
Article

BlendCAC: A Smart Contract Enabled Decentralized
Capability-based Access Control Mechanism for IoT

Ronghua Xu1, Yu Chen1*, Erik Blasch 2, Genshe Chen3

1 Binghamton University, SUNY, Binghamotn, NY 13902, USA; rxu22@binghamton.edu
2 The U.S. Air Force Research Lab, Rome, NY 13441, USA; erik.blasch@gmail.com
3 Intelligent Fusion Technology, Inc. Germantown, MD 20876, USA; gchen@intfusiontech.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

* Correspondence: ycheng@binghamton.edu; Tel.: +1-607-777-6133

Abstract: While the Internet of Things (IoT) technology has been widely recognized as the essential
part of Smart Cities, it also brings new challenges in terms of privacy and security. Access control
(AC) is among the top security concerns, which is critical in resource and information protection
over IoT devices. Traditional access control approaches, like Access Control Lists (ACL), Role-based
Access Control (RBAC) and Attribute-based Access Control (ABAC), are not able to provide a scalable,
manageable and efficient mechanism to meet the requirements of IoT systems. Another weakness
in today’s AC is the centralized authorization server, which can be the performance bottleneck
or the single point of failure. Inspired by the smart contract on top of a blockchain protocol, this
paper proposes BlendCAC, which is a decentralized, federated capability-based AC mechanism
to enable an effective protection for devices, services and information in large scale IoT systems.
A federated capability-based delegation model (FCDM) is introduced to support hierarchical and
multi-hop delegation. The mechanism for delegate authorization and revocation is explored. A robust
identity-based capability token management strategy is proposed, which takes advantage of the smart
contract for registering, propagating and revocating of the access authorization. A proof-of-concept
prototype has been implemented on both resources-constrained devices (i.e., Raspberry PI node) and
more powerful computing devices (i.e., laptops), and tested on a local private blockchain network.
The experimental results demonstrate the feasibility of the BlendCAC to offer a decentralized, scalable,
lightweight and fine-grained AC solution for IoT systems.

Keywords: Decentralized Access Control; Internet of Things (IoT); Blockchain Protocol; Smart
Contract; Federated Delegation; Capability-based Access Control.20

1. Introduction21

With the proliferation of the Internet of Things (IoT), a large number of physical devices are being22

connected to the Internet at an unprecedented scale. The prevalence of the IoT devices changes human23

activities by ubiquitously providing applications and services that are revolutionizing transportation,24

healthcare, industrial automation, emergency response, and so on [1]. These capabilities offer both25

measurement data and information context for situation awareness (SAW) [2,3]. While benefiting from26

the large-scale applications like Smart Gird and Smart Cities, the quick growing IoT systems also incur27

new concerns for security and privacy. With the increased popularity, the connected smart IoT devices28

without sufficient security measures increase the risk of privacy breaches and various attacks. Security29

issues, such as privacy, authentication, access control, system configuration, information storage and30

management, are the main challenges that these IoTs based applications are facing [4].31

Among the top security challenges in IoT environments, access authorization is critical in resource32

and information protection. Conventional access control approaches, like Access Control List (ACL),33

Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) have been widely34

used on information technology (IT) system. However, they are not able to provide a manageable and35

efficient mechanism to meet the requirements raised by IoT networks:36

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/computers7030039

2 of 22

• Scalability: The fast growing number of devices and services also pose increasing management37

overload in access control systems that are based on ACL or RBAC models. Access control38

strategies are expected to be able to handle the scalability problem resulting from the distributed39

IoT networks.40

• Heterogeneity: IoT systems normally integrate heterogeneous cyber physical objects with variant41

underlying technologies or in different application domains, and each domain or platform has42

its own specific requirements for identity authentication and authorization policy enforcement.43

Both RBAC and ABAC have been found inflexible to provide complex arrangements to44

support delegation and transitivity, which are essential for efficient and effective intra-domain45

authorization and access control.46

• Causality: Traditional RBAC and ABAC systems envisage planned and long-lived patterns,47

while the IoT world is mainly characterized by short-lived, often causal and/or spontaneous48

interactions [5], in which an access control scheme is required to deal with dynamic challenges.49

• Lightweight: IoT devices are usually resource-constrained, which cannot support heavy50

computational and large storage required applications, and those smart devices connect to51

each other by low power and lossy networks. Consequently the access control protocol should52

be lightweight and not impose significant overhead on devices and communication networks.53

The extraordinary large number of devices with heterogeneity and dynamicity necessitate more54

scalable, flexible and lightweight access control mechanisms for IoT networks. In addition, a majority55

of the AC solutions rely on centralized authorities. Although the delegation mechanism helps migrate56

certain intelligence from the centralized cloud server to a near-site fog or edge network, the power57

of policy decision making and identity management is exclusively located in the cloud center. IoT58

networks need a new AC framework that provides decentralized authentication and authorization59

scheme in trustless application network environments, such that intelligence could be diffused among60

large number of distributed edge devices.61

While being well-known as the fundamental protocol of Bitcoin [6], the first digital currency,62

the blockchain protocol has been recognized as the potential to revolutionize the fundamentals63

of IT technology because of its many attractive features and characteristics such as supporting64

decentralization and anonymity maintenance [7]. In this paper, a BLockchain-ENabled, Decentralized,65

Federated, Capability-based Access Control (BlendCAC) scheme is proposed to enhance the security66

of IoT devices. It provides a decentralized, scalable, fine-grained, and lightweight AC solution to67

protect smart devices, services and information in IoT networks. An identity-based capability token68

management strategy is presented and the federated authorization delegation mechanism is illustrated.69

In addition, a capability-based access validation process is implemented on service providers that70

integrate SAW and customized contextualized conditions. The experimental results demonstrate the71

feasibility and effectiveness of the proposed BlendCAC scheme.72

The major contributions of this work are:73

1. Leveraging the blockchain protocol, a decentralized, federate access control scheme is proposed,74

which is a scalable, fine-grained, and lightweight solution for today’s IoT networks;75

2. A complete architecture of a federated capability-based authorization system is designed, which76

includes delegation authority, capability management, and access right validation;77

3. A capability-based federated delegation model is introduced and the enforcement of polices is78

discussed in detail;79

4. A concept-proof prototype based on smart contracts is implemented on resource-constrained80

edge devices and more powerful devices, and deployed on a local private blockchain network;81

and82

5. A comprehensive experimental study has been conducted that compares the proposed scheme83

with the well-known RBAC and ABAC models. The experimental results validate the feasibility84

of the BlendCAC approach in IoT environments without introducing significant overhead.85

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

3 of 22

The remainder of this paper is organized as follows: Section 2 gives a brief review on the86

state-of-the-art research in access control for IoT systems. Section 3 defines components of federated87

delegation model including capability-based delegation and revocation. Then, Section 4 illustrates88

the details of the proposed BlendCAC system and Section 5 explains the implementation of the89

proof-of-concept prototype. The experimental results and evaluation are discussed in Section 6. Finally,90

the summary, current limitations and on-going efforts are discussed in Section 7.91

2. Background Knowledge and Related Work92

2.1. Access Control in IoTs93

Technologies for authentication and authorization of access to certain resources or services are94

among the main elements to protect the security and privacy for IoT devices [8]. As a fundamental95

mechanism to enable security in computer systems, AC is the process that decides who is authorized to96

have what communication rights on which objects with respect to some security models and policies [9].97

