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Abstract. Most microeconomic and game theoretic models of individ-
ual choice overlook adjustment costs. Rather often, the modeler’s concern is
just with improvement of objectives. This optic doesn’t quite fit agents some-
what tied to status quo. If rational, any such agent reasons whether moving to
another state be worth his while. For that, the realized gains must outweigh
the inconveniences of the move. This note offers some observations as to the
fact that change usually entails cost.
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1. Introduction
Game theory and microeconomics - henceforth just called theory - abounds in agent-
based models of decision problems. Most instances tend, however, to emphasize three
questionable features. First, each concerned agent should, with little or no hesitation,
leap directly to a best choice. Second, his behavior ought be totally goal-oriented.
Third, he is often depicted as fully detached from history, precedent or status quo.
As modelled, these aspects of behavior invite objections. Choice may emerge

step-wise; cost to change can be considerable; and clearly, each arrival comes from
some point of departure.
It’s comforting therefore, that algorithms geared toward best or better choice,

have - at least since Cauchy (1847) - been coached as iterative processes. Typically,
these require more than just one step. It’s also comforting that recent decades have
brought forward procedures that expressly account for adjustment costs.1

In contrast, much theory sidesteps such procedures. It rather moves straight to
terminal outcomes, if any, called equilibria [18], [25]. Thereby, pressing queries as to
attainment, emergence, selection and stability of equilibrium easily escape attention.
For good reasons, various concepts of steady-state solutions exert considerable

attraction. Each describes how parties behave, communicate or fare in equilibrium.
However, out of equilibrium, the underlying concept rarely provides much guidance.2

∗Informatics Departement, University of Bergen, Norway; sjur.flaam@uib.no. Many thanks for
support are due the Informatics Department and Røwdes Fond.

1Most of these come with the label ”proximal point” algorithm. References include [1], [13], [21]
and [24].

2For examle, in markets, from where might prices come? And in noncooperative games, how
could best responses and rational foresights eventually emerge?
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Two different hypotheses have been invoked to fill that void; either is tempting,
but neither quite attractive. One posits that agents, even out-of-equilibrium, behave
as in equilibrium. The other presumes that each party acts throughout as though
fully foresighted, marvelously competent, perfectly rational.3

More realistic approaches ought tolerate imperfections in agents’ capacity to
choose, foresee or know. Accordingly, here below, local perceptions replace global
views - and improvements substitute for full optimization. While seeking own bet-
terment, agents adapt - usually in somewhat moderate or myopic manner [15]. If so,
might they eventually come to a halt? And then, where?
These questions motivate the paper. For preparation, Section 2 considers just

one agent, isolated from others. In contrast, Section 3 lets him play normal-form
games among non-cooperative strategists. Section 4 concludes by briefly considering
extensive-form games of Stackelberg sort.

2. Preliminaries concerning the single agent
This section introduces notations and preliminaries. To begin with, and to simplify,
it considers just one agent. Actually, he holds a ”position”x0. If departing from x0

to x1, that transition gives him net benefit b(x1 |x0 ). His improvement or betterment

(x1, x0) 7→ b(x1
∣∣x0 ) ∈ R∪{−∞}

equals −∞ if (x1, x0) /∈ X×X for some non-empty viability subset X in the ambient
space X of alternatives. The ”probabilistic”notation b(x1 |x0 ) emphasizes that the
agent, while conditioned by his departure point x0, seeks a suitable arrival point x1.
In particular, given x0 ∈ X, he might

maximize b(x1
∣∣x0 ) subject to x1 ∈ X. (1)

Many formalized decision problems mention no point of departure - or implicitly, the
latter is of negligible importance. Moreover, it seems that the agent, upon leaping
directly to a very best choice, incurs no cost for ”dislodging”himself.4

Classical and customary instances let

b(x1
∣∣x0 ) = β(x1)− β(x0) (2)

for some gross benefit function β : X→ R∪{−∞}, having effective domain X :=
β−1(R). This case reports no adjustment costs. The agent is fully goal-driven - and
never troubled by friction or inertia. More realistically, proximal point methods [21],
[24] posit

b(x1
∣∣x0 ) = β(x1)− β(x0)− C(x1

∣∣x0 ) (3)

for some (adjustment) cost function C : X× X→ R+∪{+∞} which vanishes on the
diagonal: C(x0 |x0 ) = 0 ∀x0 ∈ X. No symmetry is presumed; it may well happen

