Article

Synthesis and Anti-Tuberculosis Activity of Olivacine and Oxygenated Derivatives

Ulrike Schmidt ${ }^{1}$, Gabriele Theumer ${ }^{1}$, Anne Jäger ${ }^{1}$, Olga Kataeva ${ }^{2}$, Baojie Wan ${ }^{3}$, Scott G. Franzblau ${ }^{3}$, Hans-Joachim Knölker 1,*
${ }^{1}$ Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; hans-joachim.knoelker@tu-dresden.de
2 A. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
${ }^{3}$ Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., MC 964, Chicago, IL 60612-7231, USA
* Correspondence: hans-joachim.knoelker@tu-dresden.de; Fax +49 351 463-37030

Abstract

The tetracyclic pyrido[4,3-b]carbazole olivacine and four of its oxygenated derivatives have been synthesized by a late-stage palladium-catalyzed Heck-type cyclization of the pyrrole ring as key step. In a test for inhibition of the growth of Mycobacterium tuberculosis 9-methoxyolivacine showed the most significant anti-TB activity with an MIC90 value of $1.5 \mu \mathrm{M}$.

Keywords: anti-TB activity; catalysis; cyclization; olivacine; palladium; pyrido[4,3-b]carbazoles

1. Introduction

The pyrido[4,3-b]carbazole alkaloid olivacine (1, Figure 1) was first isolated in 1958 by Schmutz et al. [1] and its structural assignment was confirmed by total synthesis only two years later [2]. The tetracyclic alkaloid 1 and many structurally related compounds, for example the isomeric natural product ellipticine (2), show useful biological activities such as antitumor activity based on DNA intercalation, topoisomerase II inhibition and antimalarial activity [3-7]. Since the 1980s, A-ring oxygenated derivatives of ellipticine (2) have attracted much attention because of their anti-tumor activity [8]. Despite its side effects, elliptinium acetate (3) has reached the status of a licensed drug for the treatment of advanced breast cancer [9]. Diverse total syntheses of olivacine (1) have been reported [10-15]. Surprisingly, the pharmacological potential of olivacine (1) and its oxygenated derivatives (for example 4 and 5) has been much less investigated [16].

5 9-hydroxyolivacine
Figure 1. Pyrido[4,3-b]carbazole alkaloids and oxygenated derivatives.
Although 9-hydroxyolivacine (5) is the main metabolite of olivacine (1) [3], only few derivatives of olivacine (1) with substituents exclusively at the A-ring have been described in the literature $[3,11]$. This may be due to the fact that the syntheses of pyrido[4,3-b]carbazoles usually involve the
annulation of an isoquinoline or a pyridine at an indole or carbazole framework $[8,10,11]$. Thus, a facile variation of the substitution pattern at ring A is not easy to accomplish. Herein, we present a novel route for the synthesis of the tetracyclic pyrido[4,3-b]carbazole framework [17].

2. Results and Discussion

For a convergent access to various A-ring substituted derivatives, we envisaged a late-stage B-ring construction of the pyrido[4,3-b]carbazole framework. Therefore, we thought to apply the two-step sequence of palladium-catalyzed reactions developed by our group for carbazole assembly: synthesis of a diarylamine via Buchwald-Hartwig coupling of appropriate anilines 7 with a substituted isoquinoline 8 followed by oxidative cyclization to the pyrido[4,3-b]carbazoles 6 (Scheme 1) [11]. The isoquinoline 8 would be available by Bischler-Napieralski cyclization of the arylethylamine 9 via the corresponding acetamide. Henry reaction of an appropriately substituted benzaldehyde 10 and subsequent reduction should afford the arylethylamine 9 . As the BischlerNapieralski reaction works best on electron rich aromatic systems, we decided to start from the commercially available methoxy-substituted benzaldehyde 11 (Scheme 2) and to transform the methoxy group into a suitable leaving group at a later stage of our synthesis.

Scheme 1. Retrosynthetic analysis for the pyrido $[4,3-b]$ carbazole olivacine and its A-ring derivatives.

2.1. Total synthesis

Starting from commercial benzaldehyde 11, which can also be obtained almost quantitatively in one step from the much cheaper m-anisaldehyde [18], amide 12 is prepared by a three-step sequence of Henry reaction, LAH reduction and N-acetylation (Scheme 2) [19]. Bischler-Napieralski cyclization using phosphorus oxychloride led to the corresponding dihydroisoquinoline which was fully aromatized to 6-methoxy-1,5-dimethylisoquinoline (13) by dehydrogenation with palladium on charcoal in the presence of cyclohexene as additive. Cleavage of the methyl ether afforded the isoquinolinol which on reaction with trifluoromethanesulfonic anhydride provided the known isoquinolinyl triflate $\mathbf{1 4}$ [20] in 58% yield over seven steps.

Scheme 2. Synthesis of the triflate 14. Reagents and conditions: (a) $\mathrm{MeNO}_{2}, \mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}, 80^{\circ} \mathrm{C}, 110$ $\min , 77 \%$; (b) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to reflux, $19.5 \mathrm{~h}, 92 \%$; (c) Ac2O, DMAP, pyridine, $0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 99 \%$; (d) POCl_{3}, reflux, $1 \mathrm{~h}, 99 \%$; (e) $\mathrm{Pd} / \mathrm{C}(10 \%)$, cyclohexene, PhMe , reflux, $1.5 \mathrm{~h}, 100 \%$; (f) pyridinium chloride, microwave (300 W), $155^{\circ} \mathrm{C}, 30 \mathrm{~min}, 96 \%$; (g) Tf2O, pyridine, $\mathrm{MeCN}, 0^{\circ} \mathrm{C}, 20 \mathrm{~h}, 87 \%$.

Buchwald-Hartwig coupling of the triflate 14 and aniline (15) provided the diarylamine 16 (Scheme 3). However, the oxidative cyclization to the pyrido[4,3-b]carbazole framework proved to be very difficult [21]. Diverse attempts to optimize this reaction failed: using different reaction temperatures, different solvents (HOAc, HOPiv, dioxane, toluene), catalytic amounts of palladium(II) acetate in the presence of different re-oxidants, or stoichiometric amounts of palladium(II) acetate [22-24]. These experiments resulted to a large extent in decomposition and led to olivacine (1) in only low to moderate yields with poor reproducibility.

Scheme 3. Synthesis of olivacine (1) via oxidative cyclization. Reagents and conditions: (a) cat. $\mathrm{Pd}(\mathrm{OAc})_{2}$, cat. XPhos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, PhMe , reflux, $48 \mathrm{~h}, 100 \%$; (b) 1.1 equiv. $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AcOH}, 80-100{ }^{\circ} \mathrm{C}$, 24 h , argon, $9-49 \%$.

Therefore, we decided to apply a Heck-type cyclization for the formation of the crucial carboncarbon bond of the central pyrrole ring. This approach was already described by Sakamoto and coworkers in 1999 [25]. Buchwald-Hartwig coupling of the triflate 14 with the commercially available o-chloroanilines $17 \mathrm{a}-\mathrm{c}$ led to the corresponding diarylamines $18 \mathrm{a}-\mathrm{c}$ in $83-94 \%$ yield (Scheme 4). Compound 18a was structurally confirmed by an X-ray analysis (Figure 2).

$1 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$ 19b $R^{1}=O M e, R^{2}=H$ 19c $R^{1}=H, R^{2}=O M e$

$4 \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
$5 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$

Scheme 4. Synthesis of the pyrido[4,3-b]carbazoles 1, 4 and 5. Reagents and conditions: (a) cat. $\mathrm{Pd}(\mathrm{OAc})_{2}$, cat. XPhos, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{PhMe}$, reflux, $1-5 \mathrm{~h}, 83-94 \%(18 \mathrm{a}-\mathrm{c})$; (b) cat. $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(t \mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, $140^{\circ} \mathrm{C}, 20-35 \mathrm{~min}, 62-71 \%(1,19 b, 19 \mathrm{c}), 3-12 \%(20 a-\mathrm{c})$; (c) $\mathrm{HBr}_{(\mathrm{aq})}$, reflux, $24 \mathrm{~h}, 70-84 \%(4,5)$.

Figure 2. Molecular structure of the diarylamine 18a in the crystal (ORTEP plot showing thermal ellipsoids at the 50% probability level).

The cyclization reaction of the diarylamine 18a with catalytic amounts of palladium(II) acetate in the presence of $\mathrm{P}(t \mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMA at $110^{\circ} \mathrm{C}$ and in DMF at $120{ }^{\circ} \mathrm{C}$ proceeded very slowly [26,27]. Hydrodehalogenation leading to compound 16 was the major side reaction. Using only slightly higher temperatures $\left(130-140{ }^{\circ} \mathrm{C}\right)$, the reaction proceeded much faster (Table 1). Finally, using larger amounts of the catalyst combined with shorter reaction times, olivacine (1) was obtained in 71% yield. The structure was confirmed by an X-ray crystal structure determination (Figure 3).

Table 1. Optimization of the Heck-type cyclization of $\mathbf{1 8 a}$.

	$\begin{aligned} & \mathrm{Pd}(\mathrm{OAc})_{2} \\ & \text { (equiv.) } \end{aligned}$	$\begin{gathered} \text { ligand }^{1} \\ \text { (equiv.) } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{K}_{2} \mathrm{CO}_{3} \\ \text { (equiv.) } \end{array}$	solvent	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield (\%)	$\begin{gathered} \mathrm{RSM}^{2} \\ \mathbf{(\%)} \\ \hline \end{gathered}$
1	0.1	0.2	2	DMA	110	24	11	60
2	0.1	0.2	2	DMA	130	1.5	46	18
3	0.2	0.4	4	DMA	120	3.0	35	35
4^{3}	0.5	1.0	10	DMF	120	45	46	31
5	0.2	0.4	4	DMF	140	3.0	62	7
6	0.3	0.6	4	DMF	140	0.5	71	-

Figure 3. Molecular structure of olivacine (1) in the crystal (ORTEP plot showing thermal ellipsoids at the 50% probability level).

