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Abstract: “You should know the words by the company they keep!” has been one of the most famous 10 
slogans attributed to John Rubert Firth, 1957. This has ignited a whole school in linguistic research 11 
known as the British empiricist contextualism. Sixty years later, many un- or semi-supervised 12 
machine learning algorithms have been successfully designed and implemented aiming at 13 
extracting word meaning from within the context of a text corpus. These algorithms treat words, 14 
more or less, as vectors of real numbers representing frequencies of word occurrences within context 15 
and word meaning as positions of words in a high-dimensional vector space model. Word 16 
associations, in turn, are treated as calculated distances among them. With the rise of Deep Learning 17 
(DL) and other artificial neural networks based architectures, learning the positioning of words and 18 
extracting word associations as measured by their distances has further improved. In this paper, 19 
however, we revisited the main stream of algorithmic approaches and set the stage for a partly cross-20 
disciplinary evaluation framework to judge about the nature of the extracted word associations by 21 
state-of-the-art machine learning algorithms. Our preliminary results are based on word 22 
associations extracted from the application of DL framework on a Google News text corpus, as well 23 
as on comparisons with human created word association lists such as word collocation dictionaries 24 
and psycholinguistic experiments. The results and conclusions provide some insights into the 25 
inherited limitations in interpreting the type of word associations and underpinning relations 26 
between words with inevitable consequences in other areas, such as extraction of knowledge graphs 27 
or image understanding.  28 

Keywords: Machine Learning; Algorithms; Natural Language Processing, Deep Learning, Vector 29 
Space Models, Semantic Similarity, Distributional Semantics, Latent Semantic Analysis, Word2Vec 30 

 31 

1. Introduction 32 
There is a common belief that natural language processing (NLP) and understanding is 33 

theoretically a very complex process involving many different sources of information, particularly 34 
when this has to take place in real time. Natural language processing is concerned, to a great extent, 35 
with the automatic extraction of relations between words by means of statistical methods, usually 36 
measures of statistical co-occurrence. For this purpose, numerous un- or semi-supervised algorithms, 37 
e.g., Latent Semantic Analysis (LSA), Latent Dirichlet Association (LDA), have been introduced with the 38 
goal of extracting knowledge about relations between words. The foundations of these are co-39 
occurrence statistics such as mutual information as well as comparison operators such as dice 40 
coefficient or Euclidean distance.  41 

These computational approaches have different applications, for instance, Information Retrieval, 42 
disambiguation algorithms, speech recognition, or spellcheckers. They mostly utilize some sort of 43 
Vector Space Models (VSMs) as an attempt to represent the lexical meaning of words in terms of their 44 
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positioning and distance from other words within a multi-dimensional space. This list of related 45 
approaches can be extended by neural network based architectures, as sparked by the recent success 46 
of Deep Learning (DL), which can be applied to improve learning of positions and associations 47 
between words within the underpinning vector space model. This space, in turn, provides a 48 
mechanism to measure the semantic similarity between words or between queries and document, as 49 
it is the case with Information Retrieval related tasks.  50 

The historical motivation for computing relations between words, however, is attributed to John 51 
R. Firth [1], stating that meaning and context should be viewed as central in linguistics. Firth 52 
introduced the notion of collocation on the lexical level and defined it as the consistent co-occurrence 53 
of a word pair within a given context. “You shall know a word by the company it keeps!” is, perhaps, the 54 
most famous quotation attributed to Firth. The notion of collocation in its original meaning created 55 
the linguistic tradition and groundwork for the frequentist or empiricist tradition of British (corpus) 56 
linguistics. Apart from Firth, other representatives of the empiricist tradition have been Michael A. 57 
K. Halliday and John Sinclair. The central notion in their research, in extension to Firth, was that the 58 
empirical, even statistical, side of language use in text corpora could serve as a framework to describe 59 
and explain natural language. Indeed, many of the roots of the empirically motivated and statistical 60 
methodology in contemporary computational linguistics may be sought in this linguistic tradition. 61 
This can also be seen in various accounts on contemporary statistical NLP [2]. 62 

This frequentist corpus-based approach dedicated to an empirically grounded analysis of 63 
natural language, however, has been on the one side of a roughly dividing line of linguistic 64 
research.in the last half-century. On the other side, there is the structural-lexicographic approach which 65 
is mainly concerned with adequate representation forms of collocations within linguistic lexicons and 66 
dictionaries. The first dedicated and large-scale lexicographic study of collocations was undertaken 67 
for the English language by Benson et al. [3-5], which led to the publication of the BBI Combinatory 68 
Dictionary of English: A Guide to Word Combinations (in short: BBI) [3] outlines the motivation for 69 
a dictionary of word combinations and the kinds of information included in it.  70 

The main goal has been to provide information on the general combinatorial possibilities of an 71 
entry word. Various types of combinatorial preferences are listed, such as e.g. whether there are any 72 
combinatorial preferences of verbs for nouns (e.g. “[to adopt, enact, apply] a regulation”) or what the 73 
possible adverbial combinations (i.e. modifications) of a verb are (e.g. “to regret [deeply, very much]”. 74 
There is also a distinction between grammatical and lexical collocations with the latter relying on 75 
part-of-speech patterns, such as verb-(preposition)-noun, adjective-noun or noun-noun, for 76 
permissible collocations in a natural language. For instance, “compose music” and “launch a missile” 77 
are permissible, while “compose a missile” is at least awkward.  78 

At this point, it is worth noting the Meaning-Text Theory (MTT), which attempts to account for 79 
relations between lexical items in a language independent way. Within this framework, [6,7] attempt 80 
to come to terms with the idiosyncrasy of collocations by embedding them into a more semantically 81 
oriented layer of description. In the Meaning-Text Theory (MTT) lexical relations are used as a means 82 
of describing so-called institutionalized lexical relations. Based on MTT, a constant meaning linked 83 
to the combination between words is defined as a relation holding between two lexical items. These 84 
meanings and relations between lexical items are anchored as Lexical Functions (LFs) defined mostly 85 
on the semantic level.  86 

Particularly, there are 36 syntagmatic LFs which are distinguished by their syntactic part of 87 
speech. Examples of LFs and their English realization are provided below: 88 

Verbal LF: 89 
  Degrad [Lat. degradare (to degrade, worsen)] 90 

a. Degrad(clothes) = to wear off 91 
b. Degrad(house) = to become dilapidated 92 
c. Degrad(temper) = to fray 93 

Nominal LF: 94 
Centr [Lat. centrum (the center/culmination of)] 95 

a. Centr(crisis) = the peak (of the crisis) 96 
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b. Centr(desert) = the heart (of the desert) 97 
Furthermore, it is assumed that all languages, in different ways, realize the meanings postulated 98 

by LFs and that the main difference lies in the language-specific ways in which the combination of 99 
given lexical items is used to arrive at various LF meanings. In this sense, LFs are considered as 100 
universal functions capturing the meaning of collocations of words and not only. In this context, they 101 
can be used as predictors of words and similar, in intention, with the neural word embeddings 102 
algorithms and machine learning approaches as of the frequentists’ approaches. In other words, MTT 103 
aimed at providing a complete linguistic framework for the mapping from the content or meaning of 104 
an utterance to its form or text, with collocations being one particular lexical surface realization. The 105 
overall lexicographic goal of MTT has been the creation of so-called Explanatory Combinatorial 106 
Dictionaries (ECDs) [8] displaying the combinatorial properties of word combinations in a language. 107 

