the dead mice and the administration of rAAV-N796 and rAAV-Negative. The author did
120 not include the total amount of references in both Table 3 and Table 4. No regression analysis is findable
121 in this study.

122 **3. Results**

123 The author took 163 articles from the Pubmed Database searches (Figure 1). After screening titles
124 and abstract, 128 articles were taken for full-text review. Of these 58 articles met the criteria for data
125 extraction. These studies were included in the main body.

126 *3.1. A rabies case in Indonesia*


127 Forebears of Indonesian RABVs derived from Java. The Java's RABVs offspring transmitted these
128 rabies viruses to Kalimantan, and then to Bali, Flores, and Sumatra. The Flores's offspring transmitted
129 these RABVs viruses to Sulawesi and went back to Kalimantan. In Indonesia, the dog was the only source
130 of infection of other animals [18].

131 In this study, the dog rabies was a male, and was six years old when he died. He was the only
132 dog in our house and never vaccinated when alive. The dog had clinical signs that include in-appetence,
133 often urinating, thirst, heat, soaking in water, and aggressive behavior. Based on Seller's test, the dog was
134 positive rabies. This case of rabies occurred in Palu, Central Sulawesi, Indonesia. Nelwan Institution for
135 Human Resource Development has kept this data since Agust 6, 2015.

136 *3.2. Rabies on the globe*

137 More than 3.3 billion people worldwide are at risk of being infected by the rabies virus [19].
138 Report in the United States estimated approximately 4.5 millions dogs bite people annually [20]. The
139 human death due to rabies is 59000 (25000 and 159000 (95 % CI: 25000-159000) people annually. Fifteen
140 (44.12%) of 34 publications showed 59000 human deaths from rabies [8, 9, 14, 19, 26-31, 33-37]. Six
141 (17.65%) showed 55000 human deaths from rabies annually; Table 1. Furthermore, more than 95% of
142 human deaths due to rabies occur in Asia and Africa [9, 29, 30, 35]. Globally, around 84% of these deaths

143 occur in rural areas [1]. Approximately, 50% of human deaths due to rabies are below 15 years old [10, 19,
144 20]. Rabies causes 3.7 million (95% CI: 1.6-10.4 million) people lost DALYs [24, 31].

162 **Figure 1. Flowchart showing articles selected in systematic review.**

163

164 Human deaths in Asia due to rabies exceeded 30000 annually [1, 16]. India has the highest
 165 incidence of rabies, even for all over the world. Human deaths from rabies was 16450 in India in 2010.
 166 China had 7450 human deaths in 2010 [16]. Rabies is endemic in Indonesia in 24 of the country's 34
 167 provinces. This disease causes 150 to 300 human deaths annually [47]. In Africa, Human deaths due to
 168 rabies are about 23000 [1], 23800 [16] to 24200 [20] annually. In the Middle East and Central Asia, initial
 169 estimation can be 350 human deaths and 1900 human deaths. In Latin America, human rabies derived
 170 from dogs decreased from 250 in 1990 to fewer than 10 in 2010 [16].

Table 1. Estimation of human deaths from rabies disease every year

Human Deaths	Percentage	References	n = 34
50 000	5.88%	[21, 22]	2
55 000	17.65%	[10, 20, 23, 24, 25, 32]	6
59 000	44.12%	[8, 9, 14, 19, 26-31, 33-37]	15
60 000	14.71%	[38-42]	5
61 000	14.71%	[1, 16, 43-45]	5
70 000	2.94%	[46]	1

171
 172 Human rabies in the United States is rare. It is only one to three cases annually. Of the 23 cases of
 173 rabies in the United States from 2008 through 2017, seven (30.43%) were rabies from dog bites. Five
 174 (21.74%) were males and two (8.69%) were females. Fifteen (65.21%) of 23 rabies cases derived from
 175 animals such as bats and foxes. One (4.3%) was unknown. Eleven (47.83%) derived from bats (contact,
 176 bite or unknown). Dog-mongoose, raccoons and fox were 4.3%, respectively. Eight (34.78%) of 23 cases
 177 were from outside of the United States and its territories [48]. Australia is free from carnivore rabies, and
 178 many Pacific Island nations have always been free from rabies and related viruses [1, 16]. Canine rabies
 179 have been eliminated in the United States [2], Canada, western Europe, Japan, and parts of Latin America
 180 countries [16]. In these areas, human deaths are restricted to people exposed while living or travelling in
 181 areas endemic for canine rabies [1, 16].