An effective AC system is designed to satisfy the main security requirements, such as confidentiality,98

integrity, and availability. However, recently raised security and privacy issues push the AC systems in99

the era of IoT to meet a higher bar with more design considerations such as high scalability, flexibility,100

lightweight and causality.101

There are various AC methods and solutions with different objectives proposed to address IoT102

security challenges. The Role-Based Access Control (RBAC) model [10] provides a framework that103

species user access authorization to resources based on roles, and supports principles such as least104

privilege, partition of administrative functions and separation of duties [11]. However, a pure RBAC105

model presents a role explosion problem, which is inappropriate to implement security policies106

that require interpreting complex and ambiguous IoT scenarios. The RBAC model implemented on107

devices adopts a Web of Things (WoTs) approach to implement AC policies on the smart objects via108

the web service [12,13], and the RBAC model was extended by introducing context constraints to109

consider contextual awareness in AC decisions [14]. However, those proposals are not able to clearly110

specify the fine-grained AC on variant resources or services, like the mapping of the role notion and111

device-to-device communication.112

To address the weaknesses of RBAC model in a highly distributed network environment, an113

Attribute-based Access Control (ABAC) [15,16] is introduced in IoT networks to reduce the number of114

rules resulting from role explosion. In ABAC the AC policies are defined through directly associating115

attributes with subjects. An efficient authentication and ABAC based authorization scheme for the IoT116

perception layer has been proposed [17]. Based on user attribute certificates, an access right is granted117

by AC authority to ensure fine-grained access control. However, specifying a consistent definition118

of the attributes within a domain or across different domains could significantly increase effort and119

complexity on policy management as the number of devices grow, and hence, the attribute-based120

proposal is not suitable for large scale distributed IoT networks.121

Due to drawbacks that exist in traditional access control models such as RBAC and ABAC, the122

requirements imposed by IoT scenarios cannot be satisfied. Given many great advantages from an123

IoT perspective, such as scalability, flexibility, distributed, and user-driven, IoT systems can support124

delegation and revocation[8]. Capability-based access control approaches have been considered a125

promising solution to IoT systems. The Access Control Matrix (ACM) model represents a good126

conceptualization of authorizations by providing a framework for describing Discretionary Access127

Control (DAC) [11]. As two implementations of ACM, Access Control List (ACL) and Capability are128

widely used in authorization systems. In the ACL model, each object is associated with an access129

control list that saves the subjects and their access rights for the objects.130

The ACL is a centralized approach to support administrative activities with better traceability131

by implementing AC strategies on cloud servers [18]. However, as the number of subjects and132

resources increases, confused duty problems are identified in ACL and access rules become much133

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

4 of 22

more complex to manage. Due to the centralized management property, ACL cannot provide multiple134

levels of granularity, is not scalable and is vulnerable to a single point of failure. Meanwhile, in the135

capability-based access control (CapAC) model, each subject is associated with a capability list that136

represents its access rights to all concerned objects. The CapAC has been implemented in many large137

scale IoT-based projects, like IoT@Work [19].138

Although capability-based methods have been used as a feature in many access control solutions139

for the IoT-based applications, applying the original concept of capability-based access control model140

in IoT networks has raised several issues, like capability propagation and revocation [9]. To tackle141

these challenges, a Secure Identity-Based Capability (SICAP) System is proposed, which enables the142

monitoring, mediating, and recording of capability propagations to enforce security policies as well as143

achieving rapid revocation capability by using an exception list [9]. However, the centralized access144

control server (ACS) becomes the performance bottleneck of the system, and the author didn’t provide145

a clear illustration on security policy used in capability generation and propagation, neither was the146

context information in making authorization decision considered.147

To enable contextual awareness in federated IoT devices, an authorization delegation method148

is proposed based on a Capability-based Context-Aware Access Control (CCAAC) model [20]. By149

introducing a delegation mechanism to capability generation and propagation process, the CCAAC150

model shows great advantages to address scalability and heterogeneity issues in IoT networks.151

Given the requirement that a prior knowledge of the trust relationship among domains in federated152

IoTs must be established, however, the proposed approach is not suitable universally for all IoT153

application scenarios. Inspired by the SUN DIGITAL ECOSYSTEM ENVIRONMENT project [21], a154

Capability-based Access Control (CapAC) model was proposed that adopted a centralized approach for155

managing access control policy [5]. However, the proposed CapAC scheme depends on a centralized156

authority and did not consider the lightweight requirement at the smart device side. To address the157

limitations in CapAC, a Distributed Capability-based Access Control (DCapAC) model was proposed,158

which was directly deployed on resource-constrained devices [22,23]. The DCapAC allows smart159

devices to autonomously make decisions on access rights based on an authorization policy, and it160

shows advantages in scalability and interoperability. However, capability revocation management and161

delegation were not discussed, neither were the granularity and context-awareness considered.162

2.2. Blockchain and Smart Contract163

The blockchain is the fundamental framework of Bitcoin [6], which was introduced by Nakamoto164

in 2008. The blockchain is the public ledger that allows the data be recorded, stored and updated165

distributively. By its nature, the blockchain is a decentralized architecture that does not rely on a166

centralized authority. The transactions are approved and recorded in blocks created by miners, and the167

blocks are appended to the blockchain in a chronological order. Blockchain uses consensus mechanism168

to maintain the sanctity of the data recorded on the blocks. Thanks to the “trustless” proof mechanism169

enforced through mining task on miners across networks, users can trust the system of the public170

ledger stored worldwide on many different decentralized nodes maintained by ”miner-accountants,”171

as opposed to having to establish and maintain trust with the transaction counter-party or a third-party172

intermediary [24]. Blockchain is the ideal architecture to ensure distributed transactions between all173

participants in a trustless environment.174

Because of many attractive characteristics, blockchain technology has been investigated to offer a175

decentralized AC scheme in trustless network environments. A blockchain based AC is proposed to176

publish AC policy and to allow distributed transfer access right among users on bitcoin network [25].177

The proposal allows distributed auditability, preventing a third party from fraudulently denying the178

rights granted by an enforceable policy. However, the solution still relies on an external centralized179

policy database to fetch access right given the links stored in the blockchain, and the experimental180

results are not provided. Based on blockchain technology, FairAccess is proposed to offer a fully181

decentralized pseudonymous and privacy preserving authorization management framework for IoT182

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

5 of 22

devices [26]. In FairAccess, the AC policies are enclosed in new types of transactions that are used183

to grant, get, delegate, and revoke access. However, the scripting language used in Bitcoin allows to184

transcode two types of AC policies, so that the proposed framework cannot support more complex185

and granular access control model.186

Blockchain has shown its success in decentralization of currency and payments, like Bitcoin.187

Currently, designing a programmable money and contracts, which support variety of customized188

transaction types, has become a trend to extend blockchain applications beyond the cryptocurrency189

domain. Smart contract, which emerges from the smart property, is a method of using blockchain to190

achieve agreement among parties, as opposed to relying on third parties for maintaining a trust191

relationship. By using cryptographic and other security mechanisms, smart contract combines192

protocols with user interfaces to formalize and secure relationships over computer networks [27]. Smart193

contract is essentially a collection of pre-defined instructions and data that have been recorded at a194

specific address of blockchain. Through encapsulating operational logic as a bytecode and performing195

Turing complete computation on distributed miners, a smart contract allows user to transcode more196

complex business models as new types of transactions on a blockchain network. Smart contract197

provides a promising solution to implement more flexible and fine-grained AC models on blockchain198

networks.199

3. Federated Capability-based Delegation and Revocation Model200

In today’s IoT based systems, data service and security enforcement are deployed on centralized201

cloud centers where abundant computing and storage resources are allocated. Such a centralized202

network architecture is not scalable for large-scale IoT networks, and management efforts for resource203

and security policy become dramatically increased owning to heterogeneity property in a highly204

decentralized IoT environment. Delegation enables an entity to give permission to let other entities205

function on its behalf by providing all or some of its rights. It is considered a useful and effective206

approach to improve the scalability of distributed systems and decentralize access control tasks [28].207

As an important factor for secure distributed system, delegation has been recognized as one208

of the schemes to support access policy management in a distributed computing environment [29].209

Although a rule-based framework for role-based delegation and revocation was proposed [30], the210

proposal cannot support capability-based access control system. In this section we propose a Federated211