Application of these conditions to the cyclization of the diarylamines $\mathbf{1 8 b}$ and 18 c provided 8-methoxyolivacine (19b) and 9-methoxyolivacine (19c) in 65% and 62% yield, respectively (Scheme 4). The structure for 8 -methoxyolivacine (19b) was additionally confirmed by an X-ray analysis of single crystals (Figure 4). 9-Methoxyolivacine (19c) is a natural product which was isolated in 1967 from the bark of the coastal Venezuelan tree Aspidosperma vargasii A. DC. [28]. Interestingly, the 11 bH -pyrido $[3,4-c$ carbazoles $20 \mathrm{a}-\mathrm{c}$ containing a quaternary carbon atom were obtained as by-products of the cyclization reactions of the diarylamines 18a-c in up to 12% yield. The structural assignments for the 11 bH -pyrido[3,4-c]carbazoles 20a-c were supported by 2D NMR (COSY, HMBC, HSQC, NOESY) spectroscopic studies (see Supplementary Materials). The compounds 20a-c result from an attack at the C5 carbon atom of the isoquinoline moiety. Cleavage of the methyl ether of 19b and 19c provided 8 -hydroxyolivacine (4) and 9 -hydroxyolivacine (5) in 84% and 70% yield, respectively. For biological testing, the products were additionally purified by HPLC.

Figure 4. Molecular structure of 8-methoxyolivacine (19b) in the crystal (ORTEP plot showing thermal ellipsoids at the 50% probability level).

2.2. Biological activity

A weak anti-tuberculosis (anti-TB) activity was described in early reports for some simple tricyclic carbazole alkaloids [29-31]. Based on that work, we investigated the anti-TB activity of a range of oxygenated carbazole alkaloids and their derivatives and found very promising results for several compounds [32-34]. Therefore, we also tested olivacine (1) and its oxygenated derivatives 4, 5, 19b and 19c for their anti-TB activities (Table 2). In a preliminary activity test against Mycobacterium tuberculosis only two of the five pyrido[4,3-b]carbazoles, namely olivacine (1) and
 concentrations effecting a 90% inhibition of growth (MIC90) of M. tuberculosis strain $\mathrm{H}_{37} \mathrm{Rv}$ were determined by the microplate alamar blue assay (MABA) [35,36]. The in vitro cytotoxicity towards mammalian (vero) cells was determined as described previously [35,37].

Table 2. Anti-TB activity of olivacine (1) and its derivatives $4,5,19 \mathrm{~b}$, and $\mathbf{1 9 c}$.

Compound	$\mathbf{M I C}_{90}{ }^{1}[\mu \mathbf{M}]$	$\mathbf{I C}_{50}{ }^{2}[\mu \mathbf{M}]$	SI 3
Olivacine (1)	4.7	18.05	3.8
8-Hydroxyolivacine (4)	n.d. ${ }^{4}$	n.d.	-
9-Hydroxyolivacine (5)	n.d. 4	n.d.	-
8-Methoxyolivacine (19b)	n.d. 4	n.d.	-
9-Methoxyolivacine (19c)	1.5	24.5	16.3
3-Methoxy-2-methyl-	4.0	>50	>12.5
carbazole-1,4-quinone 5	0.24	>50	>208
Isoniazid 5	0.02	>50	>2500
Rifampicin ${ }^{5}$			

${ }^{1}$ Minimum inhibitory concentrations $[\mu \mathrm{M}]$ against M. tuberculosis $\mathrm{H}_{37} \mathrm{Rv}$ in the MABA assay; values are the mean of three replicate experiments; n.d. $=$ not determined. ${ }^{2}$ Cytotoxicity corresponding to the concentration $[\mu \mathrm{M}]$ effecting 50% decrease in tetrazolium dye reduction by vero cells (African green monkey kidney cells); values are the mean of three replicate experiments; for experiments giving a value higher than the max. conc. used, $>50 \mu \mathrm{M}$ is denoted. ${ }^{3}$ Selectivity index: $\mathrm{SI}=\mathrm{IC} 50 / \mathrm{MIC} 90 .{ }^{4}$ These compounds showed no significant inhibition in a preliminary assay. ${ }^{5}$ 3-Methoxy-2-methylcarba-zole-1,4-quinone, isoniazid and rifampicin (rifampin) were used as positive control; solvent was used as negative control.

The MIC90 value for 3-methoxy-2-methylcarbazole-1,4-quinone served as benchmark for comparison with the anti-TB activities of carbazoles found in our previous studies [34]. Although olivacine (1) shows an activity comparable to our benchmark compound, the SI value is considerably lower ($\mathrm{SI}=3.8$) due to its toxicity. However, 9 -methoxyolivacine (19a) exhibits a strong anti-TB activity ($\mathrm{MIC}_{90}=1.5 \mu \mathrm{M}$) combined with a lower cytotoxicity towards mammalian cells which leads to a very good selectivity index ($\mathrm{SI}=16.3$).

3. Materials and Methods

3.1. General

All reactions were carried out in oven-dried glassware using anhydrous solvents under an argon atmosphere, unless stated otherwise. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}$, and toluene were dried using a solvent purification system (MBraun-SPS). Petroleum ether used refers to the hydrocarbon mixture with a boiling range of $40-65^{\circ} \mathrm{C} \cdot \operatorname{Pd}(\mathrm{OAc}) 2$ was recrystallized from glacial AcOH . All other chemicals were used as received from commercial sources. A CEM Discover microwave reactor was utilized for reactions taking place under microwave irradiation. Flash chromatography was performed using silica gel from Acros Organics ($0.035-0.070 \mathrm{~mm}$). Alox N was obtained from Merck KGaA. TLC was performed with TLC plates from Merck (60 F254) using UV light for visualisation. Melting points were measured on a Gallenkamp MPD 350 melting point apparatus. Ultraviolet spectra were recorded on a PerkinElmer $25 \mathrm{UV} /$ Vis spectrometer. Fluorescence spectra were obtained using a Varian Cary Eclipse spectrometer. IR spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR spectrometer using the ATR method (Attenuated Total Reflectance). NMR spectra were recorded on Bruker DRX 500 and Avance III 600 spectrometers. Chemical shifts δ are reported in parts per million (ppm) with the solvent signal as internal standard. Standard abbreviations were used to denote the multiplicities of the signals. MS and HRMS (EI) were recorded on a Finnigan MAT-95 spectrometer (electron impact, 70 eV) or by GC/MS-coupling using an Agilent Technologies 6890 N GC System equipped with a 5973 Mass Selective Detector (electron impact, 70 eV). ESI-MS spectra were recorded on an Esquire LC with an ion trap detector from Bruker. Positive and negative ions were detected. ESI-HRMS were recorded using a Q-TOF 6538 (Agilent). Elemental analyses were measured on an EuroVector EuroEA3000 elemental analyser. X-ray crystal structure analyses were performed with a Bruker-Nonius Kappa CCD that was equipped with a 700 series Cryostream low temperature device from Oxford Cryosystems. SHELXS-97 [38], SADABS version 2.10 [39], SHELXL-97 [40], POV-Ray for Windows version 3.7.0.msvc10.win64, and ORTEP-3 for Windows [41] were used as software.

3.2. Procedures

1-Methoxy-2-methyl-3-(2-nitrovinyl)benzene. Nitromethane ($427 \mathrm{mg}, 6.99 \mathrm{mmol}$) and freshly sublimated ammonium acetate ($433 \mathrm{mg}, 5.62 \mathrm{mmol}$) were added to a solution of 3-methoxy-2-methylbenzaldehyde ($\mathbf{1 1}, 800 \mathrm{mg}, 5.33 \mathrm{mmol}$) in acetic acid ($645 \mathrm{mg}, 10.74 \mathrm{mmol}$) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h 50 min . After cooling to room temperature, the precipitate was dissolved by adding ethyl acetate. The mixture was transferred to a separatory funnel, washed twice with water and brine. The aqueous layer was extracted with ethyl acetate, the combined organic layers were dried (magnesium sulfate) and the solvent was evaporated. Purification of the residue by column chromatography (silica gel, petroleum ether, ethyl acetate, 1% to 15% ethyl acetate) provided 1-methoxy-2-methyl-3-(2-nitrovinyl)benzene ($791 \mathrm{mg}, 4.09 \mathrm{mmol}, 77 \%$) as yellow crystals. M.p. $97-98^{\circ} \mathrm{C}$; UV (MeOH): $\lambda=205,228,251,317 \mathrm{~nm}$; IR (ATR): $v=3116,2959,2920,2838$, 1901, 1820, 1697, 1653, 1627, 1594, 1573, 1541, 1498, 1477, 1450, 1331, 1260, 1244, 1102, 1080, 1007, 968, $893,873,844,806,777,725,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.96\left(\mathrm{CH}_{3}\right), 55.84\left(\mathrm{CH}_{3}\right), 113.12(\mathrm{CH}), 119.25(\mathrm{CH}), 127.11$ (CH), 128.40 (C), 130.13 (C), 137.25 (CH), $138.20(\mathrm{CH}), 158.29(\mathrm{C}) ;$ MS (EI): $\mathrm{m} / \mathrm{z}(\%)=193\left(100,[\mathrm{M}]^{+}\right)$, 178 (6), 161 (7), 146 (70), 131 (52), 115 (54), 103 (67), 91 (37), 77 (47), 63 (18), 51 (18); HRMS: calcd for
$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}: 193.0738$, found: 193.0733; elemental analysis: calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}: 62.17, \mathrm{H}: 5.74, \mathrm{~N}$: 7.25; found C: 62.16, H: 5.77, N: 7.50.

