

1 Article

2 **Synthesis and Activity Against *Mycobacterium***
3 **tuberculosis of Olivacine and Oxygenated Derivatives**4 Ulrike Schmidt ¹, Gabriele Theumer ¹, Anne Jäger ¹, Olga Kataeva ², Baojie Wan ³,
5 Scott G. Franzblau ³, Hans-Joachim Knölker ^{1,*}6 ¹ Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; hans-
7 joachim.knoelker@tu-dresden.de8 ² A. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia9 ³ Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St.,
10 MC 964, Chicago, IL 60612-7231, USA

11 * Correspondence: hans-joachim.knoelker@tu-dresden.de; Fax +49 351 463-37030

12

13 **Abstract:** The tetracyclic pyrido[4,3-*b*]carbazole olivacine and four of its oxygenated derivatives
14 have been synthesized by a late-stage palladium-catalyzed Heck-type cyclization of the pyrrole ring
15 as key step. In a test for inhibition of the growth of *Mycobacterium tuberculosis* 9-methoxyolivacine
16 showed the most significant inhibiting activity against *Mycobacterium tuberculosis* with an MIC₉₀
17 value of 1.5 μM.18 **Keywords:** inhibiting activity; catalysis; cyclization; olivacine; palladium; pyrido[4,3-*b*]carbazoles
1920 **1. Introduction**21 The pyrido[4,3-*b*]carbazole alkaloid olivacine (**1**, Figure 1) was first isolated in 1958 by Schmutz
22 et al. [1] and its structural assignment was confirmed by total synthesis only two years later [2]. The
23 tetracyclic alkaloid **1** and many structurally related compounds, for example the isomeric natural
24 product ellipticine (**2**), show useful biological activities such as antitumor activity based on DNA
25 intercalation, topoisomerase II inhibition and antimalarial activity [3–7]. Since the 1980s, A-ring
26 oxygenated derivatives of ellipticine (**2**) have attracted much attention because of their anti-tumor
27 activity [8]. Elliptinium acetate (**3**) has reached the status of a licensed drug for the treatment of
28 advanced breast cancer [9]. Diverse total syntheses of olivacine (**1**) have been reported [10–18].
29 Surprisingly, the pharmacological potential of olivacine (**1**) and its oxygenated derivatives (for
30 example **4** and **5**) has been much less investigated [19].33 **Figure 1.** Pyrido[4,3-*b*]carbazole alkaloids and oxygenated derivatives.
34

35 Although 9-hydroxyolivaccine (**5**) is the main derivative produced by metabolic conversion of
 36 olivaccine (**1**) [3], derivatives of olivaccine (**1**) with A-ring substitution have been not described
 37 extensively in the literature [3,11,13,20]. This may be due to the fact that the syntheses of pyrido[4,3-
 38 *b*]carbazoles usually involve the annulation of an isoquinoline or a pyridine at an indole or carbazole
 39 framework [8,10,11]. Thus, a facile variation of the substitution pattern at ring A is not easy to
 40 accomplish. Herein, we present a novel route for the synthesis of the tetracyclic pyrido[4,3-
 41 *b*]carbazole framework [21].

42 **2. Results and Discussion**

43 For a convergent access to various A-ring substituted derivatives, we envisaged a late-stage B-
 44 ring construction of the pyrido[4,3-*b*]carbazole framework. Therefore, we applied the two-step
 45 sequence of palladium-catalyzed reactions developed by our group for carbazole assembly: synthesis
 46 of a diarylamine via Buchwald–Hartwig coupling of appropriate anilines **7** with a substituted
 47 isoquinoline **8** followed by oxidative cyclization to the pyrido[4,3-*b*]carbazoles **6** (Scheme 1) [11]. The
 48 isoquinoline **8** would be available by Bischler–Napieralski cyclization of the arylethylamine **9** via the
 49 corresponding acetamide. Henry reaction of an appropriately substituted benzaldehyde **10** and
 50 subsequent reduction should afford the arylethylamine **9**. As the Bischler–Napieralski reaction works
 51 best on electron rich aromatic systems, we decided to start from the commercially available methoxy-
 52 substituted benzaldehyde **11** (Scheme 2) and to transform the methoxy group into a suitable leaving
 53 group at a later stage of our synthesis.

54 **Scheme 1.** Retrosynthetic analysis for the pyrido[4,3-*b*]carbazole olivaccine and its A-ring derivatives.

56 **2.1. Total synthesis**

57 Starting from commercial benzaldehyde **11**, which can also be obtained in one step and 87%
 58 yield from the much cheaper *m*-anisaldehyde [22], amide **12** is prepared by a three-step sequence of
 59 Henry reaction, LAH reduction and N-acetylation (Scheme 2) [23]. Bischler–Napieralski cyclization
 60 using phosphorus oxychloride led to the corresponding dihydroisoquinoline which was fully
 61 aromatized to 6-methoxy-1,5-dimethylisoquinoline (**13**) by dehydrogenation with palladium on
 62 charcoal in the presence of cyclohexene as additive. Cleavage of the methyl ether afforded the
 63 isoquinolinol which on reaction with trifluoromethanesulfonic anhydride provided the known
 64 isoquinolinyl triflate **14** [24] in 58% yield over seven steps.

65 **Scheme 2.** Synthesis of the triflate **14**. *Reagents and conditions:* (a) MeNO₂, NH₄OAc, AcOH, 80 °C, 110
 66 min, 77%; (b) LiAlH₄, THF, 0 °C to reflux, 19.5 h, 92%; (c) Ac₂O, DMAP, pyridine, 0 °C, 4 h, 99%; (d)
 67 POCl₃, reflux, 1 h, 99%; (e) Pd/C (10%), cyclohexene, PhMe, reflux, 1.5 h, 100%; (f) pyridinium
 68 chloride, microwave (300 W), 155 °C, 30 min, 96%; (g) Tf₂O, pyridine, MeCN, 0 °C, 20 h, 87%.

71 Buchwald–Hartwig coupling [25] of the triflate **14** and aniline (**15**) provided the diarylamine **16**
 72 (Scheme 3). However, the oxidative cyclization to the pyrido[4,3-*b*]carbazole framework proved to be
 73 very difficult [26]. Several attempts to optimize this reaction failed: using different reaction
 74 temperatures, different solvents (HOAc, HOPiv, dioxane, toluene), catalytic amounts of palladium(II)
 75 acetate in the presence of different re-oxidants, or stoichiometric amounts of palladium(II)
 76 acetate [27–29]. All of these experiments resulted to a large extent in decomposition and led to
 77 olivaccine (**1**) in only low to moderate yields with poor reproducibility.

78 **Scheme 3.** Synthesis of olivaccine (**1**) via oxidative cyclization. *Reagents and conditions:* (a) cat. Pd(OAc)₂,
 79 cat. XPhos, Cs₂CO₃, PhMe, reflux, 48 h, 100%; (b) 1.1 equiv. Pd(OAc)₂, AcOH, 80–100 °C, 24 h, argon,
 80 9–49%.

82 Therefore, we decided to apply a Heck-type cyclization for the formation of the crucial carbon–
 83 carbon bond of the central pyrrole ring. This approach was already described by Sakamoto and
 84 coworkers in 1999 [30]. Buchwald–Hartwig coupling of the triflate **14** with the commercially available
 85 *o*-chloroanilines **17a–c** led to the corresponding diarylamines **18a–c** in 83–94% yield (Scheme 4).
 86 Compound **18a** was structurally confirmed by an X-ray analysis (Figure 2).

87 **Scheme 4.** Synthesis of the pyrido[4,3-*b*]carbazoles **1**, **4** and **5**. *Reagents and conditions:* (a) cat. Pd(OAc)₂,
 88 cat. XPhos, Cs₂CO₃, PhMe, reflux, 1–5 h, 83–94% (**18a–c**); (b) cat. Pd(OAc)₂, P(fBu)₃·HBF₄, K₂CO₃, DMF,
 89 140 °C, 20–35 min, 62–71% (**1**, **19b**, **19c**), 3–12% (**20a–c**); (c) HBr_(aq), reflux, 24 h, 70–84% (**4**, **5**).

91

92 **Figure 2.** Molecular structure of the diarylamine **18a** in the crystal (ORTEP plot showing thermal ellipsoids at
93 the 50% probability level).

94 The cyclization reaction of the diarylamine **18a** with catalytic amounts of palladium(II) acetate
95 in the presence of $P(tBu)_3\cdot HBF_4$ and K_2CO_3 in DMA at 110 °C and in DMF at 120 °C [31,32] proceeded
96 very slowly and gave only moderate yields after 1–2 days (Table 1, entries 1 and 4).
97 Hydrodehalogenation leading to compound **16** was the major side reaction. Using only slightly
98 higher temperatures (130–140 °C), the reaction proceeded much faster and the yields for olivacine (**1**)
99 were significantly better (Table 1, entries 2, 5 and 6)). Finally, using larger amounts of the catalyst
100 combined with shorter reaction times, olivacine (**1**) was obtained in 71% yield. The structure of **1** was
101 confirmed by an X-ray crystal structure determination (Figure 3).

102

Table 1. Optimization of the Heck-type cyclization of **18a** to olivacine (**1**).

	Pd(OAc) ₂ (equiv.)	ligand ¹ (equiv.)	K ₂ CO ₃ (equiv.)	solvent	temp. (°C)	time (h)	yield (%)	RSM ² (%)
1	0.1	0.2	2	DMA	110	24	11	60
2	0.1	0.2	2	DMA	130	1.5	46	18
3	0.2	0.4	4	DMA	120	3.0	35	35
4 ³	0.5	1.0	10	DMF	120	45	46	31
5	0.2	0.4	4	DMF	140	3.0	62	7
6	0.3	0.6	4	DMF	140	0.5	71	–

103
104

¹ $P(tBu)_3\cdot HBF_4$ was used as ligand; ² RSM = reisolated starting material; ³ reagents added in portions of 0.1 equiv. Pd(OAc)₂, 0.2 equiv. ligand, 2 equiv. K_2CO_3 after 0, 1, 3, 6, 30 h of reaction time.

105

106 **Figure 3.** Molecular structure of olivacine (**1**) in the crystal (ORTEP plot showing thermal ellipsoids at the 50%
107 probability level).

