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Abstract: In a wireless network, locations of base stations (BSs)/access points (APs)/sensor nodes can
be modeled based on stochastic processes, e.g., a Poisson point process (PPP) or a deterministic pattern
planned ahead by providers. While deterministic deployment does not provide tractable interference
analysis in general, PPP yields tractable analysis for interference. However, PPP allows APs to be
deployed very close to each other and gives pessimistic results compared to the field measurements.
In this study, in order to address this issue, Lloyd’s algorithm, which functions as a bridge between
random and structural APs deployments, is investigated for analyzing coverage probability in a
network. The link distance distribution is modeled as a mixture of Weibull distributions and its
parameters are obtained by using the expectation-maximization (EM) algorithm for each iteration
of Lloyd’s algorithm. The link distance distribution is further utilized for calculating the coverage
probability approximately by exploiting the tractability of PPP.

Keywords: Expectation-maximization algorithm; Lloyd’s algorithm; stochastic geometry; Poisson
point process; Voronoi diagram

0. Introduction

Rapidly accumulating device diversity, user demands, and need for better coverage make network
planning more complicated and introduce randomness in the deployment of BSs/APs. In the scenarios
where the locations of BSs/APs do not follow a deterministic structure, modeling the performance
of the network precisely becomes a challenging task. One of the proposed approaches is to model
BS/AP deployment as an independent PPP, a methodology which provides analytical tractability
for interference and coverage probability analyses [1,2]. However, the independent PPP assumption
ignores the correlation among the BSs/APs. Field measurements show that the coverage probability
lies in practice between the traditional hexagonal model and the independent PPP approach. This is
mainly due to the fact that network operators have still control on BS/AP deployment in a deterministic
way [3,4], which creates intentional repulsion between BSs/APs. Therefore, more realistic ways should
be incorporated while still maintaining the tractability of PPP for interference analysis. The authors in
[5,6] apply a α-Ginibre point process (GPP) and a β-GPP to model the correlation between BSs/APs.
The GPP is a deterministic point process and takes into account the repulsion between BSs/APs.

In this study, we investigate scenarios where BSs/APs are deployed neither totally random nor
totally deterministic. We propose a semi-analytical strategy by adopting the Lloyd’s algorithm to
account for the scenarios that lie between the pessimistic PPP-based deployment and the optimistic
structural BS/AP deployment. We derive the link distance distribution for each iteration of Lloyd’s
algorithm by using the EM algorithm. It is shown that the link distance can be approximated well by a
mixture of Weibull distributions. By integrating the link distance distribution into the PPP analysis,
we provide a coverage probability analysis.

The rest of the paper is organized as follows. The Lloyd’s algorithm is described in Section 1. The
analysis of link distance distribution is given in Section 2. Section 3 presents the coverage probability
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study. The numerical results are presented in Section 4. The concluding remarks are provided in
Section 5.

1. Lloyd’s Algorithm Approach

A two-dimensional (2D) Voronoi diagram is a tessellation in which each polygon depicts the set
of points nearest to a central generator point. Voronoi diagrams present diverse applications in many
fields such as wireless communications, astronomy, archeology, physics, mathematics, and coding [7,8].
Lloyd’s algorithm incrementally moves the generator of each polygon to the centroid of that polygon
and maximizes the distance between adjacent generators [9]. The maximization procedure creates
repulsion between adjacent generators until the generators establish a fixed state such as centroidal
Voronoi tessellation (CVT). The resultant Voronoi diagram gives a structural geometry asymptotically,
depending on how many iteration steps are used [10]. The centroid of each Voronoi cell is given for
each iteration by

Ci =

∫
A rλ(r)dA∫
A λ(r)dA

. (1)

Ci is the centroid of the Voronoi cell, r is the position and λ(r) denotes the intensity of r and A stands
for the area. Lloyd’s Algorithm

1. Choose N points and Ci ⊂ R
2. ∀ ni ∈ N find Ci the closest center and repeat until the Euclidian distance between Ci and Ni

equals to zero.

