

1 *Type of the Paper (Article, Review, Communication, etc.)*

2 **Segmenting landowners of Shandong, China based 3 on their attitudes towards forest certification**

4 **Nana Tian^{1,*}, Fadian Lu², Omkar Joshi³, and Neelam C. Poudyal⁴**

5 ¹ Texas A&M Forest Service, 200 Technology Way, Suite 1281, College Station, TX, 77845;
6 nana.tian@tfs.tamu.edu;

7 ² Department of Forestry, Shandong Agricultural University, Daizong St. 61, Taian, Shandong, China,
8 271018; lfd@sdau.edu.cn;

9 ³ Department of Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall,
10 Stillwater, OK, 74078; omkar.joshi@okstate.edu;

11 ⁴ Department of Forestry, Wildlife, & Fisheries, University of Tennessee, 274 Plant Science Bldg, Knoxville,
12 TN, 37996, USA; npoudyal@utk.edu;

13 * Correspondence: nana.tian@tfs.tamu.edu; Tel.: +1 979-458-6634;

14

15

16 **Abstract:** Forest certification is considered a viable market-based policy instrument to promote
17 forest sustainability. It has an important role of play in meeting the objective of modern forestry
18 development in China, which is to sustain ecological and environmental benefits of forests. To
19 understand differences in attitudes, opinions, and interests in forest certification, this study
20 segmented respondents of a landowner's survey in Shandong, China based on their level of interest
21 in participating in forest certification under different program requirements. Multivariate cluster
22 analysis revealed three distinct groups: likely-, potential-, and unlikely-landowners. We further
23 examined the heterogeneity of these groups in terms of their demographics, ownership
24 characteristics, management objectives, and perceived benefits and challenges with adopting forest
25 certification. The results suggested the necessity of differentiating landowners in formulating and
26 designing specific motivation-based incentives and tailor outreach efforts and communication
27 strategies to improve their interests in forest certification. Findings are useful and interesting to
28 forest policymakers interested in promoting forest certification among landowners in China and
29 other countries facing similar circumstances.

30

31 **Keywords:** Forest certification; Market segmentation; Cluster analysis; Motivation schemes

32

1. Introduction

33
34
35
36
37
38
39
40
41

Forest certification is an accreditation process during which landowners voluntarily seek a third independent party to evaluate their timber management practices based on a range of predetermined standards and then assess whether forests are managed ensuring environmental and socio-economical sustainability [1]. Primarily, forest certification was designed to reduce deforestation and promote management of tropical forests [2,3,4,5], but it has expanded as a tool to achieve sustainable forest management all over the world. China, the county with the 208 million hectares of forest area [6], has a huge potential market for forest certification. In addition, China has a high afforestation rate; for instance, the forest coverage has increased from 12% to about 21% in 30 years (from 1983 to 2013) and the current goal is to reach 23% of the total area by 2020 [7].

42
43
44
45

In the history of China, urbanization and industrialization caused overharvesting and illegal logging of natural forests for timber, iron, and steel production, which led to the severe decline of biodiversity and degradation of environment [8,9]. For example, over-logging was believed to be one of the primary reasons for the catastrophic floods of 1998 in Yangtze River [10,11], which

46 triggered Chinese officials to take actions (e.g., enact policies to sustain forest management) to
47 combat deforestation. Meanwhile, both economic globalization and the growing realization of the
48 importance of forests in improving environmental quality drove the necessity of promoting forest
49 management. Therefore, forest certification as a market-based strategy did receive political and
50 policy support from government officials. Currently, China has three forest certification programs:
51 Forest Stewardship Council (FSC), Programme for the Endorsement of Forest Certification schemes
52 (PEFC), and China Forest Certification Council (CFCC). Those programs envision sustainable forest
53 management practices to respond to economic, environmental and social needs of the landowners.

54 These forest certification programs, unfortunately, had a low familiarization among
55 landowners; thus, designing motivation mechanism and outreach services to improve their
56 knowledge and interests in forest certification becomes a challenge. Considering the diversity of
57 landowners across the world in terms of their management objectives and demographic attributes
58 [12,13,14,15], one size fits all formula becomes practically impossible to implement anywhere and
59 more so within the convoluted social structure of China. Therefore, segmentation based attitudes
60 towards forest certification is necessary to identify unique clientele of landowners, so as to make
61 outreach services effective.

62 Recently, a number of literature have been published using segmentation techniques to study
63 landowners in a global scale. Many studies (e.g., [16,17,18,19,20,21,22,23] segmented landowners
64 based on their ownership objectives and yielded different owner groups. For example, Majumdar et
65 al. [22], based on their management objectives, grouped family landowners in the southern United
66 States into multiple-objective, non-timber, and timber landowners. Likewise, numerous studies
67 have also examined the different characteristics of landowners regarding the implementation of
68 forest conservation programs. For example, Surendra et al. [24] classified landowners into four
69 groups according to their information-seeking behavior. The authors found that targeting
70 landowners based on their ownership objectives was useful to stimulate forest management.
71 Likewise, Salmon et al. [25] employed benefit-based audience segmentation technique to identify
72 the education needs for nonindustrial private forest landowners (NIPF). Similarly, Butler et al. [26]
73 segmented landowners into four groups based on their attitudes to a conservation program and
74 implied that segmentation can improve the efficiency of program implementation by developing
75 effective and efficient outreach policies and services to landowners. Herbohn et al. [27] grouped
76 landowners according to their attitudes to farm forestry in eastern Australia and concluded that
77 understanding the constraints for each segmentation was helpful for taking appropriate actions.
78 Hujala et al. [28] grouped landowners into trusting realizers, active learners, and independent
79 managers using their decision-making modes and suggested to differentiate weighted decision
80 support services for each clientele. In short, review of the existing literature suggests that numerous
81 studies have segmented forest landowners in western countries. However, they cannot be
82 generalized to design and develop outreach program in China—a country with the distinct
83 ideological, political, geographical, and socio-economical identity.