108 Application of these conditions to the cyclization of the diarylamines **18b** and **18c** provided 8-
 109 methoxyolivaccine (**19b**) and 9-methoxyolivaccine (**19c**) in 65% and 62% yield, respectively (Scheme 4).
 110 The structure for 8-methoxyolivaccine (**19b**) was additionally confirmed by an X-ray analysis of single
 111 crystals (Figure 4). 9-Methoxyolivaccine (**19c**) is a natural product isolated in 1967 from the bark of the
 112 coastal Venezuelan tree *Aspidosperma vargasii* A. DC. [33] and has been synthesized previously
 113 [3,13,20]. Interestingly, the 11b*H*-pyrido[3,4-*c*]carbazoles **20a–c** containing a quaternary carbon atom
 114 were obtained as by-products of the cyclization reactions of the diarylamines **18a–c** in up to 12%
 115 yield. The structural assignments for the 11b*H*-pyrido[3,4-*c*]carbazoles **20a–c** were supported by 2D
 116 NMR (COSY, HMBC, HSQC, NOESY) spectroscopic studies (see Supplementary Materials). The
 117 compounds **20a–c** result from an attack at the C5 carbon atom of the isoquinoline moiety. Cleavage
 118 of the methyl ether of **19b** and **19c** provided 8-hydroxyolivaccine (**4**) and 9-hydroxyolivaccine (**5**) [3] in
 119 84% and 70% yield, respectively. For biological testing, the products were additionally purified by
 120 HPLC.

121
 122 **Figure 4.** Molecular structure of 8-methoxyolivaccine (**19b**) in the crystal (ORTEP plot showing thermal
 123 ellipsoids at the 50% probability level).

124 *2.2. Biological activity*

125 **Table 2.** Inhibiting activity against *M. tuberculosis* of olivaccine (**1**) and its oxygenated derivatives **4**, **5**,
 126 **19b**, and **19c**.

Compound	MIC_{90}^1 [μM]	IC_{50}^2 [μM]	SI ³
Olivaccine (1)	4.7	18.05	3.8
8-Hydroxyolivaccine (4)	n.d. ⁴	n.d.	–
9-Hydroxyolivaccine (5)	n.d. ⁴	n.d.	–
8-Methoxyolivaccine (19b)	n.d. ⁴	n.d.	–
9-Methoxyolivaccine (19c)	1.5	24.5	16.3
3-Methoxy-2-methyl- carbazole-1,4-quinone ⁵	4.0	>50	>12.5
Isoniazid ⁵	0.24	>50	>208
Rifampicin ⁵	0.02	>50	>2500

127 ¹ Minimum inhibitory concentrations [μM] against *M. tuberculosis* H37Rv in the MABA assay; values are
 128 the mean of three replicate experiments; n.d. = not determined. ² Cytotoxicity corresponding to the
 129 concentration [μM] effecting 50% decrease in tetrazolium dye reduction by vero cells (African green
 130 monkey kidney cells); values are the mean of three replicate experiments; for experiments giving a value
 131 higher than the max. conc. used, >50 μM is denoted. ³ Selectivity index: SI = $\text{IC}_{50}/\text{MIC}_{90}$. ⁴ These
 132 compounds showed no significant inhibition in a preliminary assay. ⁵ 3-Methoxy-2-methylcarbazole-1,4-
 133 quinone, isoniazid and rifampicin (rifampin) were used as positive control; solvent was used as negative
 134 control.

135 A weak inhibiting activity against *M. tuberculosis* was described in early reports for some simple
136 tricyclic carbazole alkaloids [34–36]. Based on that work, we investigated the inhibiting activity of a
137 range of oxygenated carbazole alkaloids and their derivatives and found very promising results for
138 several compounds [37–39]. Therefore, we also tested olivacine (**1**) and its oxygenated derivatives **4**,
139 **5**, **19b** and **19c** for their inhibition of *M. tuberculosis* (Table 2). In a preliminary activity test against
140 *Mycobacterium tuberculosis* only two of the five pyrido[4,3-*b*]carbazoles, namely olivacine (**1**) and 9-
141 methoxyolivacine (**19b**), showed significant effects and have been studied further. The minimum
142 concentrations effecting a 90% inhibition of growth (MIC₉₀) of *M. tuberculosis* strain H₃₇Rv were
143 determined by the microplate alamar blue assay (MABA) [40,41]. The *in vitro* cytotoxicity towards
144 mammalian (vero) cells was determined as described previously [40,42].

145 The MIC₉₀ value for 3-methoxy-2-methylcarbazole-1,4-quinone served as benchmark for
146 comparison with the inhibiting activities of carbazoles found in our previous studies [39]. Although
147 olivacine (**1**) shows an activity comparable to our benchmark compound, the SI value is considerably
148 lower (SI = 3.8) due to its toxicity. However, 9-methoxyolivacine (**19a**) exhibits a strong inhibition of
149 *M. tuberculosis* (MIC₉₀ = 1.5 μ M) combined with a lower cytotoxicity towards mammalian cells which
150 leads to a very good selectivity index (SI = 16.3).

151 3. Materials and Methods

152 3.1. General

153 All reactions were carried out in oven-dried glassware using anhydrous solvents under an argon
154 atmosphere, unless stated otherwise. CH₂Cl₂, THF, and toluene were dried using a solvent
155 purification system (MBraun-SPS). Petroleum ether used refers to the hydrocarbon mixture with a
156 boiling range of 40–65 °C. Pd(OAc)₂ was recrystallized from glacial AcOH. All other chemicals were
157 used as received from commercial sources. A CEM Discover microwave reactor was utilized for
158 reactions taking place under microwave irradiation. Flash chromatography was performed using
159 silica gel from Acros Organics (0.035–0.070 mm). Alox N was obtained from Merck KGaA. TLC was
160 performed with TLC plates from Merck (60 F254) using UV light for visualisation. Melting points
161 were measured on a Gallenkamp MPD 350 melting point apparatus. Ultraviolet spectra were
162 recorded on a PerkinElmer 25 UV/Vis spectrometer. Fluorescence spectra were obtained using a
163 Varian Cary Eclipse spectrometer. IR spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR
164 spectrometer using the ATR method (Attenuated Total Reflectance). NMR spectra were recorded on
165 Bruker DRX 500 and Avance III 600 spectrometers. Chemical shifts δ are reported in parts per million
166 (ppm) with the solvent signal as internal standard. Standard abbreviations were used to denote the
167 multiplicities of the signals. MS and HRMS (EI) were recorded on a Finnigan MAT-95 spectrometer
168 (electron impact, 70 eV) or by GC/MS-coupling using an Agilent Technologies 6890 N GC System
169 equipped with a 5973 Mass Selective Detector (electron impact, 70 eV). ESI-MS spectra were recorded
170 on an Esquire LC with an ion trap detector from Bruker. Positive and negative ions were detected.
171 ESI-HRMS were recorded using a Q-TOF 6538 (Agilent). Elemental analyses were measured on an
172 EuroVector EuroEA3000 elemental analyser. X-ray crystal structure analyses were performed with a
173 Bruker-Nonius Kappa CCD that was equipped with a 700 series Cryostream low temperature device
174 from Oxford Cryosystems. SHELXS-97 [43], SADABS version 2.10 [44], SHELXL-97 [45], POV-Ray
175 for Windows version 3.7.0.msvc10.win64, and ORTEP-3 for Windows [46] were used as software.

176 3.2. Procedures

177 **1-Methoxy-2-methyl-3-(2-nitrovinyl)benzene.** Nitromethane (427 mg, 6.99 mmol) and freshly
178 sublimated ammonium acetate (433 mg, 5.62 mmol) were added to a solution of 3-methoxy-2-
179 methylbenzaldehyde (**11**, 800 mg, 5.33 mmol) in acetic acid (645 mg, 10.74 mmol) and the mixture
180 was stirred at 80 °C for 1 h 50 min. After cooling to room temperature, the precipitate was dissolved
181 by adding ethyl acetate. The mixture was transferred to a separatory funnel, washed twice with water
182 and brine. The aqueous layer was extracted with ethyl acetate, the combined organic layers were
183 dried (magnesium sulfate) and the solvent was evaporated. Purification of the residue by column

184 chromatography (silica gel, petroleum ether, ethyl acetate, 1% to 15% ethyl acetate) provided 1-
185 methoxy-2-methyl-3-(2-nitrovinyl)benzene (791 mg, 4.09 mmol, 77%) as yellow crystals. M.p. 97–98
186 °C; UV (MeOH): λ = 205, 228, 251, 317 nm; IR (ATR): ν = 3116, 2959, 2920, 2838, 1901, 1820, 1697, 1653,
187 1627, 1594, 1573, 1541, 1498, 1477, 1450, 1331, 1260, 1244, 1102, 1080, 1007, 968, 893, 873, 844, 806, 777,
188 725, 693 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 2.33 (s, 3H), 3.86 (s, 3H), 6.96 (d, J = 8.2 Hz, 1H), 7.10 (d,
189 J = 7.8 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 13.5 Hz, 1H), 8.33 (d, J = 13.5 Hz, 1H); ¹³C NMR (125
190 MHz, CDCl₃): δ = 11.96 (CH₃), 55.84 (CH₃), 113.12 (CH), 119.25 (CH), 127.11 (CH), 128.40 (C), 130.13
191 (C), 137.25 (CH), 138.20 (CH), 158.29 (C); MS (EI): *m/z* (%) = 193 (100, [M]⁺), 178 (6), 161 (7), 146 (70),
192 131 (52), 115 (54), 103 (67), 91 (37), 77 (47), 63 (18), 51 (18); HRMS: calcd for C₁₀H₁₁NO₃: 193.0738, found:
193 193.0733; elemental analysis: calcd for C₁₀H₁₁NO₃: C: 62.17, H: 5.74, N: 7.25; found C: 62.16, H: 5.77,
194 N: 7.50.
195