182 *3.3. Mass parental vaccination in dogs*

183 The WHO recommends that to eradicate rabies, at least 70% of the dog population should be
 184 vaccinated [14, 15, 16, 26, 38, 49]. It would avoid a main disease outbreak at least 95.5%, and meets the
 185 mathematical models for eradicating rabies [14]. In the endemic areas of rabies, a minimum 70% of the
 186 dog population in each year during 5-7 years should receive vaccination [15]. The crucial vaccination
 187 coverage reaches between 25-40% [43] or 30%. It is essential to interrupt rabies transmission. Mass
 188 vaccination under 30% is not beneficial for rabies eradication purposes [29]. For mass vaccination,
 189 vaccines such as Rabvac 1 and Inrab 1 can be used, for example. Both these vaccines are for dogs and cats
 190 for vaccination annually. Age at primary vaccine is 12 weeks. Route of vaccination is intramuscular or
 191 subcutaneous (Rabvac 1) and subcutaneous (Inrab 1) [3]. In a canine rabies-free country, the limit 70%
 192 threshold for eradication purposes is no longer relevant. In a canine rabies-free country, as the United

193 States, most rabies vaccines are licensed for dogs older than 12 weeks of age [15]. Revaccination with a
 194 booster is one year later [15, 41].

195 Vaccination approaches can include door-to-door campaigns, static point campaigns, and a
 196 combination of the two [14, 16]. Such posts are usually sufficiently attended only when those posts are at
 197 less than 500 m or a 10-minute walk. The option of the approach relies on the people at local level [16].

198 In Asia, several countries have successfully eradicated rabies (Table 2). Sri Lanka vaccinated
 199 about 400000 in 1990 to about 1.5 million dogs in 2015. The Ministry of Health forecasts an increase in the
 200 number of rabies vaccination from present 1.8 million to 2.4 million in 2020. In this country, the incidence
 201 of rabies cases decreased from more than 50 cases in 2010 to 5 cases in 2016 [30]. In Bali (Indonesia), mass
 202 vaccination resulted in decrease of rabies cases from 72% in 2010-2011 to 90% in 2011-2012 [16].

Table 2 . New countries that have control rabies

Countries	Years	Case/percentage	References
South Korea	2014-2016	0 case	[4]
Visayas (the Philippines)	2012	13 cases	[16]
KwaZulu-Natal (South Africa)	2010-2011	0 case	[16]
Bali (Indonesia)	2011-2012	90%	[16, 18]
Sri Lanka	2016	5 cases	[30]
Tanzania	1996-2001	1 case	[50]
Argentina	2009-2017	0 case	[51]
Chile	2017	0 case	[51]
Colombia	2008-2018	0 case	[51]
Costa Rica	2017 2009-	0 case	[51]
Cuba	present 2009-	0 case	[51]
Elsalvador	present	0 case	[51]
Ecuador	2017 2013-	0 case	[51]
Honduras	present	0 case	[51]
Mexico	2006-2017	0 case	[51]
Panama	2017	0 case	[51]
Paraguay	2017	0 case	[51]
Uruguay	2017	0 case	[51]
Trinidad & Tobago	2013-2017	0 case	[51]

203

204 In Africa, KwaZulu-Natal (South Africa) have vaccinated more than 15 million dogs since the
205 commencement of the dog rabies eradication project in 2000. In 2012, more than 630000 dogs were
206 vaccinated. In three years, the incidence of animal rabies has declined. KwaZulu-Natal reported in 2010-
207 2011 a continues 12-month period without a single human case [16]. Rabies is responsible 1500 deaths
208 annually in Tanzania. Following implementation of control activities from 2010 to 2016, human rabies
209 deaths declined to 375 (75%) deaths [50]. Vaccination of 66% of owning dogs in Tanzania resulted in
210 decrease in dog rabies, human PEP, and the number of positive rabies wildtype diagnosis [51].

211 Many countries of Latin America have successfully eradicated rabies, (Table 2). These include
212 such as Argentina, Chile, and Mexico. These countries have no rabies case for 1 up to 10 years. Vilasco-
213 Villa *et al.* stated that Costa Rica, Ecuador, Nicaragua, Panama, Uruguay, and Paraguay has no laboratory
214 to assess the absence of dog maintained RABV lineages [52].

215 Dogs, which obtained the first vaccination after 3 months of age, would be more possible to be
216 seropositive. Dogs obtained vaccination after 6 months of age had higher antibody titers. A recent study
217 showed that in highly endemic areas, dogs less than 3 months can be vaccinated. It strengthens flock
218 immunity. Vaccination more than 5-7 years results in failure rates. The optimal time to measure the
219 immune response may be 4 -8 weeks after vaccination. The median interval is around 5 weeks for the
220 blood sampling to measure the immune reaction [41].

221 For a canine rabies-free country, it is important that dogs and cats be vaccinated. In New
222 Zealand, dogs enter the country should have been vaccinated. Vaccination should be between 6 months
223 and 1 year before entering. Proof of a rabies antibody titer of more than 0.5 IU/mL no less than 3 months
224 is required. In addition, This proof must be no more than 24 months before entering [15].

225 3.4. Post-exposure prophylaxis to human

226 Three categories of PEP include category I, II, and III. Category I includes touching or feeding
227 animals, lick on undamaged skin with secretions or excretions of a rabid animal or human. It is not an
228 exposure. In addition, it does not require PEP. Category II includes nibbling of revealed skin, small
229 scrapes without bleeding. Finally, category III includes simple or multiple transdermal bites or scratches
230 [16].