Capability-based Delegation Model (FCDM). This FCDM model supports capability-based hierarchy and212

multi-step delegation by introducing the delegation relationship.213

3.1. Capability Access Control Model214

The elements and relations in Capability AC model are depicted in Figure 1. Access Control215

Matrix (ACM) includes sets of three basic elements: Subject S, Object O, and Permission P. Access216

Control List (ACL) and Capability are two permission relationships in the ACM model. The ACL217

permission assignment is a many-to-one relation between Subject and Objects, which means that218

each object is associated with a set of access control lists that save the subjects and their authorized219

permissions for the object. However, the capability model uses subject oriented permission assignment220

in which relations between Subject and Objects becomes one-to-many.221

A subject in the capability model is a human being or device, a object is an entity who offers222

services or resources, and permission refers to an authorized activity to carry out a particular task or223

an access resource on an object. In Fig. 1, the permissions are: R-read, W-write and #-not allowed. For224

each subject, the capability specifies a set of connected objects which are associated with authorized225

permissions to access services or resources. The following is a list of definitions in capability model:226

• S, O and P are sets of subjects, objects and permissions.227

• inCapO⊆O×P is internal capability which defines a one-to-many relation assignment between228

object and permissions.229

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

6 of 22

Figure 1. Capability Access Control Model.

• extCap(S,O)⊆S×inCapO is external capability which specifies a one-to-many relation assignment230

by associating a subject with a subset of internal capabilities.231

The inCapO are defined by object owner or policy authority to indicate all available service232

permissions supported by an object. The policy decision authority could generate extCap(S,O) for a233

subject to access an object by authorizing permissions in inCapO.234

3.2. Federated Capability-based Delegation Model235

Delegation is an efficient mechanism to simplify access policy management by building a236

hierarchical relationship to reflect an organization’s lines of authority and responsibility. In essential, a237

delegation hierarchy is a partial order relation �. If x delegates the permissions to y, or y inherits the238

permissions of x, the delegation relation between x and y could be represented as a partial order y�x.239

A partial order is a reflexive, transitive, and antisymmetric relation.240

To control the delegation propagation and simplify the federated delegation model, we assume241

that a subject cannot be delegated any new permissions if the subject has already been assigned242

delegated permissions. Given the above assumption, Delegation Relation (DR) in FCDM is defined as243

follows:244

• DR⊆extCap×extCap is one-to-many delegation relation. A delegation relation can be represented245

by ((S1, (O×P1)), (S2, (O×P2)))∈DR, where P2�P1. It indicates that subject S1 delegates subset246

of P1 to subject S2 as P2.247

To confine delegation relation propagation steps, it’s necessary to set delegation depth to248

define maximum times whether or not delegation operation can be further performed. Two types249

of delegation: single-step delegation and multi-step delegation are considered in FCDM. Single-step250

delegation prevents the delegated subject from further performing delegation; whereas multi-step251

delegation allows multiple delegate operations until it reaches the maximum delegation depth. Thus,252

Single-step delegation is considered to be a special case of multi-step delegation with maximum253

delegation depth equal to one.254

Multi-step delegation generates an ordered list of delegation relation, called Delegation Path (DP).255

In general, a delegation path starts from an initial or root extCap, and is represented as the following256

notation:257

DR0→DR1→· · ·→DRi→· · ·→DRn258

All delegation paths starting with the root extCap construct a hierarchical structure: Delegation259

Tree (DT). In the delegation tree, each node represents a extCap and each edge refers to a DR. The layer260

of extCap in the tree is defined as the delegation depth.261

Given above discussions, the definitions and functions in FCDM are:262

• DP⊆DR×DR is an ordered list of delegation relation indicating a delegation path.263

• DT⊆DR×DR is a delegation relation hierarchy representing a delegation tree.264

• NmaxDepth is a natural number representing maximum delegation depth.265

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

7 of 22

Figure 2. An Example for Delegation Paths and an Delegation Tree.

• Ancestor: extCap→extCap is a function that maps a extCap node to another parent extCap node in266

the delegation tree.267

• Path: extCap→DP is a function that maps a extCap node to a delegation path. Path(extCapi) = {268

DR0→DR1→· · ·→DRi | extCapi = Ancestor(extCapi−1)}269

• DelegateDepth: extCap→N is a function that returns a delegation depth in delegation tree given270

extCap node, where N is a natural number set representing delegation depth.271

In order to illustrate the concepts of delegation path and delegation tree. a set of delegation272

relations example is list as follows:273

DR1 : ((S1, (O×P1)), (S2, (O×P2)))∈DR274

DR2 : ((S1, (O×P1)), (S3, (O×P3)))∈DR275

DR3 : ((S1, (O×P1)), (S4, (O×P4)))∈DR276

DR4 : ((S3, (O×P3)), (S5, (O×P5)))∈DR277

DR5 : ((S3, (O×P3)), (S6, (O×P6)))∈DR278

According to above delegation relations, all delegation paths can be calculated by applying Path279

function, and build up a delegation tree as shown in Fig 2. In the delegation tree, the parent node only280

delegated a subset of its permissions to a child, so that permission propagation over delegation path is281

essentially a partial order sequence. Take DP5 for example, permission delegation is represented as282

partial order relation: P6�P3�P1.283

3.3. Capability-based Delegation Authorization284

Delegation authorization is mainly to impost restrictions on which subject can be delegated285

to whom based on delegation authorization rules. In our proposed FCDM, the subject-to-subject286

delegation authorization relation is defined as follows:287

• extCap, S, C, NmaxDepth are sets of capability, subject, conditions for authorization and maximum288

delegation depth, respectively.289

• can_Delegate⊆ extCap× S×C×NmaxDepth.290

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

8 of 22

Figure 3. An Example for Grant-independent Cascading Revocation.

The relation (extCapS1, S2, C, NmaxDepth)∈ can_Delegate means that a subject S1, who is a node291

in delegation tree with capability extCapS1, could delegate its subset of permissions to subject S2 whose292

properties satisfy the conditions without exceeding the maximum delegation depth NmaxDepth. Take293

an example in Fig. 2, (extCapS4 ∈ extCap)∧ ((extCapS4, S7, C, 1)∈ can_Delegate), where NmaxDepth =294

3 and C = {extCapS7 /∈ extCap}, then S4 can delegate subset of its permission P4 to new subject S7295

as permission P7. As a result, the new delegation relation DR6 : ((S4, (O×P4)), (S7, (O×P7)))∈DR296

and capability extCapS7 = (S7, (O×P7))∈extCap are created and appended to DR3 as a leaf node of297

delegation tree DT.298

3.4. Capability-based Delegation Revocation299

As an important process that accompanies the delegation mechanism, revocation refers to process300

to nullify the delegated permissions, or attempts to rollback the state before permissions were delegated.301

The revocation approaches can be categorized into three dimensions [30]: grant-dependency, propagation,302

and dominance. Our FCDM only considers two dimensions: grant-dependency and propagation.303

Grant-dependency refers to the legitimacy of a subject who can take away assigned permissions304

from a delegated subject, and has two types: grant-dependent and grant-independent. Grant-dependent305

revocation means that only the delegating subject (parent) can revoke the permissions from directly306

delegated subjects (children). Grant-independent revocation means any ancestor subject in the delegation307

path can revoke the delegated permissions from the offspring subjects.308

Propagation specifies the extent of the revocation to subsequent delegated subjects. it can be309

categorized as cascading and non-cascading. Cascading revocation directly revokes delegated permissions310

from subject as well as indirectly nullified a set of subsequent propagated delegation relation. While311

Non-cascading revocation only takes away directly delegated permissions from children subjects.312

To reduce the complexity in the revocation process, our FCDM enforces grant-independent and313

cascading rules in delegation revocation. Figure 3 is an example for grant-independent cascading314

revocation. Revocation authorization can be defined as follows:315

• extCap, S, Ancestor() are sets of capability, subject and Ancestor function, respectively.316

