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Abstract: Gas flaring is a disposal process widely used in the oil extraction and processing industry.
It consists in the burning of unwanted gas at the tip of a stack. We have successfully adapted the
VIIRS Nightfire algorithm for the detection and characterisation of gas flares to SLSTR observations
on-board the Sentinel-3 satellites. A hot event at temperatures typical of a gas flare will produce
a local maximum in the night-time readings of the shortwave and mid-infrared (SWIR and MIR)
channels of SLSTR. The SWIR band centered at 1.61 µm is closest to the expected spectral radiance
maximum and serves as the primary detection band. The hot source is characterised in terms of
temperature and area by fitting the sum of two Planck curves, one for the hot source and another for
the background, to the radiances from all the available SWIR, MIR and thermal infra-red channels
of SLSTR. The flaring radiative power is calculated from the gas flare temperature and area. Our
algorithm differs from the original VIIRS Nightfire algorithm in three key aspects: (1) It uses a
granule-based contextual thresholding to detect hot pixels, being independent of the number of hot
sources present and their intensity. (2) It analyses entire clusters of hot source detections instead of
individual pixels. This is arguably a more comprehensive use of the available information. (3) The
co-registration errors between hot source clusters in the different spectral bands are calculated and
corrected. This also contributes to the SLSTR instrument validation. Cross-comparisons of the new gas
flare characterisation with temporally close observations by the higher resolution German FireBIRD
TET-1 small satellite and with the Nightfire product based on VIIRS on-board the Suomi-NPP satellite
show general agreement for an individual flaring site in Siberia and for several flaring regions around
the world. Small systematic differences to VIIRS Nightfire are nevertheless apparent. The retrieved
flaring radiative power can be used to calculate flared gas volumes when calibrated against reported
flared gas volumes. The estimated flared gas volume can be further combined with published
emission factors in order to compute emissions of atmospheric trace constituents like carbon dioxide
and black carbon.
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1. Introduction

Gas flaring (GF) is part of the upstream oil and gas industry processes as a means of disposing
of unwanted natural gas through high temperature oxidation at the tip of a stack. Flaring produces
greenhouse gases (GHG) and black carbon as the main by-products of the combustion. In terms
of the global GHG budget, the importance of flaring is diminutive [1]. However, regarding the
short-lived climate forcer black carbon, GF may be of regional prime importance. GF has been
identified as the main input of black carbon in boreal regions [2,3], with implications for the albedo of
snow-covered surfaces, the earth’s radiative balance [4,5] and the Arctic amplification phenomenon
[6], being therefore of global relevance [7]. Again in the Arctic region, GF’s contribution to the NO2
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concentrations is important, and has been increasing in the past decade [8]. GF also impacts the
local environment [9]: noise [10,11], a visual pollution [12,13], heat stress [12,14] and the emission of
further air pollutants like polycyclic aromatic hydrocarbons, volatile organic compounds and acid rain
precursors [15–18].

The information on flared volumes and emissions is sparse and methodologically inconsistent
due to technical difficulties and the lenient reporting requirements and guidelines of some jurisdictions.
Remote sensing offers the possibility of a globally consistent and independent monitoring of flaring.
The identification of flaring in the night-time data of visual and near infra-red (Vis-NIR) spectral range
[19,20] allowed for the first semi-automatic monitoring of flares from space [21–23]. With the advent of
vegetation fire detection products based on mid and thermal infrared bands (MIR and TIR), flaring
was highlighted as a main source of false alarms [24,25]. This feature was exploited to study flaring
[26,27] and later the additional evaluation of short-wave infrared (SWIR) bands allowed for a more
accurate detection [28–32], being at present the state-of-the-art.