2-(3-Methoxy-2-methylphenyl)ethanamine. Over a period of 1 h a solution of 1-methoxy-2-methyl-3-(2-nitrovinyl)benzene ($6.79 \mathrm{~g}, 35.2 \mathrm{mmol}$) in THF (95 mL) was added to a suspension of lithium aluminum hydride $(6.83 \mathrm{~g}, 180 \mathrm{mmol})$ in THF $(360 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture was heated for 30 min at room temperature and 18 h at reflux. A second portion of lithium aluminum hydride $(0.35 \mathrm{~g}, 9.1 \mathrm{mmol})$ was added to the slightly reddish colored solution and the mixture was heated at reflux for an additional hour. After cooling to room temperature, the reaction mixture was carefully quenched with saturated aqueous ammonium chloride and the pH value was adjusted to 9 . Diethyl ether was added and the mixture was transferred into a separatory funnel. Still under argon, the layers were separated and the aqueous layer was extracted three times with diethyl ether. The combined organic layers were washed with water and brine, dried (magnesium sulfate) and the solvent was evaporated to provide 2 -(3-methoxy-2-methylphenyl)ethanamine ($5.33 \mathrm{~g}, 32.3 \mathrm{mmol}, 92 \%$) as a yellow oil. UV (MeOH): $\lambda=204,218,273,280 \mathrm{~nm}$; IR (ATR): $v=3402,2989,2923,2848,2659,2480,2065,1658,1604,1581,1510,1463,1395,1293,1256$, 1194, 1171, 1149, 1122, 1096, 1006, 953, 875, 789, 776, $763,719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.22(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.19(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz , methanol- $\left.\mathrm{d}_{4}\right)$: $\delta=11.47\left(\mathrm{CH}_{3}\right), 32.26\left(\mathrm{CH}_{2}\right), 40.35\left(\mathrm{CH}_{2}\right), 55.49\left(\mathrm{CH}_{3}\right)$, $109.10(\mathrm{CH}), 121.76$ (CH), 125.07 (C), 126.59 (CH), 135.84 (C), 158.03 (C); MS (ESI, $+10 \mathrm{~V}) \mathrm{m} / \mathrm{z}=149.0$ $\left[\mathrm{M}-\mathrm{NH}_{3}+\mathrm{H}\right]^{+}, 166.0[\mathrm{M}+\mathrm{H}]^{+}, 331.2[2 \mathrm{M}+\mathrm{H}]^{+}$; HRMS: calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}: 165.1153$, found: 165.1144.

2-(3-Methoxy-2-methylphenyl)ethylacetamide (12). DMAP ($14 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to a solution of 2-(3-methoxy-2-methylphenyl)ethanamine ($230 \mathrm{mg}, 1.14 \mathrm{mmol}$) in pyridine $(4.5 \mathrm{~mL})$ and the mixture was cooled to $0^{\circ} \mathrm{C}$. Acetic anhydride ($140 \mu \mathrm{~L}, 15 \mathrm{mmol}$) was added dropwise over a period of five minutes and the reaction mixture was stirred for four hours. The solvent was evaporated and the raw material was purified by chromatography (Alox $\mathrm{N}, 5 \% \mathrm{H}_{2} \mathrm{O}$; ethyl acetate) to provide 2-(3-methoxy-2-methylphenyl)ethyl acetamide ($\mathbf{1 2}, 235 \mathrm{mg}, 1.13 \mathrm{mmol}, 99 \%$) as a light yellow solid. M.p. $84-85^{\circ} \mathrm{C}$; UV (MeOH): $\lambda=205,219,229,271,279 \mathrm{~nm}$; IR (ATR): $v=3267,3085,2932,2836,2030$, 2009, 1976, 1716, 1659, 1630, 1564, 1508, 1489, 1472, 1459, 1435, 1396, 1370, 1298, 1285, 1247, 1201, $1180,1110,1092,1037,1013,896,812,776,748,723,701,651,606 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.95(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 5.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.76$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.53\left(\mathrm{CH}_{3}\right), 23.51\left(\mathrm{CH}_{3}\right)$, $33.38\left(\mathrm{CH}_{2}\right), 39.87\left(\mathrm{CH}_{2}\right), 55.64\left(\mathrm{CH}_{3}\right), 108.61(\mathrm{CH}), 121.89(\mathrm{CH}), 125.24(\mathrm{C}), 126.36(\mathrm{CH}), 138.38(\mathrm{C})$, 158.09 (C), 170.21 (C=O); MS (ESI, +10 V) $\mathrm{m} / \mathrm{z}=208.0[\mathrm{M}+\mathrm{H}]^{+}, 415.1[2 \mathrm{M}+\mathrm{H}]^{+}, 437.1[2 \mathrm{M}+\mathrm{Na}]^{+} ;$HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: 207.1259, found: 207.1248; elemental analysis: calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: C: 69.54, H: 8.27, N: 6.76; found C: 69.04, H: 8.73, N: 6.78.

6-Methoxy-1,5-dimethyl-3,4-dihydroisoquinoline. Phosphorus oxychloride ($1.9 \mathrm{~mL}, 21 \mathrm{mmol}$) was added to a refluxing solution of acetamide $\mathbf{1 2}(433 \mathrm{mg}, 2.09 \mathrm{mmol})$ in freshly distilled chloroform (23 mL) and the mixture was stirred for one hour. Subsequently, solvent and excess phosphorus oxychloride were removed under vigorous stirring by a nitrogen stream trough a pair of soda lye filled gas washing bottles. The remaining oily raw product was dissolved in ethyl acetate. Soda lye (10%) was added and the pH value was adjusted to $8-9$ using saturated aqueous ammonium chloride. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried (magnesium sulfate) and the solvent was evaporated. Purification of the crude product by chromatography (Alox N, $5 \% \mathrm{H}_{2} \mathrm{O}$; ethyl acetate $+3 \%$ triethylamine) afforded 6-methoxy-1,5-dimethyl-3,4-dihydroisoquinoline (393 mg , $2.08 \mathrm{mmol}, 99 \%$) as a yellow solid. M.p. $57-58^{\circ} \mathrm{C}$ (subl.); UV (MeOH): $\lambda=229,274,319 \mathrm{~nm} ;$ IR (ATR): $v=3002,2939,2838,1735,1699,1629,1594,1576,1539,1507,1482,1435,1368,1291,1258,1184,1149$, 1101, 1015, 922, 901, 873, 805, 751, 700, 666, $637 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.15(\mathrm{~s}, 3 \mathrm{H}), 2.35$ $(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{tq}, J=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.08\left(\mathrm{CH}_{3}\right), 23.32\left(\mathrm{CH}_{2}\right), 23.62\left(\mathrm{CH}_{3}\right)$, $46.91\left(\mathrm{CH}_{2}\right), 55.61\left(\mathrm{CH}_{3}\right), 107.50(\mathrm{CH}), 123.06(\mathrm{C}), 123.40(\mathrm{C}), 124.76(\mathrm{CH}), 137.70(\mathrm{C}), 159.47(\mathrm{C})$, 164.80 (C); MS (EI): $m / z(\%)=189\left(95,[\mathrm{M}]^{+}\right), 174$ (100), 158 (16), 144 (23), 131 (22), 115 (31), 105 (23), 91 (22), 77 (29), 63 (17), 51 (20); HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$: 189.1154, found: 189.1147; elemental analysis: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}: 76.16, \mathrm{H}: 7.99, \mathrm{~N}: 7.40$; found $\mathrm{C}: 76.25, \mathrm{H}: 7.98, \mathrm{~N}: 7.46$.

6-Methoxy-1,5-dimethylisoquinoline (13). A flask filled with 6-methoxy-1,5-dimethyl-3,4-dihydroisoquinoline ($90.3 \mathrm{mg}, 0.48 \mathrm{mmol}$) and palladium on charcoal $(10 \%, 93.6 \mathrm{mg})$ was evacuated under vigorous stirring for 15 min and then filled with argon. Toluene $(3.6 \mathrm{~mL})$ and cyclohexene $(1.3 \mathrm{~mL}$, 13 mmol) were added and the mixture was heated at reflux until full conversion was detected (TLC: Alox N ; ethyl acetate/isohexane, 2:1 + 1 drop of ethanol). The catalyst was removed by filtration (ethyl acetate) and the crude product was purified by chromatography (Alox $\mathrm{N}, 5 \% \mathrm{H}_{2} \mathrm{O}$; petroleum ether/ethyl acetate, 5:1) to provide 6-methoxy-1,5-dimethylisoquinoline ($\mathbf{1 3}, 90 \mathrm{mg}, 0.48 \mathrm{mmol}, 100 \%$) as a beige solid. M.p. $99-102{ }^{\circ} \mathrm{C}$; UV (MeOH): $\lambda=203,236,301 \mathrm{~nm}$; IR (ATR): $v=3058,3015,2965$, 2940, 2847, 1608, 1563, 1542, 1495, 1457, 1401, 1344, 1324, 1267, 1179, 1153, 1116, 1078, 1009, 984, 913, $848,814,774,698,673,648,581,528 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.50(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H})$, $4.00(\mathrm{~s}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=6.2,1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.49\left(\mathrm{CH}_{3}\right), 22.17\left(\mathrm{CH}_{3}\right), 56.39\left(\mathrm{CH}_{3}\right), 113.71(\mathrm{CH}), 115.83(\mathrm{CH})$, $118.97(\mathrm{C}), 123.04(\mathrm{C}), 125.66(\mathrm{CH}), 127.47(\mathrm{C}), 136.96(\mathrm{C}), 140.72(\mathrm{CH}), 158.57(\mathrm{C})$; MS (EI): $\mathrm{m} / \mathrm{z}(\%)=$ 187 (100, [M] ${ }^{+}$), 172 (26), 156 (16), 144 (80), 128 (19), 115 (43), 103 (21), 89 (11), 77 (30), 63 (24), 51 (22); HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$: 187.0997, found: 187.0986; elemental analysis: calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$: C: $76.98, \mathrm{H}: 7.00, \mathrm{~N}: 7.48$; found C: 76.43, H: 7.04, N: 7.53.

