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Abstract: This paper presents technical solutions to increase Industry 4.0 maturity. Within the “5G-11 
Enabled Manufacturing” project, a 5G network has been deployed at the shop floor to enable fast 12 
and scalable connectivity. This network was used to connect a grinding machine to a private cloud 13 
to enable visibility and transparency of the production data, which is the basis for Industry 4.0 and 14 
smart manufacturing. Results indicate a present lack of commercially available product 15 
independent solutions for interconnection and data transfer despite the availability of open 16 
standards and well-documented demonstrator projects. The solution is described and discussed 17 
regarding technical interoperability, focusing on the system layout, communication standards, and 18 
open systems. From the discussion, it is derived that manufacturing end-users are in need to expand 19 
and further internalize knowledge on future information and communication technologies to 20 
reduce their dependency on equipment and technology providers. 21 
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1. Introduction 24 
The next generation cellular wireless technologies, 5G, will enable a scalable all-in-one 25 

connectivity platform that supports connectivity of ubiquitous equipment, enabling a fourth 26 
industrial revolution (Industry 4.0). The technology only partially exists today, as requirements are 27 
being refined and formalized into the open 3GPP international standard that is set for the near future 28 
[1]. However, connectivity infrastructure is only one piece of the puzzle towards the goal to achieve 29 
highly flexible fully interconnected manufacturing system. As suggested by Vernadat [2], the ability 30 
for systems to interconnect can be divided into technical, semantic, and organizational levels, that are 31 
incorporated in the holistic concept of interoperability. Technical interoperability includes 32 
connectivity but also deals with syntactical and architectural aspects. Interoperability has been an 33 
important part of manufacturing system design since software systems were first introduced to aid 34 
resource management during the Computer Integrated Manufacturing (CIM) era during the 1990s. 35 
Since then there has been a rapid development of information technologies, e.g. Cloud Computing; 36 
Big Data; Internet of Things (IoT); Internet of Services (IoS); and Cyber-Physical Systems (CPS) [3-7]. 37 
Such technologies need to be further adopted by the industry in order to build smart manufacturing 38 
systems, which emphasizes the importance of interoperability [8, 9]. 39 

The work presented has been conducted within the research project “5G-Enabled 40 
Manufacturing” (5GEM). The project is a collaboration between a large manufacturing company 41 
(SKF), a large telecommunication system provider (Ericsson), and academia (Chalmers University of 42 
Technology). The project investigates the general question of how 5G networks can be utilized in a 43 
production system. The key question is how the manufacturing industry can enhance the speed and 44 
quality of the application of new communication technology to improve manufacturing performance. 45 
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The aim of this paper is to present challenges and solutions regarding technical interoperability in an 46 
industrial setting. A real-world case of connecting a grinding machine to a cloud infrastructure using 47 
the current state of the art cellular technology is described and presented in detail. The results are 48 
discussed focusing on technical interoperability, divided into the three areas: system layout, 49 
communication standards, and open systems, beyond fast and scalable connectivity to increase 50 
Industry 4.0 maturity. 51 

2. Background 52 

2.1 Industrial digitization and Industry 4.0 maturity 53 
A key issue for manufacturing enterprises is to ensure that the application of new technologies 54 

adds value to their core business. A key goal of Industry 4.0 is to create cyber-physical production 55 
systems (CPPS) from which data-driven autonomous systems can emerge. The Industry 4.0 Maturity 56 
Index model [10] is a way to measure how far an enterprise has reached towards this goal. The model 57 
sets several prerequisites needed for an industrial system to take advantage of new capabilities. To 58 
reach these different steps, many things need to be in place. Figure 1 shows a high-level list of what 59 
technological solutions, or paradigms, that can be loosely connected with each step. The first step, 60 
computerization, is to have a digital system as opposed to a purely mechanical one, a development 61 
that once triggered the third industrial revolution during the 1950’s. The second step is to connect the 62 
various digital systems. The academic discussion about the complexity of such interconnections 63 
intensified during the 1980’s, during the Computer Integrated Manufacturing (CIM) era, which leads 64 
to multiple frameworks of enterprise integration and interoperability [2, 11]. 65 