Casadio et al. [29] considered the radiances at four wavelengths (in the SWIR, MIR and TIR
bands of (A)ATSR) to be a linear combination of black body radiances from two areas with different
temperatures within the satellite pixel footprint (actively flaming and background). Elvidge et al.
[30] developed the Nightfire algorithm in which a Planck curve is fitted to the night-time Vis-IR
measurements of the Visible Infrared Imaging Radiometer Suite instrument (VIIRS, on-board the
Suomi-National Polar Partnership) and considered an emission scaling factor to estimate the flare size.
The latter methodology was further developed into a dual Planck curve fitting (one Planck curve fitted
to the background signal and one fitted to the flare signal) to the observations in five bands (NIR, SWIR
and MIR) of VIIRS [32] and used to retrieve information on the global distribution and characteristics
of gas flaring. Its results are made public by NOAA’s National Centre for Environmental Information
as daily global fields.

The BIRD algorithm was developed to apply the bi-specral method [33] to MIR and TIR data from
the Hot Spot Recognition System (HSRS) instrument on board the bi-spectral Infrared Detection (BIRD)
Experimental Small Satellite (2001-–04) [34–36]. It was designed to retrieve effective temperature,
effective area and effective radiative power of sub-pixel hot sources, namely fires [37,38]. The
methodology was later ported to the successor FireBIRD mission, with a similar sensor in IR and a
modified Vis-NIR payload on board of the TET-1 (Technologieerprobungsträger-1) spacecraft [39].

The burnt gas volume in billion cubic metres (BCM) and emissions to the atmosphere can be
estimated from satellite observations of gas flaring. This estimation uses a conversion factor that scales
observed radiative energy release to BCM together with emission factors that convert BCM into the
amount of different chemical smoke species. The emission factors have been measured in-situ and
reported in the literature. The conversion factor has been calculated as fraction of reported BCM and
the observed radiative energy in entire countries. [32].

The Sea and Land Surface Temperature Radiometer (SLSTR) instrument on board ESA’s Sentinel-3
features night-time observations in two SWIR (S5: 1.61 µm and S6: 2.25 µm), one MIR (S7: 3.74 µm)
and two TIR bands (S8: 10.85 µm and S9: 12.0 µm). The instrument also measures in two fire-dedicated
bands (F1: 3.74 µm and F2:10.85 µm) with the same central wavelength and band width as S7 and
S8, but extended dynamical ranges to prevent saturation over active fires. [40] The distribution of
the SLSTR spectral channels with SWIR, MIR and 2 channels in TIR should allow for the detection
and characterisation of GF via the SWIR detection and the dual Planck curve fitting methodologies.
A dedicated SLSTR gas flare product would nicely fill some of the observation gaps of the VIIRS
Nightfire product since the instruments are on satellites with different overpass times. Furthermore,
the long-term commitment of the EU Copernicus programme, which funds the Sentinel satellites,
would warrant data availability well into the 2030s.

In this paper, we present a new algorithm for gas flare detection and characterization from SLSTR
observations and apply it to actual SLSTR data. Section 2 presents the data used. Section 3 describes
the developed methodology in detail. In Section 4 we present the results of the application of the
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Table 1. Comparison between the used sensors.

HSRS VIIRS SLSTR
on TET-1 on Suomi-NPP on Sentinel-3A

Start of operation 2013 2011 2016
Orbit Sun synchronous Sun synchronous Sun synchronous
altitude (km) 445 834 814.5
SWIR bands I3: 1.58 – 1.64 S5: 1.58 – 1.65
(µm) M11: 2.225 – 2.275 S6: 2.23 – 2.28
Infrared MIR: 3.40 – 4.20

TIR: 8.50 – 9.30

I4: 3.55 – 3.93 S7, F1: 3.55 – 3.93
bands M13: 3.97 – 4.13 S8: 10.40 – 11.30
(µm) I5: 10.50 – 12.40 S9, F2: 11.50 – 12.50
Ground IR-bands: 170 I-bands: 375 S4–S6: 500
resolution (m) M-bands: 750 S7–S9, F1–F2: 1000
Swath (km) IR: 178 3040 1420

newly developed algorithm at the regional level in four regions of interest (West Africa, The North
and Caspian Seas and the Persian Gulf) and evaluate our methodology against the VIIRS Nightfire
product. The performance of our algorithm is further evaluated against VIIRS Nightfire and retrievals
based on HSRS on-board the German small satellite TET-1 at the level of a single gas flaring site on the
Yamal peninsula, Northern Siberia. Finally, in Section 5 we present our conclusions.