196 *2-(3-Methoxy-2-methylphenyl)ethanamine*. Over a period of 1 h a solution of 1-methoxy-2-methyl-3-(2-
197 nitrovinyl)benzene (6.79 g, 35.2 mmol) in THF (95 mL) was added to a suspension of lithium
198 aluminum hydride (6.83 g, 180 mmol) in THF (360 mL) at 0 °C. The cooling bath was removed and
199 the mixture was heated for 30 min at room temperature and 18 h at reflux. A second portion of lithium
200 aluminum hydride (0.35 g, 9.1 mmol) was added to the slightly reddish colored solution and the mixture
201 was heated at reflux for an additional hour. After cooling to room temperature, the reaction
202 mixture was carefully quenched with saturated aqueous ammonium chloride and the pH value was
203 adjusted to 9. Diethyl ether was added and the mixture was transferred into a separatory funnel. Still
204 under argon, the layers were separated and the aqueous layer was extracted three times with diethyl
205 ether. The combined organic layers were washed with water and brine, dried (magnesium sulfate)
206 and the solvent was evaporated to provide 2-(3-methoxy-2-methylphenyl)ethanamine (5.33 g, 32.3
207 mmol, 92%) as a yellow oil. UV (MeOH): λ = 204, 218, 273, 280 nm; IR (ATR): ν = 3402, 2989, 2923,
208 2848, 2659, 2480, 2065, 1658, 1604, 1581, 1510, 1463, 1395, 1293, 1256, 1194, 1171, 1149, 1122, 1096, 1006,
209 953, 875, 789, 776, 763, 719 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 2.22 (s, 3H), 3.10–3.19 (m, 4H), 3.82
210 (s, 3H), 6.77 (d, J = 8.2 Hz, 1H), 6.83 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H); ¹³C NMR (150 MHz,
211 methanol-d₄): δ = 11.47 (CH₃), 32.26 (CH₂), 40.35 (CH₂), 55.49 (CH₃), 109.10 (CH), 121.76 (CH), 125.07
212 (C), 126.59 (CH), 135.84 (C), 158.03 (C); MS (ESI, +10 V) *m/z* = 149.0 [M–NH₃+H]⁺, 166.0 [M+H]⁺, 331.2
213 [2M+H]⁺; HRMS: calcd for C₁₀H₁₅NO: 165.1153, found: 165.1144.
214

215 *2-(3-Methoxy-2-methylphenyl)ethylacetamide (12)*. DMAP (14 mg, 0.11 mmol) was added to a solution
216 of 2-(3-methoxy-2-methylphenyl)ethanamine (230 mg, 1.14 mmol) in pyridine (4.5 mL) and the
217 mixture was cooled to 0 °C. Acetic anhydride (140 μ L, 15 mmol) was added dropwise over a period
218 of five minutes and the reaction mixture was stirred for four hours. The solvent was evaporated and
219 the raw material was purified by chromatography (Alox N, 5% H₂O; ethyl acetate) to provide 2-(3-
220 methoxy-2-methylphenyl)ethyl acetamide (**12**, 235 mg, 1.13 mmol, 99%) as a light yellow solid. M.p.
221 84–85 °C; UV (MeOH): λ = 205, 219, 229, 271, 279 nm; IR (ATR): ν = 3267, 3085, 2932, 2836, 2030, 2009,
222 1976, 1716, 1659, 1630, 1564, 1508, 1489, 1472, 1459, 1435, 1396, 1370, 1298, 1285, 1247, 1201, 1180, 1110,
223 1092, 1037, 1013, 896, 812, 776, 748, 723, 701, 651, 606 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 1.95 (s, 3H),
224 2.19 (s, 3H), 2.84 (t, J = 6.9 Hz, 2H), 3.46 (q, J = 6.9 Hz, 2H), 3.82 (s, 3H), 5.46 (br s, 1H), 6.76 (d, J = 7.9
225 Hz, 2H), 7.12 (t, J = 7.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 11.53 (CH₃), 23.51 (CH₃), 33.38 (CH₂),
226 39.87 (CH₂), 55.64 (CH₃), 108.61 (CH), 121.89 (CH), 125.24 (C), 126.36 (CH), 138.38 (C), 158.09 (C),
227 170.21 (C=O); MS (ESI, +10 V) *m/z* = 208.0 [M+H]⁺, 415.1 [2M+H]⁺, 437.1 [2M+Na]⁺; HRMS: calcd for
228 C₁₂H₁₇NO₂: 207.1259, found: 207.1248; elemental analysis: calcd for C₁₂H₁₇NO₂: C: 69.54, H: 8.27, N:
229 6.76; found C: 69.04, H: 8.73, N: 6.78.
230

231 *6-Methoxy-1,5-dimethyl-3,4-dihydroisoquinoline*. Phosphorus oxychloride (1.9 mL, 21 mmol) was added
232 to a refluxing solution of acetamide **12** (433 mg, 2.09 mmol) in freshly distilled chloroform (23 mL)
233 and the mixture was stirred for one hour. Subsequently, solvent and excess phosphorus oxychloride
234 were removed under vigorous stirring by a nitrogen stream through a pair of soda lye filled gas
235 washing bottles. The remaining oily raw product was dissolved in ethyl acetate. Soda lye (10%) was

236 added and the pH value was adjusted to 8–9 using saturated aqueous ammonium chloride. The layers
237 were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers
238 were washed with water and brine, dried (magnesium sulfate) and the solvent was evaporated.
239 Purification of the crude product by chromatography (Alox N, 5% H₂O; ethyl acetate + 3%
240 triethylamine) afforded 6-methoxy-1,5-dimethyl-3,4-dihydroisoquinoline (393 mg, 2.08 mmol, 99%)
241 as a yellow solid. M.p. 57–58 °C (subl.); UV (MeOH): λ = 229, 274, 319 nm; IR (ATR): ν = 3002, 2939,
242 2838, 1735, 1699, 1629, 1594, 1576, 1539, 1507, 1482, 1435, 1368, 1291, 1258, 1184, 1149, 1101, 1015, 922,
243 901, 873, 805, 751, 700, 666, 637 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 2.15 (s, 3H), 2.35 (t, J = 1.4 Hz,
244 3H), 2.64 (t, J = 7.4 Hz, 2H), 3.63 (tq, J = 7.4, 1.4 Hz, 2H), 3.85 (s, 3H), 6.75 (d, J = 8.5 Hz, 1H), 7.37 (d, J
245 = 8.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 11.08 (CH₃), 23.32 (CH₂), 23.62 (CH₃), 46.91 (CH₂), 55.61
246 (CH₃), 107.50 (CH), 123.06 (C), 123.40 (C), 124.76 (CH), 137.70 (C), 159.47 (C), 164.80 (C); MS (EI): *m/z*
247 (%) = 189 (95, [M]⁺), 174 (100), 158 (16), 144 (23), 131 (22), 115 (31), 105 (23), 91 (22), 77 (29), 63 (17), 51
248 (20); HRMS: calcd for C₁₂H₁₅NO: 189.1154, found: 189.1147; elemental analysis: calcd for C₁₂H₁₅NO:
249 C: 76.16, H: 7.99, N: 7.40; found C: 76.25, H: 7.98, N: 7.46.
250

251 6-Methoxy-1,5-dimethylisoquinoline (**13**). A flask filled with 6-methoxy-1,5-dimethyl-3,4-dihydro-
252 isoquinoline (90.3 mg, 0.48 mmol) and palladium on charcoal (10%, 93.6 mg) was evacuated under
253 vigorous stirring for 15 min and then filled with argon. Toluene (3.6 mL) and cyclohexene (1.3 mL,
254 13 mmol) were added and the mixture was heated at reflux until full conversion was detected (TLC:
255 Alox N; ethyl acetate/isohexane, 2:1 + 1 drop of ethanol). The catalyst was removed by filtration (ethyl
256 acetate) and the crude product was purified by chromatography (Alox N, 5% H₂O; petroleum
257 ether/ethyl acetate, 5:1) to provide 6-methoxy-1,5-dimethylisoquinoline (**13**, 90 mg, 0.48 mmol, 100%)
258 as a beige solid. M.p. 99–102 °C; UV (MeOH): λ = 203, 236, 301 nm; IR (ATR): ν = 3058, 3015, 2965,
259 2940, 2847, 1608, 1563, 1542, 1495, 1457, 1401, 1344, 1324, 1267, 1179, 1153, 1116, 1078, 1009, 984, 913,
260 848, 814, 774, 698, 673, 648, 581, 528 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 2.50 (s, 3H), 2.97 (s, 3H), 4.00
261 (s, 3H), 7.35 (d, J = 9.2 Hz, 1H), 7.63 (d, J = 6.2 Hz, 1H), 8.05 (d, J = 9.2 Hz, 1H), 8.32 (d, J = 6.2, 1H); ¹³C
262 NMR (150 MHz, CDCl₃): δ = 10.49 (CH₃), 22.17 (CH₃), 56.39 (CH₃), 113.71 (CH), 115.83 (CH), 118.97
263 (C), 123.04 (C), 125.66 (CH), 127.47 (C), 136.96 (C), 140.72 (CH), 158.57 (C); MS (EI): *m/z* (%) = 187 (100,
264 [M]⁺), 172 (26), 156 (16), 144 (80), 128 (19), 115 (43), 103 (21), 89 (11), 77 (30), 63 (24), 51 (22); HRMS:
265 calcd for C₁₂H₁₃NO: 187.0997, found: 187.0986; elemental analysis: calcd for C₁₂H₁₃NO: C: 76.98, H:
266 7.00, N: 7.48; found C: 76.43, H: 7.04, N: 7.53.
267

268 1,5-Dimethylisoquinolin-6-ol. *For small amounts*: In a microwave tube, a mixture of 6-methoxy-1,5-
269 dimethylisoquinoline (**13**, 45 mg, 0.24 mmol) and pyridinium chloride (1 g, 8 mmol) was irradiated
270 at 155 °C (300 Watt) for 30 minutes. After cooling to room temperature, the mixture was dissolved in
271 water and ethyl acetate, and neutralized with a saturated aqueous solution of sodium bicarbonate.
272 The layers were separated and the aqueous layer was carefully extracted with ethyl acetate. The
273 combined organic layers were dried (magnesium sulfate) and the solvent was evaporated to give 1,5-
274 dimethylisoquinolin-6-ol (40 mg, 0.23 mmol, 96%) as a brownish solid.
275 *For larger amounts*: Freshly distilled hydrobromic acid (22 mL, 0.19 mol) was carefully added at 0 °C
276 to 6-methoxy-1,5-dimethylisoquinoline (**13**, 3.01 g, 16.1 mmol). After the addition was completed, the
277 cooling bath was removed and the mixture was heated at reflux for five hours. Then, the excess of
278 hydrobromic acid was removed under vacuo. The brownish raw material was completely dissolved
279 in water (115 mL, ultrasound), filtered, and neutralized by dropwise addition of a saturated aqueous
280 solution of sodium bicarbonate. The resulting solid was carefully washed with water and dried in
281 vacuo to provide 1,5-dimethylisoquinolin-6-ol (2.49 g, 14.4 mmol, 89%) as a brownish solid. M.p. 248–
282 250 °C (sublimation); UV (MeOH): λ = 234, 279, 301, 328, 382 nm; IR (ATR): ν = 2920, 2850, 2475 (br),
283 1808 (br), 1617, 1599, 1564, 1479, 1423, 1385, 1356, 1337, 1279, 1202, 1057, 1006, 939, 813, 774, 718, 672,
284 660 cm⁻¹; ¹H NMR (500 MHz, methanol-d₄): δ = 2.43 (s, 3H), 2.84 (s, 3H), 7.22 (d, J = 9.1 Hz, 1H), 7.64
285 (d, J = 6.2 Hz, 1H), 7.95 (d, J = 9.1 Hz, 1H), 8.12 (d, J = 6.2 Hz, 1H); ¹³C NMR (125 MHz, methanol-d₄):
286 δ = 10.13 (CH₃), 21.33 (CH₃), 116.26 (C), 116.72 (CH), 119.91 (CH), 123.50 (C), 126.19 (CH), 138.79 (C),
287 140.60 (CH), 157.91 (C), 158.92 (C); MS (ESI, +10 V) *m/z* = 174.0 [M+H]⁺; HRMS: calcd for C₁₁H₁₁NO:

288 173.0841, found: 173.0851; elemental analysis: calcd for C₁₁H₁₁NO: C: 76.28, H: 6.40, N: 8.09; found C:
289 76.00, H: 6.47, N: 8.21.