1,5-Dimethylisoquinolin-6-ol. For small amounts: In a microwave tube, a mixture of 6 -methoxy-1,5-dimethylisoquinoline ($13,45 \mathrm{mg}, 0.24 \mathrm{mmol}$) and pyridinium chloride ($1 \mathrm{~g}, 8 \mathrm{mmol}$) was irradiated at $155{ }^{\circ} \mathrm{C}$ (300 Watt) for 30 minutes. After cooling to room temperature, the mixture was dissolved in water and ethyl acetate, and neutralized with a saturated aqueous solution of sodium bicarbonate. The layers were separated and the aqueous layer was carefully extracted with ethyl acetate. The combined organic layers were dried (magnesium sulfate) and the solvent was evaporated to give 1,5-dimethylisoquinolin-6-ol ($40 \mathrm{mg}, 0.23 \mathrm{mmol}, 96 \%$) as a brownish solid.
For larger amounts: Freshly distilled hydrobromic acid ($22 \mathrm{~mL}, 0.19 \mathrm{~mol}$) was carefully added at $0^{\circ} \mathrm{C}$ to 6-methoxy-1,5-dimethylisoquinoline ($13,3.01 \mathrm{~g}, 16.1 \mathrm{mmol}$). After the addition was completed, the cooling bath was removed and the mixture was heated at reflux for five hours. Then, the excess of hydrobromic acid was removed under vacuo. The brownish raw material was completely dissolved in water (115 mL , ultrasound), filtered, and neutralized by dropwise addition of a saturated aqueous solution of sodium bicarbonate. The resulting solid was carefully washed with water and dried in vacuo to provide 1,5-dimethylisoquinolin-6-ol ($2.49 \mathrm{~g}, 14.4 \mathrm{mmol}, 89 \%$) as a brownish solid. M.p. $248-250^{\circ} \mathrm{C}$ (sublimation); UV (MeOH): $\lambda=234,279,301,328,382 \mathrm{~nm}$; IR (ATR): $v=2920,2850,2475$ (br), 1808 (br), 1617, 1599, 1564, 1479, 1423, 1385, 1356, 1337, 1279, 1202, 1057, $1006,939,813,774,718,672,660 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d_{4}): $\delta=2.43(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d_{4}): $\delta=10.13\left(\mathrm{CH}_{3}\right), 21.33\left(\mathrm{CH}_{3}\right), 116.26(\mathrm{C}), 116.72(\mathrm{CH}), 119.91(\mathrm{CH}), 123.50(\mathrm{C})$, $126.19(\mathrm{CH}), 138.79(\mathrm{C}), 140.60(\mathrm{CH}), 157.91(\mathrm{C}), 158.92(\mathrm{C})$; MS (ESI, +10 V) $\mathrm{m} / \mathrm{z}=174.0[\mathrm{M}+\mathrm{H}]^{+}$; HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$: 173.0841, found: 173.0851; elemental analysis: calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$: C: $76.28, \mathrm{H}: 6.40, \mathrm{~N}: 8.09$; found $\mathrm{C}: 76.00, \mathrm{H}: 6.47, \mathrm{~N}: 8.21$.

1,5-Dimethylisoquinolin-6-yl trifluoromethanesulfonate (14). Pyridine ($1.1 \mathrm{~mL}, 12 \mathrm{mmol}$) was added to a suspension of 1,5 -dimethylisoquinolin- $6-\mathrm{ol}(0.60 \mathrm{~g}, 3.5 \mathrm{mmol})$ in acetonitrile (66 mL) at $0{ }^{\circ} \mathrm{C}$. Subsequently, trifluoromethanesulfonic anhydride ($0.87 \mathrm{~mL}, 5.2 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at this temperature for 20 hours. Ethyl acetate and water were added and the layers were separated. The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with water and brine, and then dried (sodium sulfate). The
solvent was evaporated and the residue was purified by column chromatography (silica gel, pentane/ethyl acetate, 1:1) to provide 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate (14, $0.92 \mathrm{~g}, 3.0 \mathrm{mmol}, 87 \%$) as a beige solid. M.p. $67-67.5^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}): ~ \lambda=198,219,274,308,321 \mathrm{~nm}$; IR (ATR): $v=3088,3031,2995,2927,2856,1612,1564,1522,1473,1459,1414,1375,1350,1245,1207$, 1170, 1132, 1038, 994, 933, 861, 826, 815, 767, 663, $621 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.68$ (s, $3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.24\left(\mathrm{CH}_{3}\right), 22.88\left(\mathrm{CH}_{3}\right), 116.23(\mathrm{CH}), 118.77\left(\mathrm{q}, J_{C, F}=321\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), $120.75(\mathrm{CH}), 126.42(\mathrm{CH}$ and C$), 126.64(\mathrm{C}), 136.97(\mathrm{C}), 143.40(\mathrm{CH}), 147.91(\mathrm{C}), 159.50(\mathrm{C}) ;$ ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.58$ (s, 3F); MS (EI): $m / z(\%)=305\left(1,[\mathrm{M}]^{+}\right), 172(8), 144$ (48), 128 (7), 115 (19), 103 (13), 89 (5), 77 (18), 69 (100), 63 (10), 51 (12); MS (ESI, +10 V) $\mathrm{m} / \mathrm{z}=306.0[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis: calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}: 47.21, \mathrm{H}: 3.30, \mathrm{~N}: 4.59, \mathrm{~S}: 10.50$; found $\mathrm{C}: 47.09, \mathrm{H}: 3.02$, $\mathrm{N}: 4.58, \mathrm{~S}: 10.45$.

1,5-Dimethyl-N-phenylisoquinolin-6-amine (16). Aniline ($\mathbf{1 5}, 0.1 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added dropwise to a solution of 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate ($\mathbf{1 4}, 0.235 \mathrm{~g}, 0.770 \mathrm{mmol}$), palladium(II) acetate ($13 \mathrm{mg}, 58 \mu \mathrm{~mol}$), XPhos ($55 \mathrm{mg}, 0.12 \mathrm{mmol}$) and cesium carbonate ($0.35 \mathrm{~g}, 1.1$ $\mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$. The mixture was heated at reflux for 48 hours. After cooling to room temperature, the reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and the solvent was evaporated. Purification of the residue by column chromatography (silica gel, dichloromethane/ethyl acetate $1: 3+1 \%$ methanol) provided 1,5 -dimethyl- N-phenyliso-quinolin-6-amine ($\mathbf{1 6}, 0.19 \mathrm{~g}, 0.77 \mathrm{mmol}, 100 \%$) as a yellow solid. M.p. $175{ }^{\circ} \mathrm{C}$ (decomp.); UV (MeOH): $\lambda=223,250,280,325,358$ (sh) nm; IR (ATR): $v=3207,3163,3090,3012,2985,2919,2860$, $1632,1615,1594,1562,1526,1492,1439,1397,1380,1310,1286,1174,1151,1060,990,938,864,844$, $819,788,748,695,678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.50(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 5.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.38\left(\mathrm{CH}_{3}\right)$, $22.66\left(\mathrm{CH}_{3}\right), 115.32(\mathrm{CH}), 118.78(\mathrm{C}), 118.88(2 \mathrm{CH}), 119.96(\mathrm{CH}), 121.99(\mathrm{CH}), 123.77(\mathrm{C}), 124.80(\mathrm{CH})$, $129.63(2 \mathrm{CH}), 136.93(\mathrm{C}), 141.95(\mathrm{C}), 142.27(\mathrm{CH}), 142.91(\mathrm{C}), 158.59(\mathrm{C}) ; \mathrm{MS}(\mathrm{EI}): m / z(\%)=248(100$, $\left.[\mathrm{M}]^{+}\right), 233$ (16), 171 (17); MS (ESI, +10 V) $m / z=249.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$: 248.1313, found: 248.1310.
N-(2-Chlorophenyl)-1,5-dimethylisoquinolin-6-amine (18a). 2-Chloroaniline (17a, $78 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) was added dropwise to a solution of 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate ($\mathbf{1 4}, 0.15 \mathrm{~g}$, 0.49 mmol), palladium(II) acetate ($8.3 \mathrm{mg}, 37 \mu \mathrm{~mol}$), XPhos ($35 \mathrm{mg}, 74 \mu \mathrm{~mol}$) and cesium carbonate $(224 \mathrm{mg}, 0.688 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$. The mixture was heated at reflux for 1.5 hours. After cooling to room temperature, the reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and the solvent was evaporated. Purification of the residue by column chromatography (silica gel, dichloromethane/ethyl acetate, $9: 1$ to $0: 1$, each $+1 \%$ ethanol) provided N-(2-chlorophenyl)-1,5-dimethylisoquinolin-6-amine (18a, $0.130 \mathrm{~g}, 0.460 \mathrm{mmol}, 94 \%$) as brownish crystals. M.p. $194-19{ }^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}): ~ \lambda=221,249,278,320 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH}): \lambda_{\mathrm{ex}}=221, \lambda_{\mathrm{em}}$ $=229$ (sh), 334 nm ; IR (ATR): $v=3189,3078,2955,2919,2850,1589,1567,1542,1501,1474,1452,1396$, $1367,1307,1294,1267,1225,1198,1129,1058,1033,996,933,862,843,822,793,751,706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.35(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 6.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.58\left(\mathrm{CH}_{3}\right)$, $22.58\left(\mathrm{CH}_{3}\right), 115.47(\mathrm{CH}), 116.05(\mathrm{CH}), 120.90(\mathrm{CH}), 121.87(\mathrm{C}), 122.07(\mathrm{CH}), 122.83(\mathrm{C}), 124.52(\mathrm{C})$, $124.73(\mathrm{CH}), 127.51(\mathrm{CH}), 129.80(\mathrm{CH}), 136.78(\mathrm{C}), 140.07(\mathrm{C}), 140.19(\mathrm{C}), 142.35(\mathrm{CH}), 158.61(\mathrm{C}) ; \mathrm{MS}$ (EI): $\mathrm{m} / \mathrm{z}(\%)=282\left(100,[\mathrm{M}]^{+}\right), 247(74), 232(29), 204(15), 171(12), 115(10), 75(11) ;$ MS (ESI, $\left.+25 \mathrm{~V}\right) \mathrm{m} / \mathrm{z}$ $=283.2[\mathrm{M}+\mathrm{H}]^{+}$.
Crystal data: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2}$, crystal size $0.22 \times 0.20 \times 0.06 \mathrm{~mm}^{3}, M=282.76 \mathrm{~g} \mathrm{~mol}^{-1}$, monoclinic, space group: $C c, a=11.700(2), b=9.117(2), c=14.024(3) \AA, \beta=110.73(3)^{\circ}, V=1399.1(5) \AA^{3}, Z=4, \rho_{\text {calcd. }}=1.342$ $\mathrm{g} \mathrm{cm}^{-3}, \mu=0.264 \mathrm{~mm}^{-1}, T=198(2) \mathrm{K}, \lambda=0.71073 \AA, \theta$ range: $3.11-27.00^{\circ}, 20817$ reflections collected,