Another historical motivation for the study of word meaning in terms of collocation and co-108 
occurrence has been provided by clinical phycologists [9]. In their experiments conducted with 1,000 109 
people of varied educational backgrounds and professions, the participants were asked to give the 110 
first word that comes to their mind as a result of a stimulus word. The experiments have been 111 
repeated and translated in several natural languages and produced interesting human association 112 
lists. For instance, the similarity lists, which have been produced for the stimulus words house and 113 
home, respectively, are as follows, in order of descending association strength, from left to right: 114 

 Home: {house, family, mother, away, life, parents, help, range, rest, stead} 115 
 House: {home, garden, door, boat, chimney, roof, flat, brick, building, bungalow} 116 

A mathematically, however, motivated line of influence on today’s computation of relations 117 
between words was firstly established by Zelig Harris, who introduced the distributional hypothesis 118 
[10]. He stated that linguistic analysis should be understood in terms of a statistical distribution of 119 
components at different hierarchical levels and constructed a practical conception on this topic. Although 120 
Harris believed that language is a system of many levels, in which items at each level are combined 121 
according to their local principles of combination, which does not necessarily exclude semantics, was 122 
turned towards a more syntactic (formation rules) and logic (transformation rules) interpretation of 123 
meaning instead of semantics by focusing on relations between linguistic units. Hence, he hardly 124 
escaped the grammatical and lexical collocations as of his predecessors. 125 

It was only a few decades later when these two directions of research (Firth and Harris) 126 
converged into an interpretation of meaning in linguistics from a computational point of view. This 127 
confluence was made possible by other researchers in the field such as Church, Smadja, et al [11-13]. 128 
This new approach was partly derived from psycholinguistic research into word associations and 129 
was combined with methods from information theory (mutual information) and computation (co-130 
occurrences). Church applied this to simulate learning on a large corpus of text. They produced 131 
simulated knowledge about word associations, which was used to extract lexical and grammatical 132 
collocations. He also pointed out other possible applications, especially the solution of polysemy. 133 

In this context, the usage of the term ‘word association’ indicates a broader meaning. In their 134 
examples of automatically computed, strongly associated word pairs, there is a mentioning of 135 
semantic relations such as meronymy, hyperonymy and so forth. Smadja, however, mentions them as 136 
examples of where Church’s algorithm computed just ‘pairs of words’ that frequently appear 137 
together’ [14]. Lin [15] even considers ‘doctors’ and ‘hospitals’ as unrelated and thus wrongly 138 
computed as significant by Church and Hanks [16], although they stand in a meronymy relation.  139 
Nonetheless, other contemporaries, e.g., Dunning [17], improved the mathematical foundation of this 140 
research field by introducing the log-likelihood measure. Dunning among the first to coin the term 141 
‘statistical text analysis’. 142 

In the era of big data analytics and deep learning, techniques to extract lexical meaning of words 143 
from text corpora, questions have risen as to which extent these algorithmic and machine learning 144 
approaches are capable of distinguishing between co-occurences and semantic dependencies, which 145 
are corpus independent, and those which are corpus dependent. The question also rose as if there is 146 
anything else in natural language processing, which goes beyond Deep Learning. 147 
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In this paper and in the context of ‘statistical text analysis’ and deep learning, we will try to give 148 
some answers to questions related with the limitations of statistical text analysis and machine 149 
learning techniques in regards with the extraction of word associations and computing of semantic 150 
similarities. Given also that evaluating the results of semantic similarity algorithms has proven to be 151 
quite complicated, as there is no easy way to define a gold standard, we will make an attempt to 152 
establish a cross-disciplinary evaluation framework and, therefore, avoid the many different methods 153 
of indirect evaluation, which have been used in the past. This framework will be informed by the 154 
following approaches: a) linguistics and collocation dictionaries as of the Meaning Text Theory 155 
(MTT), b) psychology and human association lists.  156 

The paper is structured as follows: Section 2 provides an overview of the most established 157 
algorithmic and machine learning approaches in NLP such as LSA, LDA, Word2vect, GloVe, Deep 158 
Learning. These have as common denominators the facts that (a) lexical meaning of words is 159 
determined by its surrounding words in a given document or corpus, which, in turn, are defining 160 
what is the context, (b) words are turned into numbers, in order to enable similarity measurements.  161 

Section 3 provides an evaluation framework by initially discussing some methodologies and 162 
principles as derived from past cased studies as an attempt to compare intradisciplinary approaches, 163 
e.g., distributional semantics based approaches, as well as some cross-disciplinary ones, e.g., LSA 164 
versus human association lists. Subsequently, we embark on our methodology as more holistic 165 
approach towards measuring the quality of association lists in that we contrast machine association 166 
lists with both MTT based and psychologically induced association lists.  167 

Finally, section 4 discusses the results and draws some first conclusions about the strengths and 168 
weaknesses, as well as limitations, of machine association lists. It also attempts to demystify Deep 169 
Learning and other contemporary machine learning approaches for NLP paving also the way 170 
towards new algorithmic approaches for NL processing and understanding. 171 

2. Overview of algorithmic approaches  172 

2.1 Computing semantic similarity 173 
Although it is quite difficult to provide an exhaustive list of related word, we will attempt to 174 

discuss the related work alongside three main research directions. As already discussed in the 175 
introduction, since the early 1990s, the development of the statistical analysis of natural language has 176 
split into three directions. The first direction can be viewed as extraction of collocations, which was 177 
initiated by Church and Smadja [11-13], and continued by Evert and Krenn [18], Seretan [19] and 178 
Evert [20]. Main applications of this line of research can be found in translation and language 179 
teaching, where it is important to know which expressions are common and which are not possible, 180 
in order to avoid typical foreigners’ mistakes.  181 

The second direction of development can be roughly coined as extraction of word associations and 182 
computation of semantic similarities. Generally speaking, the main idea has been to (semi-)automatically 183 
extract pairs of ‘somehow’ related or similar words by statistically observing their co-occurrence 184 
patterns. The resulting pairs of words of significant co-occurrence, however, are not necessarily 185 
idiosyncratic collocations as there are many factors, which can be responsible for the frequent co-186 
occurrence of two words, since word association since this is a rather vague relation allowing for 187 
many interpretations. 188 

In this sense, two words might be considered associated with each other in some way. This is 189 
also exarcebated by vague definition of context, which may vary from n-gram, i.e., a certain amount 190 
of words to the left or right, to the whole document or corpus. Another distinguishing feature has 191 
been the way these algorithms group words. This may be a way that is more indicative of syntactic 192 
class information, while other algorithms such as Latent Semantic Analysis (LSA) [21] and the topics 193 
model, as particularly addressed by the Latent Dirichlet Allocation (LDA) [22], seem to extract 194 
structure that might be described as semantic. Still other algorithms such as Hyperspace Analog to 195 
Language (HAL) [23] appear to capture a combination of syntactic and semantic information. 196 
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The results, however, obtained by algorithms from this field were useful and have therefore 197 
been applied in many different applications, such as word sense disambiguation, e.g., [24], word 198 
sense discrimination, e.g., [25], or the computation of thesauri, e.g., [26], and to a lesser extent in key 199 
word extraction, e.g., [27], text summarization, e.g., [28], and extraction of terminology, e.g., [29].  200 