In this study, we initialize the tessellation of BSs/APs based on a PPP. While the initial geometry
captures the randomness of BS/AP deployment, the asymptotic Voronoi diagram with Lloyd’s
algorithm yields a structural BS/AP deployment. Each iteration of the Lloyd’s algorithm represents
an intermediate deployment scenario between the random and structural BS/AP deployments, which
motivates us to adopt Lloyd’s algorithm for modeling BS/AP deployment. A demonstration of
iteration steps {0, 9, 490} is illustrated in Fig. 1. Furthermore, BSs/APs and/or sensors can be placed
on the drones, i.e., autonomous planes, and drones can give coverage to areas such as disaster/public
safety regions, rural areas and downtown areas as seen in Fig. 2. We can also utilize it for the self
organized networks (SON) networks to decide the best coverage options for a given area. Hence, to
exploit Lloyd’s algorithm for modeling BS/AP and/or sensor deployment, the analytical expression
of link distance distribution at each iteration of Lloyd’s algorithm is required. To the best of our
knowledge, the link distance distribution is not available in the literature, and an approximate
distribution is derived in the next section by exploiting the EM algorithm.

2. Link Distance Distribution Analysis

Consider a snapshot of a wireless network that covers an area A. The users are distributed
uniformly in the area. Each user is associated with the closest BS/AP, i.e., the users in a polygon
generated with Voronoi tesselation are connected to the corresponding generator of that polygon.
The link distance between a user and its associated BS/AP is denoted by r. As an initial stage of the
Lloyd’s algorithm, we consider a random BS/AP deployment where BSs/APs are spatially distributed
in the area as a realization of a homogeneous 2D PPP Φ with intensity λ. The probability density
function (PDF) of link distance is equivalent to the null probability for the PPP [1] and is given by
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(a) Iteration 0.
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(b) Iteration 9.
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(c) Iteration 490.

Figure 1. Illustration of transition from random BS/AP deployment to structural BS/AP deployment
with the Lloyd’s algorithm.

Figure 2. Drone integrated system illustration.

fr(r) =
dFr (r)

dr
=

d
dr

(1− P [r > R])

=
d
dr

(1− P [No BS closer than R])

=
d
dr

(
1− (λA)0

0!
e−λA

)

=
d
dr

(
1− e−λA

)
=

d
dr

(
1− e−λπR2

)
= e−λπr2

2λπrdr. (2)
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which corresponds to a Rayleigh distribution with variance 1/2λπ. On the other hand, considering
the case of hexagonal tessellation, the PDF of link distance is given by [11]

fr(r) =


πr√
3R2 , 0 ≤ r ≤ R.

2
√

3r
R2

[
π
6 − cos−1

(
R
r

)]
, R ≤ r ≤ 2R

√
3

3 .

0, r ≥ 2R
√

3
3 .

(3)

The transition from (2) to (3) via Lloyd’s algorithm can be approximated as a mixture of Weibull
distributions by employing the EM algorithm. A mixture of Weibull distributions can be expressed as

fr(r) =
l

∑
j=1

φj

 ϕj

δj

(
r
δj

)ϕj−1

e

(
− r

δj

)ϕj
 , (4)

where φj is the weight of jth component and ∑l
j=1 φj = 1, δj and ϕj are the scale parameter and the

shape parameter, respectively, and l is the number of Weibull distributions. In order to consider various
BS/AP intensities, we define δj to be ψj

√
λ0/λ, where λ0 is a constant and ψj is the scale parameter

when λ = λ0. The main reasons for using a mixture of Weibull distributions are: (i) Rayleigh
distribution is a special case of a Weibull distribution if the Weibull parameters are properly selected,
(ii) The support of Weibull distribution is [0, ∞], and (iii) Weibull distribution can provide negative and
positive skewness, a feature required in the transitions from (2) to (3). Next, we discuss the calculations
of parameters φj, δj and ϕj with the EM algorithm.