231 Category II patients should receive both CCEEVs and RIGs [16]. Currently, there are available
232 RIGs for clinical use, namely, human HRIG and ERIG [24, 40]. Treatment after category III exposure is the
233 immediate administration of CCEEVs and RIGs [40]. It needs to put HIRG into wound or intramuscularly
234 for active immune response to vaccine antigen [2]. New RIG products have been available. For example,
235 Chao *et al.* introduced SYN023 that derived from two novel MAbs CTB011 and CTB012 [53]. Um *et al.*
236 developed 16B8-Alexa MAb evaluated using RFFIT [42]. SYN023 and 16B8-Alexa could replace the
237 current RIG products. Both of them are safe for PEP.

238 Previously unvaccinated persons should receive intramuscular administration for a regime with
239 0.5 [16] or 1 mL [2, 16] doses of CCEEVs. For adults, the intramuscular vaccination in the deltoid area
240 should always be administered. For children, the anterolateral aspect of the tight is also acceptable. It

241 should never use CCEEVs in the gluteal area. The recommended dose of HIRG is 20 IU/kg (0.133 mL/kg)
 242 body weight for all ages of groups. If anatomically possible, the full dose of HIRG should thoroughly
 243 infiltrate in the area around and into the wound. It is a requirement to inject intramuscular any remaining
 244 volume at a site distant from vaccine administration. It requires to administer HIRG in the syringe or in
 245 the same anatomic site as the first vaccine dose. However, injector can inject subsequent doses of vaccine
 246 in the 5-dose series in the same anatomic location where the HIRG dose was administered. Rabies PEP
 247 was 100% effective in preventing a clinical case of human rabies [2].

248 It needs 3 ways to handle exposure. First, it handles all wounds as soon as possible, requires to
 249 wash and flush of the wounds for about 15 minutes. This needs soap or detergent of copious amounts. If
 250 possible, to wash and flush the wounds with iodine or alcohol 70% can be used. Second, it requires to
 251 administer RIG for severe category III exposures. Wounds that require suturing should be sutured
 252 loosely and only after RIG infiltration into the wound. Third, after an exposure, it should administer a
 253 series of rabies vaccine infections [54], Table 3.

Table 3. Post-exposure prophylaxis

Regime	Schedule	Days/months
Five-dose	1-1-1-1-1	0, 3, 7, 14, 28 or 0, 3, 7, 14
Four-dose	2-0-1-0-1 or 2-1-1.	0, 7, 21
High risk	1	6 months
Not continual risk	1	24 months

254

255 *3.5. Treatment with gene therapy*

256 Clinical rabies in mice can be treated. Wu *et al* constructed rAVV2 expressing siRNA targeting the
 257 nucleoprotein (N) gene of RABV (rAVV-N796). The researchers conducted a study with two treatments
 258 on mice. The study included administration of rAAV-N796 (intracerebral or intramuscular), or rAAV-
 259 Neg (intracerebral or intramuscular). In other treatments, the mice received 10 LD50 or 20 LD50 of deadly
 260 CVS. The highest result was obtainable in intramuscular rAAV-N796 treatment and intramuscular
 261 treatment of 20 LD50 (C). The result was 62% on day 21 after infection [17]; Table 4.

262 The author's did not find any reference relating to iPSCs and CRISPR/Cas9 system for treating
 263 rabies. However, Nelwan indicated that gene delivery tools, gene-editing tools, and iPSCs are useful to
 264 treat monogenic disorders in animal models [55-58]. Therefore, gene therapy can be useful to treat rabies
 265 disease.

266 *3.6. Estimated burden of rabies in the world*

267 The annual cost for rabies prevention varies from region to region, including one country to
 268 another. Asia needs as much as US\$1.5 billion for PEP only. European Union and Pan American spend

269 US\$6.5 million and US\$20 million, respectively [16]. The United States needs US\$ 300 million annually.
 270 [1, 16]. To control fox rabies during the period of 1986-1995, France spent approximately US\$ 261 million
 271 [16].

272 The estimated annual cost of rabies is US\$ 8.6 billion worldwide [14, 30, 45]. Latin America needs
 273 US\$129 million for PEP and needs US\$61 million for mass vaccination. It is the most cost effective
 274 restrictive approaches [26]. PEP needs US\$1.7 billion annually [26, 50] and 3.7 million DALYs annually
 275 [14, 30, 50]. The cost of canine rabies vaccination was US\$130 million in the endemic countries of Asia and
 276 Africa [50].

277 **Table 4. Treatment with rAVV-N796, rAAV-Neg, 10 LD50, 20 LD50**

Days post infection				
	rAVV-N796	rAVV-Neg	Survival rate	
Treatment	Intracerebral		rAAV-N796	rAAV-Neg
Intracerebral	9	9	100%	100%
10 LD50 (A)	21	21	45%	0%
Treatment	Intramuscular		rAAV-N796	rAAV-Neg
Intramuscularly	9	9	100%	100%
20 LD50 (B)	21	21	38%	0%
Treatment	Intracerebral		rAAV-N796	rAAV-Neg
Intramuscular	9	9	100%	100%
10 LD50 (C)	21	21	62%	0%
Treatment	Intracerebral		rAAV-N796	rAAV-Neg
Intramuscular	9	9	100%	100%
20 LD50	21	21	62%	0%
Treatment	Intramuscular		rAAV-N796	rAAV-Neg
Intramuscular	9	9	100%	100%
20 LD50	21	21	20%	0%