The third step is named visibility, which means to have a digital model of the factory. Data from 66 
machines and sensors need to be collected and stored continuously so that the current state of the 67 
production system is always known and based on facts. Collecting all the relevant data in a complex 68 
manufacturing environment requires an efficient and scalable information system. A solution is to 69 
utilize shared resource pooling and Cloud Computing technologies [12]. According to the National 70 
Institute of Standards and Technology (NIST) cloud computing 'is a model for enabling ubiquitous, 71 
convenient, on-demand network access to a shared pool of configurable computing resources (e.g., 72 
networks, servers, storage, applications, and services) that can be rapidly provisioned and released 73 
with minimal management effort or service provider interaction' [3]. 74 

I4.0 maturity index four is called transparency, which means to make sense of the digital models 75 
to understand the current situation. A central aspect of this is to use algorithms for data analysis in 76 
Big Data applications. A popular definition of Big Data includes the four important V’s of data and 77 
comes from an IDC report 2011 [13]. “Big data technologies describe a new generation of technologies 78 
and architectures, designed to economically extract value from very large volumes of a wide variety 79 
of data, by enabling high-velocity capture, discovery, and/or analysis.” 80 

In the fifth step, predictive capacity, real-time data and analyzed information needs are linked, 81 
aggregated, simulated etc. into useful information which can be used for decision-making. This aligns 82 
with a certain aspect of IoT that focus on a layered architecture and the use of middleware [5]. 83 
Encapsulating functionality in well-defined services enables and simplifies data sharing between 84 
new and legacy systems with IoS [6, 14]. 85 

The sixth and last step in the Industry 4.0 Maturity Index model is called adaptability. It is the 86 
end goal of both Industry 4.0 and IoT, which is also referred to as smart manufacturing or smart 87 
industry [15, 16]. A Cyber-Physical Production System (CPPS) is an adaptable system with the 88 
capability to sense its environment and dynamically react to it. Since this reaction need to function at 89 
different time scales, depending on which part of the system that needs to adapt, there is a need for 90 
programming and modeling languages with such support [7]. 91 
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 92 
Figure 1. A high-level illustration of what technological solutions, or paradigms, that can be loosely 93 
connected with each step in the Industry 4.0 maturity index model. 94 

2.2 Technical interoperability and enabling technologies 95 
Interoperability issues relate to technical, semantic, or organizational aspects [2]. Technical 96 

interoperability aspects regard the data exchange between different information technologies at the 97 
physical and syntactical level. When considering data for CPS in manufacturing it is important to 98 
differentiate between configuration data and run-time data [7]. Configuration data is generated 99 
during the design of the system and describes the physical parts of the system. Run-time data is 100 
generated during the operational phase and describes the status of the manufacturing process. 101 
Optimal synergies are achieved when these data types can share the same models, which require 102 
usage of industrial standards for both design and operations. The automation engineering standard 103 
Automation ML (AML) and communication standard OPC Unified Architecture (OPC UA) are 104 
examples of standards that can be semantically linked [17]. 105 

Another core consideration when interconnecting systems is the layout, meaning how each 106 
entity relates to others in terms of computation and decision making. The classical control system is 107 
hierarchical and deterministic, operating with centralized decision making. In such systems, data 108 
only flows vertically between child and parent nodes. The IoT paradigm assumes a decentralized 109 
approach where data can flow horizontally. Such systems are event-driven and non-deterministic 110 
where a more complex system emerge, which needs new methods to be managed [7]. A practical 111 
approach to achieve CPS in manufacturing is to create a semi-hierarchical approach with emphasis 112 
on modularization. An example is a solution by Wang and Haghighi [18], promoting a holonic 113 
(modularized) system where each Holon is controlled by a software agent (autonomous unit). 114 

Approaches to the layout problem, developed outside of the manufacturing domain, include 115 
various platforms and middleware for IoT applications that have gained traction lately. IoT 116 
platforms, also called frameworks or middleware, are systems that simplifies the integration of things 117 
(e.g. sensors, machines, and equipment) through decoupling to enable IoT applications. There are 118 
three types of IoT systems: service-based, cloud-based, and actor-based [19]. Service-based systems 119 
are centralized heavy-weight generic platforms often deployed in a cloud environment [20]. Cloud-120 
based systems are application specific services often tied to a specific product. Actor-based 121 
middleware systems are flexible and scalable since they support deployment in different layers. 122 
Examples of actor-based middleware are the Ptolemy framework, Node-RED, and Calvin [21-23]. 123 
Actors are reusable function blocks that can easily be deployed on different hardware. Some 124 
platforms also allow migration of actors to where and when they are needed as long as the system 125 
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supports the needed requirements [24, 25]. This allows computations closer to the network edge, thus 126 
allowing for a more decentralized system, known as edge-networks or fog computing [26]. 127 