• can_Revoke⊆ extCap× S× Ancestor(S).317

The relation (extCapS1, Ancestor(S2))∈ can_Revoke means that a subject S1, who is the318

ancestor of subject S2, can revoke delegated permissions of S2 as well as all indirect assigned319

permissions by S2 in subsequent delegation relation. As shown in Fig. 3, owing to fact320

that both S1∈ Ancestor(S3) and S1∈ Ancestor(S4), revocation authorization satisfies the relation321

(extCapS1, Ancestor(S3))∨(extCapS1, Ancestor(S4))∈ can_Revoke. As a result, the delegation relation322

DR2 and DR3 are removed from delegate tree and delegated capability extCapS3 and extCapS4 are323

revoked. In addition, subsequent relation DR4 and DR5 assigned by S3 are also removed, and324

associated capability extCapS5 and extCapS6 are revoked.325

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

9 of 22

4. BlendCAC: a BLockchain-ENabled Decentralized Federated CapAC System326

Most dominant IoT based systems, like ASW IoT, utilize a centralized cloud platform where327

abundant computing and storage resources are allocated to securely manage connected devices.328

As a result, all service access requests on devices need to be transmitted to remote servers for329

authentication and authorization. Such a centralized network architecture is not scalable for today’s330

large IoT networks, and latencies are not tolerable in many mission-critical applications. To meet331

the requirements of real-time processing and instant decision making, online, uninterrupted smart332

surveillance systems have been intensively studied recently leveraging the edge-fog-cloud computing333

paradigm [31–33]. Based on an automatic surveillance system architecture, a federated capability-based334

access control system (FedCAC) [34] has been proposed to addresses scalability, granularity, and335

dynamicity challenges in access control strategy for IoT devices. Through delegating part of the336

identify authentication and authorization task to domain delegator, workload of the centralized policy337

decision making center (PDC) is reduced. Migrating some processing validation tasks to local devices338

helps the FedCAC to be lighter and context-awareness enabled. Involving smart objects in access339

right authorization process allows device-to-device communication, which implies better scalability340

and interoperability in an IoT network environment. However, a comprehensive capability-based341

delegation and revocation mechanism is not illustrated. In addition, FedCAC is essentially still a342

centralized AC scheme, such that weaknesses include being the single-point of failure and performance343

bottleneck, are still not solved.344

Inspired by the smart contract and blockchain technology, a decentralized federated345

capability-based access control framework for IoTs, called BlendCAC, is proposed in this paper,346

and a prototype of proposal has been implemented in a physical IoT network environment to verify the347

efficiency and effectiveness. The next subsection provides a comprehensive system design of BlendCAC348

framework. Unlike the approaches discussed above, BlendCAC, effectively provides decentralization,349

scalability, granularity, and dynamicity of AC strategies for IoTs. Through encapsulating FCDM model350

and AC policies into a Smart Contract, which is deployed across the blockchain network, users are351

the master of their own data or devices instead of being supervised or controlled by a third party352

authority. Enforcing authorization and access right verification among a large number of distributed353

edge devices allows more coordination on edge networks.354

4.1. System Architecture of BlendCAC355

Figure 4 illustrates the proposed BlendCAC system architecture, which intends to function in a356

scenario including two isolated IoT-based service domains without pre-establishing a trust relationship.357

In our proposed BlendCAC framework, the cloud works as service provider to provide global profile358

data and security policy management , and the domain coordinator enforces delegated security policies359

to manage domain related devices and services. Operation and communication modes are listed as360

follows:361

1. Registration: All entities must create at least one main account defined by a pair of keys to join362

the blockchain network. Each account is indexed by its address that is derived from his/her363

own public key. In our scenario, identity authentication and management is deployed on two364

levels: cloud and coordinator. The cloud server maintains a global profile database, and the365

domain coordinator maintains a local profile database, and regular synchronization between the366

cloud server and domain coordinator ensures data consistence. New users could either sends367

registration request to cloud or delegated coordinator. Once the identity information related to368

users or IoT devices is verified, the profile of each registered entity is created by using his/her369

address for authentication process when an access right request happens. As a result, the domain370

coordinators are able to enforce delegated authorization policies and perform decision-making371

to directly control their own devices or resources instead of depending on third parties.372

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

10 of 22

Figure 4. System Architecture of BlendCAC.

2. Smart Contract Deployment: A smart contract, which manages federated delegation relation and373

capability tokens, must be developed and deployed on the blockchain network by the policy374

owner. In our framework, the cloud acts as data and policy owner who could deploy smart375

contract encapsulating delegation and CapAC token. Thanks to cryptographic and security376

mechanisms provided by blockchain network, smart contracts can secure any algorithmically377

specifiable protocols and relationships from malicious interference by third parties under378

trustless network environment. After synchronizing the blochchain data, all nodes could access379

all transactions and recent state of each smart contract by referring local chain data. Each380

node interacts with the smart contract through the provided contract address and the Remote381

Procedure Call (RPC) interface.382

3. Federated Delegation: The PDC at the cloud server is responsible for delegation policy definition383

and access right authorization enforcement. To reduce the overhead of the centralized cloud384

server and meet requirements of scalability and heterogeneity in each IoT domain, the domain385

coordinator delegates part of the policy decision making tasks and carries out domain specified386

authorization rules based on domain specified policies. After receiving a delegation request387

from a coordinator candidate and executing policy decision making task to delegate permissions388

to coordinator, cloud launches a transaction to issue a delegation certificate on smart contract.389

Finally, the federated delegation relationship is established between the cloud server and the390

coordinator, and profile and policy data synchronization between the cloud and coordinator is391

periodically carried out to ensure data consistence on two side.392

4. Capability Authorization: To successfully access services or resources at service providers, an entity393

initially sends an access right request to the domain coordinator to get a capability token. Given394

the registered entity information established in the profile database, a policy decision making395

module evaluates the access request by enforcing the delegated authorization policies. If the396

access request is granted, the domain coordinator issues the capability token encoding the access397

right, and then launches a transaction to update the token data in the smart contract. After the398

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

11 of 22

transaction has been approved and recorded in a new block, the domain coordinator notifies the399

entity with a smart contract address for the querying token data. Otherwise, the access right400

request is rejected.401

5. Access Right Validation: The authorization validation process is performed at the local service402

providers on receiving a service request from the entity. Through regularly synchronizing the403

local chain data with the blockchain network, a service provider just simply checks the current404

state of the contract in the local chain to get a capability token associated with the entity’s address.405

Considering the capability token validation and access authorization process result, if the access406

right policies and conditional constraints are satisfied, the service provider grants the access407

request and offers services to the requester. Otherwise, the service request is denied.408

To enable a scalable, distributed and fine-grained access control solution to IoT networks, the409

proposed BlendCAC is focused on three issues: identity-based capability management, access right410

authorization and privilege mechanism delegation.411

4.2. Capability Token Structure412

In the BlendCAC system, the entities are categorized as subjects and objects. Subjects are defined413

as entities who request a service from the service providers, while objects are referred to entities who414

offer the resources or services. Entities could be either human beings or smart devices. In the profile415

database, all registered entities are associated with a globally unique Virtual Identity (VID), which is416

used as the prime key for identifying entities’ profile information. As each entity has at least one main417

account indexed by its address in the blockchain network, the blockchain is used to represent the VID418

for profiling register entities.419

In general, the capability specifies which subject can access resources of a target object by
associating subject, object, actions and condition constraints. The identity-based capability structure is
defined as follows:

ICap = f (VIDS, VIDO, AR, C) (1)

where the parameters are:420

• f : a one-way hash mapping function;421

• VIDS: the virtual ID of a subject that requests an access to a service or resource;422