3Assuming so might be justifiable in equilibrium but hardly out of it.
4At most, such costs are construed as computational.
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that C(x1 |x0 ) 6= C(x0 |x1 ); the forward fare can differ from the backward one. It
often appears natural though, that C satisfies the triangle inequality: C(x1 |x0 ) +
C(x2 |x1 ) ≥ C(x2 |x0 ). Then (3) makes a direct move x0 → x2 preferable to any
indirect one x0 → x1 → x2.5

Both instances (2), (3) support the standing interpretation that b(x1 |x0 ) denotes
additional benefit in arrival state x1, net of costs incurred upon departing (directly)
from x0.
If x1 = x0, the agent stays put ; otherwise, he moves. A move from x0 to x1 is

declared (strictly) improving iff b(x1 |x0 ) > 0. Naturally, suppose that staying put
entails no improvement; that is, b(x0 |x0 ) ≤ 0 for all x0 ∈ X.
Stationary states stand out by allowing no improvements. They solve problem (1)

by bringing up contingent fixed points:

Definition 2.1 (stationary states). x ∈ X is declared stationary for the bivari-
ate mapping (x1, x) ∈ X 7→ b(x1 |x) ∈ R iff

x ∈ arg max
{
b(x1 |x) : x1 ∈ X

}
. (4)

This framing of the agent’s decision problem begs the question: Is there some sta-
tionary state? The following positive (albeit particular) answer is just a restatement
of Ky Fan’s inequality [3], [11]:

Theorem 2.1 (on existence of stationary states). Suppose X is a non-empty compact
convex subset of a topological vector space X. Also suppose b(x1 |x0 ) be quasi-concave
in x1 ∈ X, lower semicontinuous in x0 ∈ X, and b(x0 |x0 ) ≤ 0 ∀x0. Then there exists
at least one stationary state. �

Theorem 2.1 points to topological vector spaces as tractable settings. It also em-
phasizes the roles of closed convex preferences.
Granted existence of at least one stationary state, how might the agent eventually

reach one of those - and come to rest there? As in [19], [26] it’s convenient to model
his step-wise adjustments in terms of a point-to-set correspondence A : X ⇒ X.
From some accidental or historical point x0 ∈ X, there emanates an iterative process

xk+1 ∈ A(xk), k = 0, 1, .... (5)

Process (5) would be self-defeating if it stops prior to stationarity. Put differently,
each fixed point x ∈ A(x) should be a stationary state (4). Conversely, (5) ought halt
if it reaches a stationary state. In synthesis, for any fixed or limiting correspondence,
say A : X ⇒ X, considered in the sequel, it’s tacitly required that

x ∈ A(x)⇐⇒ x is stationary. (6)

5If moreover, C(x1
∣∣x0 ) = 0 iff x1 = x0, then adjustment cost is an asymmetric distance [7].
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A leading instance takes the form

A(x) :=
{
x1 ∈ X : b(x1 |x) ≥ c(x1 |x)

}
(7)

where c : X× X→ R+∪{+∞} reports transitional costs. Reasonably, posit c(x |x) =
0 for all x ∈ X.

Proposition 2.1 (on appropriate cluster points). Let X be a closed subset of a
topological space X. Suppose (5), (7) generate a summable sequence k 7→ b(xk+1

∣∣xk ),
meaning

∑∞
k=0 b(x

k+1
∣∣xk ) < +∞. Further suppose that each non-stationary point

x ∈ X has some neighborhood N and number δ > 0 such that

c(χ+1 |χ) ≥ δ for all χ+1 ∈ A(χ) when χ ∈ X ∩N .

Then, either the sequence (xk) is finite with a stationary last point - or, every cluster
point of the infinite sequence must be stationary.

Proof. In the viable set X, let x = limk∈K x
k for some infinite subsequence K

of natural numbers. Suppose x isn’t stationary. With no loss of generality, take
xk ∈ N for all k ∈ K. Then, it obtains the contradiction

+∞ >
∞∑
k=0

b(xk+1
∣∣xk ) ≥

∑
k∈K

b(xk+1
∣∣xk ) ≥

∑
k∈K

c(xk+1
∣∣xk ) = +∞. �

Remark (on upper bounded criteria). Prop. 2.1 fits instance (3) with β bounded
above and c, C := C/2.