3047 independent ($R_{\text {int }}=0.0534$), 187 parameters. The structure was solved by direct methods and refined by full-matrix least-squares on $F^{2} ; 2296$ reflections observed, $R_{1}=0.0407, w R_{2}=0.0805[I>2$ $\sigma(I)]$; maximal residual electron density: 0.276 e \AA^{-3}. CCDC 1838728.
N-(2-Chloro-5-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (18b). 2-Chloro-5-methoxyaniline (17b, $92 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) was added dropwise to a solution of 1,5 -dimethylisoquinolin- 6 -yl trifluoromethanesulfonate ($\mathbf{1 4}, 0.15 \mathrm{~g}, 0.49 \mathrm{mmol}$), palladium(II) acetate ($8.3 \mathrm{mg}, 37 \mu \mathrm{~mol}$), XPhos (35 $\mathrm{mg}, 74 \mu \mathrm{~mol}$) and cesium carbonate ($224 \mathrm{mg}, 0.688 \mathrm{mmol}$) in toluene (12 mL). The mixture was heated at reflux for five hours. After cooling to room temperature, the reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and the solvent was evaporated. Purification of the residue by column chromatography (silica gel, dichloromethane/ethyl acetate, $1: 1$ to $0: 1$, each $+1 \%$ ethanol) provided N-(2-chloro-5-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine ($\mathbf{1 8 b}, 0.141 \mathrm{~g}, 0.451 \mathrm{mmol}$, 92%) as a beige solid. M.p. $135-138^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}): \lambda=224,277,322 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH}): \lambda_{\mathrm{ex}}=$ $224, \lambda_{\mathrm{em}}=301$ (sh), 336 nm ; IR (ATR): $v=3416,3068,2998,2929,2853,1596,1508,1447,1421,1383$, $1343,1312,1287,1230,1207,1170,1138,1069,1027,924,820,732,671,640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.53(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.66\left(\mathrm{CH}_{3}\right), 22.61\left(\mathrm{CH}_{3}\right), 55.46\left(\mathrm{CH}_{3}\right)$, 101.82 (CH), 105.94 (CH), 113.40 (C), 115.53 (CH), 122.55 (CH), 123.53 (C), 124.67 (C), 124.76 (CH), 130.02 (CH), 136.78 (C), 139.77 (C), 141.06 (CH), 142.38 (C), 158.64 (C), 159.20 (C); MS (EI): $\mathrm{m} / \mathrm{z}(\%)=$ 312 (100, [M] ${ }^{+}$), 277 (80), 262 (76), 247 (13), 233 (18), 219 (12), 139 (10), 117 (16), 63 (10); MS (ESI, +10 V) $m / z=313.3[\mathrm{M}+\mathrm{H}]^{+}$.
N-(2-Chloro-4-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (18c). A solution of 2-chloro-4-methoxyaniline ($17 \mathrm{c}, 127 \mathrm{mg}, 0.806 \mathrm{mmol}$) in toluene (4 mL) was added dropwise to a solution of 1,5-dimethylisoquinolin-6-yl trifluoromethanesulfonate ($\mathbf{1 4}, 164 \mathrm{mg}, 0.537 \mathrm{mmol}$), palladium(II) acetate ($9 \mathrm{mg}, 0.04 \mathrm{mmol}$), XPhos ($38 \mathrm{mg}, 81 \mu \mathrm{~mol}$) and cesium carbonate ($245 \mathrm{mg}, 0.752 \mathrm{mmol}$) in toluene (10 mL). The mixture was heated at reflux for one hour. After cooling to room temperature, the reaction mixture was filtered over a short pad of Hyflo (ethyl acetate) and the solvent was evaporated. Purification of the residue by column chromatography (silica gel, dichloromethane/ethyl acetate, $9: 1$ to $0: 1$, each $+1 \%$ ethanol) provided N-(2-chloro-4-methoxy-phenyl)-1,5-dimethylisoquinolin-6-amine ($\mathbf{1 8 c}, 139 \mathrm{mg}, 0.444 \mathrm{mmol}, 83 \%$) as a beige solid. M.p. 104$107^{\circ} \mathrm{C}$; UV (MeOH): $\lambda=226,255,318 \mathrm{~nm}$; fluorescence (MeOH): $\lambda_{\text {ex }}=255, \lambda_{\text {em }}=422 \mathrm{~nm}$; IR (ATR): $v=$ 3229, 3074, 2993, 2948, 2832, 1731, 1633, 1606, 1562, 1485, 1451, 1436, 1387, 1341, 1308, 1283, 1211, 1182, 1112, 1046, $936,894,864,822,789,773,689,664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.51(\mathrm{~s}$, $3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.01\left(\mathrm{CH}_{3}\right), 21.92\left(\mathrm{CH}_{3}\right), 55.84\left(\mathrm{CH}_{3}\right), 113.76(\mathrm{CH}), 115.29$ $(\mathrm{CH}), 115.33(\mathrm{CH}), 117.69(\mathrm{C}), 118,89(\mathrm{CH}), 122.01(\mathrm{CH}), 123.18(\mathrm{C}), 124.98(\mathrm{CH}), 126.33(\mathrm{C}), 132.26$ (C), 136.87 (C), 140.79 (CH, HSQC), 142.90 (C, HMBC), 155.61 (C), 158.06 (C); MS (EI): $m / z(\%)=312$ (100, [M] ${ }^{+}$), 297 (44), 277 (12), 262 (14), 233 (17), 169 (12), 155 (11), 128 (14), 116 (15); MS (ESI, +10 V) $m / z=313.2[\mathrm{M}+\mathrm{H}]^{+}$; elemental analysis: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}: 69.12, \mathrm{H}: 5.48, \mathrm{~N}: 8.96$; found C : 68.62, H: 5.72, N: 9.30.

Olivacine (1). N-(2-Chlorophenyl)-1,5-dimethylisoquinolin-6-amine (18a, $20 \mathrm{mg}, 71 \mu \mathrm{~mol}$), palladium(II) acetate ($4.8 \mathrm{mg}, 21 \mu \mathrm{~mol}$), tri-tert-butylphosphonium tetrafluoroborate ($8.1 \mathrm{mg}, 42$ $\mu \mathrm{mol}$) and potassium carbonate ($39.1 \mathrm{mg}, 0.283 \mathrm{mmol}$) were dissolved in DMF $(0.5 \mathrm{~mL})$. The reaction mixture was placed in a preheated oil bath at $140^{\circ} \mathrm{C}$ and stirred for 30 min . After filtration over a short pad of Celite $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the halogenated solvent was evaporated and the residue was dissolved in ethyl acetate, washed three times with water and then with brine. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried (sodium sulfate). The solvent was evaporated and the residue was purified by column chromatography (silica gel,
dichloromethane/ethyl acetate, 9:1 to 0:1, each $+5 \%$ ethanol) to provide olivacine ($\mathbf{1}, 12.4 \mathrm{mg}, 50.3$ $\mu \mathrm{mol}, 71 \%$) as brown crystals. M.p. $320-324^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}): \lambda=223,237,275,285,292,327,342,374$, 391 nm ; fluorescence $(\mathrm{MeOH}): \lambda_{\mathrm{ex}}=285, \lambda_{\mathrm{em}}=431 \mathrm{~nm}$; IR (ATR): $v=3058,2965,2909,2765,1674$, $1597,1479,1467,1407,1334,1311,1280,1252,1222,1196,1150,1108,1064,942,862,813,765,739,695$, $640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- $\left.d_{4}\right)$: $\delta=2.85(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{t}, J \mathrm{HD}=1.1 \mathrm{~Hz})$ and $3.09(\mathrm{~s}, 3 \mathrm{H}), 7.24-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.87$ ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d_{4}): $\delta=12.42\left(\mathrm{CH}_{3}\right), 22.35\left(\mathrm{CH}_{3}\right), 111.86(\mathrm{CH}), 112.42(\mathrm{C}), 116.05$ (CH), $116.64(\mathrm{CH}), 120.58(\mathrm{CH}), 122.14(\mathrm{CH}), 123.57$ (C), 124.41 (C), 127.25 (C), 128.93 (CH), 134.41 (C), $138.84(\mathrm{CH}), 142.80(\mathrm{C}), 144.34$ (C), 160.29 (C); MS (EI): $m / z(\%)=246\left(100,[\mathrm{M}]^{+}\right), 229(7), 217(7)$, 204 (9), 123 (7); MS (ESI, +10 V) $m / z=247.1$ [M+H] ${ }^{+}$; HRMS (ESI): calcd for C ${ }_{17} \mathrm{H}_{14} \mathrm{~N}_{2}: 246.1157$, found: 246.11537; elemental analysis: calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N} 2$: C: 82.90, H: $5.73, \mathrm{~N}: 11.37$; found C: 83.20, H: 5.81, N : 11.42.
Crystal data: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \cdot \mathrm{CH}_{3} \mathrm{OH}$, crystal size $0.45 \times 0.12 \times 0.07 \mathrm{~mm}^{3}, M=278.34 \mathrm{~g}$ mol ${ }^{-1}$, orthorhombic, space group: Pbca, $a=4.860(1), b=21.337(5), c=28.048(6) \AA, V=2908.5(11) \AA^{3}, Z=8, \rho_{\text {calcd }}=1.271$ $\mathrm{g} \mathrm{cm}^{-3}, \mu=0.080 \mathrm{~mm}^{-1}, T=198(2) \mathrm{K}, \lambda=0.71073 \AA, \theta$ range: $3.48-25.40^{\circ}, 60682$ reflections collected, 2656 independent $\left(R_{\text {int }}=0.0501\right), 198$ parameters. The structure was solved by direct methods and refined by full-matrix least-squares on $F^{2} ; 1934$ reflections observed, $R_{1}=0.0463, w R_{2}=0.1044[I>2$ $\sigma(I)]$; maximal residual electron density: $0.204 \mathrm{e} \AA^{-3}$. CCDC 1838729 .
4,11b-Dimethyl-11bH-pyrido[3,4-c]carbazole ($20 \mathrm{a}, 2.1 \mathrm{mg}, 8.5 \mu \mathrm{~mol}, 12 \%$), dark brown oil, less polar side product. UV (MeOH): $\lambda=250,282(\mathrm{sh}), 359 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH}): \lambda_{\mathrm{ex}}=250, \lambda_{\mathrm{em}}=417 \mathrm{~nm} ;$ IR (ATR): $v=3348,2924,2853,2487,1630,1594,1545,1446,1200,1116,950,811,772,749,679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , methanol- -4): $\delta=1.65(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz , methanol- d_{4}): $\delta=21.70\left(\mathrm{CH}_{3}\right)$, $33.28\left(\mathrm{CH}_{3}\right), 59.3$ (C, HMBC), $119.63(\mathrm{CH}), 122.46(\mathrm{CH}), 123.20(\mathrm{CH}), 125.25(\mathrm{CH}), 127.3(\mathrm{C}, \mathrm{HMBC})$, 127.89 (CH), 129.93 (CH), 136.11 (CH), 140.89 (C), 149.15 (CH), 153.38 (C), 155.0 (C, HMBC), 158.0 (C, HMBC), 184.5 (C, HMBC); MS (EI): $m / z(\%)=246\left(100,[M]^{+}\right), 231(24), 204$ (12), 176 (7); MS (ESI, +50 V) $m / z=247.1[\mathrm{M}+\mathrm{H}]^{+}, 493.5[2 \mathrm{M}+\mathrm{H}]^{+}$.