• VIDO: the virtual ID of an object that provides a service or resource;423

• AR: a set of access right for actions, e.g. read, write, execute; and424

• C: a set of context awareness information, such as time, location.425

In the BlendCAC system, an AR is defined as the access right set. For example, the AR can426

be {Read}, {Write}, {Read; Write}, or {NULL}. If AR = {NULL}, the operation conducted on the427

resource is not allowed. C is defined as a context constraints set, like C = {C1, C2} or C = {NULL}. If428

C = {NULL}, no context constraint is considered in the access right validation process.429

4.3. Delegation Certificate Structure430

Identity-based Delegation Certificate (IDC) is in essential a special capability token which specifies
the delegation relation. The structure of IDC is represented as follows:

IDC = f (VIDS, {VIDP}, {VIDC}, D, W, DAR) (2)

where the parameters are:431

• f : a one-way hash mapping function;432

• VIDS: the virtual ID of a subject who is the owner of the delegation token;433

• VIDP: the virtual ID of a parent subject that delegates the token to VIDS;434

• {VIDC}: a set of virtual ID of children subject that records the delegated nodes;435

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

12 of 22

• D: a natural number that indicates the current depth in delegation tree;436

• W: a natural number that defines maximum delegation width to limit delegable children nodes437

in {VIDC}; and438

• DAR: a set of delegated permissions for actions, e.g. authorize capability token.439

In order to manage delegation relations between IDC, a hierarchical data structure, called
Identity-based Delegation Tree (IDT) is defined as follows:

IDT = f (S, MD, IDC) (3)

where the parameters are:440

• f : a one-way hash mapping function;441

• S: the virtual ID of a subject who is the owner of delegation tree;442

• MD: a natural number that defines maximum delegation depth; and443

• IDC: a delegation certificate that indicates the root node of delegation tree.444

4.4. Federated Delegation Mechanism445

Through encapsulating a delegation certificate structure as smart contract and deployed on446

blockchain network, the delegation mechanism could be enforced across different security domains in447

a federated network environment. In the BlendCAC system, the delegator, delegation authority center448

(DAC) and identity management are all implemented as service applications on the cloud server, while449

the delegatee is deployed on the coordinator in each network domain. The DAC is responsible for450

identification authentication and delegation authorization service. Prior to the delegation process, the451

delegator and delegatee should have finished the identity registration process. Figure 5 illustrates the452

delegation process in our proposed BlendCAC system. The involved work flow in delegation process453

is:454

Figure 5. Delegation Process in BlendCAC System.

• Request Authentication: The delegatee sends a delegation request to the delegator to ask for455

IDC. On receiving the request from the delegator, the DAC verifies the identity of delegatee456

by referring identity management service. If the delegatee’s identity is valid, the identity457

management service returns a virtual ID (VID) of the delegatee to the DAC. Then the DAC sends458

back the authentication result to the delegator. Otherwise, the DAC rejects the delegation request459

by returning a failure notification.460

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

13 of 22

• Delegation Authorization: After receiving the verification result from the DAC, the delegator is461

capable of assigning delegable permissions to trusted delegatee given predefined delegation462

policies. In our proposal, the federated delegation mechanism is implemented by modifying463

delegation certificate IDC to assign the delegated permissions or change delegation relation.464

As the smart contract has received an update DC transaction from the delegator, it checks465

the delegator’s IDC to validate the delegation right. If the delegation status can match the466

can_Delegate relation, the delegator could delegate subset of his/her delegated permissions467

to delegatee entity by modifying delegatee’s IDC and appending the delegatee’s address to468

delegator’s children nodes set {VIDC} to set up delegation relation. Otherwise, the capability469

delegation request is rejected.470

• Delegation Revocation: The delegation revocation considers two scenarios: delegated permissions471

P revocation and delegation certificate IDC revocation. According to revocation mechanism472

defined in FCDM, only entities who meet the can_Revoke relation could carry out revocation473

operation over smart contract. In delegated permissions revocation process, the delegator could474

nullify part of assigned permissions by simply removing access right elements from DAR in475

delegatee’s IDC. In case of IDC revocation, through cascading removing all subsequent delegate476

relations from DP which starts from delegator and destructing delegatee’s IDC, the delegator477

could tear down all delegation relations that is associated with delegatee, including those IDCs478

assigned by delegatee.479

4.5. Capability-based Access Right Authorization480

The capability token structure and the related operations are transcoded to a smart contract481

and deployed on the blockchain network, while the access right authorization is implemented as a482

policy-based decision making service running on the cloud or delegated domain coordinator. As483

shown by Fig 6, a comprehensive capability-based access right authorization procedure consists of484

four steps: capability generation, access right validation, capability delegation and revocation.485

1. Capability Generation: As one type of meta data to represent the access right, the capability ICap486

could be generated by associating a VID with an AR, thus the ICap has the identified property487

to prevent forgery. After receiving access request from user, the domain coordinator generates488

capability token based on delegated access right authorization policy, and launches transactions489

to save a new token data to a smart contract. A large number of ICap’s are grouped into the490

capability pools on smart contract, which could be proofed and synchronized among the nodes491

across the blockchain network.492

2. Access Right Validation: After receiving the service request from a subject, the service provider493

first fetches the capability token from the smart contract by using the subject’s address, then494

makes decisions on whether or not to grant an access to the service according to the local access495

control policy. Implementing access right validation at the local service provider allows smart496

objects to be involved in the AC decision making task, which is suitable to offer a flexible and497

fine-grained AC service in IoT networks.498

3. Capability Revocation: The capability revocation considers two scenarios: partial access right499

revocation and ICap revocation. In our proposal, only the entities with delegated capability500

management permissions are allowed to perform revocation operation on capability tokenized501

smart contract. In the partial access right revocation process, the delegated entities could remove502

part of entries from AR to revoke the selected access right. In case of ICap revocation, through503

directly clearing the AR in ICap, the whole capability token becomes unavailable to all associated504

entities.505

5. Prototype Design506

A concept-proof prototype system has been implemented on a real private Ethereum blockchain507

network environment. Compared with other open blockchain platforms, like Bitcoin and Hyperledger,508

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

14 of 22

Figure 6. Flowchart of the Capability-based Access Right Authorization.

Ethereum has a more matured ecosystem and is designed to be more adaptable and flexible for the509

development of a smart contract and business logic [35].510

5.1. Delegation Certificate and Capability Token Structure511

The proposed BlendCAC model has been transcoded to a smart contract using Solidity [36],512

which is a contract-oriented, high-level language for implementing smart contracts. With Truffle [37],513

which is a world class development environment, testing framework and asset pipeline for Ethereum,514

contract source codes are compiled to Ethereum Virtual Machine (EVM) bytecode and migrated to the515

Ethereum blockchain network.516

To implement a BlendCAC system on IoT devices without introducing significant overhead over517

network communication and computation, delegation certificate and capability token data structure is518

represented in JSON [38] format. Compared to XML-based language for access control, like XACML519

and SAML, JSON is lightweight and suitable for constrained platforms.520

Figure 7: a) demonstrates a delegation certificate example, and the data fields in the data structure521

are described as follow:522

• parent : a 20 bytes value to represent address of parent node in blockchain network;523

• children: a queue to record all address of delegated entities;524

• depth: a natural number to indicate depth of current delegation certificate in the delegation tree;525

• delegateWidth: a natural number to constraint horizontal delegation times;526

• privileges: a set of delegated access rights that delegator has assigned to the delegatee, including527

– contract: a 20 bytes value to indicate address of delegated smart contract; and528

– authorization: a set of delegated functions for which the operations are granted.529

Figure 7: b) presents a capability token data example used in the AC system. A brief description530

of each field is provided as follows:531

• id: the auto-incremented prime key to identify a capability token;532

• initialized: a bool flag used for checking token initialized status;533

• isValid: a bool flag signifying enabled status to show whether token is valid or not;534

• issuedate: for identifying the date time when the token was issued;535

• expireddate: the date time when token becomes expired;536

• authorization: a set of access right rules that the issuer has granted to the subject, including537

– action: to identify a specific granted operation over resource;538

– resource: the resource in the service provider for which the operation; is granted. In this539

case, resource is defined as granted REST-ful API; and540

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

15 of 22

Figure 7. Token Data Structure in BlendCAC.