For greater flexibility one may replace the time-invariantA in (5) with stage-dependent
correspondences Ak : X⇒ X to have

xk+1 ∈ Ak(xk), k = 0, 1, .... (8)

Definition 2.2 (on asymptotic closure and regularity). When the space X is topo-
logical, a limiting correspondence A : X ⇒ X closes the sequence (Ak) if

(χk, xk)→ (χ, x) with χk ∈ Ak(xk) implies χ ∈ A(x). (9)

If the space (X, d) is metric, (Ak) is declared asymptotically regular if xk+1 ∈
Ak(xk) yields d(xk+1, xk)→ 0.

In these terms, the following result is immediate - and it it structures some sub-
sequent arguments:

Proposition 2.2 (on stationary cluster points). Suppose (X, d) is metric and that
A : X ⇒ X closes an asymptotically regular sequence (Ak). Then, each cluster point
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x of the sequence (xk) is stationary. �

For illustration of (8), replace benefit-cost functions b, c with stage-dependent ver-
sions bk : X× X→ R∪{−∞} and ck : X× X→ R+∪{+∞} . Then, (7) takes the
generalized form

Ak(x) :=
{
x1 ∈ X : bk(x1 |x) ≥ ck(x1 |x)

}
. (10)

Proposition 2.3 (on convergence). Let (X, d) be a complete metric space and X ⊆ X
non-empty closed. Suppose (Ak), as defined in (10), be closed by A. Also suppose that
for any initial x0 ∈ X, some number δ > 0 yields

+∞ >
∞∑
k=0

ck(xk+1
∣∣xk ) ≥ δ

∞∑
k=0

d(xk+1, xk). (11)

Then (Ak) is asymptotically regular, and sequence (xk) generated by (10) converges
to a stationary point.

Proof. Since the metric space is complete, (11) implies that xk → x for some
unique limit x. Also by (11), there is asymptotic regularity: d(xk+1, xk)→ 0. Hence,
by closure (9), x ∈ A(x), and stationarity derives from (6). �

3. Non-cooperative games
Accommodated henceforth is a fixed finite ensemble I of ”players”, at least two of
them.
By a strategy profile x = (xi) is meant a mapping i ∈ I 7→ xi ∈ Xi where Xi is a

non-empty ”viability set”in some ambient space Xi of alternatives. Given a strategy-
profile x0 = (x0i ), suppose member i ∈ I anticipates net benefit bi(x1i |x0 ) ∈ R upon
deviating unilaterally - within his viability set Xi - from strategy x0i to x

1
i . In terms

of x0−i := (x0j)j 6=i, he act as though the updated profile equals (x1i , x
0
−i). That belief is

justified iff he alone deviates.

Definition 3.1 (non-cooperative stationary states). A strategy profile x ∈ Πi∈IXi

is declared stationary - and a Nash equilibrium modulo cost of change - iff

xi ∈ arg max
{
bi(x

1
i |x) : x1i ∈ Xi

}
for all i ∈ I. (12)

In some special instances, such multi-agent stationarity adds nothing to the custom-
ary concept of Nash equilibrium [18]:

Proposition 3.1 (on stationary states as ordinary Nash equilibria). Suppose player
i ∈ I worships gross benefit βi : X→ R∪{−∞} , and that

bi(x
1
i

∣∣x0 ) = βi(x
1
i , x

0
−i)− βi(x0i , x0−i). (13)
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Then, a state x is stationary iff it’s a customary Nash equilibrium in the non-
cooperative game G := (βi, Xi)i∈I , meaning

xi ∈ arg max
{
βi(x

1
i , x−i) : x1i ∈ Xi

}
∀i ∈ I. �

Prop. 3.1 mentions no adjustment costs. Each player agent is fully goal-driven. No-
body is ever troubled by friction or inertia. More realistically, following the lead of
proximal point methods, one may posit

bi(x
1
i

∣∣x0 ) = βi(x
1
i , x

0
−i)− βi(x0)− Ci(x1i

∣∣x0 ) (14)

for some cost function Ci : Xi × X → R+∪{+∞} which is nil when x1i = x0i .
6 That

function could be asymmetric in the agent’s own arguments (x1i , x
0
i ). The aspect that

Ci(x
1
i |x0 ) depends on the entire profile x0 fits games featuring congestion [22] or use

of common resources [9], [10].
If a Nash solution isn’t unique, (14) bears on equilibrium refinement, selection

and stability. While βi(x
1
i , x−i) is the customary Nash maximand, (14) includes a

perturbation - apt to select more robust equilibria. Conversely, cost of change could
lock agents into equilibria which otherwise would not withstand minor nudges. This
line of inquiry is not pursued here.