8-Methoxyolivacine (19b). N-(2-Chloro-5-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (18b, 14 $\mathrm{mg}, 45 \mu \mathrm{~mol})$, palladium(II) acetate ($3.0 \mathrm{mg}, 13 \mu \mathrm{~mol}$), tri-tert-butylphosphonium tetrafluoroborate ($5.1 \mathrm{mg}, 27 \mu \mathrm{~mol}$) and potassium carbonate ($24.7 \mathrm{mg}, 0.179 \mathrm{mmol}$) were dissolved in DMF $(0.5 \mathrm{~mL})$. The reaction mixture was placed in a preheated oil bath at $140{ }^{\circ} \mathrm{C}$ and stirred for 20 min . After filtration over a short pad of Celite $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the halogenated solvent was evaporated and the residue was dissolved in ethyl acetate, washed three times with water and then with brine. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried (sodium sulfate). The solvent was evaporated and the residue was purified by column chromatography (silica gel, dichloromethane/ethyl acetate, 9:1 to 0:1, each $+5 \%$ ethanol) to provide 8 -methoxyolivacine ($\mathbf{1 9 b}, 8.0 \mathrm{mg}, 29 \mu \mathrm{~mol}, 65 \%$) as yellow crystals. M.p. $280-283^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}): \lambda=$ $227,271,281,300,316,351 \mathrm{~nm}$; fluorescence (MeOH): $\lambda_{\mathrm{ex}}=300, \lambda_{\mathrm{em}}=430,515 \mathrm{~nm}$; IR (ATR): $v=3141$, $3046,2993,2886,2821,2713,1622,1595,1563,1493,1472,1460,1412,1388,1335,1315,1297,1267$, $1216,1197,1160,1137,1099,1068,1030,996,942,916,870,810,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $-d_{6}$): $\delta=2.79(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.85(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1$ H), $7.78(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 11.26(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta=12.36\left(\mathrm{CH}_{3}\right), 22.97\left(\mathrm{CH}_{3}\right), 55.32\left(\mathrm{CH}_{3}\right), 94.84(\mathrm{CH}), 107.55(\mathrm{CH})$, 110.68 (C), 113.55 (CH), 114.78 (CH), 116.19 (C), 122.00 (C), 122.28 (CH), 125.00 (C), 131.74 (C), 139.10 (CH), 140.79 (C), 144.13 (C), 158.26 (C), 159.96 (C); MS (EI): $m / z(\%)=276$ (100, [M] ${ }^{+}$), 261 (14), 233 (49), 138 (8), 116 (10); MS (ESI, +10 V) $m / z=277.1[\mathrm{M}+\mathrm{H}]+$; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: 276.1263, found: 276.1261.
Crystal data: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{OH}$, crystal size $0.160 \times 0.080 \times 0.060 \mathrm{~mm}^{3}, M=308.37 \mathrm{~g} \mathrm{~mol}^{-1}$, orthorhombic, space group: Pbca, $a=4.9253(3), b=21.4925(15), c=29.523(2) \AA, V=3125.3(4) \AA^{3}, Z=8$, $\rho_{\text {calcd }}=1.311 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.685 \mathrm{~mm}^{-1}, T=150(2) \mathrm{K}, \lambda=0.71073 \AA, \theta$ range: 2.993-68.188, 31382
reflections collected, 2811 independent $\left(R_{\text {int }}=0.0544\right), 230$ parameters. The structure was solved by direct methods and refined by full-matrix least-squares on $F^{2} ; 2283$ reflections observed, $R_{1}=0.0387$, $w R_{2}=0.1001[I>2 \sigma(I)]$; maximal residual electron density: 0.221 e \AA^{-3}. CCDC 1838730.
9-Methoxy-4,11b-dimethyl-11bH-pyrido[3,4-c]carbazole ($\mathbf{2 0 b}, 1.1 \mathrm{mg}, 4.0 \mu \mathrm{~mol}, 9 \%$), brown oil, less polar side product. UV (MeOH): $\lambda=221,300,325 \mathrm{~nm}$; fluorescence (MeOH) : $\lambda_{\text {ex }}=221, \lambda_{\text {em }}=296,339 \mathrm{~nm}$; IR (ATR): $v=3414,3058,2924,2855,1734,1655,1632,1593,1535,1484,1459,1437,1377,1334,1276,1231$, 1182, 1149, 1129, 1074, 935, 826, 740, $683 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , methanol- d_{4}): $\delta=1.62(\mathrm{~s}, 3 \mathrm{H}), 2.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz , methanol- $\left.d_{4}\right): \delta=21.67\left(\mathrm{CH}_{3}\right), 33.43\left(\mathrm{CH}_{3}\right), 56.12\left(\mathrm{CH}_{3}\right), 58.80(\mathrm{C}), 108.13(\mathrm{CH}), 113.67(\mathrm{CH}), 119.73$ (CH), 123.16 (CH), 125.46 (CH), 127.23 (C), 132.78 (C, HMBC), 136.16 (CH), 149.15 (CH), 153.81 (C), 156.57 (C, HMBC), 158.04 (C), 162.22 (C), 186.18 (C); MS (EI): $m / z(\%)=276$ ($\left.85,[\mathrm{M}]^{+}\right), 261$ (100), 233 (25), 218 (52), 190 (16); MS (ESI, +50 V) $m / z=277.2[\mathrm{M}+\mathrm{H}]^{+}$.

