

1 Article

2

Facile low temperature hydrothermal synthesis of

3

BaTiO₃ nanoparticles studied by *in situ* X-ray

4

diffraction

5 **Ola G. Grendal¹, Anders B. Blichfeld¹, Susanne L. Skjærvø¹, Wouter van Beek², Sverre M.**
6 **Selbach¹, Tor Grande¹ and Mari-Ann Einarsrud^{1,*}**7 ¹ Department of Materials Science and Engineering, NTNU Norwegian University of Science and
8 Technology, 7491 Trondheim, Norway; ola.g.grendal@ntnu.no (O.G.G.); anders.b.blichfeld@ntnu.no
9 (A.B.B.); susanne.l.skjarvo@ntnu.no (S.L.S.); selbach@ntnu.no (S.M.S.); grande@ntnu.no (T.G.)10 ² Swiss-Norwegian Beamlines at European Synchrotron Research Facility, 38043 Grenoble, France;
11 wouter@esrf.fr (W.B.)

12 * Correspondence: mari-ann.einarsrud@ntnu.no; Tel.: +47-735-94-002

13

14 **Abstract:** Ferroelectric materials are crucial for today's technological society, and nanostructured
15 ferroelectric materials are important for downscaling of devices. Controlled and reproducible
16 synthesis of these materials are therefore of immense importance. Hydrothermal synthesis is a well-
17 established synthesis route, with a large parameter space for optimization, but a better
18 understanding of nucleation and growth mechanisms is needed for full utilization and control. Here
19 we use *in situ* X-ray diffraction to follow the nucleation and growth of BaTiO₃ formed by
20 hydrothermal synthesis using two different titanium precursors, an amorphous titania precipitate
21 slurry and a Ti-citric acid complex solution. Sequential Rietveld refinement was used to extract the
22 time dependency of lattice parameters, crystallite size, strain and atomic displacement parameters.
23 Phase pure BaTiO₃ nanoparticles 10 - 15 nm in size were successfully synthesized at different
24 temperatures (100, 125, and 150 °C) from both precursors after reaction times ranging from a few
25 seconds, to several hours. The two precursors resulted in phase pure BaTiO₃ with similar final
26 crystallite size. Finally, two different growth mechanisms were revealed, where the effect of
27 surfactants present during hydrothermal synthesis is discussed as one of the key parameters.28 **Keywords:** BaTiO₃; hydrothermal synthesis; *in situ*; X-ray diffraction; nanoparticles

29

30

1. Introduction

31 Nanostructured ferroelectric materials are central in the further development of electronics and
32 information technology [1]. To answer to this demand, cheap, controllable, scalable, environmentally
33 friendly, simple and reproducible synthesis routes must be developed. Wet chemical methods [2],
34 like hydrothermal syntheses are among the most promising routes [3].35 BaTiO₃ (BT) has been of technological interest for many years, due to ferroelectric properties
36 below 125 °C (non-volatile ferroelectric memories), piezo- and pyroelectricity (sonar, detectors, bone
37 implants) and high dielectric constant and low dielectric loss (capacitors, thermistors, transducers)
38 [4]. Using hydrothermal synthesis, a variety of precursors and solvents have been shown to yield BT
39 under different conditions [5]. Different sizes and morphologies have been reported, including
40 nanoparticles [6], -rods [7] and -cubes [8]. Dutta and Gregg [9] reported a hydrothermal synthesis
41 giving 0.2 - 1 μm sized BT nanoparticles after reaction times of 24 h or longer. Precursors used were
42 TiO₂ (anatase) particles and BaCl₂ or Ba(OH)₂ in water with NaOH as a mineralizer. The synthesized
43 BT nanoparticles were reported to be larger, have a higher tetragonality and a more faceted
44 morphology using BaCl₂ as Ba-source compared with Ba(OH)₂. Cai et al. [8] described a synthesis
45 using Ba(NO₃)₂ and titanium (IV) *n*-butoxide, in a water-1-butanol mixture with KOH as a

46 mineralizer. Reactions at 135 °C for 16 h gave cube-like BT particles, with a size around 10 nm. The
47 size of the nanoparticles could be controlled by changing the Ba:Ti ratio in the precursor solution. Li
48 et al. [10] used BaCl₂ and TiCl₄ in a water-ethanol mixture, with KOH as a mineralizer and obtained
49 spherical BT nanoparticles after reactions at 230 °C for 12 h.

50 Obtaining insight into the nucleation and growth mechanism of the nanoparticles will facilitate
51 control of the size and morphology of the final product which is of great importance for the full
52 utilization of the hydrothermal method. A few works have focused on describing the nucleation and
53 growth mechanisms of BT from hydrothermal synthesis, often using the Johnson-Mehl-Avrami
54 equation [11], see Equation 1,

$$f = 1 - \exp(-k(t - t_0)^n) \quad (1)$$

55 Here f is the fractional extent of the reaction as a function of time (t) after the first appearance of the
56 phase (t_0), k is a rate constant and n is an exponent linked to the growth mechanism [11]. This model
57 is derived for solid state reactions but have also been successfully used for hydrothermal growth [12-
58 14]. *Ex situ* studies are most often employed, where the reaction is quenched at various reaction times.
59 Hertl [15] studied the hydrothermal reaction between TiO₂ and Ba(OH)₂, and suggested that the rate
60 limiting factor was a topochemical reaction of Ba²⁺ with TiO₂ at the surface of TiO₂, with an activation
61 energy of 105.5 kJ/mol. Similar conditions were investigated by Eckert et al. [16], who suggested two
62 growth regimes: a dissolution-precipitation mechanism at the early stage, and *in situ* transformation
63 at a later stage. Limited number of data points makes it challenging to draw such conclusions, as an
64 initial nucleation and growth mechanism could occur before the dissolution-precipitation step [16].
65 Özen et al. [17] studied the formation of BT from a peroxy-hydroxide precursor (single source
66 precursor for BT) in a NaOH solution. A clear change in the rate limiting step was reported as a
67 function of temperature, but few data points make it challenging to deduce the mechanism. Still, a
68 dissolution-precipitation mechanism was proposed. An increased reaction rate was observed with
69 increasing temperature, and an activation energy of 43.2 kJ/mol was reported.