84 Overall, how landowners manage their forests or whether certify their forests to ensure
85 sustainable management practices is an issue of significant public interest. To meet the goals of
86 sustainable forest management and increase the sound forest stewardship, the policy makers need
87 to have a deeper and better understanding of landowners before developing effective outreach,
88 policies, and service programs. Given that landowners have varying perceptions for forest
89 certification and differing levels of interests in its participation, it is critical to understand
90 landowner typologies to develop a well-focused communication program. Therefore, to improve
91 the health and productivity of forests and consequently to meet the sustainable management goal,
92 the main objective of this study is to understand the characteristics of different landowners and to
93 identify outreach approaches that can help motivate passive landowners to participate in forest
94 certification programs. Specifically, the objectives are to: 1) segment landowners based on their
95 interest level in forest certification; 2) understand the demographics, forestland characteristics, and

96 ownership characteristics of different landowner groups; 3) obtain the differences among
97 landowner groups concerning their familiarity with forest certification and perceptions for potential
98 benefits and drawbacks of this program; 4) suggest outreach and services to enhance landowners'
99 interest in certification.

100 **2. Methodologies**

101 **2.1 Data Collection**

102 The survey was designed after a comprehensive review of the literature regarding landowners'
103 willingness to adopt forest certification and the associated factors that potentially influence their
104 management decisions. We totally developed 27 questions in this survey and they were grouped
105 into: 1) ownership characteristics (e.g., tenure, ownership size etc.); 2) landowners' motivations of
106 owning forestland; 3) landowners' management objectives; 4) landowners' willingness to adopt
107 forest certification under various program requirements; 5) landowners' perceptions for possible
108 benefits and drawbacks correlated with forest certification; 6) socio-demographic (e.g., age, gender
109 etc.). Meanwhile, landowners' interest level in forest certification under various program designs
110 were measured using 5-point Likert scale (1 = very unlikely, 5 = very likely); similarly, their
111 agreement level for perceived benefits and drawbacks of forest certification was also measured
112 using Likert scale (1 = strongly disagree, 5 = strongly agree).

113 This survey was developed in both English and Mandarin and both of them were approved by
114 the Institutional Review Board at the University of Tennessee, Knoxville in the United States. The
115 survey was administered in different cities (Taian, Jinan, Linyi, Liaocheng, Jining, and Weifang) of
116 Shandong, China in summer of 2016 and the Mandarin version was mainly used in the field. We
117 firstly visited the local forestry officials after getting each city and collected information regarding
118 who has forestland and how could we approach them etc. With the assistance of local officials, we
119 personally approached those randomly selected landowners, who were later requested to fill out
120 the survey. For those who were not familiar at all with forest certification, we offered a brief
121 informative instruction accompanied with the survey. In latter case, landowners were requested to
122 provide their response to the questions that required minimal understanding for forest certification.
123 In total, we approached 557 landowners out of which 50 did not finish all the questions included in
124 the survey. Therefore, we have used 507 completed surveys for the remainder of this analysis.

125 **2.2 Cluster analysis**

126 Market segmentation is a widely used approach in marketing field to separate a heterogeneous
127 population (e.g., landowners) to homogeneous subgroups based on their common/shared
128 characteristics [24]. The intent of market segmentation is to identify subgroups of customers
129 according to a series of demographic and behavior variables and then incorporate this information
130 into outreach and policy development. Multivariate regressions techniques such as cluster analysis
131 have been commonly applied in market segmentation [29,30,31,12]. Among others, **k**-means cluster
132 analysis with Euclidian distance was a widely used algorithm for segmenting audience [29,31]. In
133 principle, the clusters should capture the structure of the data meaning that the objects within same
134 group share the common characteristics, whereas those within different group have different
135 characteristics. Hence, the objective of **k**-means cluster analysis is to minimize within group
136 differences but maximize between group differences [32] (Eq. 1).

137
$$J(V) = \sum_{i=1}^c \sum_{j=1}^{c_i} (\|x_i - v_j\|)^2 \quad (1)$$

138 where: ($\|x_i - v_j\|$) is the distance between x_i and v_j ; c_i is the number of data points in i^{th}
139 cluster; c is the number of cluster centers.

140 A *k*-means cluster analysis was employed in this study to segment the landowners based on
141 their willingness to participate in forest certification under different program designs and
142 conditions. As is typical in any *k*-means clustering, two, three, and four-cluster segment were tried.
143 The three-cluster solution (Table 1) was chosen as the best fit to the data and yielded the clearest
144 divisions among clusters comparing the results from other solutions. Then, analysis of variance
145 (ANOVA) was used to test for differences in subsequent clusters (0.05-significance level was used
146 for all tests). Objective information included demographics and ownership characteristics as well as
147 their perceptions for perceived benefits and challenges associated with forest certification that
148 further described the clusters/segmented landowners.

149 3. Results

150 Among the 507 completed surveys, 71% were male and on average, the tenure was 22 years.
151 Regarding ownership size, 47% of the respondents owned forestland of 10~100 hectares, 25% had
152 greater than 100 hectares, whereas 27% had less than 10 hectares. Approximately 50% of the
153 respondents reported high school education or less being their highest educational attainment. The
154 percentage of landowners with vocational training and college education was equal at 25%. About
155 34% of the respondents had annual income greater than RMB 50,000, and 50% had income between
156 RMB 20,000 and 50,000. Almost half (49%) of the respondents were living in rural areas, whereas
157 47% were in the county communities.