– conditions: a set of conditions which must be fulfilled locally on the service provider to541

grant the corresponding operation.542

After a smart contract has been successfully deployed on the blockchain network, all nodes in the543

network could interact with smart contract using address of contract and Application Binary Interface544

(ABI) definition, which describes the available functions of a contract.545

5.2. Access Authorization Service546

The access authorization and validation policy is enforced as a web service application based547

on the Flask framework [39] using Python. The Flask is a micro-framework for Python based on548

Werkzeug, Jinja 2 and good intentions. The lightweight and extensible micro architectures make the549

Flask a preferable web solution on resource constrained IoT devices.550

Web service application in BlendCAC system consists of two parts: client and server. The client551

performs operation on resource by sending data request to the server, while the server provides552

REST-ful API for the client to obtain data or perform operation on resource in server side. A capability553

based access control scheme is enforced on server side by performing access right validation on554

the service provider. The access right validation process is launched after a request containing the555

capability token is received on server. Figure 8 shows a block diagram with the steps to process an556

authorization decision.557

1. Check cached token data: After receiving a service request from a user, the service provider firstly558

checks whether or not the token data associated with user’s address exists in the local database.559

If it is failed in searching the token data, the service provider can fetch the token data from the560

smart contract through calling an exposed contract method and save token data to the local561

database. Otherwise, the token data is directly reloaded from the local token database for further562

validation process. The service provider regularly synchronizes the local database with smart563

contract to ensure the token data consistence.564

2. Verify token status: As a capability token has been converted to JSON data, the first step of token565

validation is checking the current capability token status, such as initialized, isValid, issuedate,566

and expireddate. If any status of a token is not valid, the authorization process stops and sends567

deny access request acknowledgement back to the subject.568

3. Check whether access is granted or not: The service provider will go through all access rules in the569

access right set to guarantee that the request operation is permitted. The process checks whether570

or not the REST-ful method used by the requester matches the authorized action of current access571

rules and the value of resource field is the same as the Request-URI option used by the requester.572

If current access rule verification failed, process skips to the next access rule for evaluation. If573

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

16 of 22

Figure 8. BlendCAC Access Authorization Process.

none of the access rules could successfully pass the verification, the authorization validation574

process stops and denies the access request.575

4. Verify the conditions: Even through the action on a target resource is permitted after the access576

validation, the context-awareness constrains are necessary to be evaluated on the local device577

by verifying whether or not the specified conditions in the token is satisfied. The condition578

verification process goes through all constraints in the condition set to find the matched ones. If579

no condition is fulfilled in the given local environment, the access right validation process stops580

and denies access request.581

6. Experimental Results582

In order to evaluate the performance and the overhead of our BlendCAC scheme, two benchmark583

models, RBAC and ABAC, are also transcoded to separate smart contracts and enforced on the584

experimental web service system. All transcoded access control models have the similar data structure585

in smart contract except authorization representation. In RBAC based smart contract, authorization586

is defined as the approach to bridge the relationship between user and permission, while RBAC587

based smart contract uses user’s attributes as representative format for authorization. Both the588

RBAC and ABAC need a local database, either to maintain the user-role-permission or to manage589

the attribute-permission policy for authorization validation process, the profiles and policy rules590

management are developed by using an embedded SQL database engine, called SQLite[40]. The lower591

memory and computation cost make the SQLite an ideal database solution to resource constrained592

system, like Raspberry Pi.593

6.1. Environmental Setup594

The mining task is performed on a system with stronger computing power, like a laptop or a595

desktop. Two miners are deployed on a laptop, of which the configuration is as follows: the processor596

is 2.3 GHz Intel Core i7 (8 cores), the RAM memory is 16 GB and the operating system is Ubuntu597

16.04. And other four miners are distributed to four desktops which are empowered with the Ubuntu598

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

17 of 22

Figure 9. Experimental Results of BlendCAC System.

16.04 OS, 3 GHz Intel Core TM (2 cores) processor and 4 GB memory. In our system, the laptop599

acts as a cloud computing server, while all desktops work as fog computing nodes to take role of600

domain coordinator. Each miner uses two CPU cores for mining. The edge computing nodes are two601

Raspberry PI 3 Model B with the configuration as follows: 1.2GHz 64-bit quad-core ARMv8 CPU, the602

memory is 1GB LPDDR2-900 SDRAM and the operation system is Raspbian based on the Linux kernel.603

Unfortunately, the Raspberry PI is not powerful enough to function as a miner, so all Raspberry Pi604

devices worked as nodes to join the private blockchain without mining. All devices use Go-Ethereum605

[41] as the client application to work on the blockchain network.606

6.2. Experimental Results607

To verify effectiveness of our proposed BlendCAC approaches to defense unauthorized access608

request, a service access experiment is carried out on the real network environment. In the test609

scenario, one Raspberry Pi 3 device works as the client while another Raspberry Pi 3 device works610

as the service provider. Given the authorization process shown in Fig 9, when any of the steps in611

the authorization is failed, the running process will immediately be aborted instead of continuing to612

carry out all authorization stages. As shown by Fig 9 (a), the server aborted authorization process613

due to failing to verify granted actions or conditional constraints that are specified in the access right614

list. As a result, the client node received a deny access notification from the server and cannot read615

the requested data. In a contrast, Fig 9 (b) presents a successful data request example, in which the616

whole authorization process is accomplished at the server side without any error. Finally, the client617

successfully retrieves the data from the service provider.618

6.3. Performance Evaluation619

In the test scenario, two Raspberry Pi 3 devices are adopted to play the roles of the client and620

the service provider respectively. To measure the general cost incurred by the proposed BlendCAC621

scheme both on the IoT devices’ processing time and the network communication delay, 50 test runs622

have been conducted based on the proposed test scenario, where the client sends a data query request623

to the server for an access permission. This test scenario is based on an assumption that the subject has624

a valid capability token when it performs the action. Therefore, all steps of authorization validation625

must be processed on the server side so that the maximum latency value is computed.626

6.3.1. Computational Overhead627

According to the results shown in Fig. 10, the average total delay time required by the BlendCAC628

operation of retrieving data from the client to server is 243 ms, which is almost the same as RBAC or629

ABAC does. The total delay includes the round trip time (RTT), time for querying capability data from630

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

18 of 22

Figure 10. Computation Time for Each Stage in BlendCAC.

the smart contract, time for parsing JSON data from the request, and time for access right validation.631

The token processing task is mainly responsible for fetching token data from the smart contract and632

introduces the highest workload among the authorization operation stages. Owing to the fact that633

encapsulating user-role relationship in the smart contract requires less data than the capability or634

attributes does, the RBAC incurred less computational cost than what BlendCAC and ABAC did in635

token processing stage. As the most computing intensive stage, the execution time of token processing636

is about 210 ms, which is accounted for almost 86% of the entire process time.637

The entire authorization process is divided into two steps, token validation and authorization638

verification, where the average time of the authorization process is about 0.86 ms (0.12 ms + 0.74639

ms). Compared with token validation process, which only simply checks the token valid status, the640

authorization verification process requires more computational power to enforce the local access641

control policies. Although the similarity in token data structure allows all the three access control642

models have almost the same time in the token validation stage, the BlendCAC outperforms the RBAC643

and ABAC in authorization verification. Since both the RBAC and ABAC needs a database to either644

manage user-role-permission relationship or maintain attributes-permission rules, which inevitably645

incurs time consuming on searching rules in database. In our experimental study, the RBAC (2.47 ms)646

and ABAC (2.07 ms) have much higher processing time than BlendCAC (0.74 ms).647

6.3.2. Communication Overhead648

Owing to the high overhead introduced by querying token data from the smart contract in token649

processing stage, a token data caching solution is introduced in the BlendCAC system to reduce650

network latency. When the client sends a service request to the server, the service side extracts cached651

token data from the local storage to valid authorization. The service providers regularly update cached652

token data by checking smart contract status. The token synchronization time is in consistence with653

block generation time, which is about 15 seconds in the Ethereum blockchain network. Simulating654

a regular service request allows us to measure how long it takes for the client to send a request and655

retrieve the data from the server.656

Figure 11 shows the overall network latency incurred and compares the execution time of the657