70 The challenge in finding the growth mechanism from few data points and possible side effects
71 of quenching can be overcome by following the reactions in real time through *in situ* experiments at
72 synchrotron or neutron facilities. However, only a limited number of *in situ* studies of hydrothermal
73 synthesis have been reported [18-20], with only two focusing on BT [21,22]. Walton et al. [21] followed
74 the reaction between anatase and Ba(OD)₂ in D₂O by *in situ* neutron scattering. Here, a dissolution-
75 precipitation mechanism was found as the rate limiting step, with an activation energy of 55 kJ/mol.
76 Philippot et al. [22] used *in situ* X-ray diffraction to study the formation of BT from barium (II)- and
77 titanium (IV)-isopropoxide in a water-ethanol mixture with a time resolution of 5 s. Two growth
78 regimes were suggested for the BT nanoparticles, an initial nucleation and growth limited mechanism
79 with a high growth rate, followed by a dissolution-precipitation mechanism with a lower growth
80 rate.

81 In this work, we present *in situ* synchrotron X-ray diffraction studies of a facile aqueous
82 hydrothermal synthesis route to nanostructured BT using two different precursors, an amorphous
83 titania precipitate slurry and a Ti-citric acid complex solution. Diffraction data with a time resolution
84 down to 0.1 s at different temperatures (100, 125 and 150 °C) enables to study kinetics and growth in
85 detail, demonstrating that the two precursors behave differently at low temperatures, but show
86 similar characteristics at higher temperatures. Finally, the possible effect on size and morphology of
87 the nanoparticles by adding the surfactants sodium dodecylbenzenesulfonate (SDBS) and ethylene
88 glycol (EG) are investigated for the intermediate temperature.

89 2. Materials and Methods

90 2.1. Synthesis

91 The two different titanium precursors for the synthesis of the BT nanoparticles are described in
92 the following. Titanium (IV) isopropoxide (TIP, Sigma-Aldrich, ≥ 97 %) was added to distilled water
93 under continuous stirring, forming a white amorphous Ti-OH precipitate with a Ti concentration of

94 0.3 M. Barium nitrate (Sigma-Aldrich, $\geq 99\%$) giving a 1:1 Ba:Ti-ratio was then dissolved under
 95 continuous stirring, before the pH was raised to > 14 by adding potassium hydroxide (KOH, Sigma-
 96 Aldrich, 80 %). A slurry with a white precipitate was obtained. The KOH was mixed into the solution
 97 while the solution was cooled in an ice-water bath. When used, both ethylene glycol (EG, Sigma-
 98 Aldrich, $> 99\%$) and sodium dodecylbenzenesulfonate (SDBS, Sigma-Aldrich, technical grade) were
 99 added in a 1:1 mole ratio with Ti before KOH. Experiments from this route will be referred to as *Ti-*
 100 *slurry* (from the titanium slurry used as the titanium source) experiments.

101 For the other titanium precursor, TIP was dissolved in a 1.5 M citric acid solution (CA, Sigma-
 102 Aldrich, $\geq 99\%$) at 60 °C under continuous stirring, making a clear 0.43 M Ti complex solution. The
 103 pH was then increased from around 1, to pH = 5 - 6 by adding aqueous ammonia (Sigma-Aldrich, 25
 104 wt% solution). Barium nitrate (Sigma-Aldrich, $\geq 99\%$) giving a 1:1 Ba:Ti-ratio was then dissolved
 105 under continuous stirring, forming a clear solution. The pH was raised to > 14 by adding potassium
 106 hydroxide (KOH, Sigma-Aldrich, 80 %), resulting in the formation of a white precipitate. As for the
 107 Ti-slurry experiments, the surfactants EG and SDBS were included before KOH and in the same
 108 molar amounts when used. Experiments from this route will be referred to as *Ti-CAsol* (from the
 109 titanium-CA solution used as a titanium source) experiments. Approximately 5 mL of precursor was
 110 prepared for each experiment, for both the Ti-slurry and Ti-CAsol. An overview of the synthesis
 111 parameters for the experiments conducted in this work are presented in Table 1.

112 **Table 1.** Overview of sample names, temperature, pressure, X-ray wavelength and time resolution
 113 for the *in situ* X-ray diffraction experiments. Indicated is also which surfactants were used for each
 114 experiment, and the final product.

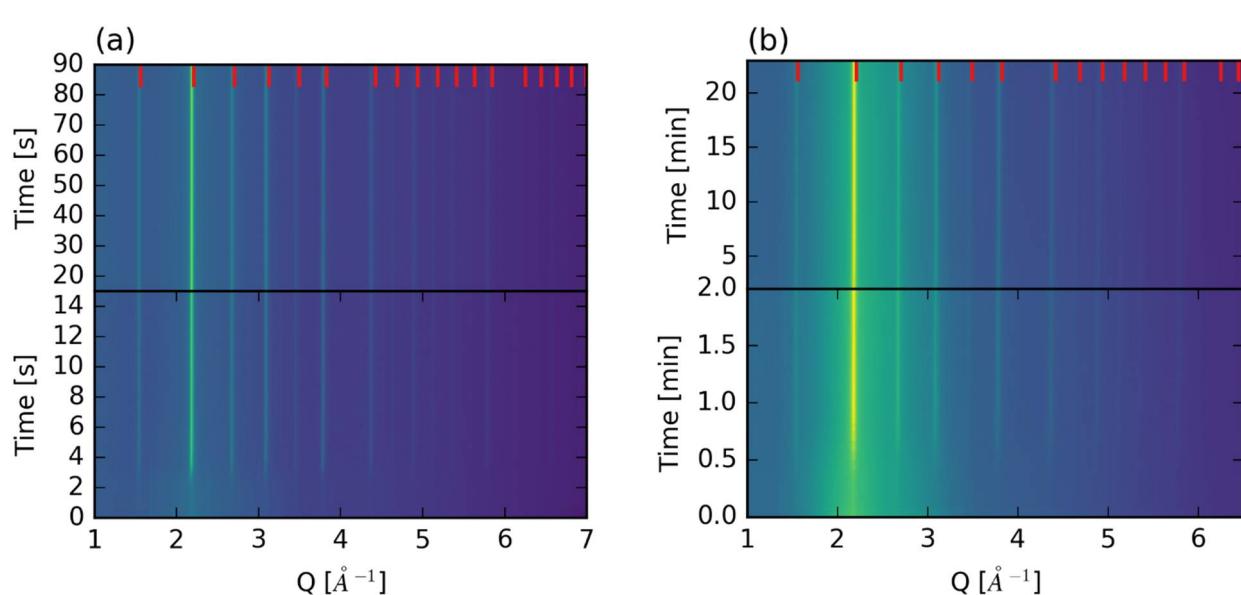
Name ^a	Temperature [°C]	Pressure [bar]	EG	SDBS	Wavelength ^b [Å]	Time resolution ^c [s]	Final product
Ti-slurry-100	100	200	no	no	0.7242	0.1	BT
Ti-slurry-125	125	200	no	no	0.7242	0.1	BT
Ti-slurry-150	150	200	no	no	0.7242	0.1	BT
Ti-slurry-EG	125	200	yes	no	0.7242	0.1	BT
Ti-slurry-SDBS	125	200	no	yes	0.7762	0.1	BT
Ti-CAsol-100	100	200	no	no	0.7129	10	BT+BC
Ti-CAsol-125	125	200	no	no	0.7129	5	BT
Ti-CAsol-150	150	200	no	no	0.7129	5	BT
Ti-CAsol-EG	125	200	yes	no	0.7242	5	BT+BC
Ti-CAsol-SDBS	125	200	no	yes	0.7129	5	BT

115 ^a Ti-slurry and Ti-CAsol refers to the use of Ti-slurry and TiCA-sol respectively for the titanium precursor.