158 3.1. *Characteristics of landowners group*

159 The requisite survey data were analyzed using three audience segments resulted from cluster
160 analysis. Respondents in the first group ($n = 120$) are likely landowners participating in forest
161 certification under all program designs. Respondents in the second cluster ($n = 233$) were potential
162 landowners and their concerns were certification cost and the requirement of management plan in
163 managing their forestlands. Respondents in the third group ($n = 154$) were unlikely landowners,
164 whose attitudes to forest certification were lower than neutral under almost all different program
165 designs. We examined the socio-demographics, landowner motivation for owning forestlands, and
166 forestland characteristics of these three subgroups to identify the typological differences. It was
167 anticipated that study results could be tailored with the outreach programs that could help
168 encourage landowners for forest certification as well as to explore other constraints. Our results
169 suggest that landowners in those three subgroups did not differ significantly in terms of their age
170 (Table 2). However, there were some distinctions among segments in terms of gender, education,
171 and income. In addition, significant differences were found for forestland and ownership
172 characteristics and motivations among the audience groups (Table 3, 4).

173 *Likely Landowners:* This group scored higher on almost all the different certification parameters than
174 the other two landowner groups. They were the group of environmentally benign landowners with
175 the level of motivation such that even under the condition that the certified timber received the
176 same price and had the same market preference with the timber that was not certified, they would
177 still likely to have their forestland certified. Therefore, we categorized them as likely landowners.
178 The average age of landowners was around 37 years, 76% of them were male—the highest gender
179 disproportion among all three segments. Almost half (47%) of landowners in this group hold
180 bachelor's degree or higher, which was higher than the other two groups. Regarding their annual
181 household income, 44% of landowners had annual income between RMB 50,000 and 75,000, which
182 was higher than the other two groups. Referring to the occupation of the landowners, 11% of them
183 were government employee, which again was higher than other groups (Table 2). This segment had
184 the highest acres (166 hectares) of ownership size and the average tenure was around 25 years.
185 Almost half (46%) of them had a written management plan and they owned a timber oriented
186 poplar forest. With regard to the forestland location, 39% of them were located in the rural/village
187 area and 38% were located in town/county area as well as 23% was nearby/suburb of the

188 metropolitan (Table 3). Among the reasons for managing forests, 87% of landowners were for
 189 timber production (Table 4) which is significantly higher than the other two groups.

190 Table 1. Cluster membership for three landowners groups.

Variables	Cluster Membership			F and P-value
	Likely landowners (n = 120)	Potential landowners (n = 233)	Unlikely landowners (n = 154)	
If certifying organization were:				
Products industry association	4	3	3	F = 57.9973 (p < 0.001)
Forest landowner association	4	3	3	F = 45.85 (p < 0.001)
Pay all of certification cost	3	2	2	F = 67.57 (p < 0.001)
Certification results not available to the public	4	3	2	F = 73.65 (p < 0.001)
Management plan required	4	4	3	F = 63.97 (p < 0.001)
No management plan required	3	2	2	F = 124.01 (p < 0.001)
Required to use professional forester	4	4	2	F = 64.34 (p < 0.001)
Not required to use professional forester	3	2	2	F = 195.37 (p < 0.001)
Required to use trained loggers	4	4	2	F = 65.46 (p < 0.001)
Not required to use trained loggers	4	4	2	F = 164.93 (p < 0.001)
May receive higher price for stumps	5	4	3	F = 14.00 (p < 0.001)
May receive the same price for stumps	3	3	2	F = 155.86 (p < 0.001)
Preference for wood in market	5	4	3	F = 14.69 (p < 0.001)
No preference for product in market	3	3	2	F = 136.76 (p < 0.001)

191 Note: 1 = very Unlikely; 2 = Unlikely; 3 = Unsure; 4 = Likely; 5 = Very Likely.

192 *Potential Landowners:* The members in this group were unlikely to have their forestlands certified, if
 193 they need to pay all the certification costs. In addition, they were willing to participate only if there
 194 was requirement of having a written management plan as well as to use of professional forester. We
 195 categorized this subgroup as potential landowners because their participation was contingent upon
 196 overcoming previously mentioned constraints. The average age of this group was 40 years, which
 197 was relatively higher than other groups (Table 2) and almost half were farmers (45%) (Table 2).
 198 Majority landowners in this group had high school/vocational training, whereas only one-third had
 199 the university degree. Over half of the respondents (52%) had household income between RMB
 200 20,000 and 50,000 (Table 2). On average, potential landowners owned about 148 hectares of
 201 forestland, which was much higher than the third group and slightly smaller than likely group. The
 202 average tenure for this group was about 21 years (Table 3). Majority (70%) landowners did not have
 203 a management plan and slightly more than one-fifth (22%) of their total forestlands were located

204 nearby metropolitan area. Finally, nature protection (73%) and timber production (69%) were the
 205 two most important motivations for owning their forestland (Table 4).

206 *Unlikely Landowners:* This group scored relatively low (<= 3) on all program requirements, as such
 207 we categorized them as unlikely landowners. The average age of the members was 37 years, which
 208 was slightly less than the second group of members. However, this group represented more than
 209 two-fifth of female landowners—the highest among all three categories. As a group, these
 210 landowners had the lowest percentage of educational attainment, which was at statistically
 211 significant distance to the first group. Likewise, majority landowners in this group represented
 212 lower income class with 73% having household income lower than RMB 50,000. Most of the
 213 respondents were farmers (50%) or professional managers (33%) with no representation of
 214 foresters/loggers/miners (Table 2). Landowners, on average, owned about 89 hectares of
 215 forestlands, which was significantly lower than other two groups and the average tenure of 26 years
 216 was also the lowest among groups (Table 3). Less than one-fourth (23%) of the members had a
 217 written management plan and 62% of the forestlands were distributed in town/county areas—the
 218 highest among groups (Table 3). The most important reason for owing forests was for land
 219 investment (84%).