2. Data

SLSTR Level 1b version 2 products obtained from the ESA’s Sentinel Expert User’s Hub in January
2017 were used for this work. The downloaded products were selected using a geographic criterion
(four regions of interest: West Africa, the Caspian and the North Seas and the Persian Gulf) and a
time of day criteria (only night-time acquisitions). The products were sampled in the second half of
2016. For the SWIR bands (S5 and S6), the data available in the product are top of the atmosphere
(TOA) radiances, while for the MIR (S7 and F1) and TIR (S8, S9 and F2) bands, the available data
are brightness temperatures. The latter were converted back to TOA radiances using lookup tables
provided by the European Space Agency.

FireBird TET-1 level-2 co-registered data of TET-1 night time acquisition mode (only MIR and
TIR bands at 170 m spatial resolution) were obtained for near coincident or temporally close SLSTR
and TET-1 observations during polar night conditions in 2016/17 over the Yamal peninsula and other
areas in Northern Siberia. Due to solar light contamination, only data North of about 70◦ latitude
could be used, which excluded the other regions. Probably due to the extremely cold background, the
standard level-2 fire processor of FireBird [39] failed to identify valid background pixels, and thus did
not detect any hot clusters. The co-registered data were therefore reprocessed with the BIRD night-time
algorithm [38] which was adapted to the spatial resolution of TET-1 and the cold background. The
algorithm for fire detection and characterisation output includes an estimate of the fire area and its
uncertainty, the fire temperature and its uncertainty, and the fire radiative power [38] which were used
for comparison with the temporally close SLSTR retrievals.

VIIRS Nightfire data [30] were downloaded from the NOAA website (https://
ngdc.noaa.gov/eog/ viirs/download_viirs_fire.html). No further processing was applied to
this dataset.

Table 1 summarizes the specifications of the used sensors, while Table 2 summarizes the data
used.

3. Methodology

A general flowchart of the developed methodology is shown in Figure 1. The individual
processing steps are described in the following sections.
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Table 2. Data used in this study. The number of VIIRS products was derived from the VIIRS Nightfire
dataset from NOAA, corresponding to the products which exhibited detections co-located in space and
time.

Sensor Region Sampling dates n

Regional
study

SLSTR

North Sea 17/11 – 18/12/2016 189
Caspian Sea 17/11 – 20/12/2016 99
Persian Gulf 17/11 – 31/12/2016 153
West Africa 25/07 – 29/09/2016 364

VIIRS (Nightfire) Global 2016 587

Single site
study

SLSTR Yamal
peninsula

15/12/2016
–

02/01/2017

43
VIIRS (Nightfire) 6

HSRS 12

Figure 1. General algorithm flowchart for the detection of gas flares and their characterisation:
temperature (T), area (A) and radiative power (RP). The dotted line represents the one-time
misregistration determination. The parameterization was then used when building the multi-band
cluster. ncloud− f ree

bg > 3 represents at least three cloud-free pixels in the background. > 4λ means there
is radiance data at least 4 of the 5 wavelengths considered by the algorithm.
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Figure 2. Planck curves for typical gas flaring temperatures and SLSTR SWIR (S5 and S6), MIR (S7 and
F1) and TIR (S8, S9 and F2) channels.

3.1. Detection

The SLSTR SWIR channels S5 and S6 capture the peak radiation of typical gas flaring temperatures
around 1500 K as given by the Planck equation (Figure 2). Remote detection of gas flares with
space-borne SWIR observations has been using a priori fixed thresholds on one or several bands
[28,29,31] or determining the threshold based on the pixel’s surroundings, i.e. contextual thresholding
[30,32,41].