278 **4. Discussion**

279 Humans have been living in fear of rabies outbreaks of dogs since thousands of years ago.
 280 Currently, more than half the world's population is still fearful of rabies outbreaks. The first report in
 281 rabies has been around since 2300 BC [26]. Rabies has already existed in Indonesia since 1884 [47]. This
 282 disease is endemic in provinces such as Central Sulawesi, North Sulawesi, and West Java. Rahmadane *et*
 283 *al.* stated that Indonesian rabies belong to the Asian lineage; that is, *lyssavirus* genotype 1 [47]. Indonesia
 284 regularly control rabies disease at provincial, district [47], and municipal levels. However, sufficient

285 vaccination coverage has been hard to reach [47]. Indonesia and other ASEAN countries expect free of
286 rabies in 2020.

287 Canine rabies clinical signs can include aggression, abnormal behavior, vocalization changes,
288 paralysis [3, 16], ataxia, cranial nerve deficits, dysphagia, in-appetence [3], drooling, and convulsions [16].
289 The dog in this study had clinical signs such as often urinating and soaking in water. However, he had an
290 in-appetence and aggressive clinical signs. The dog did not have clinical signs such as ataxia and
291 paralysis. Other clinical signs he had were thirst and heat. It seems that dog clinical signs are not the same
292 as described in reference 3 and reference 16, except in-appetence and aggressive behavior. It seems that
293 often urination, soaking in water, thirst and heat are new clinical signs of canine rabies.

294 The Seller's test is a rapid and a simple method. Limitation of this test is only suitable for fresh
295 samples. In addition, the Seller's test has a very low sensitivity [1, 47]. Indonesia uses Seller's test,
296 fluorescent antibody test (FAT), and mouse inoculation test (MIT) to detect rabies virus. If the Seller's test
297 is negative, the laboratory sends it to the FAT laboratory. If still negative, the laboratory sends it to the
298 MIT laboratory [47]. Fortunately, the dog in this study had positive rabies based on the Seller's test.
299 Therefore, it did not need to use FAT or MIT to determine the rabies status.

300 Mass vaccination in dogs and the administration of PEP are important items to eradicate rabies
301 disease. Mass vaccination should meet the minimum 70% of the dog population. PEP in humans should
302 be handled immediately. Failure to handle victims, it can be fatal for them. Salomão *et al.* showed that
303 dogs are the only animal that bit humans in Maputo and Matola cities (Mozambique). This was an
304 expected discovery and confirm data from other countries. It suggests that rabies eradication efforts
305 should focus on dogs [20].

306 The PEP is a human condition that has had dog bites. Both dogs and humans who get dog bites
307 should receive serious observation. The biting dog needs to receive observation for 10 days. If the dog
308 remains healthy, it does not need to continue vaccination. If the dog dies within 10 days, it needs to
309 continue vaccination. Vaccinations consist of either a five-dose schedule (1-1-1-1-1) or a four-dose
310 schedule (2-0-1-0-1 or 2-1-1); Table 3. For passive protection it needs only once vaccination.

311 Currently, there are no effective drugs for rabies disease. Medical treatments currently focus on
312 mass vaccination and PEP for instance. However, gene therapy may be a very useful tool to treat rabies in
313 the future. This technique can include gene delivery vectors such rAAV [55] and CRISPR/Cas9 system
314 [56], and iPSCs technique. The iPSCs technique is helpful for disease modeling, drug screening, and stem
315 cell therapy [57]. This technique in combination with a CRISPR/Cas9 system for treating rabies may be
316 developed. It means drugs derived from this combination may be useful to treat rabies in wildtype
317 animals for instance.

318 Lavan *et al.* showed the cost benefit for mass vaccination and human PEP and human PEP only.
319 The costs were based on the annual cost of the rabies project in Bhutan as long as 6 years. Each stage
320 consisted of 2 years. Vaccination coverage was 70% in stage 1, 60% in stage 2, and 50% in stage 3. The
321 number of PEP cases annually was 3440. During the stage 1, the costs of mass vaccination and human
322 PEP exceeded the costs of human PEP only. During the stage 2, costs of mass vaccination and PEP was
323 less than costs of human PEP only. At the stage 3, costs of mass vaccination and human PEP were lower

324 than costs of human PEP only. It was US\$ 730,000 against US\$ 770,000. It shows a cost saving and cost
325 effective intercession [50].

326 **5. Conclusions**

327 Rabies is a neglected tropical zoonotic disease and is an urgent disease. The disease is nearly
328 100% deadly and 100% avoidable. Clinical signs of rabies disease can include such as often urinating, in-
329 appetence, and soaking in water. Vaccines are the only way to fight the rabies virus at present. In the
330 future, to fight rabies, gene therapy, iPSCs technology, and gene editing tools can be very valuable. The
331 iPSCs technique in combination with CRISPR/Cas9 system can be useful to eradicate this disease. It
332 shows that mass vaccination, PEP, and gene therapy can help to eradicate rabies disease worldwide.
333 Costs to fight rabies with mass vaccination and PEP is lower than costs of human PEP only.