220 Table 2. Demographics by landowners group.

	Likely landowners	Potential landowners	Unlikely landowners
Average Age (yr.)	37	40	37
Gender**			
Male (%)	76	75	57
Female (%)	24 ^a	25 ^a	43 ^b
Education**			
High school degree/vocational training (%)	48 ^a	54 ^a	53 ^a
Did not complete high school (%)	5 ^a	13 ^a	31 ^b
Bachelors or higher (%)	47 ^a	33 ^{ab}	21 ^b
Income**			
Less than RMB 20,000 (%)	8 ^a	14 ^a	15 ^a
RMB 20,000 – 50,000 (%)	39 ^a	56 ^{ab}	68 ^b
RMB 50,000 – 75,000 (%)	44 ^a	21 ^b	11 ^b
Greater than RMB 75,000 (%)	9 ^a	9 ^a	6 ^a
Forest income (%)	41	38	36
Employment Status*			
Forester/loggers/miner (%)	14 ^a	8 ^a	0 ^a
Professional manager (%)	29 ^a	27 ^a	32 ^a
Government employee (%)	11 ^a	5 ^a	5 ^a
Farmer (%)	26 ^a	45 ^b	50 ^b
Retired/businessman/others (%)	20 ^a	15 ^a	13 ^a

Note: * significant at 5% level; ** Significant at 1% level;
 a, b, c means with different subscripts are statistically different.

221

222

223

224

225

226

227

Table 3. Forest ownership characteristics by landowners group.

	Likely landowners	Potential landowners	Unlikely landowners
Average Ownership size* (hectares)	166 ^a	148 ^a	89 ^b
Tenure** (yr.)	25 ^a	21 ^{ab}	16 ^a
Having a management plan** (%)	46 ^a	30 ^b	23 ^b
Poplar forest** (%)	46 ^a	30 ^b	24 ^c
Arborvitae forest (%)	0.04 ^a	0.02 ^a	0 ^a
Forests location			
Rural area/village** (%)	39 ^a	39 ^a	14 ^b
Town/county* (%)	38 ^a	39 ^a	62 ^b
Metropolitan area or suburb area (%)	23 ^a	22 ^a	24 ^a

Note: * significant at 5% level; ** Significant at 1% level;

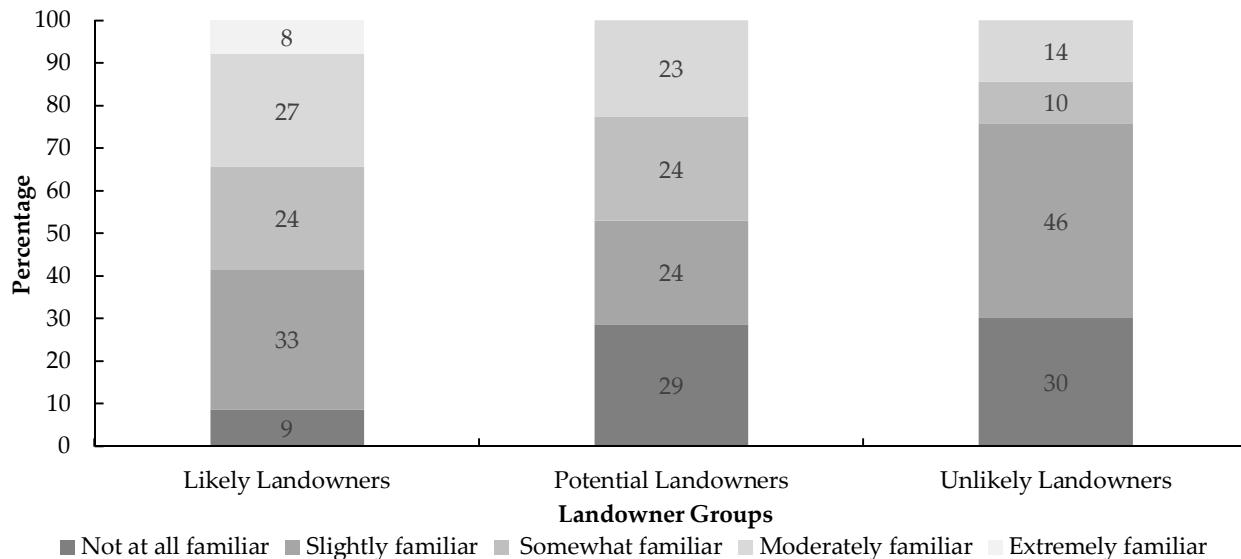
a, b, c means with different subscripts are statistically different.

228

229

Table 4. Ownership motivations by landowners group.

	Likely landowners	Potential landowners	Unlikely landowners
Motivations of owing forests (%)			
Enjoy the scenery**	60 ^a	58 ^a	32 ^b
Protect nature**	80 ^a	73 ^{ab}	74 ^b
For recreation**	67 ^a	53 ^b	45 ^b
Timber production**	87 ^a	69 ^b	66 ^b
Land investment**	62 ^a	68 ^a	84 ^b
Part of farm**	52 ^a	45 ^a	65 ^b


230 Note: ** Significant at 1% level;

231 a, b, c means with different subscripts are statistically different.