2.1. EM Algorithm for Link Distance Distribution

We have a training set r = {r(1), r(2), · · · , r(m)} consisting of m independent observations
generated by considering each iteration step of Lloyd’s algorithm. Our goal is to fit the Weibull
parameters to the link distance distribution by utilizing the EM algorithm. The EM algorithm consists
of two steps, namely, the expectation (E)-step and the maximization (M)-step. The reader is referred to
[12] for more detailed explanations about the EM algorithm.

The complete log-likelihood is defined as

L(wj, θ) =
m

∑
i=1

l

∑
j=1

w(i)
j log

 ϕj

δj

(
ri
δj

)ϕj−1

exp(−
r

ϕj
i

δ
ϕj
j

)φj

 , (5)

where θ = {ϕj, δj, φj} and w(i)
j = p(z(i) = j|r(i); θ) denotes the posterior probabilities associated with

the hidden label information z(i). The steps of the EM algorithm are:

• E-step: Choose wj to maximize L(wj, θ)

wt
j = arg max

wj
L(wj, θt).

• M-step: Choose θ to maximize L(wj, θ)

θt+1 = arg max
θ
L(wt

j , θ).

Maximizing (5) with respect to the parameters ϕj and δj, we obtain (6) and (7), respectively

∇ϕL(wj, θ) =
m

∑
i=1

l

∑
j=1

w(i)
j

(
1
ϕj

+

(
1−

(
ri
δj

)ϕj
)

log(
ri
δj
)

)
, (6)

∇δL(wj, θ) =
m

∑
i=1

l

∑
j=1

w(i)
j

(
−

ϕj

δj
+

ϕj

δj

(
ri
δj

)ϕj
)

. (7)
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Table 1. Numerical Values of φj, ϕj and δj as outputs of EM algorithm.

Iteration φj ϕj δj Iteration φj ϕj δj
φ1 φ2 φ3 ϕ1 ϕ2 ϕ3 δ1 δ2 δ3 φ1 φ2 φ3 ϕ1 ϕ2 ϕ3 δ1 δ2 δ3

0 0.3333 0.3333 0.3333 2.0063 2.0164 2.0265 0.5622 0.5616 0.5609 15 0.3244 0.3309 0.3448 1.8793 2.5936 3.0010 0.4128 0.5018 0.4942
1 0.3332 0.3333 0.3334 2.0301 2.0401 2.0501 0.5512 0.5501 0.5489 16 0.3225 0.3312 0.3463 1.8688 2.6446 3.0642 0.4041 0.5046 0.4919
2 0.3331 0.3333 0.3336 2.0523 2.0648 2.0774 0.5412 0.5396 0.5381 17 0.3202 0.3317 0.3481 1.8568 2.7016 3.1238 0.3958 0.5074 0.4896
3 0.3330 0.3333 0.3337 2.0724 2.0912 2.1100 0.5323 0.5303 0.5284 18 0.3167 0.3329 0.3504 1.8400 2.7655 3.1746 0.3878 0.5101 0.4870
4 0.3328 0.3333 0.3339 2.0968 2.1222 2.1476 0.5248 0.5221 0.5196 19 0.3123 0.3347 0.3531 1.8281 2.8267 3.2104 0.3806 0.5123 0.4842
5 0.3325 0.3333 0.3342 2.1132 2.1503 2.1868 0.5180 0.5147 0.5115 20 0.3090 0.3361 0.3549 1.8359 2.8762 3.2334 0.3746 0.5141 0.4820
6 0.3322 0.3332 0.3346 2.1240 2.1786 2.2318 0.5116 0.5079 0.5045 21 0.3066 0.3371 0.3562 1.8423 2.9249 3.2567 0.3692 0.5154 0.4804
7 0.3318 0.3332 0.3350 2.1284 2.2078 2.2846 0.5053 0.5020 0.4987 22 0.3042 0.3381 0.3577 1.8420 2.9746 3.2803 0.3643 0.5159 0.4790
8 0.3313 0.3331 0.3356 2.1226 2.2378 2.3463 0.4983 0.4970 0.4946 23 0.3028 0.3385 0.3586 1.8523 3.0160 3.3000 0.3602 0.5161 0.4782
9 0.3308 0.3329 0.3363 2.1057 2.2693 2.4201 0.4898 0.4930 0.4926 24 0.3028 0.3383 0.3589 1.8660 3.0553 3.3212 0.3566 0.5160 0.4779
10 0.3305 0.3324 0.3371 2.0603 2.3067 2.5223 0.4781 0.4904 0.4933 25 0.3034 0.3377 0.3589 1.8766 3.0959 3.3469 0.3534 0.5156 0.4780
11 0.3301 0.3316 0.3383 1.9929 2.3615 2.6521 0.4627 0.4904 0.4962 26 0.3042 0.3370 0.3588 1.8829 3.1359 3.3732 0.3505 0.5150 0.4782
12 0.3292 0.3307 0.3401 1.9248 2.4367 2.7822 0.4458 0.4929 0.4986 27 0.3048 0.3363 0.3589 1.8848 3.1749 3.3987 0.3481 0.5142 0.4785
13 0.3277 0.3305 0.3418 1.8934 2.5004 2.8724 0.4323 0.4962 0.4984 28 0.3051 0.3357 0.3591 1.8850 3.2120 3.4205 0.3460 0.5132 0.4786
14 0.3260 0.3306 0.3434 1.8822 2.5503 2.9402 0.4217 0.4991 0.4964 29 0.3054 0.3352 0.3594 1.8872 3.2478 3.4406 0.3442 0.5122 0.4788