BlendCAC with RBAC, ABAC and a benchmark without any access control enforcement. At the658

beginning, a long delay is observed in the first service request scenario, in which service provider659

communicated with the smart contract and cached the token data. However, through processing660

the local cached token data for authorization validation, the network latency decreases quickly and661

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

19 of 22

Figure 11. Network Latency of BlendCAC.

becomes stable at a low level during the subsequent service requests. The benchmark without access662

control enforcement takes an average of 31 ms for fetching requested data versus that the BlendCAC663

consumes on average of 36 ms. It means that the proposed BlendCAC scheme only introduces about664

5 ms extra latency. The overhead in terms of delay is trivial. As shown by Fig. 11, the BlendCAC665

also has lower latency than RBAC and ABAC in most period of time. In addition, unlike RBAC and666

ABAC, which rely on the local policy database as intermediate to valid access right, encoding access667

right directly in capability token makes the BlendCAC more scalable and flexible in the large scale IoT668

networks.669

As the experimental results show, the proposed BlendCAC scheme introduced a small amount of670

overhead, both at the network layer and the local device layer. To measure general network latency of671

inter-domain communication, HTTP is executed on the same testbed to simulate a regular transaction,672

like connects, sends a request and retrieves the reply. Compared with calculated average network673

latency that is about 300 ms, the trade-off in the proposed BlendCAC is acceptable for the network674

environments by only incurring 5 ms latency (no more than 2%). In addition, the test scenarios are675

based on Raspberry Pi devices, which belongs to a type of simple board computer (SBC) with limited676

computation power and memory space. It is reasonable to expect a better performance when the677

BlendCAC scheme is implemented on more powerful smart devices, like a smart phone. Although678

synchronizing cached token data with the smart contract requires more computational resources, the679

transactions of querying smart contract status are regularly launched by the service providers in a680

separate service thread rather than being called in each service request, so that network overhead over681

service request communication is greatly reduced to improve QoS requirement.682

6.4. Discussions683

The experimental results demonstrate that our proposed BlendCAC strategy is effective and684

efficient to protecting the IoT devices from an unauthorized access request. Compared to centralized685

AC model, our proposed scheme has the following advantages:686

• Load balance: The BlendCAC framework takes advantage of delegation mechanism to distribute687

the load of centralized PDC server to separate local domain coordinators, such that the bottleneck688

effect of PDC is mitigated and the risk of malfunction resulting from centralized system is689

reduced. Even in the worst case when the PDC crash for a short period of time, a large number690

of domain coordinators still work normally on behalf of the PDC to provide services;691

• Decentralized authorization: Leveraging the blockchain technique, the proposed BlendCAC scheme692

allows users to control their devices and resource without depending on a third centralized693

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

20 of 22

authority to establish the trust relationship with unknown nodes; instead, it could define a694

domain-specific access authorization policy, which is meaningful to the distributive, scalable,695

heterogeneous and dynamic IoT-based applications;696

• Edge computing driven intelligence: Thanks to federated delegation mechanism and blockchain697

technology, the BlendCAC framework provides a device-driven access control strategy that698

is suitable for the distributed nature of IoT environment. Through transferring power and699

intelligence from the centralized cloud server to the edge of network, the risk of performance700

bottleneck and the single point of failure are mitigated, and smart things are capable of protecting701

their own resource and privacy by enforcing user-defined security mechanism;702

• Fine granularity: Enforcing access right validation on local service providers empowers those703

smart devices to decide whether or not to grant access to certain services according to local704

environmental conditions. Fine-grained access control with lease privilege access principle705

prevents privilege escalation, even if attacker steals capability token;706

• Lightweight: Compared to XML-based language for access control, such as XACML, JSON707

is a lightweight technology that is suitable for resource constrained platforms. Given the708

experimental results, our JSON based capability token structure introduces small overhead709

on the general performance.710

7. Conclusions711

In this paper, we proposed a decentralized federated capability-based access control framework712

leveraging the smart contract and blockchain technology, called BlendCAC, to handle the challenges713

in access control strategies for IoT devices. A concept-proof prototype has been built in a physical IoT714

network environment to verify the feasibility of the proposed BlendCAC. The FCDM model and CapAC715

policy are transcoded to smart contracts and works on the private Ethereum blockchain network.716

The desktops and laptops serve as miners to maintain the sanctity of transactions recorded on the717

blockchain, while Raspberry PI devices act as edge computing nodes to access and to provide IoT-based718

services. Extensive experimental studies have been conducted and the results are encouraging. It719

validated that the BlendCAC scheme is able to efficiently and effectively enforce access control720

authorization and validation in a distributed and trustless IoT network. This work has demonstrated721

that our proposed BlendCAC framework is a promising approach to provide a scalable, fine-grained722

and lightweight access control for IoT networks.723

While the reported work has shown significant potential, there is still a long way to go to build a724

complete decentralized security solution for IoT edge computing. Deeper insights are expected. Part of725

our on-going effort is focused on further exploration of the blockchain based access control scheme in726

real-world applications. Taking the smart surveillance system as a case study, the proposed BlendCAC727

will be extended to protect network cameras and motion sensors in the novel urban surveillance728

platform we developed recently [32,42].729

Abbreviations730

The following abbreviations are used in this manuscript:731

732

ABAC: Attribute-based Access Control733

AC: Access Control734

ACL: Access Control List735

ACM: Access Control Matrix736

BlendCAC: BLockchain-ENabled Decentralized Federated Capability-based Access Control737

CAC/CapAC: Capability-based Access Control738

FCDM: Federated Capability-based Delegation Model739

IoT: Internet of Thing740

RBAC: Role-based Access Control741

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

21 of 22

RTT: Round Trip Time742

QoS: Quality of Service743

744

1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey745

on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials 2015,746

17, 2347–2376.747

2. Snidaro, L.; Garcia-Herrera, J.; Llinas, J.; Blasch, E. Context-Enhanced Information Fusion; Springer, 2016.748

3. Blasch, E.; Kadar, I.; Grewe, L.L.; Brooks, R.; Yu, W.; Kwasinski, A.; Thomopoulos, S.; Salerno, J.; Qi, H. Panel749

summary of cyber-physical systems (CPS) and Internet of Things (IoT) opportunities with information750

fusion. Signal Processing, Sensor/Information Fusion, and Target Recognition XXVI. International Society751

for Optics and Photonics, 2017, Vol. 10200, p. 102000O.752

4. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. Journal of753

Network and Computer Applications 2017, 88, 10–28.754

5. Gusmeroli, S.; Piccione, S.; Rotondi, D. A capability-based security approach to manage access control in755

the internet of things. Mathematical and Computer Modelling 2013, 58, 1189–1205.756

6. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system 2008.757

7. Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Applied758

Innovation 2016, 2, 6–10.759

8. Ouaddah, A.; Mousannif, H.; Elkalam, A.A.; Ouahman, A.A. Access control in the Internet of things: big760

challenges and new opportunities. Computer Networks 2017, 112, 237–262.761

9. Gong, L. A secure identity-based capability system. Security and Privacy, 1989. Proceedings., 1989 IEEE762

Symposium on. IEEE, 1989, pp. 56–63.763

10. Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E. Role-based access control models. Computer 1996,764