290

291 *1,5-Dimethylisoquinolin-6-yl trifluoromethanesulfonate (14)*. Pyridine (1.1 mL, 12 mmol) was added to a
292 suspension of 1,5-dimethylisoquinolin-6-ol (0.60 g, 3.5 mmol) in acetonitrile (66 mL) at 0 °C.
293 Subsequently, trifluoromethanesulfonic anhydride (0.87 mL, 5.2 mmol) was added dropwise and the
294 reaction mixture was stirred at this temperature for 20 hours. Ethyl acetate and water were added
295 and the layers were separated. The aqueous layer was extracted three times with ethyl acetate. The
296 combined organic layers were washed with water and brine, and then dried (sodium sulfate). The
297 solvent was evaporated and the residue was purified by column chromatography (silica gel,
298 pentane/ethyl acetate, 1:1) to provide 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate (14,
299 0.92 g, 3.0 mmol, 87%) as a beige solid. M.p. 67–67.5 °C; UV (MeOH): λ = 198, 219, 274, 308, 321 nm;
300 IR (ATR): ν = 3088, 3031, 2995, 2927, 2856, 1612, 1564, 1522, 1473, 1459, 1414, 1375, 1350, 1245, 1207,
301 1170, 1132, 1038, 994, 933, 861, 826, 815, 767, 663, 621 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 2.68 (s, 3H),
302 3.00 (s, 3H), 7.48 (d, J = 9.3 Hz, 1H), 7.71 (d, J = 6.1 Hz, 1H), 8.10 (d, J = 9.3 Hz, 1H), 8.52 (d, J = 6.1 Hz,
303 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 12.24 (CH₃), 22.88 (CH₃), 116.23 (CH), 118.77 (q, J_{CF} = 321 Hz,
304 CF₃), 120.75 (CH), 126.42 (CH and C), 126.64 (C), 136.97 (C), 143.40 (CH), 147.91 (C), 159.50 (C); ¹⁹F
305 NMR (282 MHz, CDCl₃): δ = -73.58 (s, 3F); MS (EI): *m/z* (%) = 305 (1, [M]⁺), 172 (8), 144 (48), 128 (7),
306 115 (19), 103 (13), 89 (5), 77 (18), 69 (100), 63 (10), 51 (12); MS (ESI, +10 V) *m/z* = 306.0 [M+H]⁺; elemental
307 analysis: calcd for C₁₂H₁₀F₃NO₃S: C: 47.21, H: 3.30, N: 4.59, S: 10.50; found C: 47.09, H: 3.02, N: 4.58, S:
308 10.45.

309

310 *1,5-Dimethyl-N-phenylisoquinolin-6-amine (16)*. Aniline (15, 0.1 mL, 1.2 mmol) was added dropwise to
311 a solution of 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate (14, 0.235 g, 0.770 mmol),
312 palladium(II) acetate (13 mg, 58 μ mol), XPhos (55 mg, 0.12 mmol) and cesium carbonate (0.35 g, 1.1
313 mmol) in toluene (20 mL). The mixture was heated at reflux for 48 hours. After cooling to room
314 temperature, the reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and the
315 solvent was evaporated. Purification of the residue by column chromatography (silica gel,
316 dichloromethane/ethyl acetate 1:3 + 1% methanol) provided 1,5-dimethyl-N-phenylisoquinolin-6-
317 amine (16, 0.19 g, 0.77 mmol, 100%) as a yellow solid. M.p. 175 °C (decomp.); UV (MeOH): λ = 223,
318 250, 280, 325, 358 (sh) nm; IR (ATR): ν = 3207, 3163, 3090, 3012, 2985, 2919, 2860, 1632, 1615, 1594, 1562,
319 1526, 1492, 1439, 1397, 1380, 1310, 1286, 1174, 1151, 1060, 990, 938, 864, 844, 819, 788, 748, 695, 678 cm⁻¹;
320 ¹H NMR (500 MHz, CDCl₃): δ = 2.50 (s, 3H), 2.91 (s, 3H), 5.83 (br s, 1H), 7.01 (t, J = 7.4 Hz, 1H), 7.05
321 (d, J = 7.7 Hz, 2H), 7.29 - 7.33 (m, 2H), 7.53 (d, J = 9.1 Hz, 1H), 7.60 (d, J = 6.1 Hz, 1H), 7.92 (d, J = 9.1
322 Hz, 1H), 8.35 (d, J = 6.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ = 12.38 (CH₃), 22.66 (CH₃), 115.32 (CH),
323 118.78 (C), 118.88 (2 CH), 119.96 (CH), 121.99 (CH), 123.77 (C), 124.80 (CH), 129.63 (2 CH), 136.93 (C),
324 141.95 (C), 142.27 (CH), 142.91 (C), 158.59 (C); MS (EI): *m/z* (%) = 248 (100, [M]⁺), 233 (16), 171 (17); MS
325 (ESI, +10 V) *m/z* = 249.1 [M+H]⁺; HRMS (ESI): calcd for C₁₇H₁₆N₂: 248.1313, found: 248.1310.

326

327 *N-(2-Chlorophenyl)-1,5-dimethylisoquinolin-6-amine (18a)*. 2-Chloroaniline (17a, 78 μ L, 0.74 mmol) was
328 added dropwise to a solution of 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate (14, 0.15 g,
329 0.49 mmol), palladium(II) acetate (8.3 mg, 37 μ mol), XPhos (35 mg, 74 μ mol) and cesium carbonate
330 (224 mg, 0.688 mmol) in toluene (12 mL). The mixture was heated at reflux for 1.5 hours. After cooling
331 to room temperature, the reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and
332 the solvent was evaporated. Purification of the residue by column chromatography (silica gel,
333 dichloromethane/ethyl acetate, 9:1 to 0:1, each + 1% ethanol) provided *N*-(2-chlorophenyl)-1,5-
334 dimethylisoquinolin-6-amine (18a, 0.130 g, 0.460 mmol, 94%) as brownish crystals. M.p. 194–198 °C;
335 UV (MeOH): λ = 221, 249, 278, 320 nm; fluorescence (MeOH): λ_{ex} = 221, λ_{em} = 229 (sh), 334 nm; IR
336 (ATR): ν = 3189, 3078, 2955, 2919, 2850, 1589, 1567, 1542, 1501, 1474, 1452, 1396, 1367, 1307, 1294, 1267,
337 1225, 1198, 1129, 1058, 1033, 996, 933, 862, 843, 822, 793, 751, 706 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ =
338 2.35 (s, 3H), 2.93 (s, 3H), 6.15 (br s, 1H), 6.85 (td, J = 7.7, 3.0 Hz, 1H), 6.95 (dd, J = 8.2, 1.4 Hz, 1H), 7.10–
339 7.14 (m, 1H), 7.40 (dd, J = 8.0, 1.4 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 6.1 Hz, 1H), 7.96 (d, J =

340 9.0 Hz, 1H), 8.39 (d, J = 6.1 Hz, 1H); ^{13}C NMR (125 MHz, CDCl_3): δ = 12.58 (CH_3), 22.58 (CH_3), 115.47
341 (CH), 116.05 (CH), 120.90 (CH), 121.87 (C), 122.07 (CH), 122.83 (C), 124.52 (C), 124.73 (CH), 127.51
342 (CH), 129.80 (CH), 136.78 (C), 140.07 (C), 140.19 (C), 142.35 (CH), 158.61 (C); MS (EI): m/z (%) = 282
343 (100, [M] $^+$), 247 (74), 232 (29), 204 (15), 171 (12), 115 (10), 75 (11); MS (ESI, +25 V) m/z = 283.2 [M+H] $^+$.
344 Crystal data: $\text{C}_{17}\text{H}_{15}\text{ClN}_2$, crystal size $0.22 \times 0.20 \times 0.06 \text{ mm}^3$, M = 282.76 g mol $^{-1}$, monoclinic, space
345 group: Cc , a = 11.700(2), b = 9.117(2), c = 14.024(3) Å, β = 110.73(3)°, V = 1399.1(5) Å 3 , Z = 4, $\rho_{\text{calcd.}}$ = 1.342
346 g cm $^{-3}$, μ = 0.264 mm $^{-1}$, T = 198(2) K, λ = 0.71073 Å, θ range: 3.11–27.00°, 20817 reflections collected,
347 3047 independent ($R_{\text{int.}}$ = 0.0534), 187 parameters. The structure was solved by direct methods and
348 refined by full-matrix least-squares on F^2 ; 2296 reflections observed, R_1 = 0.0407, wR_2 = 0.0805 [$I > 2$
349 $\sigma(I)$]; maximal residual electron density: 0.276 e Å $^{-3}$. CCDC 1838728.