In the present work, we use contextual thresholding by identifying all pixels that stand out of
the continuum of background values by more than one digitization step size of the respective satellite
band. All pixels with a radiance larger or equal to the threshold radiance Bthreshold

λ are detections and
processed further:

Bthreshold
λ = min{Blargest

λ,i |Blargest
λ,i − Blargest

λ,i−1 > s fλ} (1)

where Blargest
λ = {Bλ,−999, ..., Bλ,0|Bλ,i ≤ Bλ,i+1} is the ordered set of the 1000 largest radiances in the

granule (typically SWIR bands: 2400 × 3000 pixels per granule, MIR and TIR bands: 1200 × 1500
pixels per granule), and s fλ is the scale factor for the product and that band, which is calculated from
the smallest interval between records due to the digitization of the analogue radiometric signal.

Several approaches were tested, the selected one was the most robust, identifying hot pixels
in different contexts. This approach captures hot pixels when there is a gradual or an abrupt
increase (upper and lower plots of Figure 3, respectively). While not fixed, and therefore adaptable to
product-specific conditions, this contextual methodology is not statistical and therefore not directly
sensitive to the number of hot events sampled and their intensity.

At the end of this step, a collection of i hot pixels are registered, for each of the four SWIR and
MIR bands, with the following information:

• hot pixel location (xi, yi) as pixel index pair
• radiance Bλ,i in Wm−2µm−1sr−1

• area Aλ,i in m2.
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Figure 3. Four examples of thresholding for the S5 band. The horizontal line marks the threshold value.
The threshold is set contextually as the lowest radiance value whose difference to the closest inferior
radiance value is larger than the scale factor.
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3.2. Clustering

The clustering of contiguous hot pixels is necessary because the signal of a single gas flare may
influence more than one pixel [27,42]. It may also be the case that a single gas flare is detected in two
or more adjacent pixels. [31,41] Indeed, a flaring facility may comprise arrays of many flares with sizes
of up to several hundred metres, while individual stations are several kilometres apart.

A cluster is defined as a set of hot pixels which are adjacent spacially. A cluster may comprise
only one pixel if none of its adjacent pixels are hot.

A background area is defined as extending two pixels beyond the cluster’s limits in any direction,
including diagonally. For each single pixel i of the n cluster’s pixels, the radiance Bλ,i and area Aλ,i are
registered. Likewise, for each single pixel j of the m background pixels, Bλ,j and Aλ,j are registered.

For each cluster, the following quantities are then computed:
the average radiance in [Wm−2µm−1sr−1]:

Bλ =

n

∑
i=1

Bλ,i

n
(2)

the average background radiance in [Wm−2µm−1sr−1]:

Bbg
λ =

m

∑
j=1

Bλ,j

m
(3)

the background radiance standard deviation in [Wm−2µm−1sr−1]:

σ
bg
λ =

1
m

m

∑
j=1

(Bλ,j − Bbg
λ )

1
2 (4)

the cluster area in [m2]:

Aλ =
n

∑
i=1

Aλ,i (5)

the cluster x-position as across-track index:

xλ =

n

∑
i=1

xλ,i × Bλ,i

n

∑
i=1

Bλ,i

(6)

the cluster y-position as along-track index:

yλ =

n

∑
i=1

yλ,i × Bλ,i

n

∑
i=1

Bλ,i

(7)

where n is the number of hot pixels in the cluster and m is the number of pixels in the hot cluster’s
background.

3.3. Misregistration characterisation

A hot event at temperatures typical of a gas flare will produce a local maximum in the SWIR and
MIR channels (see Figure 2), which will be translated into a cluster in those bands. The MIR fire channel
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F7 of SLSTR has been designed with a different footprint size and position than the corresponding
SWIR channels. Because of these differences the clusters in the different bands cannot be spatially
superimposed.

The S5 cluster location is used as reference because it is the band closest to the maximum energy
output expected for a gas flare (Figure 2). The along-track and across-track distances between a
cluster in the reference SWIR band S5 and the closest cluster in the remaining SWIR and MIR bands
(S6, S7 and F1) are being parameterised as functions of the across-track position using second order
polynomials. Its parameters are determined by fitting 500 random products from the dataset. The
confidence intervals for the distances are assumed to be bound by second order polynomials that are
vertically shifted such that 10% of the data points are below, resp. above (Figure 4).