IoT systems are natural aggregators of data, often including data analytics capabilities for Big 128 
Data applications. When data volumes grow the system requires technologies that can distribute 129 
computing and storage capabilities and send a large amount of data between the different nodes. 130 
There are several open-source projects that can enable these systems, such as Hadoop, Spark, and 131 
Kafka [27-29] for distributed computing and data streaming. For data storage, the NoSQL databases, 132 
which are more flexible than the traditional relational databases, is a key technology [4]. The term 133 
NoSQL, which should be read as “not only SQL”, incorporates characteristics like non-relational, 134 
distributed, open-source, and horizontally scalable [30]. 135 

Frameworks for CPS and IoT often include a middle layer that connects objects and applications 136 
through services [31-33]. This is called a Service Oriented Architecture (SOA), which principle is to 137 
connect business functions (services) from providers to consumers by using service locators or service 138 
brokers [34]. A definition of a service, therefore, need to account for business and technical 139 
perspectives as well as the consumer and provider perspectives but from the technical perspective, a 140 
service is an encapsulation of functionality [35]. SOA is often used synonymously with Web-services 141 
but this is only one implementation. Web services often comply with the Representational State 142 
Transfer (REST) style that implies stateless interactions and a hierarchical resource representation 143 
[36]. SOA is also supported by the above-mentioned communication protocol for industrial 144 
automation, OPC UA. New communication protocols have also been developed to support 145 
ubiquitous and sometimes limited hardware, such as Message Queuing Telemetry Transport (MQTT) 146 
and Constrained Application Protocol (CoAP) [37, 38]. 147 

To interconnect all the ubiquitous equipment that is assumed in the IoT paradigm requires a 148 
fast, robust, and scalable connectivity platform. The next generation open telecommunication 149 
standard of cellular wireless technologies, 5G, is estimated to be commercially available around 2020. 150 
As in previous cellular telecom standards, 5G is developed within the 3G Partnership Project (3GPP) 151 
framework, building on components from the 4G/LTE, the prevalent telecom standard. Some of the 152 
key characteristics of 5G are higher data rates, shorter delays, and high reliability [39]. Requirements 153 
integrated into the new standards reflect the needs of tomorrow, i.e. “a fully mobile and connected 154 
society” [40]. Ongoing standardization efforts have defined several scenarios and connected them 155 
with sets of requirements [1]. These requirements need several solutions, most of which already 156 
partially exist [41]. 157 

3. Method and project description 158 
The methodology applied to this work is the design science approach. Design science research 159 

centers around artificial artifacts, designed and developed with the researchers deeply involved. This 160 
methodology has been successfully used in information systems research where an artifact can be 161 
software, hardware, a method, a theory etc. [42]. The crucial aspects of design science for information 162 
systems research are illustrated in the information systems research framework developed by 163 
Hevner, et al. [43]. An artifact is designed and evaluated in a design/test cycle. The design/test cycle 164 
gets its relevance in an iterative process of adapting to real-life business needs and evaluating the 165 
results in the intended environment, which in this case is the shop floor. The design/test cycle is built 166 
on theories from the common knowledge base, and new learnings from the design/test cycle can often 167 
result in new theories that should be communicated to contribute to new knowledge and expand the 168 
knowledge base, this is called the rigor cycle. 169 