In order to maximize (5) with respect to φj when ∑l
j=1 φj = 1, the Lagrangian function is constructed

as

Λ(φj) =
m

∑
i=1

l

∑
j=1

w(i)
j log φj +h

(
l

∑
j=1

φj − 1

)
, (8)

where h stands for a Lagrange multiplier. After taking the derivative of (8) with respect to φj and
equating it to zero, we obtain:

φj =
1
m

m

∑
i=1

w(i)
j . (9)

An iterative method such as Limited Broyden-Fletcher-Goldfarb-Shanno (L-BGFS) can be applied
to obtain ϕj and δj [13] due to the fact that ϕj and δj in (6) and (7) do not have explicit forms.

3. Coverage Probability

Probability of coverage is the ratio of the network area where signal-to-interference-noise ratio
(SINR) is greater than a certain threshold T to the total area. It can be defined as

pc (T, λ, α)
4
= P [SINR > T] = P

[
hr−α

σ2 + Ir
> T

]
, (10)

where α ≥ 2 is the path loss exponent, h denotes the channel gain between tagged BS/AP and its
user, and σ2 is the noise power. Variable Ir stands for the total interference power received from the
neighboring BSs/APs and is given by

Ir = ∑
n∈Φ/bo

gnR−α
n , (11)

where bo is the tagged BS/AP, gn and Rn are the channel gain and the distance between the nth
interfering BS/AP and the tagged user, respectively. Assuming that the channel gains are characterized
with i.i.d. exponential distributions where E[h] = E[gn] = µ, (10) is expressed as

pc (T, λ, α) = Er [P [SINR > T|r]]

=
∫

r>0
P [SINR > T|r] fr(r)dr

=
∫

r>0
P
[

hr−α

σ2 + Ir
> T|r

]
fr(r)dr

=
∫

r>0
P
[

h > T
(

σ2 + Ir

)
rα
]

fr(r)dr

=
∫

r>0
e−µTrασ2

LIr (µTrα) fr(r)dr, (12)
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where LIr (·) is the Laplace transform of Ir and is given by

LIr (µTrα) = EIr

[
e−µTrα Ir

]
= EΦ,gn

[
e−µTrα∑n∈Φ\b0

gnR−α
n
]

. (13)

Due to the independence of fading coefficients, (13) can be re-written as

LIr (µTrα) = EΦ

 ∏
n∈Φ\b0

Eg[exp
(
−µTrαgR−α

n
)
]

 . (14)

By considering the properties of probability generating functional (PGFL) [1,14, ch.4, p.126], (14) can
be expressed as

LIr (s) = exp
(
−2πλ

(∫ ∞

r

(
1−Eg[exp(−sgk−α)]

)
kdk
))