334 **List of abbreviations:** RABV: Rabies virus; PEP: post-exposure prophylaxis; λ -CG: λ -Carrageenan; iPSCs:
335 induced pluripotent stem cells; CNS: Central nervous system; CRISPR: clustered regularly palindromic
336 repeats; Cas9: CRISPR associated 9; NCBI: National Center for Biotechnology Information; CC: creative
337 common; WHO: World Health Organization; FFIT: fluorescent focus inhibition test; FAVN: fluorescent
338 virus neutralization; CCEEVs: cell culture and embryonated egg-based rabies vaccines; RIGs: rabies
339 immunoglobulins; EIRG: equine rabies immunoglobulin; HIRG: human rabies immunoglobulin; MAbs:
340 monoclonal antibodies; DALYs: disability-adjusted life years.

341 **Conflicts of interests:** The author declares that there are no competing interests.

342 **Funding:** Professor Martin Nelwan takes the responsibility for initiating the review.

343 **Author's contribution:** MLN conceived and design of the study, participated in its design, draft the
344 manuscript, and involved in revising the manuscript critically for significant intellectual need. The author
345 read and approved the final manuscript.

346 **Acknowledgements:** The author is the only people who prepare the manuscript.

347 **References**

- 348 1. Mani, R.S. and Madhusudana, S.N. Laboratory Diagnosis of Human Rabies: Recent Advances. *The
349 Scientific World Journal* 2013, 2013, 10, doi:10.1155/2013/569712.
- 350 2. Center for Disease Control and Prevention. Human Rabies Prevention – United States, 2008,
351 Recommendation of the Advisory Committee on Immunization Practices. MMWR 2008; 57 (RR3): 2-
352 28, <https://www.cdc.gov/mmwr/pdf/rr/rr5703.pdf>. Accessed January 9, 2018.
- 353 3. Center for Disease Control and Prevention. Compendium of Animal Rabies Prevention and Control,
354 2011, National Association of State Public Health Veterinarians. Inc. (NASPHV). MMWR 2011; 60 (6):
355 1-17, <https://www.cdc.gov/mmwr/pdf/rr/rr6006.pdf>. Accessed January 9, 2018.

356 4. Yang, D-K.; Kim, H-Y.; Lee, K-K.; Yoo, J-Y.; Seomun, H.; Cho, I-S. Mass vaccination has led to the
357 elimination of rabies since 2014 in South Korea. *Clin Exp Vaccine Res* **2017**, *6*, 111-119,
358 doi:10.7774/cevr.2017.6.2.111.

359 5. Baby, J.; Mani, R.S.; Abraham, S.S.; Thankappan, A.T.; Pillai, P.S.; Anand, A.S.; Madhusudana, S.N.;
360 Ramachandran, J.; Sreekumar, J.S. Natural Rabies Infection in a Domestic Fowl (*Gallus domesticus*): A
361 Report from India. *PLoS Neglected Tropical Diseases* **2015**, *9*(7), e0003942.
362 doi:10.1371/journal.pntd.0003942.

363 6. Retrieved [12, 20, 2017], from the Integrated Taxonomic Information System on-line database,
364 <https://www.itis.gov>.

365 7. NCBI Taxonomy, <https://www.ncbi.nlm.nih.gov>.

366 8. Kessels, J.; Recuenco, S.; Navarro-Vela, A.M.; Dearay, R.; Vigilato, M.; Ertl, H.; *et al.* Pre-exposure
367 rabies prophylaxis: a systematic review. *Bull World Health Organ* **2017**, *95*, 210-219,
368 doi:10.2471/BLT.16.173039.

369 9. Balaram, D.; Taylor, L.H.; Doyle, K.A.S.; Davidson, E.; Nel, L.H. World Rabies Day – a decade of
370 raising awareness. *Tropical Diseases, Travel Medicine and Vaccine* **2016**, *2*, 19, doi:10.1186/s40794-016-
371 0035-8.

372 10. Ayotollahi, J.; Sharifi, M.R.; Shahcheraghi, S.H. Severe Abdominal Pain as the First Manifestation of
373 Rabies. *Jundishapur J Microbiol* **2014** *7*(8), e11671, doi:10.5812/jjm.11671.

374 11. Luo, Z.; Tian, D.; Zhou, M.; Xiao, W.; Zhang, Y.; Li, M.; Sui, B.; Wang, W.; Guan, H.; Chen, H.; Fu,
375 Z.F.; Zhao, L. λ -Carrageenan P32 Is a Potent Inhibitor of Rabies Virus Infection. *PLoS ONE* **2015**,
376 *10*(10), e0140586, doi:10.1371/journal.pone.0140586.

377 12. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidii, J.P.A.; *et al.* The
378 PRISMA statement for Reporting Systematic Reviews and Meta-Analysis of Studies That Evaluate
379 Healthcare Interventions: Explanation and Evaluation. *PLoS Medicine* **2009**, *6*(7), e1000100,
380 doi:10.1371/journal.pmed.1000100.