116 ^b Experiments conducted at different beam times, therefore different wavelengths.

117 ^c Exposure time was optimized for the different reaction speeds.

118 2.2 Characterization


119 The *in situ* X-ray diffraction experiments were performed at three different beam times at the
 120 Swiss-Norwegian Beamlines (BM01A), at the European Synchrotron and Radiation Facility (ESRF),
 121 Grenoble, France. The experiments were conducted in transmission mode, using the *PILATUS@SNBL*
 122 platform [23]. The experimental setup is described elsewhere [18,24,25]. In short, it consists of a single
 123 crystal sapphire capillary (1.15 ± 0.1 mm outer and 0.8 ± 0.08 mm inner diameter), that is pressurized
 124 with a high-pressure liquid chromatography (HPLC) pump, and heated with a high temperature heat
 125 blower with nitrogen flow. The heat blower was heated to the desired set-point temperature while
 126 directed away from the capillary, before being moved into position by a stepper motor. The set point
 127 temperature was reached within 15 s. Heating profiles at selected temperatures are presented in
 128 Figure S1, together with a description of the temperature calibration. The slurries were injected into
 129 the capillary quickly after preparation (1-2 min) to avoid BaCO_3 (BC) formation using a plastic
 130 syringe. All experiments were run until no changes were observed in the diffraction patterns (no
 131 change in intensity and/or peak width) varying from a few minutes to several hours.

132 All raw data frames were treated by masking parasitic regions (to remove shadow of beam
 133 stopper and diffraction spots from capillary) and integrated from 2D images to 1D diffractograms
 134 using *Bubble* (version 2017.10.23) [23]. The refinements were done using *TOPAS* (Bruker AXS version
 135 5) in launch mode with *jEdit* (version 4.3.1) as the text editor for writing macros for *TOPAS* [26]. The
 136 instrumental broadening was calibrated using a NIST 660a LaB₆ standard, fitted with the modified
 137 Thomson-Cox-Hastings pseudo-Voigt peak shape [27] and the “Simple Axial Model” supplied with
 138 *TOPAS*. For the refinements, zero error, scale factor, lattice parameter, Lorentzian isotropic size and
 139 strain parameter, isotropic thermal parameters for Ba and Ti and a 25th order Chebyshev polynomial
 140 (to account for the broad background peak of water and solutes) were refined for each frame. The
 141 tetragonal unit cell of BT being almost cubic, combined with the peak broadening from the nanosized
 142 BT, made it impossible to differentiate between cubic and tetragonal space groups. The cubic space
 143 group (no. 221, *Pm*³*m*) was thus chosen for describing BT in all experiments, using ICDD card #01-
 144 074-4539 as reference.

145 **3. Results**

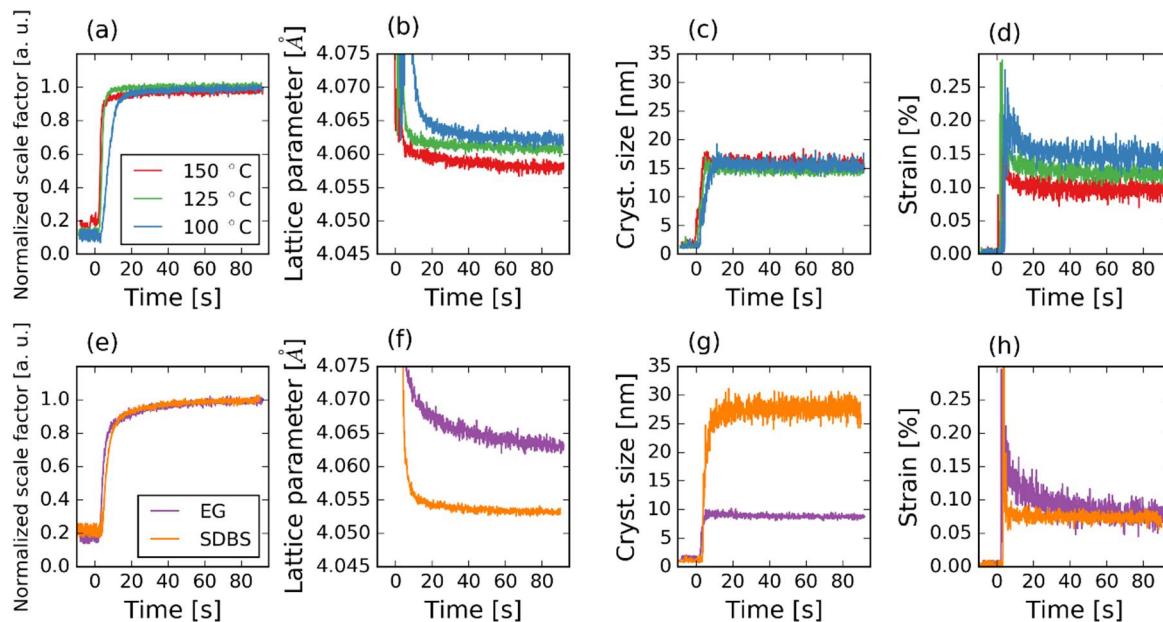
146 Typical color map plots for the Ti-slurry-150 and Ti-CAsol-150 experiments are presented in
 147 Figure 1(a) and (b), respectively. For both experiments, BT forms directly from the amorphous
 148 precursor without intermediate phases, and BT is the only phase appearing during the experiments.
 149 BT forms faster for the Ti-slurry (seconds) experiment, than for the Ti-CAsol (minutes) experiment,
 150 which is a general trend for all reaction conditions and additives used.