As mentioned above, the project (5GEM) investigates how the next generation cellular networks, 170 
5G, can support manufacturing industries in implementing smart manufacturing systems. Part of the 171 
investigations was to deploy a cellular network on the shop floor, connect a grinding machine, collect 172 
data from the grinding process, and to utilize that data in real-time and analytics applications. The 173 
results from the applications provide the system feedback loop that can interconnect with an 174 
automated system, e.g. controlling the machine directly, or be displayed to manufacturing operators 175 
through a mobile support system (mobile application) already in operation at the shop-floor. Beyond 176 
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the fast and scalable connectivity that the infrastructure provided, this required software and 177 
hardware designed to collect and transfer the data between source and utilization, which are the 178 
relevant artifacts for this research. To connect a producing grinding machine to a cloud network 179 
seems like a straightforward task. However, there are many things to consider regarding the technical 180 
aspects. First, there is a question of what data that should be collected, then there is the problem of 181 
how to collect that data, then that data needs to be transferred. Solutions for the latter are the relevant 182 
artifacts that are further described in the results chapter. Figure 2 shows how these artifacts relate to 183 
the project goal and infrastructure. 184 

 185 
Figure 2. The artifacts described in the results section are the enabling technologies connecting the 186 
grinding machine to the data consumers on top of the basic connectivity infrastructure. 187 

3.1. Connectivity infrastructure 188 
The project infrastructure is distributed over three Swedish cities: Gothenburg, Lund, and 189 

Stockholm. See Figure 3 for an overview of the setup. In Gothenburg, the SKF factory is connected to 190 
Ericsson’s facilities through a radio-link. The Gothenburg site is connected to Ericsson’s core network 191 
and linked to facilities in Lund which is a data center that hosts a private cloud in terms of processing 192 
and storage. The gathered data is also distributed to the data analytics site in Stockholm. On the shop 193 
floor, the closest thing to a 5G network was deployed, which is a dedicated LTE network with “5G 194 
enabling technologies”. Devices are connected to the network through either embedded modem (e.g. 195 
LTE enabled mobile phones) or using external USB modems. 196 

 197 

Figure 3. Summary of the project connectivity infrastructure. 198 

  199 
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3.2. Mobile Operator Support System 200 
SKF has a specialized operator support system with an iOS client [44]. This system can take 201 

advantage of a 5G connection in two ways. The first way is that the iOS hardware can directly connect 202 
to a 5G system, which enables the user to send and receive data faster. This is useful when e.g. 203 
streaming video instructions. The second way is to interconnect the operator support system with 204 
the real-time data collected from the grinding machine and the possible results that come from the 205 
data analysis. 206 

4. Results 207 
Data from the grinding process is collected through four separate systems: the grinding machine 208 

onboard computer, a vibration system, IO-Link sensors, and an embedded sensor. While it is possible, 209 
to some extent, to connect the sensors to the machine PLC and transfer all the data from the onboard 210 
computer, that solution was opted out because it would require too much change in the machine, a 211 
task requiring a very limited resource. Each system supports different communication standards 212 
and/or methods, which made the overall system more complicated. To simplify this, the actor-based 213 
IoT middleware Calvin was used for aligning the data transfer. Calvin is a distributed software 214 
system, which allows its function blocks to run on different hardware while they communicate 215 
seamlessly with each other. The reference implementation of the Calvin platform, Calvin-base [23], 216 
runs on most Linux systems, which means that Calvin can run in hardware in the local cloud as well 217 
as in the data center. 218 

The different connected systems are summarized in Table 1. The grinding machine computer 219 
and the vibration system are connected through the OPC UA standard, which they support to various 220 
degrees. The external sensors support the IO-Link protocol, which allows data extraction directly 221 
over TCP/IP. However, to simplify the connection to the Calvin actor, another gateway was 222 
developed that translates the TCP stream and share the data as a RESTful web service. This 223 
translation software was developed using the Play framework [45] and the raw data could be mapped 224 
using the IO-link data sheets. The embedded sensor is a temperature sensor directly connected to a 225 
Raspberry Pi computer. Since Calvin can run on Raspbian, the Linux distribution supported by the 226 
Raspberry Pi, a Calvin actor can communicate directly with the embedded sensor. 227 

Table 1. The different connected system from which the data is collected. 228 
Data source Description Protocol 
Machine onboard 
computer 

The machine computer can provide most of the 
important data related to the grinding process. OPC UA 

Vibration system 
The external vibration system consists of vibration 
sensors that are mounted on the machine, it sends an 
aggregated version of the vibration data. 