9-Methoxyolivacine (19c). N -(2-Chloro-4-methoxyphenyl)-1,5-dimethylisoquinolin-6-amine (18c, 55.0 $\mathrm{mg}, 176 \mu \mathrm{~mol}$), palladium(II) acetate ($11.8 \mathrm{mg}, 53 \mu \mathrm{~mol}$), tri-tert-butylphosphonium tetrafluoroborate ($20.1 \mathrm{mg}, 106 \mu \mathrm{~mol}$) and potassium carbonate ($97.2 \mathrm{mg}, 0.703 \mathrm{mmol}$) were dissolved in DMF (1.4 mL). The reaction mixture was placed in a preheated oil bath at $140^{\circ} \mathrm{C}$ and stirred for 35 min . After filtration over a short pad of Celite $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the halogenated solvent was evaporated and the residue was dissolved in ethyl acetate, washed three times with water and then with brine. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried (sodium sulfate). The solvent was evaporated and the residue was purified by column chromatography (silica gel, dichloromethane/ethyl acetate, $9: 1$ to 0:1, each $+5 \%$ ethanol) to provide 9-methoxyolivacine ($19 \mathrm{c}, 30.1 \mathrm{mg}, 109 \mu \mathrm{~mol}, 62 \%$) as a yellow solid. M.p. $273-274{ }^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}): \lambda$ $=224,242,272,296,332,394 \mathrm{~nm}$; fluorescence (MeOH): $\lambda_{\mathrm{ex}}=296, \lambda_{\mathrm{em}}=471 \mathrm{~nm}$; IR (ATR): $v=3143$, $2914,1632,1600,1485,1436,1405,1380,1330,1306,1265,1206,1175,1104,1030,935,879,862,838$, $809,767,735,698 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta=2.80(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.14$ (dd, $J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (d, J=6.1 Hz, 1H), $8.96(\mathrm{~s}, 1 \mathrm{H}), 11.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{\mathrm{c}}\right): \delta=12.80\left(\mathrm{CH}_{3}\right), 23.45$ $\left(\mathrm{CH}_{3}\right), 56.11\left(\mathrm{CH}_{3}\right), 104.87(\mathrm{CH}), 111.36(\mathrm{C}), 112.00(\mathrm{CH}), 115.18(\mathrm{CH}), 115.71(\mathrm{CH}), 117.04(\mathrm{CH})$, 122.00 (C), 123.65 (C), 125.36 (C), 132.64 (C), 137.53 (C), 139.69 (CH), 141.61 (C), 153.78 (C), 159.21 (C); MS (EI): $m / z(\%)=276\left(100,[]^{+}\right), 261(90), 233(27), 116(10)$; MS (ESI, +10 V) $m / z=277.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: 276.1263$, found: 276.1269.
10-Methoxy-4,11b-dimethyl-11bH-pyrido[3,4-c]carbazole (20c, $1.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol}, 3 \%$), brown oil, less polar side product. UV (MeOH): $\lambda=260,291(\mathrm{sh}), 381 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH}): \lambda_{\mathrm{ex}}=260, \lambda_{\mathrm{em}}=349$ (sh), $434 \mathrm{~nm} ;$ IR (ATR): $\mathrm{v}=3389,2924,2854,1733,1655,1624,1590,1536,1466,1434,1380,1335,1295$, $1275,1240,1218,1165,1065,1030,952,865,822,744,677 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR (600 MHz , methanol- d_{4}): $\delta=$ $1.63(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz , methanol- d_{4}): $\delta=21.69\left(\mathrm{CH}_{3}\right)$, $33.33\left(\mathrm{CH}_{3}\right)$, $56.44\left(\mathrm{CH}_{3}\right)$, $59.25(\mathrm{C})$, 112.13 (CH), $114.60(\mathrm{CH}), 119.52(\mathrm{CH}), 122.93(\mathrm{CH}), 123.26(\mathrm{CH}), 127.5(\mathrm{C}, \mathrm{HMBC}), 134.87(\mathrm{CH}), 142.7$ (C, HMBC), 147.3 (C, HMBC), 148.89 (CH), 153.2 (C, HMBC), 157.8 (C, HMBC), 160.73 (C), 182.4 (C, HMBC); MS (EI): m/z (\%) = 276 (100, [M $]^{+}$), 261 (42), 246 (24), 233 (46), 218 (31), 190 (13); MS (ESI, +50 V) $m / z=277.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-Hydroxyolivacine (4). 8-Methoxyolivacine ($\mathbf{1 9 b}, 17.0 \mathrm{mg}, 61.5 \mu \mathrm{~mol}$) was dissolved in 48% aqueous $\mathrm{HBr}(1.1 \mathrm{~mL})$ and the mixture was heated at reflux for 24 hours. After cooling to room temperature, the mixture was carefully neutralized using a 25% aqueous solution of ammonia. The mixture was extracted with ethyl acetate until the aqueous layer was completely colorless. Evaporation of the organic solvent led to a yellow solid which was purified by chromatography (Alox $\mathrm{N}, 5 \% \mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol, 1:1) to provide 8 -hydroxyolivacine ($4,13.5 \mathrm{mg}, 51.5 \mu \mathrm{~mol}, 84 \%$) as a yellow solid. An additional purification by preparative HPLC provided very pure $4(8.5 \mathrm{mg}, 32 \mu \mathrm{~mol})$ for
biological testing. M.p. $239^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}): \lambda=239,301,317 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH}): \lambda_{\text {ex }}=301, \lambda_{\text {em }}$ $=434,520 \mathrm{~nm}$; IR (ATR): $v=3505,3279,3198,2827,1660,1619,1474,1433,1407,1341,1190,1166,1138$, $1102,840,800,722,633 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d_{4}): $\delta=2.94(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{dd}, J$ $=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d_{4}): $\delta=12.41\left(\mathrm{CH}_{3}\right), 18.63\left(\mathrm{CH}_{3}\right), 98.31(\mathrm{CH})$, $111.38(\mathrm{CH}), 113.55(\mathrm{C}), 115.93(\mathrm{C}), 116.93(\mathrm{CH}), 119.58(\mathrm{CH}), 121.73(\mathrm{C}), 123.95(\mathrm{CH}), 127.12(\mathrm{CH})$, 130.23 (C), 134.44 (C), 146.42 (2C), 157.30 (C), 161.11 (C); MS (EI): $m / z(\%)=262$ (100, [M] $\left.{ }^{+}\right), 180(10)$; MS (ESI, +10 V) $m / z=263.1[\mathrm{M}+\mathrm{H}]^{+}, 547[2 \mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: 262.1106$, found: 262.1104.

9-Hydroxyolivacine (5). 9-Methoxyolivacine (19c, $38.0 \mathrm{mg}, 138 \mu \mathrm{~mol}$) was dissolved in 48% aqueous $\mathrm{HBr}(2.3 \mathrm{~mL})$ and the mixture was heated at reflux for 24 hours. After cooling to room temperature, the mixture was carefully neutralized using a 25% aqueous solution of ammonia. The mixture was extracted with ethyl acetate until the aqueous layer was colorless. The combined organic layers were washed with water and brine, dried (sodium sulfate) and the solvent was evaporated. The residue was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}, 4: 1$ to $2: 3$) to provide 9-hydroxyolivacine ($5,25.2 \mathrm{mg}, 96.1 \mu \mathrm{~mol}, 70 \%$) as a yellow solid. An additional purification by preparative HPLC provided very pure $5(6.1 \mathrm{mg}, 23 \mu \mathrm{~mol})$ for biological testing. M.p. $249{ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}): ~ \lambda=245,274,311,355,375 \mathrm{~nm}$; fluorescence $(\mathrm{MeOH}): \lambda_{\mathrm{ex}}=311, \lambda_{\mathrm{em}}=482 \mathrm{~nm}$; IR (ATR): $v=$ 3220, 2921, 2853, 1734, 1666, 1611, 1425, 1328, 1288, 1185, 1127, 975, 840, 799, $721 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , methanol- d_{4}): $\delta=2.96(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HSQC}), 7.22(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , methanol- d_{4}): $\delta=12.42\left(\mathrm{CH}_{3}\right), 18.67\left(\mathrm{CH}_{3}\right), 107.97(\mathrm{CH}), 113.13(\mathrm{CH}), 113.96(\mathrm{C}), 119.43$ $(\mathrm{CH}), 119.48(\mathrm{CH}), 119.54(\mathrm{CH}), 121.00(\mathrm{C}), 124.35(\mathrm{C}), 127.40(\mathrm{CH}), 129.67(\mathrm{C}), 134.68(\mathrm{C}), 138.24(\mathrm{C})$, 146.56 (C), 153.52 (C), 158.18 (C); MS (EI): $m / z(\%)=262\left(100,[\mathrm{M}]^{+}\right), 131$ (12); MS (ESI, $\left.+10 \mathrm{~V}\right) \mathrm{m} / \mathrm{z}=$ $263.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: 262.1106$, found: 262.1107.

4. Conclusions

In conclusion, we have developed a straightforward synthesis of olivacine (1) and four of its oxygenated pyrido[4,3-b]carbazole derivatives via Buchwald-Hartwig coupling of an isoquinolinyl triflate and an ortho-chloroarylamine followed by a Heck-type cyclization. In a test for inhibition of the growth of M. tuberculosis (strain $\mathrm{H}_{37} \mathrm{Rv}$), 9-methoxyolivacine (19c) proved to be the most active compound with an MIC90 value of $1.5 \mu \mathrm{M}$ and a relatively low toxicity for a mammalian cell line. These initial results indicate that the pyrido[4,3-b]carbazoles are a promising class of compounds for our ongoing search for a carbazole-based tuberculosis drug candidate.

Supplementary Materials: Copies of the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and 2D NMR spectra.
Acknowledgments: We are grateful to Thomas Hopfmann and Erik Troschke for their experimental contributions.