151 The diffraction peaks showed significant peak broadening indicating nanosized crystallites.
 152 Anisotropic peak broadening and/or abnormal intensities were not observed, indicating nanosized
 153 spherical crystallites. See Figure S2 for typical diffraction patterns and Rietveld refinements. A further
 154 discussion of the results using the two different precursors are provided in the following.
 155

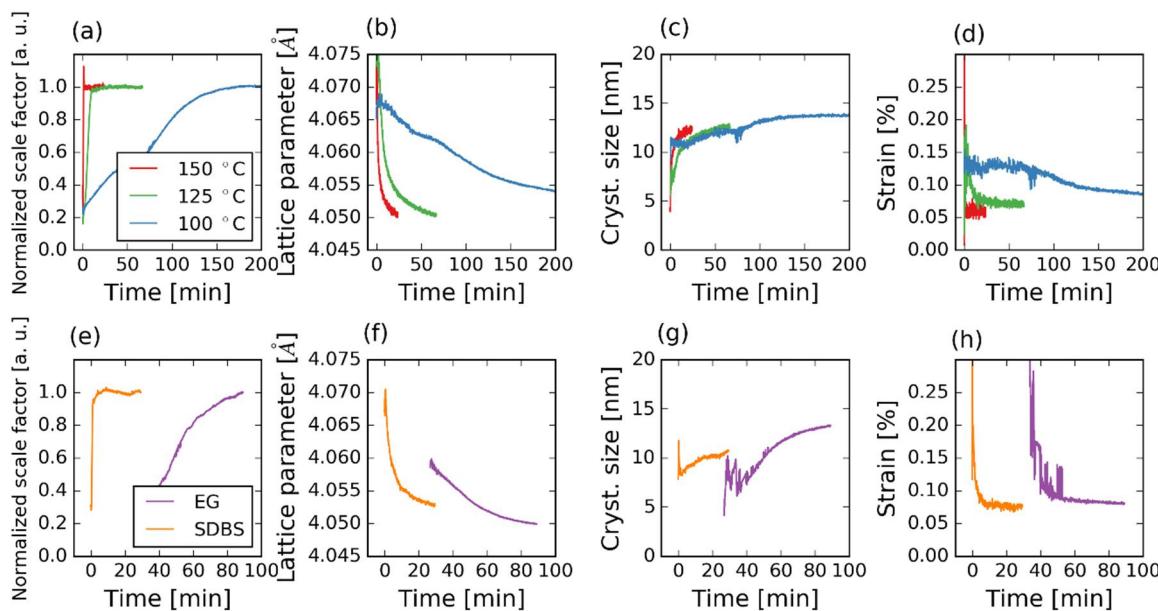
156 **Figure 1.** Color map plots showing the formation of BaTiO₃ at 150 °C and 200 bar (colors yellow-blue
 157 show intensity from high to low): (a) Ti-slurry-150; (b) Ti-CAsol-150. Red markers show diffraction
 158 lines for bulk cubic BaTiO₃ at RT from ICDD card #01-074-4539, and the offset is an effect of
 159 temperature and finite-size effects. Notice the different time scales.

160 **3.1 Ti-slurry**

161 Figure 2(a-d) shows the time resolved refined parameters for the Ti-slurry (scale factor, lattice
 162 parameter, crystallite size and strain) experiments at different temperatures. By increasing the
 163 reaction temperature, a small increase in the formation and growth rate is observed. The crystallite
 164 size stabilizes at around 15 nm after around 10 s at all three temperatures. The lattice parameter and

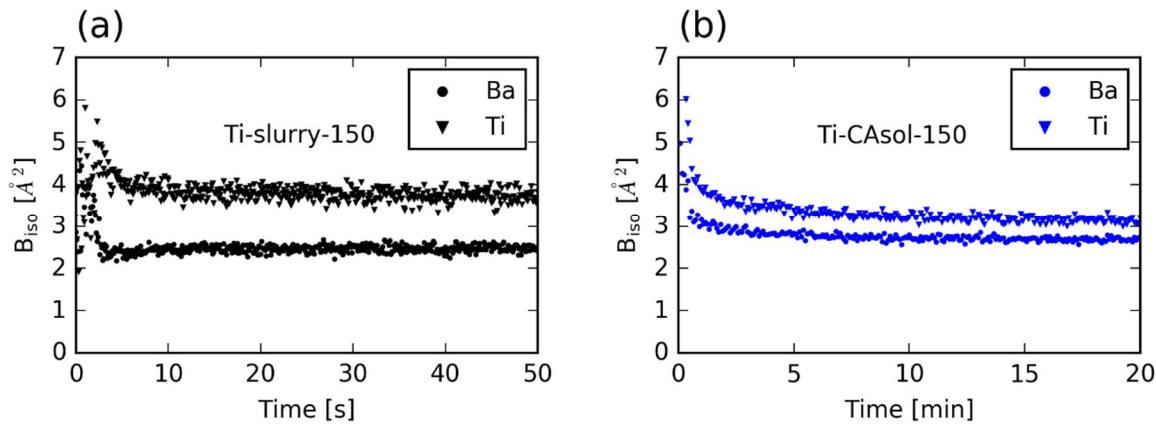

165 strain are slightly decreasing with increasing reaction temperature, from 4.0612(3) to 4.0587(2) Å and
166 0.127(7) to 0.094(3) %, respectively, when increasing the temperature from 100 to 150 °C.

167 Comparing the experiments with EG or SDBS as surfactants at 125 °C, there is no influence on
168 the reaction rate, but EG gives a small decrease in crystallite size (8.7(2) nm), while the presence of
169 SDBS almost doubles the crystallite size (25.0(7) nm). The strain is similar for both EG and SDBS, but
170 the decrease in strain is significantly slower for Ti-slurry-EG. The lattice parameter for BT prepared
171 in the Ti-slurry-EG is larger than for the Ti-slurry-SDBS, which can be directly linked to the size
172 difference.


173 3.2 Ti-CAsol

174 The time resolved refined parameters (scale factor, lattice parameter, crystallite size and strain)
175 for the Ti-CAsol experiments at different temperatures are presented in Figure 3(a-d). The three
176 different temperatures yielded a significant difference in reaction rates, see scale factor in Figure 3(a),
177 where the amount of BT stabilized after 2, 10 and 200 min for reactions at 150, 125 and 100 °C,
178 respectively. The final lattice parameter, crystallite size and strain are not influenced significantly by
179 the temperature, only the time for reaching the steady-state condition is influenced by temperature.
180 The final values for Ti-CAsol-150 are 4.0502(2) Å, 12.5(2) nm and 0.063(5) % for the lattice parameter,
181 crystallite size and strain, respectively (the final values for Ti-CAsol-100 and Ti-CAsol-125 are found
182 in Table S1). The final values for the lattice parameter are smaller for the Ti-CAsol compared to the
183 Ti-slurry.