,

= exp
(
−2πλ

∫ ∞

0

(∫ ∞

r

(
1− e−sk−αg

)
kdk
)

f (g)d(g)
)

. (15)

Plugging (4) and (15) into (12), and using the substitution rϕ = u, the coverage probability is expressed
as

pc (T, λ, α) (16)

=
l

∑
j=1

 φj

ϕj

∫ ∞

0
e

λπu
ϕj
2

j (1−β(T,α))−µTu
ϕj
α

j −
uj

δ
ϕj
j duj

 ,

where

β(T, α) =
2(µT)

2
α

α
E
(

g
2
α Γ
(
− 2

α
, gµT

)
− Γ

(
− 2

α
, 0
))

and Γ (c, b) stands for the incomplete Gamma function.

4. Numerical Results

In this section, we evaluate Lloyd’s algorithm approximation for coverage probability with
computer simulations. BSs/APs are arranged according to a homogeneous PPP in a 300× 300 square
meter area where λ = 1 unless other stated. We consider a 75× 75 square meter in the middle of the
total coverage area to eliminate the boundary effect [1]. We consider a Rayleigh fading channel and
set α to be 4. The parameters ϕj, δj, and φj are provided in TABLE 1 by using the EM algorithm when
l = 3, m = 104, and λ0 = λ = 1. It is worth emphasizing that mixture of three Weibull distributions is
sufficient to characterize the link distance distribution. The values in the TABLE 1 are employed in the
calculation of coverage probability.

In Fig. 3, the link distance distribution is investigated when λ = 1 and λ = 0.25. The mixture
of Weibull distributions obtained via the EM algorithm agrees with the results of Lloyd’s algorithm.
Lloyd’s algorithm performs like a bridge between (2) and (3). The radius of each Voronoi cell becomes
evenly distributed as a result of increase in the iteration values, therefore, fr(r) converges to (3). This
is mainly due the fact that the shape of Voronoi tessellation becomes more consistent as in the case
of hexagonal-like tessellations. In Fig. 4, the impact of Lloyd’s algorithm on coverage probability is
investigated. As seen in Fig. 4, Lloyd’s algorithm represents the intermediate deployment scenarios
between the pessimistic, i.e., random, and the optimistic, i.e., structural, BS/AP deployments. Fig. 5
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Figure 3. The transition from Rayleigh distribution to hexagonal distribution.

compares the PPP base station model to our proposed Lloyd algorithm model for different α and
iteration values. In these plots, α values are 2.5, 4 and 6. The cumulative distribution function (CDF)
vs signal-to-interference ratio (SIR) values are plotted for benchmark paper [1] and our proposed
approach. One of the common observation in each α value is that PPP deployment provides the lower
bound. Also, α plays crucial role in terms having better SIR and coverage as expected. One can easily
see that when α takes greater values i.e., 4,6, the coverage probability is increasing since greater α

means better received power. In Fig. 6, we compare the coverage probability of the random PPP
BS/AP model, hexagonal BS/AP model, and Lloyd’s approximation. The tightness of the proposed
method for coverage probability is illustrated for different iterations of Lloyd’s algorithm, i.e., {0, 2, 9,
29}. If the iteration value increases then the coverage probability for the proposed method tends to
approach the hexagonal BS/AP tessellation. It is important to note that the analytical approximations
lose the tractability of Lloyd’s algorithm at larger iteration values such as after iteration number 9. The
analytical approximation suffers from the fact that PGFL assumption begins to fail. Nevertheless, the
proposed approximation holds for low SIRs.

5. Concluding Remarks

In this study, the impact of Lloyd’s algorithm on the coverage probability of wireless networks
is investigated. The link distance distribution is modeled as a mixture of Weibull distributions. Its
parameters are derived based on the EM method at each iteration of Lloyd’s algorithm. The numerical
results show that if the Lloyd’s algorithm is employed, the transitions between pessimistic PPP to
optimistic hexagonal deployment can be approximately modeled.

Conflicts of Interest: “The authors declare no conflict of interest.”
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The following abbreviations are used in this manuscript:
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