In whatever form, bi(x1i |x) is meant to measure cardinal betterment for player i.
Contending with ordinal comparisons, there is a noteworthy link to characterization
and existence of stationary points:

Proposition 3.2 (on concave ordinal improvements). For each i ∈ I, suppose Xi

is a non-empty compact convex subset of some topological vector space Xi. Further
suppose that

bi(x
1
i

∣∣x0 ) > 0 =⇒ βi(x
1
i , x

0
−i)− βi(x0) > 0 (15)

with gross benefit function βi : X→ R concave in x1i ∈ Xi and continuous in x0 ∈ X.
Then, there exists at least one Nash equilibrium in the game G = (βi, Xi)i∈I . More-
over, each such equilibrium is a stationary state (12).

Proof. When x1, x0 ∈ X, posit

b(x1
∣∣x0 ) :=

∑
i∈I

[βi(x
1
i , x

0
−i)− βi(x0)]

to have b(x1 |x0 ) concave in x1, continuous in x0, and b(x0 |x0 ) = 0 for all x0 ∈ X. By
Ky Fan’s inequality (Theorem 2.1), there exists a point x ∈ X such that b(x1 |x) ≤ 0
for all x1 ∈ X. Consequently, βi(x1i , x−i) ≤ βi(x) for all x1i ∈ Xi and for each i ∈ I.

6Provided (14) be concave in x1i and continuous in x
0, the function b(x1

∣∣x0 ) :=∑i∈I bi(x
1
i

∣∣x0 )
fits Theorem 2.1.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 May 2018                   doi:10.20944/preprints201805.0025.v1

http://dx.doi.org/10.20944/preprints201805.0025.v1


On Games and Cost of Change 7

So, x = (xi) is a Nash equilibrium. From (15) follows that x must be stationary. �

Prop. 3.2 fits the instance (14) when all Ci(x1i |x0 ) ≥ 0. Monderer and Shapley
(1996) studied games G = (βi, Xi)i∈I in which

βi(x
1
i , x

0
−i)− βi(x0) > 0 =⇒ P (x1i , x

0
−i)− P (x0) > 0

for some player-independent generalized ordinal potential P : X→ R∪{−∞}. Then,
P may replace βi in (15).

In many games, strategic interaction works via objectives and constraints.7 Besides
individual restrictions that xi ∈ Xi ∀i, choice could be subject to collective, cou-
pling constraints in that each strategy profile x = (xi) must belong to a non-empty,
non-rectangular subset X  Πi∈IXi. Then, letting

b(x1 |x) := max
i∈I

bi(x
1
i |x), (16)

and modifying (12), x is stationary - and declared a generalized Nash equilibrium -
iff (4) holds.8 Theorem 2.1 immediately entails

Theorem 3.1 (on stationary states and generalized Nash equilibria). Suppose X
is a non-empty compact convex subset of a topological vector space X. If (x1, x) ∈
X ×X 7−→ b(x1 |x) ∈ R (16) is quasi-concave in x1and lower semicontinuous in x,
then there exists a generalized Nash equilibrium. �

This solution concept selects among ”ordinary”Nash equilibria, satisfying (4).

4. Stackelberg games
Stationarity (12) fits normal-form games, but it’s less apt for settings with extensive-
form interaction.9 To illustrate some of the diffi culties that emerge, this section
concludes by considering two-player, two-move instances of Stackelberg (or principal-
agent) sort [14].
A leading player 1 first chooses some x1 ∈ X1. Observing that choice, a responding

player 2 follows up with some choice x2 ∈ X2. Thereafter, given x = (x1, x2), they
collect upper semicontinuous payoffs π1(x) and π2(x) respectively. Both sets X1, X2

are compact.
In principle, the follower reduces to a strategic dummy, just selecting some best

response
x2 ∈ R(x1) := arg max

X2
π2(x1, ·).

7See [8], [10], [9], [10] and references therein.
8Provided bi(x1i |x ) be quasi-concave in x1i and lower semicontinuous in x, format (16) fits The-

orem 2.1.
9Following [19], Section 1.2.2, players might memorize the preceding path of play, and history

could affect the continuation. This idea is not pursued here.
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In contrast, up front, the leader ought

maximize π1(x1,R(x1)) subject to x1 ∈ X1.