350

351 *N*-(2-Chloro-5-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (**18b**). 2-Chloro-5-methoxyaniline (**17b**,
352 92 µL, 0.74 mmol) was added dropwise to a solution of 1,5-dimethylisoquinolin-6-yl
353 trifluoromethanesulfonate (**14**, 0.15 g, 0.49 mmol), palladium(II) acetate (8.3 mg, 37 µmol), XPhos (35
354 mg, 74 µmol) and cesium carbonate (224 mg, 0.688 mmol) in toluene (12 mL). The mixture was heated
355 at reflux for five hours. After cooling to room temperature, the reaction mixture was filtered over a
356 short pad of Hyflo (ethyl acetate) and the solvent was evaporated. Purification of the residue by
357 column chromatography (silica gel, dichloromethane/ethyl acetate, 1:1 to 0:1, each + 1% ethanol)
358 provided *N*-(2-chloro-5-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (**18b**, 0.141 g, 0.451 mmol,
359 92%) as a beige solid. M.p. 135–138 °C; UV (MeOH): λ = 224, 277, 322 nm; fluorescence (MeOH): $\lambda_{\text{ex}} =$
360 224, $\lambda_{\text{em}} = 301$ (sh), 336 nm; IR (ATR): ν = 3416, 3068, 2998, 2929, 2853, 1596, 1508, 1447, 1421, 1383,
361 1343, 1312, 1287, 1230, 1207, 1170, 1138, 1069, 1027, 924, 820, 732, 671, 640 cm $^{-1}$; ^1H NMR (500 MHz,
362 CDCl_3): δ = 2.53 (s, 3H), 2.94 (s, 3H), 3.68 (s, 3H), 6.13 (br s, 1H), 6.40 (dd, J = 8.8, 2.8 Hz, 1H), 6.47 (d, J
363 = 2.8 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 6.1 Hz, 1H), 7.97 (d, J = 9.0
364 Hz, 1H), 8.39 (d, J = 6.1 Hz, 1H); ^{13}C NMR (125 MHz, CDCl_3): δ = 12.66 (CH_3), 22.61 (CH_3), 55.46 (CH_3),
365 101.82 (CH), 105.94 (CH), 113.40 (C), 115.53 (CH), 122.55 (CH), 123.53 (C), 124.67 (C), 124.76 (CH),
366 130.02 (CH), 136.78 (C), 139.77 (C), 141.06 (CH), 142.38 (C), 158.64 (C), 159.20 (C); MS (EI): m/z (%) =
367 312 (100, [M] $^+$), 277 (80), 262 (76), 247 (13), 233 (18), 219 (12), 139 (10), 117 (16), 63 (10); MS (ESI, +10 V)
368 m/z = 313.3 [M+H] $^+$.

369

370 *N*-(2-Chloro-4-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (**18c**). A solution of 2-chloro-4-methoxy-
371 aniline (**17c**, 127 mg, 0.806 mmol) in toluene (4 mL) was added dropwise to a solution of 1,5-
372 dimethylisoquinolin-6-yl trifluoromethanesulfonate (**14**, 164 mg, 0.537 mmol), palladium(II) acetate
373 (9 mg, 0.04 mmol), XPhos (38 mg, 81 µmol) and cesium carbonate (245 mg, 0.752 mmol) in toluene
374 (10 mL). The mixture was heated at reflux for one hour. After cooling to room temperature, the
375 reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and the solvent was evaporated.
376 Purification of the residue by column chromatography (silica gel, dichloromethane/ethyl acetate, 9:1
377 to 0:1, each + 1% ethanol) provided *N*-(2-chloro-4-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine
378 (**18c**, 139 mg, 0.444 mmol, 83%) as a beige solid. M.p. 104–107 °C; UV (MeOH): λ = 226, 255, 318 nm;
379 fluorescence (MeOH): $\lambda_{\text{ex}} = 255$, $\lambda_{\text{em}} = 422$ nm; IR (ATR): ν = 3229, 3074, 2993, 2948, 2832, 1731, 1633,
380 1606, 1562, 1485, 1451, 1436, 1387, 1341, 1308, 1283, 1211, 1182, 1112, 1046, 936, 894, 864, 822, 789, 773,
381 689, 664 cm $^{-1}$; ^1H NMR (500 MHz, CDCl_3): δ = 2.51 (s, 3H), 2.93 (s, 3H), 3.80 (s, 3H), 5.87 (br s, 1H), 6.79
382 (dd, J = 8.7, 2.8 Hz, 1H), 7.02 (d, J = 2.8 Hz, 1H), 7.09 (d, J = 8.9 Hz, 1H), 7.29 (d, J = 9.1 Hz, 1H), 7.62 (d,
383 J = 6.2 Hz, 1H), 7.90 (d, J = 9.1 Hz, 1H), 8.31 (d, J = 6.2 Hz, 1H); ^{13}C NMR (125 MHz, CDCl_3): δ = 12.01
384 (CH_3), 21.92 (CH_3), 55.84 (CH_3), 113.76 (CH), 115.29 (CH), 115.33 (CH), 117.69 (C), 118.89 (CH), 122.01
385 (CH), 123.18 (C), 124.98 (CH), 126.33 (C), 132.26 (C), 136.87 (C), 140.79 (CH, HSQC), 142.90 (C, HMBC),
386 155.61 (C), 158.06 (C); MS (EI): m/z (%) = 312 (100, [M] $^+$), 297 (44), 277 (12), 262 (14), 233 (17), 169 (12),
387 155 (11), 128 (14), 116 (15); MS (ESI, +10 V) m/z = 313.2 [M+H] $^+$; elemental analysis: calcd for
388 $\text{C}_{18}\text{H}_{17}\text{ClN}_2\text{O}$: C: 69.12, H: 5.48, N: 8.96; found C: 68.62, H: 5.72, N: 9.30.

389

390 *Olivaccine* (**1**). *N*-(2-Chlorophenyl)-1,5-dimethylisoquinolin-6-amine (**18a**, 20 mg, 71 µmol),
391 palladium(II) acetate (4.8 mg, 21 µmol), tri-*tert*-butylphosphonium tetrafluoroborate (8.1 mg, 42

392 μ mol) and potassium carbonate (39.1 mg, 0.283 mmol) were dissolved in DMF (0.5 mL). The reaction
393 mixture was placed in a preheated oil bath at 140 °C and stirred for 30 min. After filtration over a
394 short pad of Celite (CH_2Cl_2), the halogenated solvent was evaporated and the residue was dissolved
395 in ethyl acetate, washed three times with water and then with brine. The aqueous layer was extracted
396 with ethyl acetate and the combined organic layers were dried (sodium sulfate). The solvent was
397 evaporated and the residue was purified by column chromatography (silica gel,
398 dichloromethane/ethyl acetate, 9:1 to 0:1, each + 5% ethanol) to provide olivacine (**1**, 12.4 mg, 50.3
399 μ mol, 71%) as brown crystals. M.p. 320–324 °C; UV (MeOH): λ = 223, 237, 275, 285, 292, 327, 342, 374,
400 391 nm; fluorescence (MeOH): $\lambda_{\text{ex}} = 285$, $\lambda_{\text{em}} = 431$ nm; IR (ATR): ν = 3058, 2965, 2909, 2765, 1674, 1597,
401 1479, 1467, 1407, 1334, 1311, 1280, 1252, 1222, 1196, 1150, 1108, 1064, 942, 862, 813, 765, 739, 695, 640
402 cm^{-1} ; ^1H NMR (500 MHz, methanol-*d*₄): δ = 2.85 (s, 3H), 3.07 (t, $J_{\text{HD}} = 1.1$ Hz) and 3.09 (s, 3H), 7.24–7.27
403 (m, 1H), 7.49–7.54 (m, 2H), 7.89 (d, $J = 6.3$ Hz, 1H), 8.18 (d, $J = 6.3$ Hz, 1H), 8.27–8.29 (m, 1H), 8.87 (s,
404 1H); ^{13}C NMR (125 MHz, methanol-*d*₄): δ = 12.42 (CH₃), 22.35 (CH₃), 111.86 (CH), 112.42 (C), 116.05
405 (CH), 116.64 (CH), 120.58 (CH), 122.14 (CH), 123.57 (C), 124.41 (C), 127.25 (C), 128.93 (CH), 134.41 (C),
406 138.84 (CH), 142.80 (C), 144.34 (C), 160.29 (C); MS (EI): *m/z* (%) = 246 (100, [M]⁺), 229 (7), 217 (7), 204
407 (9), 123 (7); MS (ESI, +10 V) *m/z* = 247.1 [M+H]⁺; HRMS (ESI): calcd for C₁₇H₁₄N₂: 246.1157, found:
408 246.11537; elemental analysis: calcd for C₁₇H₁₄N₂: C: 82.90, H: 5.73, N: 11.37; found C: 83.20, H: 5.81,
409 N: 11.42.

410 Crystal data: C₁₇H₁₄N₂·CH₃OH, crystal size 0.45 × 0.12 × 0.07 mm³, *M* = 278.34 g mol⁻¹, orthorhombic,
411 space group: *Pbca*, *a* = 4.860(1), *b* = 21.337(5), *c* = 28.048(6) Å, *V* = 2908.5(11) Å³, *Z* = 8, $\rho_{\text{calcd.}} = 1.271$
412 g cm⁻³, μ = 0.080 mm⁻¹, *T* = 198(2) K, λ = 0.71073 Å, θ range: 3.48–25.40°, 60682 reflections collected,
413 2656 independent (*R*_{int} = 0.0501), 198 parameters. The structure was solved by direct methods and
414 refined by full-matrix least-squares on *F*²; 1934 reflections observed, *R*₁ = 0.0463, *wR*₂ = 0.1044 [*I* > 2
415 $\sigma(I)$]; maximal residual electron density: 0.204 e Å⁻³. CCDC 1838729.

416 *4,11b-Dimethyl-11bH-pyrido[3,4-c]carbazole (20a*, 2.1 mg, 8.5 μ mol, 12%), dark brown oil, less polar side
417 product. UV (MeOH): λ = 250, 282 (sh), 359 nm; fluorescence (MeOH): $\lambda_{\text{ex}} = 250$, $\lambda_{\text{em}} = 417$ nm; IR
418 (ATR): ν = 3348, 2924, 2853, 2487, 1630, 1594, 1545, 1446, 1200, 1116, 950, 811, 772, 749, 679 cm⁻¹; ^1H
419 NMR (600 MHz, methanol-*d*₄): δ = 1.65 (s, 3H), 2.76 (s, 3H), 7.01 (d, $J = 10.0$ Hz, 1H), 7.49 (t, $J = 7.4$ Hz,
420 1H), 7.55 (t, $J = 7.5$ Hz, 1H), 7.63 (d, $J = 10.0$ Hz, 1H), 7.70 (d, $J = 7.6$ Hz, 1H), 7.84 (d, $J = 5.1$ Hz, 1H),
421 8.09 (d, $J = 7.3$ Hz, 1H), 8.40 (d, $J = 5.1$ Hz, 1H); ^{13}C NMR (150 MHz, methanol-*d*₄): δ = 21.70 (CH₃), 33.28
422 (CH₃), 59.3 (C, HMBC), 119.63 (CH), 122.46 (CH), 123.20 (CH), 125.25 (CH), 127.3 (C, HMBC), 127.89
423 (CH), 129.93 (CH), 136.11 (CH), 140.89 (C), 149.15 (CH), 153.38 (C), 155.0 (C, HMBC), 158.0 (C,
424 HMBC), 184.5 (C, HMBC); MS (EI): *m/z* (%) = 246 (100, [M]⁺), 231 (24), 204 (12), 176 (7); MS (ESI, +50
425 V) *m/z* = 247.1 [M+H]⁺, 493.5 [2M+H]⁺.