184 Using SDBS (at 125 °C) as a surfactant does not have a significant effect on the reaction rate or
185 the final product, as can be seen by comparing Ti-CAsol-125 with Ti-CAsol-SDBS in Figure 3. By
186 adding EG, BC is formed before BT, effectively delaying the formation and growth of BT. The final
187 parameters for the BT phase in the case of Ti-CAsol-EG are comparable to that of Ti-CAsol-125, as
188 can be seen in Table S1.


189 **Figure 2.** Time resolved refined values for the experiments with the Ti-slurry, showing scale factor (a
190 and e), lattice parameter (b and f), crystallite size (c and g) and strain (d and h): (a-d) Ti-slurry-150,
191 Ti-slurry-125 and Ti-slurry-100; (d-g) Ti-slurry-EG and Ti-slurry-SDBS at 125 °C. Scale factor is
192 normalized to last value.

193 **Figure 3.** Time resolved refined values for the experiments with the Ti-CAsol, showing scale factor (a
194 and e), lattice parameter (b and f), crystallite size (c and g) and strain (d and h): (a-d) Ti-CAsol-150,
195 Ti-CAsol-125 and Ti-CAsol-100; (e-h) Ti-CAsol-EG and Ti-CAsol-SDBS at 125 °C. Scale factor is
196 normalized to last value. Values for Ti-CAsol-EG are only plotted from around 20 min, since this is
197 when BT formed.

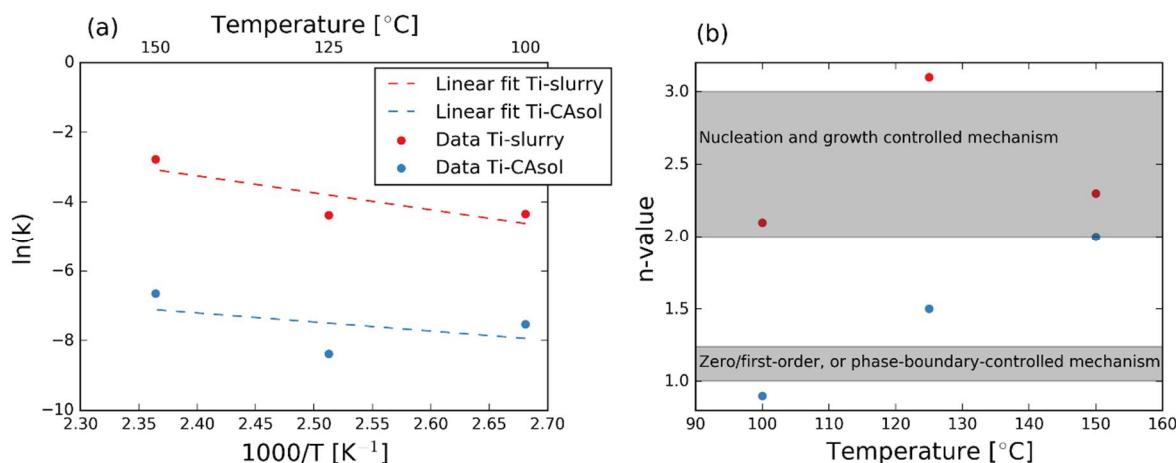
198 *3.3 Atomic displacement parameters*

199 The isotropic Debye-Waller factor (B_{iso}) obtained from X-ray diffraction show the effect of
200 configurational static disorder and thermal vibration of atoms (dynamic disorder) and can give
201 information about the ordering-disordering of a material [28]. The refined isotropic atomic
202 displacement parameters for Ba and Ti (ADPs, B_{iso}) are presented in Figure 4a and b for Ti-slurry-150
203 and Ti-CAsol-150 respectively (ADPs for all experiments are presented in Figure S3, and Ti-CAsol-
204 150 and Ti-slurry-150 are chosen here as representative examples). A fast decreases in the ADP for
205 both Ba and Ti are observed at the early stage of the reaction, before the ADP stabilizes. This is a
206 similar trend as is seen for the lattice parameter for both Ti-slurry-150 and Ti-CAsol-150. The ADP
207 for Ti is higher than for Ba for both the Ti-slurry and Ti-CAsol experiments. The main difference
208 between Tisol-150 and Ti-CAsol-150 is the time scale, where Ti-slurry-150 shows a faster decrease
209 and a shorter time for the ADPs to stabilize. The difference between the ADPs of Ti and Ba are smaller
210 for the Ti-CAsol-150, than for Ti-slurry-150. A decrease in the final value for the ADP for Ti is
211 observed with increasing temperature for both precursors. The opposite trend would be expected for
212 a purely thermal effect, indicating less disordering with increased reaction temperature. All refined
213 values (scale factor, lattice parameter, size, strain and B_{iso} for titanium and barium) for the last frame
214 of all experiments are presented in Table S1.

215 **Figure 4.** Isotropic atomic displacement parameters for Ba and Ti: (a) Ti-slurry-150; (b) Ti-CAsol-150.

216 **3.4 Kinetics of the reactions**

217 The scale factor is directly linked to the total amount of the corresponding phase. The scale factor
 218 can then be used to model the growth mechanism using Equation 1, with the normalized scale factor
 219 being the measure of the extent of the reaction [29]. Fits of Equation 1 to the scale factors are presented
 220 in Figure S4, and the refined values are summarized in Table 2. The Arrhenius plots for the Ti-slurry
 221 and Ti-CAsol experiments are presented in Figure 5(a), and the n -values from Equation 1 are plotted
 222 as a function of temperature in Figure 5(b). The obtained activation energies are 22 and 41 kJ/mol for
 223 the Ti-CAsol and Ti-slurry, respectively (Table 2). The activation energy for the Ti-CAsol is
 224 approximately half that of the Ti-slurry, however the uncertainty in the values are large.


225 The n -values for the Ti-slurry experiments fall into the same region for all temperatures (Figure
 226 5(b)), showing a nucleation- and growth-controlled mechanism over the entire temperature range.
 227 The Ti-CAsol changes from a zero/first-order, or phase boundary-controlled mechanism to a
 228 nucleation- and growth-controlled mechanism with increasing temperature.

229 **Table 2.** Fitted parameters for the growth of BT from *in situ* XRD, and the activation energy for the
 230 Ti-CAsol and Ti-slurry experiments.

Sample	k [s^{-1}]	n ^a	R^2 [a. u.]	E_a [kJ/mol]
Ti-slurry-100	0.0130(6)	2.1	0.99	
Ti-slurry-125	0.0126(6)	3.1	0.99	41
Ti-slurry-150	0.063(5)	2.3	0.97	
Ti-CAsol-100	0.00054(6)	0.9	0.97	
Ti-CAsol-125	0.00023(3)	1.5	0.99	22
Ti-CAsol-150	0.0013(4)	2.0	0.93	

231 ^aValues rounded to one decimal place
 232

233

234 **Figure 5.** (a) Arrhenius plots for the Ti-slurry and Ti-CAsol with linear regression fits; (b) n -values
 235 plotted against temperature. Grey areas show physically meaningful values for n .