381 13. Martin Nelwan. Eradicate rabies with mass vaccination in dogs, vaccinations on post-exposure
382 prophylaxis in humans, and gene therapy: a systematic review. PROSPERO 2018, CRD42018084448.
383 Available from: http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42018084448.

384 14. Mazeri, S.; Gibson, A.D.; Meunier, N.; Bronsvoort, B.M.C.; Handel, I.G.; Mellanby, R.J.; *et al.* Barriers
385 of attendance to dog rabies static point vaccination clinics in Blantyre, Malawi. *PLoS Negl Trop Dis*
386 **2018**, *12*(1), e0006159; doi:10.1371/journal.pntd.0006159.

387 15. Wallace, R.M.; Pees, A.; Blanton, J.B.; Moore, S.M. Risk factors for an adequate antibody response to
388 primary rabies vaccination in dogs under one year age. *PLoS Negl Trop Dis* **2017**, *11*(7), e0005761;
389 doi:10.1371/journal.pntd.0005761.

390 16. WHO Technical Report Series, 2013; no. 982.

391 17. Wu, H.X.; Wang, H.L.; Guo, X-F.; Yang, Y.J.; Ma, J.Z.; Wang, T.C, *et al.* Adeno-Associated Viruses
392 Serotype 2-Mediated RNA Interference Efficiently Inhibits Rabies Virus Replication *In Vitro* and *In*
393 *Vivo*. *J. Virol. Med. Sci.* **2013**, *75*(10), 1355-1361, doi:10.1292/jvms.13-0127.

394 18. Dibia, I.N.; Suniarto, B.; Suseptya, H.; Gde Putra, A.S.; Orr, H.C.; Mahardika, G.N. Phylogeography of
395 the current rabies viruses in Indonesia. *J Vet Sci* **2015**, *16*(4), 459-466, doi:10.4142/jvs.2015.16.4.459.

396 19. Ogundare, E.; Olatunya, O.S.; Oluwayemi, I.O.; Inubile, A.J.; Taiwo, A.B.; Agaja, O.T.; *et al.* Pattern
397 and outcome of dog bite injuries among children Ado-Ekiti, Southwest Nigeria. *Pan African Medical
398 Journal* **2017**, *27*, 81, doi:10.11604/pamj.2017.27.81.7360.

399 20. Salomão, C.; Nacima, A.; Cuamba, L.; Gujral, L.; Amiel, O.; Baltazar, C.; *et al.* Epidemiology, clinical
400 features and risk factors for human rabies and animal bites during an outbreak of rabies in Maputo
401 and Matola cities, Mozambique, 2014: Implications for public health interventions for rabies control.
402 *PLoS Negl Trop Dis* **2014**, *11*(7), e0005787, doi:10.1371/journal.pntd.0005787.

403 21. Xu, H.; Hao, X.; Wang, S.; Wang, Z.; Cai, M.; Jiang, J.; Qin, Q.; Zhang, M.; Wang, H. Real-time
404 Imaging of Rabies Virus Entry into Living Zero Cells. *Scientific Reports* **2015**, *5*, 1173,
405 doi:10.1038/srep11753.

406 22. Stitz, L.; Vogel, A.; Schnee, M.; Voss, D.; Rauch, S.; Mutzke, T.; *et al.* A thermostable messenger based
407 vaccine against rabies. *PLoS Negl Trop Dis* **2017**, *11*(12), e0006108, doi:10.1371/journal.pntd.0006108.

408 23. Beyene, T.J.; Mourits, M.C.M.; Hogeveen, H. Dog rabies data reported to multinational organizations
409 from Southern and Eastern African countries. *BMC Res Notes* **2017**, *10*, 199, doi:10.1186/s13104-017-
410 2527-7.

411 24. Müller, T.; Dietzschold, B.; Ertl, H.; Fooks, A.R.; Freuling, C.; Fehner-Gardiner, C.; Kliemt, J.; Meslin,
412 F.X.; Rupprecht, C.E.; Tordo, N.; Wanderler, A.I.; Kiely, M.P. Development of a Mouse Monoclonal
413 Antibody Cocktail for Post-exposure Rabies Prophylaxis in Humans. *PLoS Negl Trop Dis* **2009**, *3*(11),
414 e542, doi:10.1371/pone.pntd.0000542.

415 25. Gai, W.; Zheng, W.; Wang, C.; Wong, G.; Zong, Y.; Zheng, X. Immunization with recombinant rabies
416 virus expressing interleukin-18 exhibits enhanced immunogenicity and protection in mice. *Oncotarget*
417 **2017**, *8*(53), 91505-91515.

418 26. Cleaveland, S.; Hampson, K. Rabies elimination research: juxtaposing optimism, pragmatism, and
419 realism. *Proc R Soc B* **2017**, *284*, 20171880, doi:10.1098/rspb.2017.1880.

420 27. Hudson, E.G.; Brookes, V.J.; Ward, M.P. Assessing the Risk of a Canine Rabies Incursion in Northern
421 Australia. *Front. Vet. Sci.* **2017**, *4*, 141, doi:10.3389/fvets.2017.00141.