426
427 *8-Methoxyolivacine (19b)*. *N*-(2-Chloro-5-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (**18b**, 14
428 mg, 45 μ mol), palladium(II) acetate (3.0 mg, 13 μ mol), tri-*tert*-butylphosphonium tetrafluoroborate
429 (5.1 mg, 27 μ mol) and potassium carbonate (24.7 mg, 0.179 mmol) were dissolved in DMF (0.5 mL).
430 The reaction mixture was placed in a preheated oil bath at 140 °C and stirred for 20 min. After
431 filtration over a short pad of Celite (CH_2Cl_2), the halogenated solvent was evaporated and the residue
432 was dissolved in ethyl acetate, washed three times with water and then with brine. The aqueous layer
433 was extracted with ethyl acetate and the combined organic layers were dried (sodium sulfate). The
434 solvent was evaporated and the residue was purified by column chromatography (silica gel,
435 dichloromethane/ethyl acetate, 9:1 to 0:1, each + 5% ethanol) to provide 8-methoxyolivacine (**19b**, 8.0
436 mg, 29 μ mol, 65%) as yellow crystals. M.p. 280–283 °C; UV (MeOH): λ = 227, 271, 281, 300, 316, 351
437 nm; fluorescence (MeOH): $\lambda_{\text{ex}} = 300$, $\lambda_{\text{em}} = 430$, 515 nm; IR (ATR): ν = 3141, 3046, 2993, 2886, 2821, 2713,
438 1622, 1595, 1563, 1493, 1472, 1460, 1412, 1388, 1335, 1315, 1297, 1267, 1216, 1197, 1160, 1137, 1099, 1068,
439 1030, 996, 942, 916, 870, 810, 753 cm⁻¹; ^1H NMR (500 MHz, DMSO-*d*₆): δ = 2.79 (s, 3H), 3.01 (s, 3H), 3.89
440 (s, 3H), 6.85 (dd, $J = 8.6$, 2.2 Hz, 1H), 7.00 (d, $J = 2.2$ Hz, 1H), 7.78 (d, $J = 6.1$ Hz, 1H), 8.23 (d, $J = 6.1$ Hz,
441 1H), 8.24 (d, $J = 8.6$ Hz, 1H), 8.77 (s, 1H), 11.26 (s, 1H); ^{13}C NMR (125 MHz, DMSO-*d*₆): δ = 12.36 (CH₃),
442 22.97 (CH₃), 55.32 (CH₃), 94.84 (CH), 107.55 (CH), 110.68 (C), 113.55 (CH), 114.78 (CH), 116.19 (C),
443 122.00 (C), 122.28 (CH), 125.00 (C), 131.74 (C), 139.10 (CH), 140.79 (C), 144.13 (C), 158.26 (C), 159.96

444 (C); MS (EI): m/z (%) = 276 (100, $[M]^+$), 261 (14), 233 (49), 138 (8), 116 (10); MS (ESI, +10 V) m/z = 277.1
445 $[M+H]^+$; HRMS (ESI): calcd for $C_{18}H_{16}N_2O$: 276.1263, found: 276.1261.
446 Crystal data: $C_{18}H_{16}N_2O\cdot CH_3OH$, crystal size $0.160 \times 0.080 \times 0.060$ mm³, M = 308.37 g mol⁻¹,
447 orthorhombic, space group: $Pbca$, a = 4.9253(3), b = 21.4925(15), c = 29.523(2) Å, V = 3125.3(4) Å³, Z = 8,
448 $\rho_{calcd.}$ = 1.311 g cm⁻³, μ = 0.685 mm⁻¹, T = 150(2) K, λ = 1.54178 Å, θ range: 2.993–68.188°, 31382
449 reflections collected, 2811 independent (R_{int} = 0.0544), 230 parameters. The structure was solved by
450 direct methods and refined by full-matrix least-squares on F^2 ; 2283 reflections observed, R_1 = 0.0387,
451 wR_2 = 0.1001 [$I > 2 \sigma(I)$]; maximal residual electron density: 0.221 e Å⁻³. CCDC 1838730.
452 9-Methoxy-4,11b-dimethyl-11bH-pyrido[3,4-c]carbazole (**20b**, 1.1 mg, 4.0 µmol, 9%), brown oil, less polar
453 side product. UV (MeOH): λ = 221, 300, 325 nm; fluorescence (MeOH): λ_{ex} = 221, λ_{em} = 296, 339 nm; IR
454 (ATR): ν = 3414, 3058, 2924, 2855, 1734, 1655, 1632, 1593, 1535, 1484, 1459, 1437, 1377, 1334, 1276, 1231,
455 1182, 1149, 1129, 1074, 935, 826, 740, 683 cm⁻¹; 1H NMR (600 MHz, methanol- d_4): δ = 1.62 (s, 3H), 2.74
456 (s, 3H), 3.94 (s, 3H), 6.98 (d, J = 10.0 Hz, 1H), 7.04 (dd, J = 8.2, 1.7 Hz, 1H), 7.26 (s, 1H), 7.61 (d, J = 10.0
457 Hz, 1H), 7.78 (d, J = 4.9 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 8.38 (d, J = 4.9 Hz, 1H); ^{13}C NMR (150 MHz,
458 methanol- d_4): δ = 21.67 (CH₃), 33.43 (CH₃), 56.12 (CH₃), 58.80 (C), 108.13 (CH), 113.67 (CH), 119.73
459 (CH), 123.16 (CH), 125.46 (CH), 127.23 (C), 132.78 (C, HMBC), 136.16 (CH), 149.15 (CH), 153.81 (C),
460 156.57 (C, HMBC), 158.04 (C), 162.22 (C), 186.18 (C); MS (EI): m/z (%) = 276 (85, $[M]^+$), 261 (100), 233
461 (25), 218 (52), 190 (16); MS (ESI, +50 V) m/z = 277.2 $[M+H]^+$.
462
463 9-Methoxyolivaccine (**19c**). *N*-(2-Chloro-4-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (**18c**, 55.0
464 mg, 176 µmol), palladium(II) acetate (11.8 mg, 53 µmol), tri-*tert*-butylphosphonium tetrafluoroborate
465 (20.1 mg, 106 µmol) and potassium carbonate (97.2 mg, 0.703 mmol) were dissolved in DMF (1.4 mL).
466 The reaction mixture was placed in a preheated oil bath at 140 °C and stirred for 35 min. After
467 filtration over a short pad of Celite (CH₂Cl₂), the halogenated solvent was evaporated and the residue
468 was dissolved in ethyl acetate, washed three times with water and then with brine. The aqueous layer
469 was extracted with ethyl acetate and the combined organic layers were dried (sodium sulfate). The
470 solvent was evaporated and the residue was purified by column chromatography (silica gel,
471 dichloromethane/ethyl acetate, 9:1 to 0:1, each + 5% ethanol) to provide 9-methoxyolivaccine (**19c**, 30.1
472 mg, 109 µmol, 62%) as a yellow solid. M.p. 273–274 °C; UV (MeOH): λ = 224, 242, 272, 296, 332, 394
473 nm; fluorescence (MeOH): λ_{ex} = 296, λ_{em} = 471 nm; IR (ATR): ν = 3143, 2914, 1632, 1600, 1485, 1436,
474 1405, 1380, 1330, 1306, 1265, 1206, 1175, 1104, 1030, 935, 879, 862, 838, 809, 767, 735, 698 cm⁻¹; 1H NMR
475 (500 MHz, DMSO- d_6): δ = 2.80 (s, 3H), 3.04 (s, 3H), 3.90 (s, 3H), 7.14 (dd, J = 10.0, 2.5 Hz, 1H), 7.44 (d,
476 J = 8.7 Hz, 1H), 7.79 (d, J = 6.1 Hz, 1H), 8.01 (d, J = 2.5 Hz, 1H), 8.24 (d, J = 6.1 Hz, 1H), 8.96 (s, 1H),
477 11.16 (s, 1H); ^{13}C NMR (125 MHz, DMSO- d_6): δ = 12.80 (CH₃), 23.45 (CH₃), 56.11 (CH₃), 104.87 (CH),
478 111.36 (C), 112.00 (CH), 115.18 (CH), 115.71 (CH), 117.04 (CH), 122.00 (C), 123.65 (C), 125.36 (C), 132.64
479 (C), 137.53 (C), 139.69 (CH), 141.61 (C), 153.78 (C), 159.21 (C); MS (EI): m/z (%) = 276 (100, $[M]^+$), 261
480 (90), 233 (27), 116 (10); MS (ESI, +10 V) m/z = 277.1 $[M+H]^+$; HRMS (ESI): calcd for $C_{18}H_{16}N_2O$: 276.1263,
481 found: 276.1269.
482 10-Methoxy-4,11b-dimethyl-11bH-pyrido[3,4-c]carbazole (**20c**, 1.4 mg, 5.0 µmol, 3%), brown oil, less polar
483 side product. UV (MeOH): λ = 260, 291 (sh), 381 nm; fluorescence (MeOH): λ_{ex} = 260, λ_{em} = 349 (sh),
484 434 nm; IR (ATR): ν = 3389, 2924, 2854, 1733, 1655, 1624, 1590, 1536, 1466, 1434, 1380, 1335, 1295, 1275,
485 1240, 1218, 1165, 1065, 1030, 952, 865, 822, 744, 677 cm⁻¹; 1H NMR (600 MHz, methanol- d_4): δ = 1.63 (s,
486 3H), 2.74 (s, 3H), 4.00 (s, 3H), 6.95 (d, J = 10.0 Hz, 1H), 7.10 (dd, J = 8.5, 2.1 Hz, 1H), 7.55 (d, J = 10.0 Hz,
487 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 2.1 Hz, 1H), 7.83 (d, J = 5.1 Hz, 1H), 8.38 (d, J = 5.1 Hz, 1H); ^{13}C
488 NMR (150 MHz, methanol- d_4): δ = 21.69 (CH₃), 33.33 (CH₃), 56.44 (CH₃), 59.25 (C), 112.13 (CH), 114.60
489 (CH), 119.52 (CH), 122.93 (CH), 123.26 (CH), 127.5 (C, HMBC), 134.87 (CH), 142.7 (C, HMBC), 147.3
490 (C, HMBC), 148.89 (CH), 153.2 (C, HMBC), 157.8 (C, HMBC), 160.73 (C), 182.4 (C, HMBC); MS (EI):
491 m/z (%) = 276 (100, $[M]^+$), 261 (42), 246 (24), 233 (46), 218 (31), 190 (13); MS (ESI, +50 V) m/z = 277.2
492 $[M+H]^+$.
493
494 8-Hydroxyolivaccine (**4**). 8-Methoxyolivaccine (**19b**, 17.0 mg, 61.5 µmol) was dissolved in 48% aqueous
495 HBr (1.1 mL) and the mixture was heated at reflux for 24 hours. After cooling to room temperature,