236 *3.5 Phase composition*

237 All experiments yielded BT as the only or main phase. For Ti-CAsol-100, BT formed first
 238 followed by formation of BC while for the Ti-CAsol-EG, BC formed before BT. In both cases BT was
 239 the main phase at the end of the experiment, with 88 and 95 wt% BT for Ti-CAsol-100 and Ti-CAsol-
 240 EG, respectively. No difference in the final results for the Ti-slurry experiments were observed with
 241 or without the mixing in ice bath. The only difference was the formation of BT right after adding
 242 KOH when not cooled, while BT formed during the experiments when mixing was done under
 243 cooling in an ice bath.

244

245 **4. Discussion**

246 Nanosized BT particles were successfully synthesized at a low temperature using two different
 247 titanium precursors, and the reactions were followed in real time with *in situ* X-ray diffraction studies.
 248 The time resolved data show that especially the Ti-slurry precursor gives rapid BT formation
 249 compared to conventional autoclave synthesis (typical reaction times are in the range of hours and
 250 longer), but also compared with similar works [21,22]. The formation and growth of BT is finished in
 251 about 10 s for the Ti-slurry at 150 °C.

252 *4.1 Kinetics*

253 Comparing the results of the Ti-CAsol and the Ti-slurry shows that using citric acid to initially
 254 form a titanium-citric acid complex changes the reaction mechanisms. The reaction rate is higher for
 255 the Ti-slurry compared to the Ti-CAsol, which can be rationalized with an easier access to the Ti-
 256 atom. The n -values for the Ti-slurry indicate that it is the nucleation and growth that is the rate
 257 limiting step for all temperatures studied, see Figure 5(b). On the other hand, the Ti-CAsol shows a
 258 nucleation and growth-controlled mechanism at 150 °C, but this changes into zero/first-order, or
 259 phase boundary controlled mechanism with decreasing temperature. In the work by Walton et al.
 260 [30], Eckert et al. [16] and Hertl [15], a n value around 1 and a phase boundary mechanism as the rate
 261 limiting factor was reported, similar as for Ti-CAsol-100 in this work. The change to a nucleation and
 262 growth limiting mechanism as seen in this work with increasing temperature for the Ti-CAsol can be
 263 rationalized with an increased nucleation rate at higher temperatures. An increased nucleation rate
 264 is likely to be the reason the Ti-slurry behaves differently from the Ti-CAsol.

265 The activation energies calculated in this work are comparable to most previously reported
 266 values of 105.5 [15], 43.2 [17], 55.1 [21] and 21 [31] kJ/mol. It should be noted here that direct
 267 comparison to literature is difficult for kinetic studies, since these works cover different reaction

268 conditions (temperatures, precursors, and solvents), which can to some degree explain the differences
269 observed.

270 *4.2 Refined crystal structure parameters*

271 It is clear from the refined values of size and strain that the peak broadening is mainly due to
272 the size of the crystallites, and not any significant isotropic strain in the crystallites. Not many reports
273 are found on Rietveld refinement of both size and strain on nanosized BT particles from wet chemical
274 methods, since a wide Q-range is needed to differentiate between the two [32]. Size broadening is
275 often assumed to be the dominant parameter, and thus more often reported. Here we show that this
276 is the case by reporting small values of strain. BT with size of 30 nm was prepared by Yan et al. from
277 a high-gravity reactive precipitation method at 95 °C, with a refined strain value of 0.1 %, comparable
278 to the results in this work [33].

279 The lattice parameter evolution of BT for all experiments shows an initial decrease, before
280 stabilization around 4.05 Å, which is significantly higher than the bulk value for cubic BT at room
281 temperature of 4.0094(2) Å [34] and 4.0126(2) Å at 150 °C [35]. The observed finite-size effect in lattice
282 parameter is consistent with values observed in literature, of 4.03, 4.03 and 4.04 Å [21,22,33]. The large
283 lattice parameter (4.05 Å compared to literature around 4.03-4.04 Å) seen in this work can be linked
284 to the large B_{iso} values of titanium. The values reported here (3-4 Å² at 150 °C) are higher than the
285 values reported in similar works even at lower temperatures and similar crystallite sizes (2 Å² at 400
286 °C) [22]. This additional disorder can be the reason for the larger lattice parameter. The decreasing
287 trend in B_{iso} for Ti in the Ti-slurry experiments with increasing temperature can also explain the
288 decrease in lattice parameter and strain observed. The difference between the strain and lattice
289 parameters obtained for the Ti-slurry and Ti-CAsol experiments (values for Ti-CAsol lower than of
290 Ti-slurry), can be rationalized in the same way, with the difference in disorder (B_{iso} values of Ti-CAsol
291 lower than of Ti-slurry).

292 *4.3 Effect of surfactants*

293 Almost a doubling of the crystallite size is observed when adding SDBS to the Ti-slurry, while a
294 decrease is observed when adding EG. The differences observed for the lattice parameters is a direct
295 effect of the different sizes, where the smaller sized Ti-slurry-EG gives a larger lattice parameter. The
296 reaction rate seems to be unaffected by the presence of SDBS or EG. The main effect of the surfactants
297 for the Ti-CAsol is that the presence of EG promotes the formation of BC, while only small changes
298 is observed for the crystallite size and lattice parameter.

299 Hydrothermally synthesized KNbO₃ (KN) nanorods [36], and hierarchically nanostructured
300 PbTiO₃ (PT) [37] have been reported with using SDBS as a surfactant (in combination with EG for PT).
301 The results in this work does not suggest formation of nanorods or hierarchical nanostructures,
302 despite that BT, KN and PT are all perovskite oxides.

303 **5. Conclusions**

304 A thorough *in situ* X-ray diffraction investigation of a facile synthesis route of BT nanoparticles
305 using two different titanium precursors has been performed. Nanocrystalline BT (15 nm) forms
306 within a few seconds or up to several hours, depending on the type of precursors and temperature.
307 Relatively large lattice parameters (4.05 Å) are linked to the large values of ADP of titanium (4 Å²)
308 and disorder in the material. Isotropic strain (0.1 %) is shown to not be a significant contribution to
309 the X-ray diffraction peak broadening. A kinetic study revealed that the two titanium precursors used
310 behaves similarly at high temperatures, but not at lower temperatures. This demonstrates the
311 strength of *in situ* studies for understanding the nucleation and growth under hydrothermal
312 conditions.