OPC UA 

IO-Link sensors 

IO-Link sensors communicate (using IO-Link) with a 
gateway, called IO-Link master, from which it is 
possible to retrieve sensor data over TCP/IP. A 
second gateway translates the data and makes it 
available as a web service. 

REST API 

Embedded Sensor Temperature sensor connected to a Raspberry Pi 
computer. 

N/A 

 229 
To connect the systems to Calvin, support for each communication or device was needed. This 230 

was achieved by implementing a plugin which handles all communication with the device or service 231 
in the platform abstraction layer, called calvinsys. The Calvin application, visualized in Figure 4, is 232 
running in a Calvin system spanning three instances – one on a Raspberry Pi located near the 233 
machine, one in the local cloud in the factory, and one running in the Ericsson Research data center. 234 
Letting the platform handle all specifics of the external service gives the illusion of the service being 235 
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part of the platform itself. The function blocks, or actors, are distributed on the three calvinsys 236 
instances and the communication between them is seamless, meaning that the physical separation of 237 
the calvinsys instances is invisible to the function blocks. 238 

When the data has been transferred to the cloud through the Calvin application, it is distributed 239 
to three different data consumers: the database, the analytics application, and the mobile operator 240 
support system. The operator support system already utilizes the publish/subscribe protocol MQTT 241 
as the default communication protocol. After deciding on the structure for the topics for the MQTT 242 
messages, a Calvin function block was implemented that publish the needed datatypes. The data is 243 
also streamed to the data analytics center with the help of Kafka [29], which can also fetch stored 244 
information from the database if needed. The database, called MongoDB, is a general-purpose 245 
NoSQL database. Here the data is stored with value, timestamp, and origin of the data as key 246 
components. 247 

 248 
Figure 4. The Calvin application is distributed over three physical locations. One in the Raspberry Pi 249 
located by the machine that reads the thermometer values, one in the local cloud in the factory reading 250 
data from the machine and external sensors, and finally in the central private cloud to distribute and 251 
store the data. 252 

Each day, the application explained above collects and transmits about one million data entries, 253 
most of them from the onboard machine computer. The data analytics experts use these entries to test 254 
and evaluate new algorithms and approaches. At the shop floor, the operators can see and act on a 255 
few of these data entries and remote monitoring and control can now easily be expanded upon. 256 

5. Discussion 257 
The described artifacts have been implemented and tested in a real-life production system at 258 

SKF and have been proven to enable several steps towards CPPS. Scalable connectivity is achieved 259 
through 5G for both stationary and mobile equipment. By exploiting Calvin as a common 260 
connectivity platform together with open industry standards for data communication and storage, 261 
relevant information is made visible in a cloud environment. Kafka and MongoDB are used to stream 262 
aggregated data to the analytics center that can apply algorithms and increase system transparency. 263 

Since Calvin also aligns the different type of connected systems, both locally in the factory and 264 
centrally in the private cloud, it would also simplify the process of connecting more machines and 265 
equipment, a prerequisite for more predictive capacity. Furthermore, the mobile operator support 266 
system allows manufacturing operators to access real-time data and to share important information.  267 

There are many ways to connect a machine on the shop floor and some of the described enabling 268 
technologies and application has been tested before [46, 47]. However, when practically collecting 269 
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data from a machine at the shop floor there seem to be no obvious solution that fits a generic machine 270 
setup. Machine suppliers are adding their own support for data collection but then there is the issue 271 
of data ownership and supporting a multitude of different monitoring systems. The solution 272 
described here is one generic way to acquire data from machines or equipment. 273 

5.1. System layout 274 
One important aspect regarding system layout is choosing between the different approaches 275 

when it is possible to get the data in different ways. The machine onboard computer is the most 276 
important system since it is the source of several datatypes that cannot be collected otherwise. Getting 277 
this data proved to be a challenge because the computer had to be reprogrammed to gain access to 278 
the desired data. This programming task directly, or indirectly, interfered with production since both 279 
the machine and the engineer are valuable resources needed to run the manufacturing process. If 280 
choosing e.g. IO-Link instead the solution is logically decoupled from the physical process. 281 