496 the mixture was carefully neutralized using a 25% aqueous solution of ammonia. The mixture was
497 extracted with ethyl acetate until the aqueous layer was completely colorless. Evaporation of the
498 organic solvent led to a yellow solid which was purified by chromatography (Alox N, 5% H₂O,
499 CH₂Cl₂/methanol, 1:1) to provide 8-hydroxyolivaccine (**4**, 13.5 mg, 51.5 μ mol, 84%) as a yellow solid.
500 An additional purification by preparative HPLC provided very pure **4** (8.5 mg, 32 μ mol) for biological
501 testing. M.p. 239 °C; UV (MeOH): λ = 239, 301, 317 nm; fluorescence (MeOH): $\lambda_{\text{ex}} = 301$, $\lambda_{\text{em}} = 434$, 520
502 nm; IR (ATR): ν = 3505, 3279, 3198, 2827, 1660, 1619, 1474, 1433, 1407, 1341, 1190, 1166, 1138, 1102, 840,
503 800, 722, 633 cm⁻¹; ¹H NMR (500 MHz, methanol-*d*₄): δ = 2.94 (s, 3H), 3.34 (s, 3H), 6.90 (dd, *J* = 8.5, 2.1
504 Hz, 1H), 7.01 (d, *J* = 2.1 Hz, 1H), 8.18 (d, *J* = 7.0 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 8.37 (d, *J* = 7.0 Hz, 1H),
505 9.00 (s, 1H); ¹³C NMR (125 MHz, methanol-*d*₄): δ = 12.41 (CH₃), 18.63 (CH₃), 98.31 (CH), 111.38 (CH),
506 113.55 (C), 115.93 (C), 116.93 (CH), 119.58 (CH), 121.73 (C), 123.95 (CH), 127.12 (CH), 130.23 (C), 134.44
507 (C), 146.42 (2C), 157.30 (C), 161.11 (C); MS (EI): *m/z* (%) = 262 (100, [M]⁺), 180 (10); MS (ESI, +10 V) *m/z*
508 = 263.1 [M+H]⁺, 547 [2M+Na]⁺; HRMS (ESI): calcd for C₁₇H₁₄N₂O: 262.1106, found: 262.1104.
509

510 **9-Hydroxyolivaccine (5).** 9-Methoxyolivaccine (**19c**, 38.0 mg, 138 μ mol) was dissolved in 48% aqueous
511 HBr (2.3 mL) and the mixture was heated at reflux for 24 hours. After cooling to room temperature,
512 the mixture was carefully neutralized using a 25% aqueous solution of ammonia. The mixture was
513 extracted with ethyl acetate until the aqueous layer was colorless. The combined organic layers were
514 washed with water and brine, dried (sodium sulfate) and the solvent was evaporated. The residue
515 was purified by column chromatography (silica gel, CH₂Cl₂/THF, 4:1 to 2:3) to provide 9-
516 hydroxyolivaccine (**5**, 25.2 mg, 96.1 μ mol, 70%) as a yellow solid. An additional purification by
517 preparative HPLC provided very pure **5** (6.1 mg, 23 μ mol) for biological testing. M.p. 249 °C; UV
518 (MeOH): λ = 245, 274, 311, 355, 375 nm; fluorescence (MeOH): $\lambda_{\text{ex}} = 311$, $\lambda_{\text{em}} = 482$ nm; IR (ATR): ν =
519 3220, 2921, 2853, 1734, 1666, 1611, 1425, 1328, 1288, 1185, 1127, 975, 840, 799, 721 cm⁻¹; ¹H NMR (500
520 MHz, methanol-*d*₄): δ = 2.96 (s, 3H), 3.36 (s, 3H, HSQC), 7.22 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.51 (d, *J* = 8.6
521 Hz, 1H), 7.82 (d, *J* = 2.3 Hz, 1H), 8.19 (d, *J* = 7.1 Hz, 1H), 8.38 (d, *J* = 7.1 Hz, 1H), 9.17 (s, 1H); ¹³C NMR
522 (125 MHz, methanol-*d*₄): δ = 12.42 (CH₃), 18.67 (CH₃), 107.97 (CH), 113.13 (CH), 113.96 (C), 119.43
523 (CH), 119.48 (CH), 119.54 (CH), 121.00 (C), 124.35 (C), 127.40 (CH), 129.67 (C), 134.68 (C), 138.24 (C),
524 146.56 (C), 153.52 (C), 158.18 (C); MS (EI): *m/z* (%) = 262 (100, [M]⁺), 131 (12); MS (ESI, +10 V) *m/z*
525 = 263.1 [M+H]⁺; HRMS (ESI): calcd for C₁₇H₁₄N₂O: 262.1106, found: 262.1107.

526 4. Conclusions

527 In conclusion, we have developed a straightforward synthesis of olivaccine (**1**) and four of its
528 oxygenated pyrido[4,3-*b*]carbazole derivatives via Buchwald–Hartwig coupling of an isoquinolinyl
529 triflate and an *ortho*-chloroarylamine followed by a Heck-type cyclization. In a test for inhibition of
530 the growth of *M. tuberculosis* (strain H₃₇Rv), 9-methoxyolivaccine (**19c**) proved to be the most active
531 compound with an MIC₉₀ value of 1.5 μ M and a relatively low toxicity for a mammalian cell line.
532 These initial results indicate that the pyrido[4,3-*b*]carbazoles are a promising class of compounds for
533 our ongoing search for a carbazole-based tuberculosis drug candidate.

534 **Supplementary Materials:** Copies of the ¹H NMR, ¹³C NMR and 2D NMR spectra.

535 **Acknowledgments:** We are grateful to Thomas Hopfmann and Erik Troschke for their experimental
536 contributions.

537 **Author Contributions:** U.S. and H.-J.K. conceived and designed the experiments; U.S. and G.T. performed the
538 chemical synthesis and characterized the compounds; A.J. and O.K. performed the X-ray analyses; B.W. and
539 S.G.F. designed and performed the study for inhibition of *M. tuberculosis*; U.S. and H.-J.K. wrote the paper.

540 **Conflicts of Interest:** The authors declare no conflict of interest.

541

542 **References**

543 1. Schmutz, J.; Hunziker, F., Die Alkaloide von *Aspidosperma olivaceum* M. Arg. *Aspidosperma*-Alkaloide, 3.
544 Mitteilung. *Pharm. Acta Helv.* **1958**, *33*, 341–347.

545 2. Wittwer, H.; Schmutz, J., Die Synthese von Olivacin, Dihydro-olivacin, Tetrahydro-olivacin, N-Methyl-
546 tetrahydro-olivacin, und die Konstitution von u-Alkaloid D. *Helv. Chim. Acta* **1960**, *43*, 793–799.

547 3. Maftouh, M.; Besselièvre, R.; Monsarrat, B.; Lesca, P.; Meunier, B.; Husson, H.P.; Paoletti, C., Synthesis
548 and Cytotoxic Activity of Hydroxylated Derivatives of Olivacine in Relation with Their
549 Biotransformation. *J. Med. Chem.* **1985**, *28*, 708–714.

550 4. Stiborová, M.; Sejbal, J.; Bořek-Dohalská, L.; Aimová, D.; Poljaková, J.; Forsterová, K.; Rupertová, M.;
551 Wiesner, J.; Hudeček, J.; Wiessler, M.; Frei, E., The Anticancer Drug Ellipticine Forms Covalent DNA
552 Adducts, Mediated by Human Cytochromes P450, through Metabolism to 13-Hydroxyellipticine and
553 Ellipticine N²-Oxide. *Cancer Res.* **2004**, *64*, 8374–8380.

554 5. Rocha e Silva, L.F.; Montoia, A.; Amorim, R.C.N.; Melo, M.R.; Henrique, M.C.; Nunomura, S.M.; Costa,
555 M.R.F.; Andrade Neto, V.F.; Costa, D.S.; Dantas, G.; Lavrado, J.; Moreira, R.; Paulo, A.; Pinto, A.C.;
556 Tadei, W.P.; Zacardi, R.S.; Eberlin, M.N.; Pohlit, A.M., Comparative In Vitro and In Vivo Antimalarial
557 Activity of the Indole Alkaloids Ellipticine, Olivacine, Cryptolepine and a Synthetic Cryptolepine
558 Analog. *Phytomedicine* **2012**, *20*, 71–76.

559 6. Deane, F.M.; O'Sullivan, E.C.; Maguire, A.R.; Gilbert, J.; Sakoff, J.A.; McCluskey, A.; McCarthy, F.O.,
560 Synthesis and Evaluation of Novel Ellipticines as Potential Anti-Cancer Agents. *Org. Biomol. Chem.*
561 **2013**, *11*, 1334–1344.

562 7. Montoia, A.; Rocha e Silva, L.F.; Torres, Z.E.; Costa, D.S.; Henrique, M.C.; Lima, E.S.; Vasconcellos,
563 M.C.; Souza, R.C.Z.; Costa, M.R.F.; Grafová, A.; Grafova, I.; Eberlin, M.N.; Tadei, W.P.; Amorim, R.C.N.;
564 Pohlit, A.M., Antiplasmoidal Activity of Synthetic Ellipticine Derivatives and an Isolated Analog.
565 *Bioorg. Med. Chem. Lett.* **2014**, *24*, 2631–2634.

566 8. Miller, C.M.; McCarthy, F.O., Isolation, Biological Activity and Synthesis of the Natural Product
567 Ellipticine and Related Pyridocarbazoles. *RSC Advances* **2012**, *2*, 8883–8918.

568 9. Rouëssé, J.; Spielmann, M.; Turpin, F.; Le Chevalier, T.; Azab, M.; Mondésir, J.M., Phase II Study of
569 Elliptinium Acetate Salvage Treatment of Advanced Breast Cancer. *Eur. J. Cancer* **1993**, *29*, 856–859.

570 10. Gribble, G.W., Approaches to the Synthesis of the Antitumor Pyridocarbazole Alkaloids. *Synlett* **1991**,
571 289–300.

572 11. Schmidt, A.W.; Reddy, K.R.; Knölker, H.-J., Occurrence, Biogenesis, and Synthesis of Biologically
573 Active Carbazole Alkaloids. *Chem. Rev.* **2012**, *112*, 3193–3328.