313 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1: Temperature
314 profiles, Figure S2: Typical refinements, Figure S3: All atomic displacement parameters, Figure S4: Kinetic
315 modeling, Table S1: Summary of all refined values.

316 **Acknowledgments:** Financial support from NTNU Norwegian University of Science and Technology and The
317 Research Council of Norway under the Toppforsk program to the project (No 250403) "From Aqueous Solutions
318 to oxide Thin films and hierarchical Structures" is gratefully acknowledged.

319 **Author Contributions:** O.G.G., S.M.S., T.G. and M.-A.E. conceived and designed the experiments; O.G.G.,
320 A.B.B., S.L.S and W.B. performed the *in situ* X-ray diffraction experiments; O.G.G. performed the experiments
321 and analyzed the data; O.G.G., and M.-A.E. wrote the paper with inputs from all the authors.

322 **Conflicts of Interest:** The authors declare no conflict of interest.

323 References

- 324 1. Varghese, J.; Whatmore, R.W.; Holmes, J.D. Ferroelectric nanoparticles, wires and tubes: synthesis,
325 characterisation and applications. *J. Mater. Chem. C* **2013**, *1*, 2618-2638; doi:10.1039/C3TC00597F.
- 326 2. Villafuerte-Castrejon, M.E.; Moran, E.; Reyes-Montero, A.; Vivar-Ocampo, R.; Pena-Jimenez, J.A.; Rea-
327 Lopez, S.O.; Pardo, L. Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge. *Materials* **2016**,
328 *9*, 27; doi:10.3390/ma9010021.
- 329 3. Shandilya, M.; Rai, R.; Singh, J. Review: hydrothermal technology for smart materials. *Adv. Appl. Ceram.*
330 **2016**, *115*, 354-376; doi:10.1080/35417436753.2016.1157131.
- 331 4. Gomes, M.A.; Lima, A.S.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Wet chemical synthesis of rare earth-
332 doped barium titanate nanoparticles. *J. Mater. Sci.* **2016**, *51*, 4709-4727; doi:10.1007/s10853-016-9789-7.
- 333 5. Modeshia, D.R.; Walton, R.I. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of
334 functional oxides under mild conditions. *Chem. Soc. Rev.* **2010**, *39*, 4303-4325; doi:10.1039/B904702F.
- 335 6. Sun, W.; Pang, Y.; Li, J.; Ao, W. Particle Coarsening II: Growth Kinetics of Hydrothermal BaTiO₃. *Chem.*
336 *Mater.* **2007**, *19*, 1772-1779; doi:10.1021/cm061741n.
- 337 7. Inada, M.; Enomoto, N.; Hayashi, K.; Hojo, J.; Komarneni, S. Facile synthesis of nanorods of tetragonal
338 barium titanate using ethylene glycol. *Ceram. Int.* **2015**, *41*, 5581-5587;
339 doi:10.1016/j.ceramint.2014.12.137.
- 340 8. Cai, W.; Rao, T.; Wang, A.; Hu, J.; Wang, J.; Zhong, J.; Xiang, W. A simple and controllable hydrothermal
341 route for the synthesis of monodispersed cube-like barium titanate nanocrystals. *Ceram. Int.* **2015**, *41*,
342 4514-4522; doi:dx.doi.org/10.1016/j.ceramint.2014.11.146.
- 343 9. Dutta, P.K.; Gregg, J.R. Hydrothermal synthesis of tetragonal barium titanate (BaTiO₃). *Chem. Mater.*
344 **1992**, *4*, 843-846; doi:10.1021/cm00022a019.
- 345 10. Li, J.; Inukai, K.; Tsuruta, A.; Takahashi, Y.; Shin, W. Synthesis of highly disperse tetragonal BaTiO₃
346 nanoparticles with core-shell by a hydrothermal method. *J. As. Cer. S.* **2017**, *5*, 444-451;
347 doi:doi.org/10.1016/j.jascer.2017.09.006.
- 348 11. Avrami, M. Kinetics of Phase Change. I General Theory. *J. Chem. Phys.* **1939**, *7*, 1103-1112;
349 doi:10.1063/1.1750380.
- 350 12. Nørby, P.; Roelsgaard, M.; Søndergaard, M.; Iversen, B.B. Hydrothermal Synthesis of CoSb₂O₄: In Situ
351 Powder X-ray Diffraction, Crystal Structure, and Electrochemical Properties. *Cryst. Growth Des.* **2016**,
352 *16*, 834-841; doi:10.1021/acs.cgd.5b01421.
- 353 13. Andersen, H.L.; Jensen, K.M.Ø.; Tyrsted, C.; Bøjesen, E.D.; Christensen, M. Size and Size Distribution
354 Control of γ -Fe₂O₃ Nanocrystallites: An in Situ Study. *Cryst. Growth Des.* **2014**, *14*, 1307-1313;
355 doi:10.1021/cg401815a.
- 356 14. Eltzholtz, J.R.; Tyrsted, C.; Jensen, K.M.O.; Bremholm, M.; Christensen, M.; Becker-Christensen, J.;
357 Iversen, B.B. Pulsed supercritical synthesis of anatase TiO₂ nanoparticles in a water-isopropanol
358 mixture studied by *in situ* powder X-ray diffraction. *Nanoscale* **2013**, *5*, 2372-2378;
359 doi:10.1039/C3NR33127J.

360 15. Hertl, W. Kinetics of Barium Titanate Synthesis. *J. Am. Ceram. Soc.* **1988**, *71*, 879-883; doi:10.1111/j.1151-
361 2916.1988.tb07540.x.

362 16. Eckert, J.O.; Hung-Houston, C.C.; Gersten, B.L.; Lencka, M.M.; Riman, R.E. Kinetics and Mechanisms
363 of Hydrothermal Synthesis of Barium Titanate. *J. Am. Ceram. Soc.* **1996**, *79*, 2929-2939; doi:10.1111/j.1151-
364 2916.1996.tb08728.x.

365 17. Özen, M.; Mertens, M.; Snijkers, F.; Cool, P. Hydrothermal synthesis and formation mechanism of
366 tetragonal barium titanate in a highly concentrated alkaline solution. *Ceram. Int.* **2016**, *42*, 10967-10975;
367 doi:dx.doi.org/10.1016/j.ceramint.2016.03.234.

368 18. Becker, J.; Bremholm, M.; Tyrsted, C.; Pauw, B.; Jensen, K.M.O.; Eltzholz, J.; Christensen, M.; Iversen,
369 B.B. Experimental setup for in situ X-ray SAXS/WAXS/PDF studies of the formation and growth of
370 nanoparticles in near- and supercritical fluids. *J. Appl. Crystallogr.* **2010**, *43*, 729-736;
371 doi:doi:10.1107/S0021889810014688.