422 28. Kurosawa, A.; Tojinbara, K.; Kadokawa, H.; Hampson, K.; Yamada, A.; Makita, K. The raise and fall
423 of rabies in Japan: A quantitative history of rabies epidemics in Osaka Prefecture, 1914-1933. *PLoS Negl
424 Trop Dis* **2017**, *11*(3), e0006435, doi:10.1371/journal.pntd.0005435.

425 29. Malipukwa, C.P.; Mudenda, B.; Mbewe, A.R. Insights and efforts to control rabies in Zambia:
426 Evaluation of determinants and barriers to dog vaccinations in Nyimba district. *PLoS Negl Trop Dis*
427 **2017**, *11*(10), e0005946, doi:10.1371/journal.pntd.0005946.

428 30. Harischandra, P.A.; Gunesekera, A.; Janakan, N.; Gongal, G.; Abela-Ridder, B. Sri Lanka takes action
429 towards a target of zero rabies death by 2020. *WHO South-East Asia J Public Health* **2016**; *5*(2), 113-116.

430 31. Sadeuh-Mba, S.A.; Momo, J.B.; Besong, L.; Loul, S.; Nyuom, R. Molecular characterization and
431 phylogenetic relatedness of dog-derived Rabies Viruses circulating in Cameroon between 2010 and
432 2016. *PLoS Negl Trop Dis* **2017**, *11*(10), e0006041, doi:10.1371/journal.pntd.0006041.

433 32. Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; *et al.* Estimating the
434 Global Burden of Endemic Canine Rabies. *PLoS Negl Trop Dis* **2015**, *9*(4), e0003709,
435 doi:10.1371/journal.pntd.0003709.

436 33. Tenzin, T.; Namgyal, J.; Letho, S. Community-based survey during rabies outbreaks in Ranjung town,
437 Tashigang, eastern Bhutan, 2016. *BMC Infectious Diseases* **2017**, *17*, 281, doi:10.1186/s12879-017-2393-x.

438 34. Mpolya, E.A.; Lembo, T.; Lushahi, K.; Mancy, R.; Mbunda, E.M.; Makungu, S.; *et al.* Toward
439 Elimination of Dog-Mediated Human Rabies: Experiences from Implementing a Large-scale
440 Demonstration Project in Southern Tanzania. *Front Vet Sci* **2017**, *4*, 21, doi:10.3389/fvets.2017.00021.

441 35. Mindekem, R.; Lechenne, M.S.; Naissengar, K.S.; Oissiguéré, A.; Kebkiba, B.; Moto, D.D.; *et al.* Cost
442 Description and Comparative Cost Efficiency of Post-Exposure Prophylaxis and Canine Mass
443 Vaccination against Rabies in N'Djamena, Chad. *Front. Vet. Sci.* **2017**, *4*, 38,
444 doi:10.3389/fvets.2017.00038.

445 36. Fenelon, N.; Dely, P.; Katz, M.A.; Schaad, N.D.; Dismer, A.; Moran, D.; *et al.* Knowledge, attitudes and
446 practices regarding rabies risk in community members and healthcare professionals: Pétionville,
447 Haiti, 2013. *Epidemiol. Infect.* **2017** *145*, 1624-1634, doi:10.1017/S0950268816003125.

448 37. Hiby, L.; Tasker, L. Qualitative Evaluation of the Five-Year 'Red Collar' Campaign to End Inhumane
449 Culling of Dogs as a Method of Rabies Control. *Vet. Sci.* **2018** *5*, 18; doi:10.3390/vetsci5010018.

450 38. Undurraga, E.A.; Blanton, J.D.; Thumbi, S.M.; Mwatondo, A.; Muturi, M.; Wallace, R.M. Tool for
451 Eliminating Dog-Mediated Human Rabies through Mass Dog Vaccination Campaigns. *Emerging
452 Infectious Diseases* **2017**, *23*(12), 2114-2116, doi:10.3201/eid2312.171148.

453 39. Pimburaige, R.M.S.; Gunatilake, M.; Wimalaratne, O.; Balasuriya, A.; Perera, K.A.D.N. Sero-
454 prevalence of virus neutralizing antibodies for rabies in different groups of dogs following
455 vaccination. *BMC Veterinary Research* **2017**, *13*, 133, doi:10.1186/s12917-017-1038-z.

456 40. Kim, P.K.; Keum, S.J.; Osinubi, M.O.V.; Franka, R.; Shin, J.Y.; Park, S.T.; *et al.* Development and
457 characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies
458 virus. *PLoS Negl Trop Dis* **2017**, *12*(10), e0186380, doi:10.1371/journal.pone.0186380.

459 41. Tasioudi, K.E.; Papatheodorou, D.; Iliadou, P.; Kostoulas, P.; Giannou, M.; Chodrocouki, E.; *et al.*
460 Factors influencing the outcome of primary immunization against rabies in young dogs. *Veterinary
461 Microbiology* **2018**, *213*, 1-4, doi:10.1016/j.vetmic.2017.11.006.