574 12. Bergman, J.; Carlsson, R., Conversion of Diindolyl Methanes to 3-Vinylindoles. A Simple Synthesis of
575 the Indole Alkaloid Olivacine. *Tetrahedron Lett.* **1978**, 4055–4058.

576 13. Besselièvre, R.; Husson, H.-P., Syntheses in the Ellipticine-Olivacine Series, a Possible Biogenetic
577 Model. *Tetrahedron (Suppl. 1)* **1981**, *37*, 241–246.

578 14. Kutney, J.P.; Noda, M.; Lewis, N.G.; Monteiro, B.; Mostowicz, D.; Worth, B.R., Dihydropyridines in
579 Synthesis and Biosynthesis. V. Synthesis of Pyridocarbazole Alkaloids: Olivacine and (±)-Guatambuine.
580 *Can. J. Chem.* **1982**, *60*, 2426.

581 15. Miki, Y.; Tsuzaki, Y.; Hibino, H.; Aoki, Y., Synthesis of 3-Methoxyolivacine and Olivacine by Friedel-
582 Crafts Reaction of Indole-2,3-dicarboxylic Anhydride with 2,4,6-Trimethoxypyridine. *Synlett* **2004**,
583 2206–2208.

584 16. Bennasar, M.L.; Roca, T.; Ferrando, F., Regioselective 6-*Endo* Cyclizations of 2-Indolylacyl Radicals:
585 Total Synthesis of the Pyrido[4,3-*b*]carbazole Alkaloid Guatambuine. *J. Org. Chem.* **2006**, *71*, 1746–1749.

586 17. Ramkumar, N.; Nagarajan, R., Total Synthesis of Ellipticine Quinones, Olivacine, and Calothrixin B. *J.*
587 *Org. Chem.* **2013**, *79*, 736–741.

588 18. Itoh, T.; Abe, T.; Choshi, T.; Nishiyama, T.; Yanada, R.; Ishikura, M., Concise Total Syntheses of
589 Pyrido[4,3-*b*]carbazole Alkaloids Using Copper-Mediated 6 π -Electrocyclization. *Eur. J. Org. Chem.*
590 **2016**, 2290–2299.

591 19. Pierré, A.; Atassi, G.; Devissaguet, M.; Bisagni, E., Novel Olivacine and Ellipticine Derivatives: S-16020-
592 2 and Related Compounds as Potential Antitumor Agents. *Drugs Future* **1997**, *22*, 53–59.

593 20. Jasztold-Howorko, R.; Croisy, A.; Carrez, D., An Alternative Way of the Synthesis of 1-Substituted 9-
594 Methoxy-5-methyl-6*H*-pyrido[4,3-*b*]carbazole Derivatives. *Acta Pol. Pharm.* **2005**, *62*, 207–212.

595 21. Part 139 of "Transition Metals in Organic Synthesis"; for part 138, see: Brüting, C.; Schmidt, A.W.;
596 Kataeva, O.; Knölker, H.-J., First Total Synthesis of 7-Isovaleryloxy-8-methoxygirinimbine. *Synthesis*
597 **2018**, *50*, doi: 10.1055/s-0037-1609717.

598 22. Comins, D.L.; Brown, J.D., Ortho Substitution of *m*-Anisaldehyde via α -Amino Alkoxide Directed
599 Lithiation. *J. Org. Chem.* **1989**, *54*, 3730–3732.

600 23. Bur, D.; Grisostomi, C.; Kimmerlin, T.; Remen, L.; Siendt, H.; Vercauteran, M.; Welford, R., Tricyclic
601 Piperidine Compounds. WO2016177690A1, 2016.

602 24. Becknell, N.C.; Dandu, R.R.; Dorsey, B.D.; Gotchev, D.B.; Hudkins, R.L.; Weinberg, L.; Zificsak, C.A.;
603 Zulli, A.L., 1,4-Substituted Piperidine Derivatives. WO2016205633A1, 2016.

604 25. Ruiz-Castillo, P.; Buchwald, S.L., Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions.
605 *Chem. Rev.* **2016**, *116*, 12564–12649.

606 26. Miller, R.B.; Moock, T., A General Synthesis of 6-H-Pyrido[4,3-*b*]carbazole Alkaloids. *Tetrahedron Lett.*
607 **1980**, *21*, 3319–3322.

608 27. Åkermark, B.; Eberson, L.; Jonsson, E.; Pettersson, E., Palladium-Promoted Cyclization of Diphenyl
609 Ether, Diphenylamine, and Related Compounds. *J. Org. Chem.* **1975**, *40*, 1365–1367.

610 28. Krahl, M.P.; Jäger, A.; Krause, T.; Knölker, H.-J., First Total Synthesis of the 7-Oxygenated Carbazole
611 Alkaloids Clauszoline-K, 3-Formyl-7-hydroxycarbazole, Clausine M, Clausine N and the Anti-HIV
612 Active Siamenol Using a Highly Efficient Palladium-Catalyzed Approach. *Org. Biomol. Chem.* **2006**, *4*,
613 3215–3219.

614 29. Liégault, B.; Lee, D.; Huestis, M.P.; Stuart, D.R.; Fagnou, K., Intramolecular Pd(II)-Catalyzed Oxidative
615 Biaryl Synthesis Under Air: Reaction Development and Scope. *J. Org. Chem.* **2008**, *73*, 5022–5028.

616 30. Iwaki, T.; Yasuhara, A.; Sakamoto, T., Novel Synthetic Strategy of Carbolines via Palladium-Catalyzed
617 Amination and Arylation Reaction. *J. Chem. Soc., Perkin Trans. 1* **1999**, 1505–1510.

618 31. Campeau, L.C.; Parisien, M.; Jean, A.; Fagnou, K., Catalytic Direct Arylation with Aryl Chlorides,
619 Bromides, and Iodides: Intramolecular Studies Leading to New Intermolecular Reactions. *J. Am. Chem.
620 Soc.* **2006**, *128*, 581–590.

621 32. Queiroz, M.-J.R.P.; Ferreira, I.C.F.R.; Gaetano, Y.D.; Kirsch, G.; Calhelha, R.C.; Esteveino, L.M.,
622 Synthesis and Antimicrobial Activity Studies of *ortho*-Chlorodiarylamines and Heteroaromatic
623 Tetracyclic Systems in the Benzo[*b*]thiophene Series. *Bioorg. Med. Chem.* **2006**, *14*, 6827–6831.

624 33. Burnell, R.H.; Della Casa, D., Alkaloids of *Aspidosperma vargasii* A. DC. *Can. J. Chem.* **1967**, *45*, 89.

625 34. Sunthitikawinsakul, A.; Kongkathip, N.; Kongkathip, B.; Phonnakhu, S.; Daly, J.W.; Spande, T.F.; Nimit,
626 Y.; Rochanaruangrai, S., Coumarins and Carbazoles from *Clausena excavata* Exhibited
627 Antimycobacterial and Antifungal Activities. *Planta Med.* **2003**, *69*, 155–157.

628 35. Okunade, A.L.; Elvin-Lewis, M.P.F.; Lewis, W.H., Natural Antimycobacterial Metabolites: Current
629 Status. *Phytochemistry* **2004**, *65*, 1017–1032.

630 36. Ma, C.; Case, R.J.; Wang, Y.; Zhang, H.-J.; Tan, G.T.; Hung, N.V.; Cuong, N.M.; Franzblau, S.G.; Soejarto,
631 D.D.; Fong, H.H.S.; Pauli, G.F., Anti-Tuberculosis Constituents from the Stem Bark of *Micromelum
632 hirsutum*. *Planta Med.* **2005**, *71*, 261–267.

633 37. Choi, T.A.; Czerwonka, R.; Fröhner, W.; Krahl, M.P.; Reddy, K.R.; Franzblau, S.G.; Knölker, H.-J.,
634 Synthesis and Activity of Carbazole Derivatives Against *Mycobacterium tuberculosis*. *ChemMedChem*
635 **2006**, *1*, 812–815.

636 38. Choi, T.A.; Czerwonka, R.; Forke, R.; Jäger, A.; Knöll, J.; Krahl, M.P.; Krause, T.; Reddy, K.R.; Franzblau,
637 S.G.; Knölker, H.-J., Synthesis and Pharmacological Potential of Carbazoles. *Med. Chem. Res.* **2008**, *17*,
638 374–385.

639 39. Börger, C.; Brütting, C.; Julich-Gruner, K.K.; Hesse, R.; Kumar, V.P.; Kutz, S.K.; Rönnefahrt, M.;
640 Thomas, C.; Wan, B.; Franzblau, S.G.; Knölker, H.-J., Anti-Tuberculosis Activity and Structure–Activity
641 Relationships of Oxygenated Tricyclic Carbazole Alkaloids and Synthetic Derivatives. *Bioorg. Med.
642 Chem.* **2017**, *25*, 6167–6174.

643 40. Pauli, G.F.; Case, R.J.; Inui, T.; Wang, Y.; Cho, S.; Fischer, N.H.; Franzblau, S.G., New Perspectives on
644 Natural Products in TB Drug Research. *Life Sci.* **2005**, *78*, 485–494.

645 41. Cho, S.; Lee, H.S.; Franzblau, S., Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery
646 Assay (LORA) for *Mycobacterium tuberculosis*. In *Mycobacteria Protocols*, Parish, T.; Roberts, D.M., Eds.
647 Springer New York: New York, NY, 2015; pp 281–292.

648 42. Falzari, K.; Zhu, Z.; Pan, D.; Liu, H.; Hongmanee, P.; Franzblau, S.G., In Vitro and In Vivo Activities of
649 Macrolide Derivatives Against *Mycobacterium tuberculosis*. *Antimicrob. Agents Chemother.* **2005**, *49*, 1447–
650 1454.

651 43. Sheldrick, G.M., *SHELXS-97, Programs for Crystal Structure Solution*. University of Göttingen, Germany,
652 1997.

653 44. Sheldrick, G.M., *SADABS, v. 2.10, Bruker/Siemens Area Detector Absorption Correction Program*. Bruker
654 AXS Inc., Madison, WI, USA, 2002.

655 45. Sheldrick, G.M., *SHELXL-97, Programs for Crystal Structure Refinement*. University of Göttingen,
656 Germany, 1997.

657 46. Farrugia, L., ORTEP-3 for Windows - a Version of ORTEP-III with a Graphical User Interface (GUI). *J.*
658 *Appl. Crystallogr.* **1997**, *30*, 565.

659 **Sample Availability:** Samples of the compounds are not available from the authors.