232

233 **3.2 Familiarity with forest certification**

234 Segmented landowners showed statistical different level of familiarity with forest certification
 235 (Figure 1). For example, in likely landowners group, only 9% reported not familiar at all with
 236 certification program, distinct lower than other two groups (29% in potential landowners group
 237 and 30% in unlikely landowners group). On the contrary, the percentage of respondents who were
 238 somewhat familiar, or moderately familiar, or extremely familiar with forest certification was as
 239 high as 59% in likely landowners, whereas it was 47% in potential landowners and 24% among
 240 unlikely landowners. Respondents who said slightly familiar with forest certification was highest in
 241 unlikely landowners (46%) while it was 33% and 24% respectively in likely and potential
 242 landowners clusters.

243

244

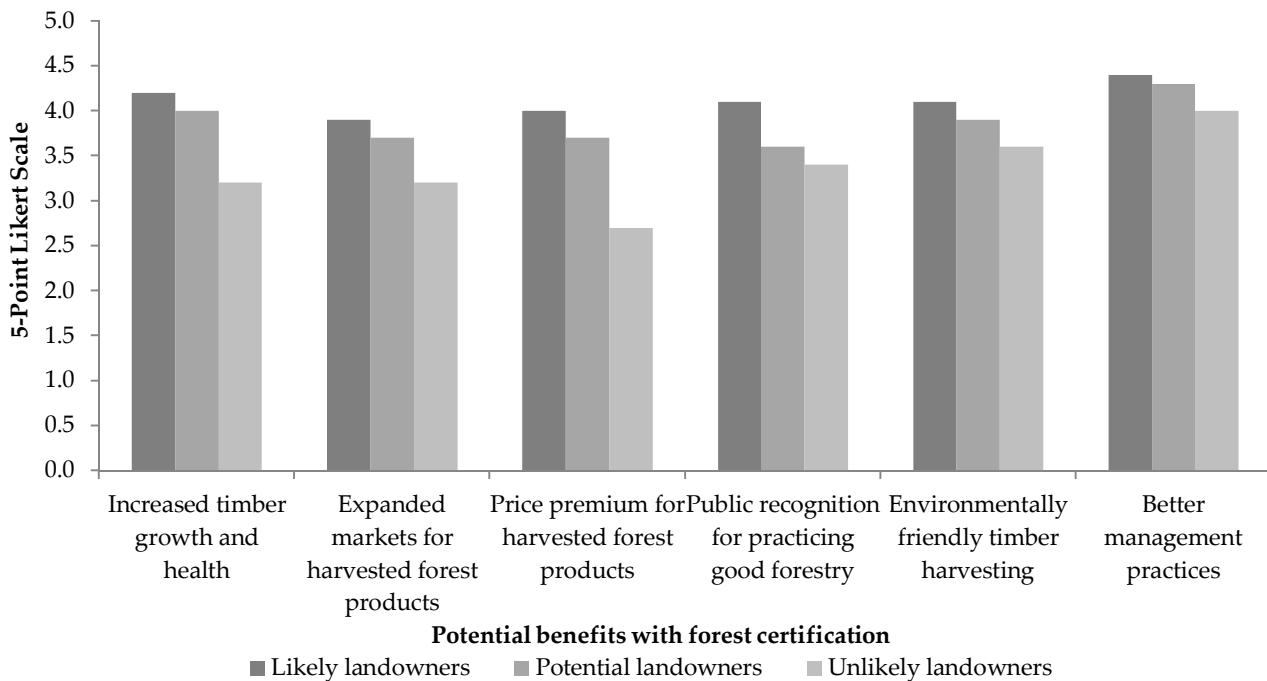
Figure 1. Landowners' familiarity with forest certification before reading the survey

245

3.3 Perceptions for potential benefits and drawbacks with forest certification

246
247
248
249
250
251
252
253
254
255
256
257
258

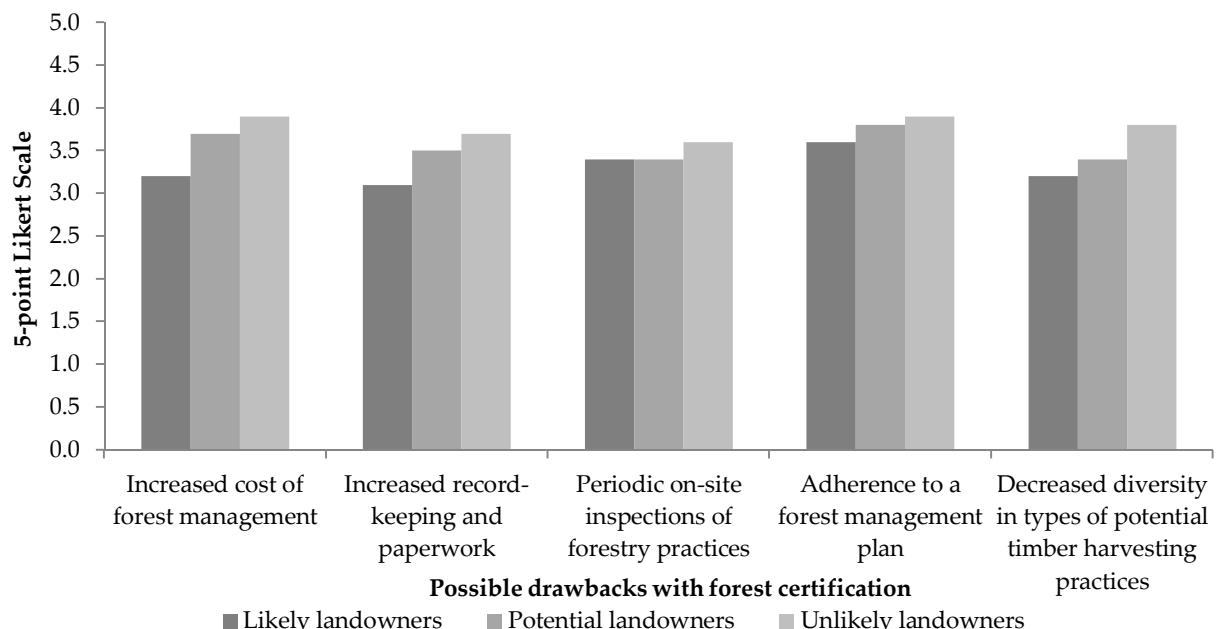
Respondents' perception of possible benefits and drawbacks related with forest certification was summarized in the Figure 2 and 3. The potential benefits of certification composed of improved timber growth and health, expanded markets and price premium for harvested forest products, public recognition for working liable forestry, environmentally-responsibly timber harvesting, and improved management practices. The group of likely landowners rated high value (> 4) for all benefits except for expanded markets for harvested forest products ($= 3.9$), which was slightly lower than other benefits. The only statistically significant difference between likely landowners and potential landowners was found for their public recognition for practicing good forestry (Figure 2). Comparing potential landowners and unlikely landowners, there was significant difference concerning perceptions with attributes such as: increased timber growth and health, expanded markets for harvested forest products, and price premium for harvested forest products (Figure 2). Comparing the likely and unlikely landowner groups, there was a common perception for better management practices. For other five benefits, a significant difference was revealed.