The third direction of development is attributed to the (semi-)automatic extraction of particular 201 
linguistic relations (or thesaurus relations), e.g., [30], which are also known as automatic construction 202 
of a thesaurus. This line of development has to be distinguished from the other two lines of research 203 
in that it introduces a different methodology based on second order statistics, differentiating between 204 
syntagmatic and paradigmatic relations [31], context comparisons [32]. Besides, this line of 205 
development attempts to give the term ‘word association’ a more precise definition, which can be 206 
used to denote various kinds of linguistic relations, often synonyms, sometimes plain word 207 
association (play, soccer) and sometimes other linguistic relations like derivation and hyperonymy, 208 
antonyms, qualitative direction of adjectives (negative vs. positive), e.g., [33-34]. Word sense 209 
distinction, contrary to word sense disambiguation, e.g., [35], belongs to this area as well, since it 210 
describes just another kind of specific relations between words. 211 

In this paper, we will further consider typical approaches and representatives from the second 212 
direction of research, which is coined as extraction of word associations and computation of semantic 213 
similarities. This s due to two main reasons: a) most influential and impact creating algorithms can be 214 
found in this category, b) strongly related with big data analytics and deep learning. In the following, 215 
we will briefly discuss some main representatives of these algorithmic and machine learning 216 
approaches in a hope to illustrate the context within which these approaches operate and, 217 
consequently, illustrate their limitations. 218 

 219 
2.1.1 Memory-based approaches 220 
 221 

More specific, memory-based algorithmic approaches take the view that words, which 222 
commonly fill similar contexts, are said to have high substitution probabilities and are deemed to be 223 
similar [36]. This approach takes the view that sentence processing involves the retrieval of sentence 224 
fragments from memory and the alignment of these fragments with the sentence to be interpreted. 225 
Retrieval and alignment are achieved using a Bayesian version of String Edit Theory (SET) [37]. In 226 
order to employ SET, a matrix of edit operation probabilities is usually induced. Edit operation 227 
probabilities can be thought of as the lexical memory of the system, and the substitution probabilities, 228 
i.e., the probability that one word can substitute for another, can be thought of as lexical similarities. 229 
This procedure, however, involves taking each sentence fragment from a corpus and comparing it 230 
against every other sentence fragment. Hence, this procedure is computationally expensive for large 231 
corpora where there may be tens of millions of fragments to be compared against each other. 232 

In order to reduce the inherited time complexity, algorithmic approaches appeared, which make 233 
a few assumptions and achieve a fast approximation to the generic procedure. The key idea of these 234 
algorithms has been to divide the sentence fragments into equivalence classes such that each 235 
fragment needs only be compared against those from the same equivalence class rather than the 236 
entire corpus [38]. In this context, very high frequency words are used as boundaries of a fragment, 237 
which is defined as a sequence of words bounded by these very high frequency words at the 238 
beginning and the end of sentence. Subsequently, fragments with the same length and high frequency 239 
words form word patterns and belong to the same equivalence class. 240 

For instance, the sentence "THE book showed A picture OF THE author carrying A copy OF 241 
THE manuscript." Would be divided into the following fragments: 242 

1. THE book showed A 243 
2. A picture OF THE 244 
3. OF THE author carrying A 245 
4. A copy OF THE 246 
5. OF THE manuscript 247 
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where the very high frequency words are marked in capital letters. Therefore, the second and 248 
fourth fragments would be assigned to the same equivalence class as they contain the same pattern 249 
of high frequency words. Consequently, it would be deduced that "picture" and "copy" may 250 
substitute for one another. As exemplified by [38], calculating substitution probabilities takes each 251 
fragment within an equivalence class and matches it against each other fragment in that class only, 252 
not against all possible fragments in a text corpus. The matching strength is the count of the number 253 
of words in position that the fragments have in common. This matching strength was then 254 
normalized against the total matching strength for all of the fragments within the equivalence class. 255 
These retrieval probabilities are then averaged across the instances of each target word appearing in 256 
different fragments. For instance, assuming that the following equivalence classes hold  257 

A copy OF THE  258 
A description OF THE 259 
A side OF THE 260 

and 261 
ONTO THE copy 262 
ONTO THE table 263 

The similarity between the words picture and copy is calculated as being the average retrieval 264 
probability of substituting the word picture with the word copy, i.e., P(<picture, copy>) = (0.5+0.33)/2 265 
= 0.415. This is elaborated on the grounds of the combined matching strength between the fragment 266 
“A picture OF THE” and the first equivalent class (e.g., 1 / 3 = 0.33 as of having three high frequency 267 
words in common with a class having three other members), as well as between the fragment “ONTO 268 
THE picture” and the second equivalence class (e.g., 1 / 2 = 0.5 as of having two common high 269 
frequency words in common with a class having two other members). 270 

 271 
2.1.1 Distributional semantics 272 

 273 
A long tradition in computational linguistics has shown that contextual information provides a 274 

good approximation to word meaning, since semantically similar words tend to have similar 275 
contextual distributions [39]. In concrete, distributional semantic models (DSMs) use vectors that 276 
keep track of the contexts, e.g., co-occurring words, in which target terms appear in a large corpus as 277 
proxies for meaning representations, and apply geometric techniques to these vectors to measure the 278 
similarity in meaning of the corresponding words.  279 

In this context, vector based approaches take the view that a target word is compared against 280 
the vectors for other words in order to determine similarity. For instance, the Pooled Adjacent 281 
Context (PAC) model [40] constructs a representation of a word by accumulating frequency counts 282 
of the words that appeared in the two positions immediately before and immediately after the target 283 
word. The four position vectors created in this way are then concatenated to form the representation 284 
of the word. For instance, in the context of the exemplary following windows of text 285 

 286 
found a picture of the 
found a picture in her 
a pretty picture of her 
 
found a copy of a 
found a copy below the 
destroyed the copy of the 

the similarity between picture and copy would have been calculated by setting two vectors with the 287 
frequencies of particular words in two positions left and right of the two words in question. For 288 
example, the vector of the word copy would be [2 1 0 0 2 1 2 0 1 2 0 1] for all words appearing at 289 
positions -1, -2, 1, 2 in all these text windows. 290 
 291 
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Latent Semantic Analysis (LSA) 292 
 293 

LSA [21] takes the idea of extracting lexical meaning of words from the sentential context a little 294 
bit further. The underlying idea is that the aggregate of all the word contexts, in which a given word 295 
does and does not appear, provides a set of mutual constraints that largely determines the similarity 296 
of meaning of words and sets of words to each other. It has been claimed that LSA reflects on human 297 
knowledge, which may have been established in a variety of ways. Analytical studies in the past 298 
showed that LSA scores overlap those of humans on standard vocabulary and subject matter tests. 299 
LSA is also known to mimic human word sorting and category judgments, as well as the way it 300 
simulates word–word and passage–word lexical priming data. Finally, it has been reported that it 301 
accurately estimates passage coherence, learnability of passages by individual students, and the 302 
quality and quantity of knowledge contained in an essay.  303 

LSA relies on the follows method. After processing a large sample of machine-readable 304 
language, LSA represents the words used in it, and any set of these words, such as a sentence, 305 
paragraph, or essay, as points in a very high (e.g. 50-1,500) dimensional “semantic space”. LSA is 306 
closely related to neural net models, but is based on singular value decomposition (SVD), a 307 
mathematical matrix decomposition technique closely akin to factor analysis that is applicable to text 308 
corpora approaching the volume of relevant language experienced by people. 309 