29, 38–47.765

11. Samarati, P.; de Vimercati, S.C. Access control: Policies, models, and mechanisms. International School on766

Foundations of Security Analysis and Design. Springer, 2000, pp. 137–196.767

12. De Souza, L.M.S.; Spiess, P.; Guinard, D.; Köhler, M.; Karnouskos, S.; Savio, D. Socrades: A web service768

based shop floor integration infrastructure. In The internet of things; Springer, 2008; pp. 50–67.769

13. Spiess, P.; Karnouskos, S.; Guinard, D.; Savio, D.; Baecker, O.; De Souza, L.M.S.; Trifa, V. SOA-based770

integration of the internet of things in enterprise services. Web Services, 2009. ICWS 2009. IEEE771

International Conference on. IEEE, 2009, pp. 968–975.772

14. Zhang, G.; Tian, J. An extended role based access control model for the Internet of Things. Information773

Networking and Automation (ICINA), 2010 International Conference on. IEEE, 2010, Vol. 1, pp. V1–319.774

15. Yuan, E.; Tong, J. Attributed based access control (ABAC) for web services. Web Services, 2005. ICWS 2005.775

Proceedings. 2005 IEEE International Conference on. IEEE, 2005.776

16. Smari, W.W.; Clemente, P.; Lalande, J.F. An extended attribute based access control model with trust and777

privacy: Application to a collaborative crisis management system. Future Generation Computer Systems778

2014, 31, 147–168.779

17. Ye, N.; Zhu, Y.; Wang, R.c.; Malekian, R.; Qiao-min, L. An efficient authentication and access control780

scheme for perception layer of internet of things. Applied Mathematics & Information Sciences 2014, 8, 1617.781

18. Liu, B.; Chen, Y.; Hadiks, A.; Blasch, E.; Aved, A.; Shen, D.; Chen, G. Information fusion in a cloud782

computing era: a systems-level perspective. IEEE Aerospace and Electronic Systems Magazine 2014, 29, 16–24.783

19. Gusmeroli, S.; Piccione, S.; Rotondi, D. IoT@ Work automation middleware system design and architecture.784

Emerging Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference on. IEEE, 2012, pp. 1–8.785

20. Anggorojati, B.; Mahalle, P.N.; Prasad, N.R.; Prasad, R. Capability-based access control delegation model786

on the federated IoT network. Wireless Personal Multimedia Communications (WPMC), 2012 15th787

International Symposium on. IEEE, 2012, pp. 604–608.788

21. Skinner, G.D.; others. Cyber security management of access controls in digital ecosystems and distributed789

environments. 6th International Conference on Information Technology and Applications (ICITA 2009),790

2009, pp. 77–82.791

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

22 of 22

22. Hernández-Ramos, J.L.; Jara, A.J.; Marin, L.; Skarmeta, A.F. Distributed capability-based access control for792

the internet of things. Journal of Internet Services and Information Security (JISIS) 2013, 3, 1–16.793

23. Hernández-Ramos, J.L.; Jara, A.J.; Marín, L.; Skarmeta Gómez, A.F. DCapBAC: embedding authorization794

logic into smart things through ECC optimizations. International Journal of Computer Mathematics 2016,795

93, 345–366.796

24. Swan, M. Blockchain: Blueprint for a new economy; " O’Reilly Media, Inc.", 2015.797

25. Maesa, D.D.F.; Mori, P.; Ricci, L. Blockchain based access control. IFIP International Conference on798

Distributed Applications and Interoperable Systems. Springer, 2017, pp. 206–220.799

26. Ouaddah, A.; Abou Elkalam, A.; Ait Ouahman, A. FairAccess: a new Blockchain-based access control800

framework for the Internet of Things. Security and Communication Networks 2016, 9, 5943–5964.801

27. Szabo, N. Formalizing and securing relationships on public networks. First Monday 1997, 2.802

28. Gomi, H.; Hatakeyama, M.; Hosono, S.; Fujita, S. A delegation framework for federated identity803

management. Proceedings of the 2005 workshop on Digital identity management. ACM, 2005, pp.804

94–103.805

29. Aura, T. Distributed access-rights management with delegation certificates. In Secure Internet Programming;806

Springer, 1999; pp. 211–235.807

30. Zhang, L.; Ahn, G.J.; Chu, B.T. A rule-based framework for role-based delegation and revocation. ACM808

Transactions on Information and System Security (TISSEC) 2003, 6, 404–441.809

31. Chen, N.; Chen, Y.; You, Y.; Ling, H.; Liang, P.; Zimmermann, R. Dynamic urban surveillance video810

stream processing using fog computing. Multimedia Big Data (BigMM), 2016 IEEE Second International811

Conference on. IEEE, 2016, pp. 105–112.812

32. Chen, N.; Chen, Y.; Blasch, E.; Ling, H.; You, Y.; Ye, X. Enabling Smart Urban Surveillance at The Edge.813

Smart Cloud (SmartCloud), 2017 IEEE International Conference on. IEEE, 2017, pp. 109–119.814

33. Chen, N.; Chen, Y.; Song, S.; Huang, C.T.; Ye, X. Smart Urban Surveillance Using Fog Computing. Edge815

Computing (SEC), IEEE/ACM Symposium on. IEEE, 2016, pp. 95–96.816

34. Xu, R.; Chen, Y.; Blasch, E.; Chen, G. A Federated Capability-based Access Control Mechanism for Internet817

of Things (IoTs). the SPIE Defense & Commercial Sensing 2018 (DCS), Conference on Sensors and Systems818

for Space Applications. SPIE, 2018.819

35. Ethereum Homestead Documentation. http://www.ethdocs.org/en/latest/index.html.820

36. Solidity. http://solidity.readthedocs.io/en/latest/.821

37. Truffle. http://truffleframework.com/docs/.822

38. Crockford, D. RFC 4627: The application/json media type for javascript object notation (json), July 2006.823

Status: INFORMATIONAL.824

39. Flask: A Pyhon Microframework. http://flask.pocoo.org/.825

40. SQLite. https://www.sqlite.org/index.html.826

41. Go-ethereum. https://ethereum.github.io/go-ethereum/.827

42. Xu, R.; Nikouei, S.Y.; Chen, Y.; Song, S.; Polunchenko, A.; Deng, C.; Faughnan, T. Real-Time Human Object828

Tracking for Smart Surveillance at The Edge. the IEEE International Conference on Communications,829

Selected Areas in Communications Symposium Smart Cities Track. IEEE, 2018.830

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 May 2018 doi:10.20944/preprints201805.0079.v1

Peer-reviewed version available at Computers 2018, 7, 39; doi:10.3390/computers7030039

http://www.ethdocs.org/en/latest/index.html
http://solidity.readthedocs.io/en/latest/
http://truffleframework.com/docs/
http://flask.pocoo.org/
https://www.sqlite.org/index.html
https://ethereum.github.io/go-ethereum/
http://dx.doi.org/10.20944/preprints201805.0079.v1
http://dx.doi.org/10.3390/computers7030039

	Introduction
	Background Knowledge and Related Work
	Access Control in IoTs
	Blockchain and Smart Contract

	Federated Capability-based Delegation and Revocation Model
	Capability Access Control Model
	Federated Capability-based Delegation Model
	Capability-based Delegation Authorization
	Capability-based Delegation Revocation

	BlendCAC: a BLockchain-ENabled Decentralized Federated CapAC System
	System Architecture of BlendCAC
	Capability Token Structure
	Delegation Certificate Structure
	Federated Delegation Mechanism
	Capability-based Access Right Authorization

	Prototype Design
	Delegation Certificate and Capability Token Structure
	Access Authorization Service

	Experimental Results
	Environmental Setup
	Experimental Results
	Performance Evaluation
	Computational Overhead
	Communication Overhead

	Discussions

	Conclusions
	References