259
260
261
262
263
264
265
266
267
268
269
270

By contrast, five perceived drawbacks associated with certification program were: increased forest management cost, more recordkeeping and paperwork, increased periodic on-site inspections, required to comply with a forest management plan, and reduced diversity in timber harvesting. Among obstacles, unlikely landowners had a typical concern with the possible drawbacks of increasing management cost and paperwork, on-site inspection, and declined of timber harvesting diversity (Figure 3). In particular, there was significant difference between likely landowners and potential landowners concerning management costs and increased paperwork/record-keeping (Figure 3). Interestingly, we did not find significant difference between potential landowners and unlikely landowners for all five possible drawbacks of forest certification (Figure 3). A comparison among three landowners groups suggested no significant difference for on-site inspection and adherence to management plan— two possible challenges associated with the certification (Figure 3).

271

272


273

274

275

Figure 2. Landowners' perception of potential benefits of forest certification

276

277

Figure 3. Landowners' perception of potential drawbacks of forest certification

278

279 **4. Discussion**

280 The landowners in each of the three clusters have different demographics. There was striking
281 similarity among segments in terms of average age. Percentage of female landowners in the
282 cluster of unlikely landowners was significantly higher than the other two clusters, implying that
283 large percentage of women were unlikely to participate in certification program. These results
284 contrasted to findings by Tindall et al. [33], which revealed significantly higher engagement of
285 female in environmentally friendly behavior (EFB). In addition, significant difference was found for
286 both education and income attributes among the three clusters. Likely landowners' educational
287 attainment and household income level was significantly higher than other two groups. These
288 findings were in line with the results of Ma et al. [34], who found that education was positively
289 related with landowners' willingness to participate in certification program in the United States.
290 Also, our results implied that occupation was correlated with landowners' interest in adopting
291 forest certification as majority in likely landowner cluster were professionals working as a forester,
292 professional manager, or government employee. Previous studies (e.g., [35,36,15] also found that
293 landowner occupation have significant effect on conservation behavior.

294 Ownership and forestland characteristics also differed significantly among three clusters.
295 Ownership size in the clusters of likely and potential landowners were significantly larger than
296 unlikely landowners, suggesting that small ownership, which may cause higher per unit cost, can
297 be a concern for landowners to certify their forestland. These results were consistent with the
298 previous findings that passive landowners in the southern United States had the lowest acres of
299 landholding than other two groups with active or some interest in wood-based bioenergy [12].
300 Similarly, our results suggested that landowners with longer tenureship of forestland were more
301 likely to participate in forest certification. In particular, there was a significant difference in tenure
302 between cluster of likely and unlikely landowners. This observation was consistent with Bensel [37]
303 and Tian et al. [15], who found that tenure was a significant factor influencing landowners'
304 willingness to certify their forestland. Among three clusters, there was significant difference in
305 availability of management plan, which was positively correlated with their interests in
306 certification. Our results, however, contrasted with previous findings of Kilgore et al. [38], who
307 reported that landowners' participation in a conservation friendly stewardship program was not
308 correlated with whether or not they had a written plan. Our results implied that landowners
309 owning poplar forests might be relatively more willing to certify their forestland. Of note, poplar
310 forest is a common timber production forests in Shandong, China [39,15]. To this end, our
311 observation was consistent with that from Kilgore et al. [1], who found that likely timber certifiers
312 were interested in timber production forests.

313 Landowners' familiarity degree with forest certification might have an impact on their
314 participation in this program. Likely landowners were more familiar with certification program
315 than unlikely landowner groups, suggesting that landowners' familiarity with forest certification
316 was positively correlated with rate of participation. This result was in line with Bell et al. [35],
317 Mercker and Hodges [40], and Sun et al. [41], who reported that landowner knowledge on forest
318 certification can positively impact their motivation/willingness to participate.

319 Landowners' perceptions of benefits and drawbacks related with forest certification showed
320 significant differences among three segmentations. Likely landowners agreed more on increased
321 timber growth, expanded market, and price premium than unlikely landowners, suggesting that
322 those three benefits associated with forest certification might have a positive relationship with
323 landowners' willingness to adopt certification. On the contrary, potential and unlikely landowner
324 clusters agreed more on increased management costs and paper work than likely landowners,
325 which implied that those two possible drawbacks might restrict landowners' willingness to
326 participate in certification.