More specific, in SVD a rectangular matrix is decomposed into the product of three other 310 
matrices. One component matrix describes the original row entities as vectors of derived orthogonal 311 
factor values, another describes the original column entities in the same way, and the third is a 312 
diagonal matrix containing scaling values such that when the three components are matrix-313 
multiplied, the original matrix is reconstructed. There is a mathematical proof that any matrix can be 314 
so decomposed perfectly, using no more factors than the smallest dimension of the original matrix. 315 

It is worth noting that similarity estimates derived by LSA are not simple contiguity frequencies, 316 
co-occurrence counts, or correlations in usage, as of the previous approaches, but depend on a 317 
powerful mathematical analysis that is capable of correctly inferring much deeper relations, e.g., the 318 
phrase “Latent Semantic”. As a consequence, these estimates are often much better predictors of 319 
human meaning-based judgments and performance than are the surface level contingencies, some of 320 
which have been rejected by linguists as the basis of language phenomena. 321 

LSA, however, induces its representations of the meaning of words and passages from analysis 322 
of text alone. None of its knowledge comes directly from perceptual information about the physical 323 
world, from instinct, or from experiential intercourse with bodily functions, feelings and intentions. 324 
Thus while LSA’s potential knowledge is surely imperfect, it is believed that it can offer a close 325 
enough approximation to people’s knowledge to underwrite theories and tests of theories of 326 
cognition. 327 

Nonetheless, LSA has some additional limitations. It makes no use of word order, thus of 328 
syntactic relations or logic, or of morphology. LSA also differs from some statistical approaches in 329 
two significant respects. Firstly, the input data "associations" from which LSA induces 330 
representations are between unitary expressions of meaning, i.e., words and complete meaningful 331 
utterances in which they occur rather than between successive words.  LSA uses as its initial data 332 
not just the summed contiguous pairwise (or tuple-wise) co-occurrences of words but the detailed 333 
patterns of occurrences of very many words over very large numbers of local meaning-bearing 334 
contexts, such as sentences or paragraphs, treated as unitary wholes. Thus it skips over how the order 335 
of words produces the meaning of a sentence to capture only how differences in word choice and 336 
differences in passage meanings are related.  337 

Another way to think of this is that LSA represents the meaning of a word as a kind of average 338 
of the meaning of all the passages in which it appears, and the meaning of a passage as a kind of 339 
average of the meaning of all the words it contains. 340 
 341 
 342 
 343 
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2.1.2 Latent Dirichlet Allocation 344 
 345 

A topic model is a kind of a probabilistic generative model that has been used widely in the field 346 
of computer science with a specific focus on text mining and information retrieval in recent years. 347 
Since this model was first proposed, it has received a lot of attention and gained widespread interest 348 
among researchers in many research fields. The origin of a topic model is latent semantic indexing 349 
(LSI) [41]; it has served as the basis for the development of a topic model. Nevertheless, LSI is not a 350 
probabilistic model; therefore, it is not an authentic topic model. Based on LSI, probabilistic latent 351 
semantic analysis (PLSA) [42] was proposed by Hofmann and is a genuine topic model. Published 352 
after PLSA, Latent Dirichlet Allocation (LDA) [22] is treating sentential context in a rather different 353 
way than LSA in that it focusses more on associating a document with a topic such as cute animals.  354 

Intuitively, given that a document is about a particular topic, one would expect particular words 355 
to appear in the document more or less frequently: "dog" and "bone" may appear more often in 356 
documents about cure animals. Moreover, a topic model can be represented as a graphical model, or 357 
probabilistic graphical model (PGM), or structured probabilistic model. In that sense, a graph 358 
expresses the conditional dependence structure between random variables. 359 

More formally, LDA is conceived as a three-level hierarchical Bayesian model, in which each 360 
item of a collection is modelled as a finite mixture over an underlying set of topics. Each topic is, in 361 
turn, modelled as an infinite mixture over an underlying set of topic probabilities. In the context of 362 
text modeling, the topic probabilities provide an explicit representation of a document. LDA often 363 
relies on efficient approximate inference techniques based on variational methods and an EM 364 
algorithm for empirical Bayes parameter estimation [22]. 365 

In order to exemplify LDA, let us assume that we have the following set of sentences: 366 
 I like to eat broccoli and bananas. 367 
 I ate a banana and spinach smoothie for breakfast. 368 
 Chinchillas and kittens are cute. 369 
 My sister adopted a kitten yesterday. 370 
 Look at this cute hamster munching on a piece of broccoli.  371 

LDA may have allocated the following probabilities: 372 
    Sentences 1 and 2: 100% Topic A (food) 373 
    Sentences 3 and 4: 100% Topic B (cute animals) 374 
    Sentence 5: 60% Topic A, 40% Topic B 375 
    Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching 376 

      Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster 377 
In that sense, a document D, which may contain these sentences will be represented with conditional 378 
probabilities allocated to topics A and B. In other words, assuming that we have the two food and 379 
cute animal topics above, you might choose the document to consist of 1/3 food and 2/3 cute animals. 380 

 From a machine learning point of view, one has to choose some fixed number of K topics to 381 
discover for a given set of documents as you want to use LDA to learn the topic representation of 382 
each document and the words associated to each topic. Generally speaking, the algorithm(s) go 383 
through each document and randomly assign each word in the document to one of the K topics. 384 
Consequently, in order to improve these assignments, for each word w in a document d, and for each 385 
topic t, LDA computes two things: 1) p(topic t | document d) = the proportion of words in document 386 
d that are currently assigned to topic t, and 2) p(word w | topic t) = the proportion of assignments to 387 
topic t over all documents that come from this word w. Subsequently, a new topic is reassigned to w, 388 
where the topic t is chosen with probability p(topic t | document d) * p(word w | topic t). Repeating 389 
the previous step a large number of times, the algorithm eventually reaches a roughly steady state 390 
where the assignments are pretty good.  391 

The main disadvantages being reported are associated with the question “how hard it is to know 392 
when LDA is working”, since topics are soft clusters so there is no objective metric to say "this is the 393 
best choice" of hyperparameters. Metrics like perplexity (how well the model explains the data) can 394 
be applied if the learning is working. They are, however, poor indicators of the overall quality of the 395 
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model. For example, you could have a model with very low perplexity, but whose topics are not very 396 
informative. Furthermore, LDA and most of its variants rely on a Bag of Words (BoW) approach. In 397 
a sense, it still treats documents as a bag of words and the exchangeability of words and documents 398 
could be called the basic assumptions of a topic model. These assumptions are available in both PLSA 399 
and LDA. Nevertheless, in several variants of topic models, a basic assumption was relaxed. 400 

In this context, topic modeling with LDA and its variants does not address the lexical meaning 401 
of words as such. It is more seen as a side effect. Moreover, it became obvious that relaxing the basic 402 
assumption of LDA or PLSA is a desirable approach, since the availability of many other a priori 403 
pieces of information, such as documents’ interactions, the order of words, and knowledge on the 404 
biology domain, play an important role as well. In addition, there is significant motivation to reduce 405 
the time taken to learn topic models for very large data, for instance, in biological data.    406 

2.2. Articifial Neural Networks (ANNs)  407 
As already discussed in [44], ANNs are robust learning models that are about precisely assigning 408 

weights across many levels. They are broadly divided into two types of ANN architectures: those 409 
that can be feed-forward networks and those Recurrent (or Recursive) Neural Networks (RNNs) [45]. 410 
Feed-forward architecture consists of fully connected network layers. The RNNs model, on the other 411 
hand, consist of a fully linked circle of neurons connected for the purpose of back-propagation 412 
algorithm implementation. ANNs applied to NLP tasks consider syntax features as part of semantic 413 
analysis [46]. New neural network learning models have been proposed that can be applied to 414 
different natural language tasks, such as semantic role labelling and Named Entity Recognition [47]. 415 
The advantage of these approaches is to avoid the need for prior knowledge and task specific 416 
engineering interventions. ANN models have achieved an efficient performance in tagging systems 417 
with low computational requirements [48]. 418 
 419 
Word2vec 420 
 421 