Calvin is used for aligning all connections to the grinding machine. The result is identical data 282 
collection applications over different connections and with high reusability. Another advantage is 283 
the ability to run the function blocks, or actors, distributed in the local cloud. To have the platform 284 
hosted inside the factory allow the system to function in isolation for a period, meaning it can 285 
seamlessly store data to be transmitted later if the connectivity to the data center suddenly disappears 286 
[19]. The Calvin application is created by defining the data flows, which is also the approach in other 287 
IoT middleware. To create these data flows can be easier for people without experience in generic 288 
programming languages, which should also be considered when choosing solution [19]. When 289 
scaling the application, platforms like Calvin can also aid with the decision of software deployment 290 
using the required-based approach [48]. This means that the function blocks can only run where the 291 
correct requirement is met e.g. that there is a specific sensor present. 292 

5.2. Communication standards 293 
The plugin that needed to be developed in this situation was support for OPC-UA. While it was 294 

straightforward to use existing open source solutions for the actual communication, there were some 295 
issues with slight variations in the implementations that had to be considered. Upgrading software 296 
in an industrial setting is not always an option, the machine in question is crucial to the 297 
manufacturing process. This means that the adaptability of the IoT platform is important. 298 

Two systems support OPC UA as the communication protocol, the grinding machine onboard 299 
computer and the IMX (vibration system), which is a natural choice since it is an open, platform-300 
independent system that supports SOA and can enable other future synergies [17, 49]. A limitation 301 
of OPC UA that was evident during this project is the difference in the various implementations that 302 
is due to them being self-certified. 303 

With the IO-link enabled sensors it is possible to extract the data directly bypassing the machine 304 
computer. That avoids meddling with the machine program but it can also miss out on the possibility 305 
of semantic alignment that adopting the OPC UA standard can enable. In this case, a separate 306 
translation software was developed which required some work but modern software frameworks 307 
simplified this task [45]. The solution presented here is a stand-alone REST API supporting the few 308 
sensors that were mounted to the machine. Such implementation could be made to support almost 309 
all IO-link sensors by connecting it to the common device library service that 2017-07-24 had more 310 
than 80% of all devices documented [19, 50]. Since the presented application was developed, the 311 
company IFM have released gateways with an IoT connection (Figure 5) which basically works 312 
similarly to the REST API that was developed for this application, with a web service exposing the 313 
sensor data as a generic JSON (JavaScript Object Notation) document. 314 
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 315 

Figure 5. IoT enabled IO-Link gateway to the right, the old one used for this application to the left. 316 

MQTT is used to send real-time data to the mobile operator support system. The data is sent 317 
using the JSON structure, which is the de-facto standard for Web services and aligns well with the 318 
document database solution. There is little to say about that other than it shows the benefit of utilizing 319 
well-defined open standards. 320 

5.3. Open systems 321 
Without a doubt, the open-source solutions were crucial for the implementations in this project. 322 

This is true regarding both the data management infrastructure and end-point solutions. The open 323 
systems for process distribution, data streaming, and data storage are industry standard and 324 
developed and well tested through the emergence of large and well known social platforms [51]. For 325 
systems like Calvin, the open-source approach is important since existing and future 326 
implementations benefit from a large community that can share content. Using Raspberry Pi’s or 327 
other low-cost microcomputers with attached hardware modules are excellent tools for testing and 328 
verifying IoT solutions. However, to take advantage of these systems requires own responsibility and 329 
overall system knowledge. Traditional industrial systems are hierarchical, centralized, and built for 330 
robustness. This leads to stand-alone systems since each subsystem are built fully deterministic and 331 
with a well-defined scope. Decentralized systems with more horizontal connections are more flexible 332 
and complex [7]. 333 

6. Conclusions 334 
A solution has been implemented in a real-life industrial setting and discussed regarding 335 

technical interoperability, focusing on the system layout, communication standards, and open 336 
systems. The findings are tied to the key question of improving manufacturing performance by tying 337 
the technical implementation to the Industry 4.0 maturity Index model. From the discussion, it can 338 
be derived that manufacturing enterprises need to internalize the knowledge of how IT systems can 339 
be utilized to be able to connect their existing and new equipment while not being too reliant on 340 
technology providers. The example of IoT enabled IO-Link sensors also shows the fast development 341 
of available equipment but that this development will most likely align with existing efforts if current 342 
standards and state of the art solutions are followed. 343 
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