Author Contributions: U.S. and H.-J.K. conceived and designed the experiments; U.S. and G.T. performed the chemical synthesis and characterized the compounds; A.J. and O.K. performed the X-ray analyses; B.W. and S.G.F. designed and performed the anti-TB study; U.S. and H.-J.K. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schmutz, J.; Hunziker, F., Die Alkaloide von Aspidosperma olivaceum M. Arg. Aspidosperma-Alkaloide, 3. Mitteilung. Pharm. Acta. Helv. 1958, 33, 341-347.
2. Wittwer, H.; Schmutz, J., Die Synthese von Olivacin, Dihydro-olivacin, Tetrahydro-olivacin, N-Methyl-tetrahydro-olivacin, und die Konstitution von u-Alkaloid D. Helv. Chim. Acta 1960, 43, 793799.
3. Maftouh, M.; Besselievre, R.; Monsarrat, B.; Lesca, P.; Meunier, B.; Husson, H.P.; Paoletti, C., Synthesis and Cytotoxic Activity of Hydroxylated Derivatives of Olivacine in Relation with Their Biotransformation. J. Med. Chem. 1985, 28, 708-714.
4. Stiborová, M.; Sejbal, J.; Bořek-Dohalská, L.; Aimová, D.; Poljaková, J.; Forsterová, K.; Rupertová, M.; Wiesner, J.; Hudeček, J.; Wiessler, M.; Frei, E., The Anticancer Drug Ellipticine Forms Covalent DNA Adducts, Mediated by Human Cytochromes P450, through Metabolism to 13-Hydroxyellipticine and Ellipticine N^{2}-Oxide. Cancer Res. 2004, 64, 8374-8380.
5. Rocha e Silva, L.F.; Montoia, A.; Amorim, R.C.N.; Melo, M.R.; Henrique, M.C.; Nunomura, S.M.; Costa, M.R.F.; Andrade Neto, V.F.; Costa, D.S.; Dantas, G.; Lavrado, J.; Moreira, R.; Paulo, A.; Pinto, A.C.; Tadei, W.P.; Zacardi, R.S.; Eberlin, M.N.; Pohlit, A.M., Comparative In Vitro and In Vivo Antimalarial Activity of the Indole Alkaloids Ellipticine, Olivacine, Cryptolepine and a Synthetic Cryptolepine Analog. Phytomedicine 2012, 20, 71-76.
6. Deane, F.M.; O'Sullivan, E.C.; Maguire, A.R.; Gilbert, J.; Sakoff, J.A.; McCluskey, A.; McCarthy, F.O., Synthesis and Evaluation of Novel Ellipticines as Potential Anti-Cancer Agents. Org. Biomol. Chem. 2013, 11, 1334-1344.
7. Montoia, A.; Rocha e Silva, L.F.; Torres, Z.E.; Costa, D.S.; Henrique, M.C.; Lima, E.S.; Vasconcellos, M.C.; Souza, R.C.Z.; Costa, M.R.F.; Grafov, A., Grafova, I.; Eberlin, M.N.; Tadei, W.P.; Amorim, R.C.N.; Pohlit, A.M., Antiplasmodial Activity of Synthetic Ellipticine Derivatives and an Isolated Analog. Bioorg. Med. Chem. Lett. 2014, 24, 2631-2634.
8. Miller, C.M.; McCarthy, F.O., Isolation, Biological Activity and Synthesis of the Natural Product Ellipticine and Related Pyridocarbazoles. RSC Advances 2012, 2, 8883-8918.
9. Rouëssé, J.; Spielmann, M.; Turpin, F.; Le Chevalier, T.; Azab, M.; Mondésir, J.M., Phase II Study of Elliptinium Acetate Salvage Treatment of Advanced Breast Cancer. Eur. J. Cancer 1993, 29, 856-859.
10. Gribble, G.W., Approaches to the Synthesis of the Antitumor Pyridocarbazole Alkaloids. Synlett 1991, 289-300.
11. Schmidt, A.W.; Reddy, K.R.; Knölker, H.-J., Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193-3328.
12. Miki, Y.; Tsuzaki, Y.; Hibino, H.; Aoki, Y., Synthesis of 3-Methoxyolivacine and Olivacine by Friedel-Crafts Reaction of Indole-2,3-dicarboxylic Anhydride with 2,4,6-Trimethoxypyridine. Synlett 2004, 2206-2208.
13. Bennasar, M.L.; Roca, T.; Ferrando, F., Regioselective 6-Endo Cyclizations of 2-Indolylacyl Radicals: Total Synthesis of the Pyrido[4,3-b]carbazole Alkaloid Guatambuine. J. Org. Chem. 2006, 71, 17461749.
14. Ramkumar, N.; Nagarajan, R., Total Synthesis of Ellipticine Quinones, Olivacine, and Calothrixin B. J. Org. Chem. 2013, 79, 736-741.
15. Itoh, T.; Abe, T.; Choshi, T.; Nishiyama, T.; Yanada, R.; Ishikura, M., Concise Total Syntheses of Pyrido[4,3-b]carbazole Alkaloids Using Copper-Mediated 6π-Electrocyclization. Eur. J. Org. Chem. 2016, 2290-2299.
16. Pierré, A.; Atassi, G.; Devissaguet, M.; Bisagni, E., Novel Olivacine and Ellipticine Derivatives: S-16020-2 and Related Compounds as Potential Antitumor Agents. Drugs Future 1997, 22, 53-59.
17. Part 139 of "Transition Metals in Organic Synthesis"; for part 138, see: Brütting, C.; Schmidt, A.W.; Kataeva, O.; Knölker, H.-J., First Total Synthesis of 7-Isovaleryloxy-8-methoxygirinimbine. Synthesis 2018, 50, doi: 10.1055/s-0037-1609717.
18. Comins, D.L.; Brown, J.D., Ortho Substitution of m-Anisaldehyde via α-Amino Alkoxide Directed Lithiation. J. Org. Chem. 1989, 54, 3730-3732.
19. Bur, D.; Grisostomi, C.; Kimmerlin, T.; Remen, L.; Siendt, H.; Vercauteren, M.; Welford, R., Tricyclic Piperidine Compounds. WO2016177690A1, 2016.
20. Becknell, N.C.; Dandu, R.R.; Dorsey, B.D.; Gotchev, D.B.; Hudkins, R.L.; Weinberg, L.; Zificsak, C.A.; Zulli, A.L., 1,4-Substituted Piperidine Derivatives. WO2016205633A1, 2016.
21. Miller, R.B.; Moock, T., A General Synthesis of 6-H-Pyrido[4,3-b]carbazole Alkaloids. Tetrahedron Lett. 1980, 21, 3319-3322.
22. Åkermark, B.; Eberson, L.; Jonsson, E.; Pettersson, E., Palladium-Promoted Cyclization of Diphenyl Ether, Diphenylamine, and Related Compounds. J. Org. Chem. 1975, 40, 1365-1367.
23. Krahl, M.P.; Jäger, A.; Krause, T.; Knölker, H.-J., First Total Syntheis of the 7-Oxygenated Carbazole Alkaloids Clauszoline-K, 3-Formyl-7-hydroxycarbazole, Clausine M, Clausine N and the Anti-HIV Active Siamenol Using a Highly Efficient Palladium-Catalyzed Approach. Org. Biomol. Chem. 2006, 4, 3215-3219.
24. Liégault, B.; Lee, D.; Huestis, M.P.; Stuart, D.R.; Fagnou, K., Intramolecular Pd(II)-Catalyzed Oxidative Biaryl Synthesis Under Air: Reaction Development and Scope. J. Org. Chem. 2008, 73, 50225028.
25. Iwaki, T.; Yasuhara, A.; Sakamoto, T., Novel Synthetic Strategy of Carbolines via Palladium-Catalyzed Amination and Arylation Reaction. J. Chem. Soc., Perkin Trans. 1 1999, 1505-1510.
26. Campeau, L.C.; Parisien, M.; Jean, A.; Fagnou, K., Catalytic Direct Arylation with Aryl Chlorides, Bromides, and Iodides: Intramolecular Studies Leading to New Intermolecular Reactions. J. Am. Chem. Soc. 2006, 128, 581-590.
27. Queiroz, M.-J.R.P.; Ferreira, I.C.F.R.; Gaetano, Y.D.; Kirsch, G.; Calhelha, R.C.; Estevinho, L.M., Synthesis and Antimicrobial Activity Studies of ortho-Chlorodiarylamines and Heteroaromatic Tetracyclic Systems in the Benzo[b]thiophene Series. Bioorg. Med. Chem. 2006, 14, 6827-6831.
28. Burnell, R.H.; Della Casa, D., Alkaloids of Aspidosperma vargasii A. DC. Can. J. Chem. 1967, 45, 89.
29. Sunthitikawinsakul, A.; Kongkathip, N.; Kongkathip, B.; Phonnakhu, S.; Daly, J.W.; Spande, T.F.; Nimit, Y.; Rochanaruangrai, S., Coumarins and Carbazoles from Clausena excavata Exhibited Antimycobacterial and Antifungal Activities. Planta Med. 2003, 69, 155-157.
30. Okunade, A.L.; Elvin-Lewis, M.P.F.; Lewis, W.H., Natural Antimycobacterial Metabolites: Current Status. Phytochemistry 2004, 65, 1017-1032.
31. Ma, C.; Case, R.J.; Wang, Y.; Zhang, H.-J.; Tan, G.T.; Hung, N.V.; Cuong, N.M.; Franzblau, S.G.; Soejarto, D.D.; Fong, H.H.S.; Pauli, G.F., Anti-Tuberculosis Constituents from the Stem Bark of Micromelum hirsutum. Planta Med. 2005, 71, 261-267.
32. Choi, T.A.; Czerwonka, R.; Fröhner, W.; Krahl, M.P.; Reddy, K.R.; Franzblau, S.G.; Knölker, H.-J., Synthesis and Activity of Carbazole Derivatives Against Mycobacterium tuberculosis. ChemMedChem 2006, 1, 812-815.
33. Choi, T.A.; Czerwonka, R.; Forke, R.; Jäger, A.; Knöll, J.; Krahl, M.P.; Krause, T.; Reddy, K.R.; Franzblau, S.G.; Knölker, H.-J., Synthesis and Pharmacological Potential of Carbazoles. Med. Chem. Res. 2008, 17, 374-385.
34. Börger, C.; Brütting, C.; Julich-Gruner, K.K.; Hesse, R.; Kumar, V.P.; Kutz, S.K.; Rönnefahrt, M.; Thomas, C.; Wan, B.; Franzblau, S.G.; Knölker, H.-J., Anti-Tuberculosis Activity and StructureActivity Relationships of Oxygenated Tricyclic Carbazole Alkaloids and Synthetic Derivatives. Bioorg. Med. Chem. 2017, 25, 6167-6174.
35. Pauli, G.F.; Case, R.J.; Inui, T.; Wang, Y.; Cho, S.; Fischer, N.H.; Franzblau, S.G., New Perspectives on Natural Products in TB Drug Research. Life Sci. 2005, 78, 485-494.
36. Cho, S.; Lee, H.S.; Franzblau, S., Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis. In Mycobacteria Protocols, Parish, T.; Roberts, D.M., Eds. Springer New York: New York, NY, 2015; pp 281-292.
37. Falzari, K.; Zhu, Z.; Pan, D.; Liu, H.; Hongmanee, P.; Franzblau, S.G., In Vitro and In Vivo Activities of Macrolide Derivatives Against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005, 49, 1447-1454.
38. Sheldrick, G.M., SHELXS-97, Programs for Crystal Structure Solution. University of Göttingen, Germany, 1997.
39. Sheldrick, G.M., SADABS, v. 2.10, Bruker/Siemens Area Detector Absorption Correction Program. Bruker AXS Inc., Madison, WI, USA, 2002.
40. Sheldrick, G.M., SHELXL-97, Programs for Crystal Structure Refinement. University of Göttingen, Germany, 1997.
41. Farrugia, L., ORTEP-3 for Windows - a Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.

Sample Availability: Samples of the compounds are not available from the authors.