Word2vec [49] can be viewed as a two-layer neural network that processes text. Its input is a text 422 
corpus and its output is a set of vectors: feature vectors for words in that corpus. Google calls it “an 423 
efficient implementation of the continuous bag-of-words and skip-gram architectures for computing 424 
vector representations of words.”  425 

While Word2vec is not a deep neural network (see next subsection for more details about deep 426 
learning architectures), it turns text into a numerical form that deep networks can understand. In that 427 
sense, Word2Vec is a particularly computationally efficient predictive model for learning word 428 
embeddings from raw text. For instance, given the sentence “The cat was sitting on the …”, Word2vec 429 
is likely to predict the next word being “mat”. Therefore, highly accurate guesses about a word’s 430 
meaning can be made, which are based on past appearances. Those guesses can be used to establish 431 
a word’s association with other words (e.g. “man” is to “boy” what “woman” is to “girl”), or cluster 432 
documents and classify them by topic.   433 

The output of the Word2vec neural network is a vocabulary in which each item has a vector 434 
attached to it, which can be fed into a deep-learning network or simply queried to detect relationships 435 
between words. For instance, a list of words associated with “Sweden” using Word2vec, in order of 436 
proximity, is given as of the following vector: 437 

 438 
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The similarity of the word “Sweden” to other words is measured as the cosine similarity between 439 
word vectors. Zero similarity is expressed as a 90 degree angle, while total similarity of 1 is a 0 degree 440 
angle. For instance, a complete overlap; i.e., Sweden equals Sweden, gives a total similarity of 1, while 441 
Norway has a cosine distance of 0.760124 from Sweden, the highest of any other country. 442 

The vectors being used to represent words are called neural word embeddings, and representations 443 
are strange; one thing describes another, even though those two things are radically different. 444 
Word2vec comes in two flavours, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram 445 
model. Algorithmically, these models are similar, except that CBOW predicts target words (e.g. 'mat') 446 
from source context words ('the cat sits on the'), while the skip-gram does the inverse and predicts 447 
source context-words from the target words. This inversion might seem like an arbitrary choice, but 448 
statistically it has the effect that CBOW smooths over a lot of the distributional information (by 449 
treating an entire context as one observation). For the most part, this turns out to be a useful thing for 450 
smaller datasets. However, skip-gram treats each context-target pair as a new observation, and this 451 
tends to do better when we have larger datasets. 452 

In a nutshell, similar things and ideas are shown to be “close” in that their relative meanings 453 
have been translated to measurable distances. Similarity is the basis of many associations that 454 
Word2vec can learn. Since words are represented as vectors, powerful mathematical operations can 455 
be applied. It was recently shown that the word vectors capture many linguistic regularities, for 456 
example vector operations such as vector('Paris') - vector('France') + vector('Italy') results in a vector 457 
that is very close to vector('Rome'), and vector('king') - vector('man') + vector('woman') is close to 458 
vector('queen'). Despite these information retrieval operations, Word2vec is predominantly a 459 
"context predictive" model, which earn their vectors in order to improve the loss of predicting the 460 
target words from the context words given the vector representations. 461 
 462 
Global Vectors (GloVe) 463 

 464 
Similar to Word2vec approach, GloVe [50] is another unsupervised learning algorithm for 465 

obtaining vector representations for words. The main difference, however, is that training is 466 
performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting 467 
representations showcase interesting linear substructures of the word vector space. In that sense, 468 
GloVe is usually classified as count-based model, which learn the vectors by essentially doing 469 
dimensionality reduction on the co-occurrence counts matrix. Firstly, a large matrix of words x in 470 
context y is constructed based on co-occurrence information, i.e., for each "word" (the rows), the 471 
learning algorithm counts how frequently we see this word in some "context" (the columns) in a large 472 
corpus.  The number of "contexts" is, of course, large, since it is essentially combinatorial. Hence, 473 
factorization of the matrix is applied in order to yield a lower-dimensional matrix, where each row 474 
now yields a vector representation for each word. 475 
 476 
 477 
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Deep Learning Architectures 478 
 479 

Deep learning is essentially a bigger take on the neural network models that have been around 480 
for some time. It is attribute to Geoffrey Hinton and his first attempts to develop an image 481 
classification algorithm. It is, however, particularly useful for analyzing, audio, text, genomic and 482 
other multidimensional data that does not lend itself well to traditional machine learning techniques. 483 

Word vectors to be used for similarity measures, as previously discussed, can be learned by 484 
applying Deep Learning (DL) based architectures as well. DL, as a yet another ANN based 485 
architecture, involves multiple data processing layers, which allow the machine to learn from data 486 
through various levels of abstraction for a specific task without human interference or previously 487 
captured knowledge. Therefore, one could classify DL as unsupervised Machine Learning (ML) 488 
approach. Investigating the suitability of DL approaches for NLP tasks has gained much attention 489 
from the ML and NLP research communities, as they have achieved good results in solving bottleneck 490 
problems [51].  491 

These techniques have had great success in different NLP tasks, from low level (character level) 492 
to high level (sentence level) analysis, for instance, sentence modelling [52], Semantic Role Labelling 493 
[48], Named Entity Recognition [53], Question Answering [54], text categorization [55], opinion 494 
expression [56], and Machine Translation [57].  495 

More specific, since Deep Learning is based on Convolutional Neural Network (CNN) 496 
architectures, which has been around for more than three decades, CNNs have been applied as a non-497 
linear function over a sequence of words, by sliding a window over the sentences. This has been the 498 
key advantage of using CNNs architecture for NLP tasks. This function, which is also called a ‘filter’, 499 
mutates the input (k-word window) into a d-dimensional vector that consists of the significant 500 
characteristic of the words in the window. Then, a pooling operation is applied to integrate the 501 
vectors, resulting from the different channels, into a single n-dimensional vector. This is done by 502 
considering the maximum value or the average value for each level across the different windows to 503 
capture the important features, or at least the positions of these features. For example, Error! 504 
Reference source not found. gives an illustration of the CNNs’ structure where each filter executes 505 
convolution on the input, in this case a sentence matrix, and then produces feature maps, hence it is 506 
showing two possible outputs. This example is used in the sentence classification model. 507 

 
Figure 1: Model of three filter division sizes (2, 3 and 4) of CNNs 
architecture for sentence classification. (Source: [61]) 
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 508 
A new convolutional latent semantic approach for vector representation learning [58] uses 509 

CNNs to deal with ambiguity problems in semantic clustering for short text. However, this model 510 
can work appropriately for long text as well [59]. CNNs are proposed for sentiment analysis of short 511 
texts that learn features of the text from low levels (characters) to high levels (sentences) to classify 512 
sentences in positive or negative prediction analysis. However, this approach can be used for 513 
different sentence sizes [60]. 514 

In a nutshell, building a machine-learning system with features extraction requires specific 515 
domain expertise in order to design a classifier model for transforming the raw data into internal 516 
representation inputs or vectors. These methods are called representation learning (RL) in which the 517 
model automatically feeds in raw data to detect the needed representation. In particular, the ability 518 
to precisely represent words, phrases, sentences (statement or question) or paragraphs, and the 519 
relational classifications between them, is essential to language understanding.  520 