372 19. Sun, Y.; Ren, Y. In Situ Synchrotron X-Ray Techniques for Real-Time Probing of Colloidal Nanoparticle
373 Synthesis. *Part. Part. Syst. Char.* **2013**, *30*, 399-419; doi:10.1002/ppsc.201300033.

374 20. Jensen, K.M.; Tyrsted, C.; Bremholm, M.; Iversen, B.B. In situ studies of solvothermal synthesis of
375 energy materials. *ChemSusChem* **2014**, *7*, 1594-1611; doi:10.1002/cssc.201301042.

376 21. Walton, R.I.; Millange, F.; Smith, R.I.; Hansen, T.C.; O'Hare, D. Real time observation of the
377 hydrothermal crystallization of barium titanate using in situ neutron powder diffraction. *J. Am. Chem.
378 Soc.* **2001**, *123*, 12547-12555; doi:10.1021/ja011805p.

379 22. Philippot, G.; Jensen, K.M.O.; Christensen, M.; Elissalde, C.; Maglione, M.; Iversen, B.B.; Aymonier, C.
380 Coupling in situ synchrotron radiation with ex situ spectroscopy characterizations to study the
381 formation of $\text{Ba}_{1-x}\text{Sr}_x\text{TiO}_3$ nanoparticles in supercritical fluids. *J. Supercrit. Fluids* **2014**, *87*, 111-117;
382 doi:10.1016/j.supflu.2013.12.009.

383 23. Dyadkin, V.; Pattison, P.; Dmitriev, V.; Chernyshov, D. A new multipurpose diffractometer
384 PILATUS@SNBL. *J. Synchrotron Radiat.* **2016**, *23*, 825-829; doi:10.1107/s1600577516002411.

385 24. Skjærø, S.L.; Wells, K.H.; Sommer, S.; Vu, T.-D.; Tolchard, J.R.; van Beek, W.; Grande, T.; Iversen, B.B.;
386 Einarsrud, M.-A. Rationalization of Hydrothermal Synthesis of NaNbO_3 by Rapid in Situ Time-
387 Resolved Synchrotron X-ray Diffraction. *Cryst. Growth Des.* **2018**, *18*, 770-774;
388 doi:10.1021/acs.cgd.7b01192.

389 25. Dalod, A.R.M.; Grendal, O.G.; Skjærø, S.L.; Inzani, K.; Selbach, S.M.; Henriksen, L.; van Beek, W.;
390 Grande, T.; Einarsrud, M.-A. Controlling Oriented Attachment and in Situ Functionalization of TiO_2
391 Nanoparticles During Hydrothermal Synthesis with APTES. *J. Phys. Chem. C* **2017**, *121*, 11897-11906;
392 doi:10.1021/acs.jpcc.7b02604.

393 26. Evans, J.S.O. Advanced Input Files & Parametric Quantitative Analysis Using Topas. *Mater. Sci. Forum*
394 **2010**, *650*, 1-9; doi:doi.org/10.4028/www.scientific.net/MSF.651.1.

395 27. Thompson, P.; Cox, D.E.; Hastings, J.B. Rietveld refinement of Debye-Scherrer synchrotron X-ray data
396 from Al_2O_3 . *J. Appl. Crystallogr.* **1987**, *20*, 79-83; doi:doi:10.1107/S0021889887087090.

397 28. Yoshiasa, A.; Nakatani, T.; Nakatsuka, A.; Okube, M.; Sugiyama, K.; Mashimo, T. High-temperature
398 single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type PbTiO_3 phases. *Acta
399 Crystallogr. Sect. B* **2016**, *72*, 381-388; doi:doi:10.1107/S2052520616005114.

400 29. Peterson, K.M.; Heaney, P.J.; Post, J.E. A kinetic analysis of the transformation from akaganeite to
401 hematite: An in situ time-resolved X-ray diffraction study. *Chem. Geol.* **2016**, *444*, 27-36;
402 doi:doi.org/10.1016/j.chemgeo.2016.09.017.

403 30. Walton, R.I.; Norquist, A.; Smith, R.I.; O'Hare, D. Recent results from the in situ study of hydrothermal
404 crystallisations using time-resolved X-ray and neutron diffraction methods. *Faraday Discuss.* **2002**, *122*,
405 331-341; doi:10.1039/b200990k.

406 31. Ovramenko, N.A.; Shevts, L.I.; Ovcharenko, F.D.; Kornilovich, B.Y. Kinetics of Hydrothermal Synthesis
407 of Barium Metatitanate. *IzV. Akad. Nauk SSSR, Neorg. Mater.* **1979**, *15*, 1982-1985.

408 32. Balzar, D.; Audebrand, N.; Daymond, M.R.; Fitch, A.; Hewat, A.; Langford, J.I.; Le Bail, A.; Louer, D.;
409 Masson, O.; McCowan, C.N., *et al.* Size-strain line-broadening analysis of the ceria round-robin sample.
410 *J. Appl. Crystallogr.* **2004**, *37*, 911-924; doi:doi:10.1107/S0021889804022551.

411 33. Yan, T.; Shen, Z.-G.; Zhang, W.-W.; Chen, J.-F. Size dependence on the ferroelectric transition of
412 nanosized BaTiO₃ particles. *Mater. Chem. Phys.* **2006**, *98*, 450-455;
413 doi:dx.doi.org/10.1016/j.matchemphys.2005.09.058.

414 34. Aoyagi, S.; Kuroiwa, Y.; Sawada, A.; Yamashita, I.; Atake, T. Composite Structure of BaTiO₃
415 Nanoparticle Investigated by SR X-Ray Diffraction. *J. Phys. Soc. Jpn.* **2002**, *71*, 1218-1221;
416 doi:10.1143/JPSJ.71.1218.

417 35. He, Y. Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics.
418 *Thermochimica Acta* **2004**, *419*, 135-141; doi:doi.org/10.1016/j.tca.2004.02.008.

419 36. Wang, G.Z.; Yu, Y.D.; Grande, T.; Einarsrud, M.A. Synthesis of KNbO₃ Nanorods by Hydrothermal
420 Method. *J. Nanosci. Nanotechnol.* **2009**, *9*, 1465-1469; doi:10.1166/jnn.2009.C180.

421 37. Wang, G.; Rørvik, P.M.; van Helvoort, A.T.J.; Holmestad, R.; Grande, T.; Einarsrud, M.-A. Self-
422 Assembled Growth of PbTiO₃ Nanoparticles into Microspheres and Bur-like Structures. *Chem. Mater.*
423 **2007**, *19*, 2213-2221; doi:10.1021/cm063047d.

424