His task is often rather demanding. He had better foresee or guess - or outright be
told - the entire response correspondenceR.Moreover, if someR(x1) isn’t a singleton,
which selection therein appears appropriate?
To see some prospects for learning to interact, suppose the game be played it-

eratively. By assumption, entering stage k = 0, 1, .. with most recent choices xk1, x
k
2

already sunk, the respective players use approximate payoff functions

πk1(x1
∣∣xk1 , x2) ≤ π1(x1, x2) & πk2(x1, x2

∣∣xk2 ) ≤ π2(x1, x2). (17)

Inequalities (17) reflect two features. First, either agent incurs some cost of change.
Second, approximate payoffs are underestimates. Suppose that

xk1 → x1 =⇒ lim supπk1(χ1
∣∣xk1 , χk2) ≥ lim inf π1(χ1, χ

k
2), and (18)

χk → χ =⇒ lim supπk2(χ
k
∣∣xk2 ) ≥ lim inf π2(χ

k). (19)

Assumptions (18), (19) capture that ultimately, when play settles, cost of change,
becomes negligible.
At stage k the leader expects that the follower will apply a single-valued response

function rk : X1 → X2. His expectation is approximately rational in so far as

πk2(χ1, r
k(χ1)) ≥ max

χ2
πk2(χ1, χ2)− εk for all χ1 ∈ X1 with εk → 0+. (20)

On these premises, at stage k, the leader chooses an update

xk+11 ∈ Ak1(xk1) := arg maxπk1(·
∣∣xk1 , rk(·)). (21)

After observing xk+11 , the follower comes up with a best response

xk+12 ∈ Ak2(xk+11 , xk2) := arg maxπk2(x
k+1
1 , ·

∣∣xk2 ).

Note that because of the sequential mode of play, the coupled updatings

xk+11 ∈ Ak1(xk1) & xk+12 ∈ Ak2(xk+11 , xk2)

do not fit (10). Nonetheless, it holds:

Proposition 4.1 (convergence in Stackelberg games). Suppose each function x ∈
X 7→ πi(x) is upper semicontinuous, and that the leader’s objective π1(x1, x2) is lower
semicontinuous in x2 ∈ X2. Also suppose that for any point χ = (χ1, χ2) ∈ X and
sequence χk1 ∈ X1 → χ1, there exists a sequence χ

k
2 ∈ X2 → χ2 such that

lim inf π2(χ
k) ≥ π2(χ). (22)
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Then, if rk converges continuously to r, meaning

xk1 → x1 =⇒ rk(xk1)→ r(x1), (23)

it holds for each limit point x1 = limxk1 that

x1 ∈ arg max π1(·, r(·)) and r(x1) ∈ arg max π2(x1, ·).

Proof. Player 1 chooses xk1 at stage k. Suppose x1 = limxk1. By continuous conver-
gence (23)

x2 := lim rk(xk+11 ) = r(x1).

With x = (x1, x2), it holds for any χ1 ∈ X1 that

π1(x) ≥ lim supπ1(x
k+1
1 , rk(xk+11 )) ≥(17) lim supπk1(x

k+1
1

∣∣xk1 , rk(xk+11 ))

≥ (21) lim supπk1(χ1
∣∣xk1 , rk(χ1))

≥ (18) lim inf π1(χ1, r
k(χ1)) ≥ π1(χ1, r(χ1)).

The first inequality derives from the upper semicontinuity of π1. The last follows from
the lower semicontinuity of π1(χ1, ·) and (23). Thus, x1 ∈ arg max π1(·, r(·)).
Further, for the same sequence xk1 → x1 and any χ2 ∈ X2 there exists a sequence

χk2 → χ2 such that (22) holds with limit point (x1, χ2). So,

π2(x) ≥ lim supπ2(x
k+1
1 , rk(xk+11 )) ≥(17) lim supπk2(x

k+1
1 , rk(xk+11 )

∣∣xk2 )

≥ (20) lim sup[πk2(x
k+1
1 , χk+12

∣∣xk2 )− εk] (with εk → 0)

≥ (19) lim supπ2(x
k+1
1 , χk+12 ) ≥ lim inf π2(x

k+1
1 , χk+12 ) ≥ π2(x1, χ2).

The first inequality derives from the upper semicontinuity of π2; the last from (22).
Thus, x2 ∈ arg max π2(x1, ·), and the proof is complete. �

Proposition 4.1 leaves several open ends. In particular, what sort of approximations
πki might be expedient? What learning scheme, if any, could justify which response
functions rk? And, when will these converge continuously? These questions go be-
yond the scope of this paper. Suffi ce it to say that, for finite-action games, fictitious
play may offer insights [4], [20], [23]; for games with continuous actions spaces, see
the proximal point procedures in [5].
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