3. Evaluation methodology  521 
Evaluating the results of semantic similarity algorithms for the extraction of word associations 522 

has proven to be quite complicated. There is mainly due to the following reasons:  523 
 There is no easy way to define a gold standard, and therefore many different methods 524 

of indirect evaluation have been used. 525 
 The notion of ‘context’ is scattered across a broad spectrum ranging from n-gram 526 

models, where context is simply an n-gram, to windowing models, where context is 527 
defined as number of words to the left and to the right of the observed word, to a notion 528 
of context which means the whole text in which the observed word occurs. 529 

 The type of the word association being targeted. Roughly speaking, three types of 530 
associations may be targeted: syntactic structure, semantic structure, associative structure. 531 
The latter is captured in two main flavors:  532 

o syntagmatic associations (e.g., run-fast), which are thought to be acquired as 533 
consequence of words appearing in succession in the experience of the subject; 534 

o paradigmatic associations (e.g., run-walk), which are thought to occur as 535 
consequence of experiencing words in similar sentential contexts. 536 

Further humbling aspects for easing off the evaluation complexity of these algorithmic approaches 537 
have been the variety of algorithms (e.g., type 0, type 1, type 2, type 4), as well as the ways the strength 538 
of an association is being measured (e.g., from mutual information, to comparisons of binary and 539 
real-valued vectors). 540 

 Despite the inherited complexity of these evaluation methods, systematic comparisons of 541 
algorithms and models have been attempted in the past. For instance, [62] have attempted to 542 
quantitatively contrast the abilities of these algorithms to capture all three types of associations, 543 
namely, syntactic, semantic and associative information. Much, however, remains to be done to 544 
characterize the type of word association each of these algorithms acquire. Moreover, [63] carried out 545 
a systematic comparison between context-predicting and context-counting semantic vector 546 
approaches, which underpins the differentiation between Word2vec and GloVe semantic vectors. 547 
This evaluation, however, does not target all three types of associations and does not give a clear 548 
definition of the term ‘word association’. 549 

The most promising and most comparable evaluation is one using large manually crafted 550 
knowledge sources such as Roget’s Thesaurus [64], WordNet [65-66] or GermaNet for German [67] 551 
as a gold standard. Unfortunately, again, evaluations using these sources can be done in many 552 
different ways, crippling comparability. A standardized tool set or instance is needed. 553 
 554 
 555 
 556 
 557 
 558 
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3.1. Our methodological approach 559 
 560 

After considering the various evaluation methods and the inherited complexity of evaluating 561 
the quality of extracted word relations, a conclusion was drawn that for the purposes of this study: 562 
the gold standard should probably be  563 

 either a collocations dictionary like BBI Combinatory Dictionary of English and 564 
Explanatory Combinatorial Dictionaries (ECDs),  565 

 or a semantic net like WordNet. 566 
WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped 567 

into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked 568 
by means of conceptual-semantic and lexical relations. The resulting network of meaningfully related 569 
words and concepts can be navigated with the browser. Apart from gold standards, however, the 570 
following pillars expanded our evaluation methodology: psycholinguistic association or priming 571 
experiments, vocabulary tests, application-based evaluations, evaluation by using artificial synonyms. 572 

Association or priming paradigms [68] can be used to evaluate the results of the algorithms by 573 
comparing them with data obtained from human subjects in psycholinguistic experiments. Suitable 574 
are association or priming experiments, where subjects are asked to name rapidly some semantically 575 
close words after being presented with the stimulus word. The list of most frequently named words 576 
can then be compared with the lists obtained automatically.  577 

A vocabulary test usually comprises a question and a multiple-choice answer. If both are 578 
electronically available, the test can be used quite straightforwardly to evaluate word similarity 579 
computation methods. TOEFL, i.e., Test of English as a Foreign Language, has been used as one the 580 
tests comprising 80 test items. This kind of evaluation has been used by many authors, such as [69], 581 
[21], [70-71]. 582 

Application-based evaluation is the indirect method of evaluating results of a knowledge 583 
extraction algorithm by putting the extracted knowledge into use and observing how well the 584 
application using this knowledge performs. One of the most interesting approaches, however, is the 585 
use of artificial items. The main idea for testing synonymy is to choose randomly one part of 586 
occurrences of a word and replace the word by a pseudo-word while keeping the other part. It is then 587 
possible to measure how often the pseudo-words are extracted as synonyms of the words that have 588 
been retained.   589 

4. Preliminary results and discussion 590 
Our comparison study is based on some preliminary results, which have been the outcome of 591 

the application of Deep Learning techniques in order to improve the extracted Word2vec model as a 592 
means to compute vector representations of words. For the sake of this comparison study, we will 593 
refer to the Eclipse Deeplearning4j as an open-source, distributed deep-learning project in Java and 594 
Scala spearheaded by the people at Skymind, a San Francisco-based business intelligence and 595 
enterprise software firm. Deeplearning4j implements a distributed form of Word2vec for Java and 596 
Scala, which works on Spark with GPUs. The extracted word associations, as listed in Table 1, which 597 
rely on the trained Word2vec model, have been trained on the Google News vocabulary, which you 598 
can import and play with from the Google News Corpus Model (GoogleNews-vectors-599 
negative300.bin.gz, 1,5 GB).  600 

For the interpretation of the word associations, the following notations hold: where : means 601 
“is to” and :: means “as”. For instance, “Rome is to Italy as Beijing is to China” = 602 
Rome:Italy::Beijing:China 603 

 604 
 605 
 606 
 607 
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Table 1: Arrays of extracted word associations 608 

1 king:queen::man:[woman, Attempted abduction, teenager, girl] 
2 China:Taiwan::Russia:[Ukraine, Moscow, Moldova, Armenia] 
3 house:roof::castle:[dome, bell_tower, spire, crenellations, turrets] 
4 knee:leg::elbow:[forearm, arm, ulna_bone] 
5 New York Times:Sulzberger::Fox:[Murdoch, Chernin, Bancroft, Ailes] 
6 love:indifference::fear:[apathy, callousness, timidity, helplessness, inaction] 
7 Donald Trump:Republican::Barack Obama:[Democratic, GOP, Democrats, McCain] 
8 monkey:human::dinosaur:[fossil, fossilized, Ice_Age_mammals, fossilization] 
9 building:architect::software:[programmer, SecurityCenter, WinPcap] 

 609 
Noteworthy is that the Word2vec algorithm has never been taught a single rule of English 610 

syntax. It knows nothing about the world, and is unassociated with any rules-based symbolic logic 611 
or knowledge graph. 612 

Despite the limited number of extracted word associations, these results seem to confirm that 613 
the extracted associations do not capture all three types of associations, namely, syntactic, semantic 614 
and associative information. and does not give a clear definition of the term ‘word association’. For 615 
instance, the word associations King - Queen and Man – Woman do not provide any clue about the 616 
type of association holding between these words. There is, however, a semantic structure as a type of 617 
association being derived implicitly from the relationship “as” or “same as” holding between the 618 
pairs of words {King, Queen} and {Man, Woman}: a King is a Man, a Queen is a Woman. Even so, there 619 
is no reference to whether this semantic structure is a hyperonymy, a semantic relation between a more 620 
general word and a more specific word, or meronymy, a semantic relation, which refers to a part of a 621 
whole and usually characterized as “part-of” relationship. 622 