327 **5. Conclusions and Management Implications**

328 Findings from this study suggested unique outreach strategies for each market segment. For
329 example, 'likely landowners' represented highly educated and wealthy group with large ownership
330 size and long tenureship, who seemed to be interested in forest certification program. However,
331 considerable percentage in this group do not know the logistic or operational details of certification.
332 Therefore, information on availability of different volunteer certification programs (e.g., FSC, PEFC,
333 and CFCC) and their enrollment criteria might help this group. Similarly, since 'potential
334 landowners' are skeptical of potential costs associated with forest certification, incentive-based
335 programs such as providing subsidy might help this segment. Finally, since 'unlikely landowners'
336 represent landowners in lower household income bracket, government cost-share assistance might
337 be needed for this group. Overall, study results suggested that multifaceted and long-term
338 motivation approaches were needed to encourage more landowners to certify their forestland.

339 A couple caveats of this research are worth noting. First, while the results in this study provide
340 a guideline for general support of forest certification among diverse landowners, we do not assess
341 whether a landowner will actually choose to participate in forest certification; thus, these results
342 should be interpreted as an indicator of landowner's intentions to participate given those program
343 requirements. Second, the three landowner groups only represented the landowners in Shandong
344 and could not symbolize the landowners in other provinces. Given the land use and socio-economic
345 diversity in China, a broader study might be needed in the future.

346

347

348 **Author Contributions:** Nana Tian, Omkar Joshi, and Neelam Poudyal prepared the manuscript and
349 analyzed/interpreted data. Nana Tian and Fadian Lu implemented survey.

350 **Acknowledgments:** We are thankful to the support provided by the Department of Forestry, Wildlife, &
351 Fisheries at University of Tennessee in completing this study. In addition, we thank the W. K. McClure
352 Scholarship Program in the Center for International Education at the University of Tennessee for the funding
353 support of data collection in China.

354 **Conflicts of Interest:** The authors declare no conflict of interest.

355

356

357 **References**

- 358 1. Kilgore, M.A.; Leahy, J.E.; Hibbard, C.M.; Donnay, J.S. Assessing family forestland certification
359 opportunities: a Minnesota case study. *J. For.* **2007**, *105*(1), 27–33.
- 360 2. Leslie, A.D. The impacts and mechanics of certification. *Int. For. Rev.* **2004**, *6* (1), 30–39.
- 361 3. Rametsteiner, E.; Simula, M. Forest certification e an instrument to promote sustainable forest
362 management? *J. Environ. Manage.* **2003**, *67* (1), 87–98.
- 363 4. Durst, P.B.; Mckenzie, P.J.; Brown, C.L.; Appanah, S. Challenges facing certification and eco-labelling of
364 forest products in developing countries. *Int. For. Rev.* **2006**, *8*(2), 193–200.
- 365 5. Pattberg, P. Private Institutions and Global Governance. *The New Politics of Environmental Sustainability*.
366 Edward Elgar, Cheltenham, UK and Northampton, USA. 2007; pp. 320.
- 367 6. Forest Resources in China. Available online:
368 http://english.forestry.gov.cn/index.php?option=com_content&view=article&id=2:forest-resources-in-china&catid=10&Itemid=134 (accessed on 13 March 2018).
- 369 7. Programme for the Endorsement of Forest Certification schemes (PEFC). China's National Forest
370 Certification System Achieves PEFC Endorsement. Available online:<http://pefc.org/news-a-media/general-sfm-news/1459-china-s-national-forest-certification-system-achieves-pefc-endorsement>
371 (accessed on 14 January 2017).
- 372
- 373

374 8. Shapiro, J. *Mao's War against Nature: Politics and the Environment in Revolutionary China*. Cambridge
375 University Press, Cambridge, 2001; New York.

376 9. Liu, J. *China's Road to Sustainability*. Science. 2010, 328–974.

377 10. Ma T. *Interconnected Forests: Global and Domestic Impacts of China's Forestry Conservation*. A China
378 Environmental Health Project Research Brief, 2008; p. 6.

379 11. Sun, X.; Candy, K.; Liu, L. *China's Logging ban in natural forests: Impacts of Extended Policy at Home and Abroad*.
380 Forests Trends Information Brief, 2017; p. 8.

381 12. Joshi, O.; Mehmood, S.R. Segmenting southern nonindustrial private forest landowners on the basis of their
382 management objectives and motivations for wood-based bioenergy. *South. J. Appl. For.* **2011**, *35*(2), 87–92.

383 13. Thompson, D.W.; Hansen, E.N. Factors affecting the attitudes of nonindustrial private forest landowners
384 regarding carbon sequestration and trading. *J. For.* **2012**, 129–137.

385 14. Tian, N.; Poudyal, N.C.; Hodges, D.G.; Young, T.M.; Hoyt, K.P. Understanding the Factors Influencing
386 Nonindustrial Private Forest Landowner Interest in Supplying Ecosystem Services in Cumberland Plateau,
387 Tennessee. *Forests*. **2015**, *6*, 3985–4000.

388 15. Tian, N.; Poudyal, N.C.; Lu, F. Understanding Landowners' interest and willingness to participate in forest
389 certification program in China. *Land Use Policy*. **2018**, *71*, 271–280.

390 16. Kurtz, W.B.; Lewis, B.J. Decision-making framework for nonindustrial private forest owners: an application
391 in the Missouri Ozarks. *J. For.* **1981**, *79* (5), 285–288.

392 17. Kuuluvainen, J.; Karppinen, H.; Ovaskainen, V. Landowner objectives and nonindustrial private timber
393 supply. *For. Sci.* **1996**, *42* (3), 300–309.

394 18. Kline, J.D.; Alig, R.J.; Johnson, R.L. Fostering the production of nontimber services amongst forest owners
395 with heterogeneous objectives. *For. Sci.* **2000**, *46* (2), 302–311.