462 42. Um, J.; Chun, B.C.; Lee, Y.S.; Hwang, K.J.; Yang, D-K.; Park, J-S.; *et al.* Development and evaluation of
463 an anti-rabies virus phosphoprotein specific monoclonal antibody for detection of rabies neutralizing
464 antibodies using RFFIT. *Plos Negl Trop Dis* **2017**, *11*(12), e0006084, doi:10.1371/journal.pntd.0006084.

465 43. Kazadi, E.K.; Tshilenge, G.M.; Mbao, V.; Njoumemi, Z.; Masumu, J. Determinants of dog owner-
466 charged rabies vaccination in Kinshasa, Democratic Republic of Congo. *PLoS ONE* **2017**, *12*(10),
467 e0186677, doi:10.1371/journal.pone.0186677.

468 44. Douangngueun, B.; Theppangna, W.; Phommachanh, P.; Chomdara, K.; Phikphakhavong, S.; Khounsy,
469 S.; *et al.* Rabies surveillance in dogs in Lao PDR from 2010-2016. *PLoS Negl Trop Dis* **2016**, *11*(6),
470 e0005609, doi:10.1371/journal.pntd.0005609.

471 45. Qi, L.; Su K, Shen, T.; Tang, W.; Xiao, B.; Long, J.; *et al.* Epidemiological characteristics and post-
472 exposure prophylaxis of human rabies in Chongqing, China, 2007-2016. *BMC Infectious Diseases* **2018**,
473 18,6, doi:10.1186/s12879-017-2830-x.

474 46. Schutsky, K.; Portocarrero, C.; Hooper, D.C.; Dietzschold, B.; Faber, M. Limited Brain Metabolism
475 Changes Differentiate between the Progression and Clearance of Rabid Virus. *PLoS ONE* **2014**, 9(4),
476 e87180, doi:10.1371/journal.pone.0087180.

477 47. Rahmadane I, Certoma AF, Peck GR, Fitria Y, Payne J, Colling A, *et al.* Development and validation of
478 an immunoperoxidase antigen detection test for improved diagnosis of rabies in Indonesia. *PLoS Negl
479 Trop Dis* 2017; 11(11): e0006079; doi:10.1371/journal.pntd.0006079.

480 48. CDC Human Rabies Surveillance
https://www.cdc.gov/rabies/location/usa/surveillance/human_rabies.html.

481 49. Rodrigues, R.C.A.; von Zuben, A.P.B.; Lucca, T.; Reichmann, M.L.A.B. Rabies vaccination campaigns
482 in dogs and cats, and rabies positivity in bats, from 2004 to 2014, in Campinas, São Paulo, Brazil.
483 *Epidemiol Serv Saude* **2017**, 26(3), doi:10.5123/S1679-497422017000300019.

484 50. Rabies Control in Tanzania – World Health Organization,
http://www.who.int/rabies/control/Tanzania_Project_Summar_310317.pdf.

485 51. Lavan, R.P.; King, A.I.M.; Sutton, D.J.; Tunceli, K. Rational and support for a One Health program for
486 canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings.
487 *Vaccine* **2017**, 35, 1668-1674, doi:10.1016/j.vaccine.2017.02.014.

488 52. Velasco-Villa, A.; Escobar, L.E.; Sanchez, A.; Shi, M.; Streicker, D.G.; Gallardo-Romero, M.F.; *et al.*
489 Succesful strategies implementd towards the elimination of canine rabies in the Western Hemisphere.
490 *Antiviral Research* **2017**, 143, 1-12, doi:10.1016/j.antiviral.2017.03.023.

491 53. Chao, T-Y.; Ren, S.; Shen, E.; Moore, S.; Zhang, S-F.; Chen, L.; *et al.* SYN023 a novel humanized
492 monoclonal antibody cocktail for post-exposure prophylaxis of rabies. *PLoS Negl Trop Dis* **2017**, 11(12),
493 e0006133, doi:10.1371/journal.pntd.0006133.

494 54. WHO New Rabies Recommendations. <http://www.who.int/rabies/en/>. Accessed March 11, 2018.

495 55. Nelwan, M.L. Treat Oculocutaneous Albinism with Gene Therapy. *Journal of Advances in Biology &
496 Biotechnology* **2018**, 16(3), 1-12, doi:10.9734/JABB/2017/38504.

497 56. Nelwan, M.L. Friedreich Ataxia: Treatment with Genetic Approach. *Journal of Advances in Biology &
498 Biotechnology* **2017**, 14(4), 1-11, doi:10.9734/JABB/2017/36113.

499 57. Nelwan, M.L. Hemophilia A and Induced Pluripotent Stem Cells. *Journal of Advances in Biology &
500 Biotechnology* **2017**, 14(3), 1-11, doi:10.9734/JABB/2017/35111.

501 58. Nelwan, Martin, Moderate the MAOA-L Allele Expression with CRISPR/Cas9 System (October 10,
502 2017). Available at SSRN: <https://ssrn.com/abstract=3050912> or <http://dx.doi.org/10.2139/ssrn.3050912>.

503 504