Moreover, there is no such a thing as a pattern of semantic relationships emerging from the first 623 
pairs of word associations at both sides of the notation : :. For instance, neither a hyperonymy nor a 624 
meronymy seem to be the case for the other word associations on the list, e.g., {monkey, human} and 625 
{dinosaur, fossil}, as one cannot infer any relationship between monkey and dinosaur, or between 626 
human and fossil. Even if we succeed to identify a pattern of relations, i.e., two large countries and their 627 
small, estranged neighbors, such as those emerging from the second row word associations on the list, 628 
we cannot emerge victorious with a pattern of semantic relations when we do the same with the 629 
eighth row word associations. We will stumble upon questions as to which extent humans should be 630 
considered as fossilized monkeys, or humans are what's left over from monkeys, or humans are the species that 631 
beat monkeys just as Ice Age mammals beat dinosaurs.  632 

An interesting observation has also been as to which extent a holding relationship between two 633 
words could imply the same relationship or association type on the other side of the notation : :. For 634 
instance, as of the ninth row word associations, and assuming that an architect is-the-designer of a 635 
building, can we imply that a programmer is-the-designer of a software? At first glance, it looks like that 636 
such a pattern does hold as in most of the cases a well predicted relationship seem to be holding on 637 
the other side of the notation : :. There is, however, a notorious difficulty in identifying what are 638 
exactly these relations, which can hold on both sides, hence, inferring the one will imply the other. 639 

Moreover, [63] carried out a systematic comparison between context-predicting and context-640 
counting semantic vector approaches, which underpins the differentiation between Word2vec and 641 
GloVe semantic vectors.  642 

 643 
4.1 Comparisons with a golden standard (lexicography) 644 

 645 
As indicated in section 3.1, we used as a golden standard the English Collocations Dictionary 646 

which is available online at the URL www.ozdic.com, as well as the online version of WordNet 3.1 647 
available online at the URL https://wordnet.princeton.edu/ The intention has been to confirm 648 
whether the extracted word associations, for all pairs of words, can be replicated by the collocations 649 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 May 2018                   doi:10.20944/preprints201805.0102.v2

http://dx.doi.org/10.20944/preprints201805.0102.v2


 15 of 21 

dictionaries, as well as whether the same semantic relationship, be it semantic or lexical, holds across 650 
both sides of the notation : : In the following, the results of these comparisons are presented for each 651 
list of extracted word associations. All potential relations have been checked bi-directionally, e.g., 652 
entries have been both words King and Queen. 653 

Having checked all word entries, we identified two lists, 5 and 7, which have no single 654 
collocation. Both lists do predominantly refer to named entities, e.g., Donald Trump, New York Times. 655 
Besides, From the total of thirty (30) pairs of associated words, we could identify seventeen (17) 656 
collocations in the dictionary, i.e., slightly over 50% of all possible word associations. The following 657 
Table 2 summarises the identified collocations together with the potential relations holding between 658 
them.  659 

 660 
Table 2: Identified collocations for the English language as of WordNet and ozdic.com 661 

Extracted word associations Source: www.ozdic.com Source: WordNet 3.1 

King - Queen Wife of Wife or widow of 
Man – Woman -  Wife / Mistress / Girlfriend 
Russia – Ukraine  -  Former parts of USSR 
Russia – Moscow -  Part of / capital of 
China - Taiwan -  Part of / governed by 
House – roof  Under your -  
Castle – bell tower Castle + noun / flanked  
Castle - turrets Adjective + Castle  
Castle – Crenellation -  Part of (meronymy) 
Knee - leg Below the / amputated below the Part of (meronymy) 

Elbow - arm Below the / Part of (meronymy) 
Elbow – forearm -  Part of (meronymy) 
Elbow – ulna bone -  Elbow bone as a synonym 

to ulna bone 
Love - indifference -  Causing (love -> 

indifference) 
Monkey - Human -  Both being part of 

experiments 
Building - Architect -  Engaged in / building 
Software - programmer -  Builds / designs / writes / 

tests 
 662 
Subsequently, we tried to answer the question whether the indicative relations, as indicated by 663 

both online resources for the lexical and semantic word meaning, can be projected on the other side 664 
of the notation : :. It turned out that almost all of the above relations can be imposed on one or more 665 
word associations on either side of the notation : :. For instance, it is perfectly acceptable to impose 666 
the relation “wife of” on the word associations {man, woman} and {man, girl}, as well as the relations 667 
“amputated below the” or “being part of” for both pairs {knee, leg} and {elbow, arm}. The same holds 668 
for the pairs of words {house, roof} and {castle, crenellations}, in terms of the relation “part of”, as 669 
well as for the pairs of words {house, roof} and {castle, turrets}, since the expression “roofed house” 670 
and “turreted castle” are both meaningful. In some cases, however, e.g., {monkey, human}, the 671 
indicative relation cannot be imposed on the other part of the notation : :. 672 

Overall, it seems to be indicative that, despite the notorious difficulty to extract the type of 673 
association or the relation holding between the pairs of words, some of these word associations do, 674 
indeed, make sense according with the lexicographic and semantic meaning of words as indicated by 675 
the two lexicographic resources. Furthermore, in some cases, the underpinning relation is rather 676 
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vague and uncertain as the case with sentiments, e.g., in the array fear:[apathy, callousness, timidity, 677 
helplessness, inaction].  678 

On the other hand, considering the arrays  679 
Donald Trump:Republican::Barack Obama:[Democratic, GOP, Democrats, McCain]  680 
monkey:human::dinosaur:[fossil, fossilized, Ice_Age_mammals, fossilization] 681 
there may be some interesting relations, which remain hidden. For instance, given the fact that 682 

Obama and McCain were rivals, it may be interesting to investigate whether the relation “rivalry” 683 
may also hold between Donald Trump and the ideal Republican. In addition, the one plausible relation 684 
between humans and monkeys may be that humans is the species that beat monkeys just as ice age mammals 685 
beat dinosaurs. 686 

 687 
4.2 Comparisons with results from psycholinguistic experiments 688 
 689 

Although it is notoriously difficult to get access to results from psycholinguistic experiments, for 690 
the sake of our comparison study, we will mainly refer to results published in [9, 72] and the Kent-691 
Rosanoff Word Association Test in order to study word association norms as a function of age.  The 692 
experiment has been conducted with 738 subjects from 18 to 87 years of age from various occupations 693 
and from various parts of the country. The experiment was meant to study the strength of a word 694 
association as a function of age, in terms of a stimulus and response words. For instance, “drinking” 695 
as a response to the stimulus word “eating”. Consequently, percentages of subjects responding to 100 696 
common word associates for three age groups: Group A: (ages 18-33 years, N= 373), Group B (ages 697 
34-49, N = 205) and Group C (ages 50-87, N = 160). 698 
 Despite the idiosyncratic nature of this experiment and in order to avoid drawing false 699 
conclusions, we restricted ourselves in checking for common word entries in the list of 99 words as 700 
of [72].  Our comparisons verified that it is difficult to infer any semantic or lexical relations holding 701 
among the associated words. Hence, from this comparison, there is no directly added value in 702 
predicting what the potential relation may be, or whether the “same as” predicate on both sides of 703 
the notation : : can be added.  704 