396 19. Kluender, R.A.; Walkingstick, T.L. Rethinking how nonindustrial landowners view their lands. *South. J.*
397 *Appl. For.* **2000**, *24* (3), 150–158.

398 20. Boon, T.E.; Meilby, H.; Thorsen, B.J. An empirically based typology of private forest owners in Denmark:
399 improving communication between authorities and owners. *Scand. J. For. Res.* **2004**, *19* (S4), 45–55.

400 21. Kendra, A.; Hull, R.B. Motivations and behaviors of new forest owners in Virginia. *For. Sci.* **2005**, *51* (2),
401 142–154.

402 22. Majumdar, I.; Lawrence, T.; Butler, B. Characterizing family forest owners: a cluster analysis approach. *For.*
403 *Sci.* **2008**, *54* (2), 176–184.

404 23. Hujala, T.; Kurtila, M.; Karppinen, H. *Cross-evaluation of two forest owner typologies: how do motives of*
405 *ownership and needs of communication interact?* In: Medved, M. (ed.). *Small Scale Forestry in a Changing*
406 *World: Opportunities and Challenges and the Role of Extension and Technology Transfer*. Proceedings of
407 the IUFRO conference, 06–12 June 2010, Bled, Slovenia. CD-ROM. Slovenian Forest Institute & Slovenia
408 Forest Service, Ljubljana, 2010; p. 320–330.

409 24. Surendra, G.C.; Mehmoodt, S.; Schelhas, J. Segmenting Landowners Based on Their Information-Seeking
410 Behavior: A Look at Landowner Education on the Red Oak Borer. *J. For.* **2009**, 313–319.

411 25. Salmon O.; Brunson, M.; Kuhns, M. Benefit-Based Audience Segmentation: A Tool for Identifying
412 Nonindustrial Private Forest (NIPF) Owner Education Needs. *J. For.* **2006**, 419–425.

413 26. Butler, B.J.; Tyrrell, M.; Feinberg, G.; VanManen, S.; Wiseman, L.; Wallinger, S. Understanding and
414 Reaching Family Forest Owners: Lessons from Social Marketing Research. *J. For.* **2007**, 348–357.

415 27. Herbohn, J.L.; Emtage, N.F.; Harrison, S.R.; Smorfitt, D.B. Attitudes of landholders to farm forestry in
416 tropical Eastern Australia. *Aust. For.* **2005**, *68* (1), 50–58.

417 28. Hujala, T.; Tikkanen, J.; Hänninen, H.; Virkkula, O. Family forest owners' perception of decision support.
418 *Scand. J. For. Res.* **2009**, *24* (5), 448–460.

419 29. Macqueen, J.B. *Some methods for classification and analysis of multivariate observations*. Proc. of the 5th Berkeley
420 symp. on Mathematical statistics and probability. University of California Press, Berkeley, CA. 1967, p. 281–
421 287.

422 30. Silver, M. Scales of measurement and cluster analysis: an application concerning market segments in the
423 babyfood market. *Statistician*. **1995**, *44*(1), 101–112.

424 31. Chiu, T.; Fang, D.; Chen, J.; Wang, Y.; Jeris, C. *A robust and scalable clustering algorithm for mixed type attributes*
425 *in large database environment*. Proc. of int. conf. on Knowledge discovery and data mining. San Francisco,
426 CA. 2001; p. 263–268. Available online: <https://dl.acm.org/citation.cfm?id=502549> (accessed on 13 March
427 2018).

428 32. Hair, J.F.; Black, B.; Babin, B.; Anderson, R.E.; Tatham, R.L. *Multivariate data analysis*, 6th ed., Prentice Hall,
429 Inc., New Jersey, 2006; pp. 899.

430 33. Tindall, D.B.; Davies, S.; Mauboules, C. Activism and conservation behavior in an environmental
431 movement: The contradictory effects of gender. *Soc. Nat. Resour.* **2003**, *16*(10), 909–932.

432 34. Ma, Z.; Butler, B.J.; Kittredge, D.B.; Catanzaro, P. Factors associated with landowner involvement in forest
433 conservation programs in the U.S.: Implications for policy design and outreach. *Land Use Policy*. **2012**, *29*,
434 53–61.

435 35. Bell, C.D.; Roberts, R.K.; English, B.C.; Park, W.M. A logit analysis of participation in Tennessee's Forest
436 Stewardship Program. *J. Agric. Appl. Econ.* **1994**, *26* (2), 463–472.

437 36. Nagubadi, V.; McNamara, K.T.; Hoover, W.L.; Mills, W. L. Program participation behavior of nonindustrial
438 forest landowners: a probit analysis. *J. Agric. Appl. Econ.* **1996**, *28*(2), 323–336.

439 37. Bensel, T. Promoting certified sustainable forestry on private woodlots in north-western Pennsylvania:
440 challenges and opportunities. *Local Environ.* **2001**, *6* (3), 257–278.

441 38. Kilgore, M.A.; Taff, S.S.; Schertz, J. Family Forest Stewardship: Do Owners Need a Financial Incentive? *J.*
442 *For.* **2008**, 357–362.

443 39. Tian, N.; Lu, F. Adaptive management decision of agroforestry under timber price risk. *J. For. Econ.* **2013**,
444 *19*, 162–173.

445 40. Mercker, D.; Hedges, D.G. *Modeling landowner behavior regarding forest certification*. In: 16th Central
446 Hardwood Forest Conference, Purdue University, Lafayette, IN. April 8–10, 2008.

447 41. Sun, X.; Sun, C.; Munn, I.A.; Hussain, A. Knowledge of public assistance programs and application
448 behavior of nonindustrial private forest landowners: a two-step sample selection model. *J. For. Econ.* **2009**,
449 *15* (3), 187–204.

450

451

452