It has been revealed, however, that few of the word associations in our nine (9) arrays of Table 1 705 
do also exist in the results of this experiment. For instance, the associations between man and woman, 706 
kind and queen, could also be confirmed. The most revealing aspect, however, has been that 707 
associations within the same array of associated words, such as between woman and girl could be 708 
unveiled by the entries in the list of 99 words [72]. This may, in turn, indicate, the associations may 709 
be transitive as well. For instance, the association between man and girl may be the result of the 710 
associations between man and woman, as well as woman and girl. 711 

4. General discussion 712 
In this paper, we discuss some preliminary results and emerging trends and how they can be 713 

interpreted in perspective of previous studies, including our own comparisons. The main working 714 
hypothesis has been the question(s) as to what are the limitations of Deep Learning (DL), not only for 715 
the extraction of word meaning in natural language processing, but also for the extraction of 716 
meaningful associations among objects or entities, in general. 717 

The experimental design addressed primarily a DL framework for the following main reasons: 718 
a) to demystify the prowess of this ANN based architecture in its capacity to computationally 719 
recognize and understand in terms of interpreting associations between words, b) to act as a typical, 720 
up to date, representative of machine learning algorithms for natural language processing and 721 
understanding, c) to unveil future research directions, d) to establish an evaluation framework for 722 
future reference. 723 

Therefore, it is this broader context within which our findings and comparison results should be 724 
interpreted, although rather limited than with some statistical significance. Nevertheless, the 725 
following major patterns, and implicitly future research directions, could be unleashed: 726 
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 The notorious difficulty of DL, in particular, and all statistics, vector space based algorithms, 727 
in general, to infer the type of association or the exact relation underpinning a word 728 
association. In other words, this seems to be still an open research question for all 729 
frequentists’ approaches relying on turning words into numbers, in order to make them 730 
comparable.  731 

 This also applies to Latent Semantic Analysis (LSA) as reportedly being very close to human 732 
judgements about word associations. However, this is very similar with comparisons made 733 
against results from psycholinguistic experiments, which may confirm the strength of a word 734 
association, but not extract the type of the association or relation being implied. 735 

 Despite this inadequacy, it can also be confirmed the surprising superiority of these 736 
approaches to extract strong word associations, even if the underpinning relation is an 737 
unknown variable. In other words, what is being extracted seem to be strongly related, 738 
however, without knowing how. 739 

As far as the evaluation methodology is concerned, the following key problems, or context, could be 740 
confirmed: 741 

 There is no easy way to define a gold standard, and therefore many different methods of 742 
indirect evaluation have been used. In our case, we used as gold standard two resources: the 743 
semantic net WordNet and the collocations dictionary for the English language. As of our 744 
results, it became apparent that identifying the same collocation in both resources is rarely 745 
the case. WordNet, however, seems to provide a more comprehensive and complete 746 
structure of lexical and semantic relations for English words.  747 

 In any case and in order to cope with the inherited heterogeneity of these resources, we 748 
restricted ourselves in identifying any collocation, i.e., mentioning both words in the same 749 
lexicographical context, as well as to simplify deriving a potential relation.  750 

 The notion of ‘context’ also emerged in that the findings and comparison results are 751 
attributed to word associations extracted from an, admittedly, large corpus of Google News. 752 
Despite that one may argue the findings and comparison results do refer to this specific 753 
domain, there are two main lines of thought emerging as well: the doubt that learning and 754 
training vector space models with other domains of discourse will extract the type of 755 
association or relation holding between words, since these are all turned, more or less, in 756 
frequencies and numbers. 757 

 In order to avoid the dilemma of which association type, syntactic structure, semantic structure, 758 
associative structure, should be targeted, we took a more generic approach in that any 759 
collocation would matter. 760 

 Finally, ideally speaking, we should evaluate the findings, i.e., extracted word association 761 
and meaning, by taking a more holistic approach. In other words, we should also consider, 762 
in addition to the chosen gold standards as the result of lexicographers and psycholinguistic 763 
experiments, admittedly, of limited scope, word associations as derived from more 764 
experiments such as vocabulary tests, e.g., TOEFL, application-based evaluations, evaluation by 765 
using artificial synonyms.  766 

As far as these evaluation resources are concerned, the following problems and limitations could also 767 
be confirmed: 768 

 Psycholinguistic experiments as such are very costly, especially, if they should be applied to 769 
large evaluations instead of small samples as done usually. Therefore, it is very probable that 770 
the evaluation results may not be representative. Besides, it may not be easily possible for 771 
other researchers to reproduce these experiments and validate the results. 772 

 Using vocabulary tests sounds an interesting option, however, testing against only 80 items 773 
poses the problem of whether the results will be representative. In such a case overtraining 774 
(by fitting thresholds) can occur very fast. Besides, these tests target only synonymy. Hence, 775 
these tests can indicate how good the word associations may be, however, not what is exactly 776 
the nature of the underpinning linguistic relation or association type. 777 
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 Application-based evaluation, as an indirect method of evaluating results of a knowledge 778 
extraction algorithm, sounds like another viable evaluation option, since this puts the 779 
extracted knowledge into use and observes how well the application using this knowledge 780 
performs. In this context, the reviewed algorithmic approaches for corpus based, word 781 
meaning extraction, may be positively evaluated in their use by contemporary search engines 782 
and information retrieval tasks, however, negatively in the context of knowledge engineering 783 
and, particularly, in the context of extracting a knowledge graph or ontology. This is due to 784 
the fact that in the context of information retrieval and Web search, the type of relation easily 785 
implied is synonymy. 786 

 One of the most interesting approaches to evaluating automatic extraction algorithms is by 787 
using artificial items. The idea for testing synonymy is to choose randomly one part of 788 
occurrences of a word and replace the word by a pseudo-word while keeping the other part. 789 
Hence, perfectly artificial synonyms are created. It is then possible to measure how often the 790 
pseudo-words are extracted as synonyms of the words that have been retained. Due to the 791 
difficulty we faced with the creation of artificial antonyms, meronyms or other linguistically 792 
related words, and the entrapment imposed by inflicted biases, this evaluation has been left 793 
as future work. 794 

5. Conclusions 795 
This paper has been incentivized by the question what do we really learn when we apply state 796 

of the art machine learning and statistics based algorithms towards extraction of word associations 797 
and, implicitly, contextual word meaning from text corpora. Although the experimental results are 798 
preliminary and the comparisons, perhaps, of limited scope, the contribution to knowledge may be 799 
sought after in some of the following aspects: a) confirming the lack of extracted types of association, be 800 
them structural, semantic or associative, or specific relations holding among words, despite the fact that state-801 
of-the-art machine learning techniques seem to be strengthening the nature of a word association, b) the 802 
inherited complexity of an evaluation framework for this purposes due to many reasons ranging from the 803 
definition of equivalent contexts to categorizing of algorithms in terms of what type of association is concerned, 804 
to lack or difficulty of access to word association lists produced by other human centered efforts and experiments. 805 
Nonetheless, we put the emphasis on open access data and reproducible results by addressing 806 
publicly available software and data.  807 

In the future, we will keep on expanding our experiments, not only in terms of producing more 808 
data and comparisons, but also in terms of designing and implementing machine learning 809 
architectures, which are more keen on extraction of meaningful associations or relations 810 
underpinning an extracted word association. This approach will be informed by recent advances and 811 
lessons learned in cognitive sciences and human-like robot learning [73], where a robot learns 812 
elements of its semantic and episodic memory through language interaction with people. This 813 
human-like learning can happen when we extract, represent and reason over the meaning of the 814 
user’s natural language utterances. 815 
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