3.4. Misregistration correction: building multi-band clusters

Multi-band clusters C f laring are subsequently constructed. They consist of the single-band clusters
Cλ with λ in S5, S6, S7 and F1 that observe the same hot source. The SWIR cluster CS5 is used as
reference. Then those cluster from the remaining bands (Cλ with λ in S6, S7 and F1) that are closest to
after correction of the misregistration are added. In doing so, only clusters in the confidence intervals
are considered:

min{d|(xmin
λ ≤ |xS5 − xλ| ≤ xmax

λ ∧ ymin
λ ≤ |yS5 − yλ| ≤ ymax

λ )} → C f laring
λ = Cλ (8)

where
Cλ is any of the λ-band clusters (λ in S6, S7 and F1),
C f laring

λ is the λ-band cluster within the multi-band cluster C f laring (λ in S6, S7 and F1),

d = ((xλ − xavg
λ )2 + (yλ − yavg

λ )2)
1
2 is the distance between Cλ and the parameterised misregistration

position for the band λ,
xS5 and yS5 are the across track and along track position of the S5 reference cluster C f laring

S5 ,
xλ and yλ are the across track and along track position of Cλ,
xavg

λ , xmin
λ and xmax

λ are the average, minimum and maximum distances in the across track axis given
by the misregistration parameterisation as a function of the reference cluster across track position xS5,
yavg

λ , ymin
λ and ymax

λ are the average, minimum and maximum distances in the along track axis given by
the misregistration parameterisation as a function of the reference cluster across track position yS5.

For the TIR bands S8, S9 and F2, the flaring high-temperature event is not expected to impact the
radiance (Figure 2). The average radiance for each TIR band 2 pixels around the reference S5 cluster
position is then associated to the multi-band cluster.

3.5. Radiance corrections

The SWIR radiances in S5 and S6 exhibit a systematic overestimation of 11 and 20%, respectively.
[43] Following recommendations by ESA, all values in the SWIR bands were corrected accordingly.
This correction needs to be verified and possibly updated for future versions of SLSTR products.

After building the multi-band clusters, the MIR S7 channel is checked for saturation. If the
S7 radiance is above the saturation value (0.56 Wm−2µm−1sr−1, corresponding to a brightness
temperature of 306K) in any of the hot pixels within the cluster, then it is discarded. If the S7 cluster
is discarded or not present, the F1 cluster is used. The F1 band is a fire dedicated channel of SLSTR
which measures at the same wavelength as the S7 channel, but with a larger dynamic range and lower
sensitivity. Only F1 clusters where all of the pixels have a brightness temperature within the linearity
range 300–480K are considered. This way, sensitivity is maximized without compromising detection.

3.6. Super Cluster definition

The areas of the individual clusters in the SWIR and MIR bands within a multi-band cluster may
vary. To overcome this, hypothetical super clusters, with perfect coregistration and identical footprint
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Figure 4. Parameterizations of the distances between a cluster in S5 and the closest cluster in S6, S7
and F1 as a function of the scan index. The solid line shows the best fit (second order polynomial). The
dashed lines are parallel to the best fit so that 10% of the points are above resp. below. They represent
the confidence interval.
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Figure 5. Super cluster creation.

areas in all bands, are built. The largest of the individual band clusters’ areas Aλ is chosen as area
Acluster of the super cluster (Figure 5).

For each band’s cluster C f laring
λ within a multi-band cluster C f laring, the observed cluster radiance

Bobs
λ is calculated as area-weighted average of the observed radiances of the cluster and the background:

Bobs
λ =

Bλ × Aλ + Bbg
λ × (Acluster − Aλ)

Acluster
(9)

It is assumed that the background radiance Bbg
λ is constant in the vicinity of the cluster. For the

TIR bands (S8, S9 and F2) the weighting is not necessary and the average registered radiance is used.

3.7. Planck curve fitting

In order to determine the temperature and the area of the flaring event, the sum of two Planck
curves is fitted to the radiance data of the multiband cluster, as established by Elvidge et al. [32]. The
two Planck curves represent the two contributors for the IR radiance measured by the sensor at night,
i.e. the flaring event and the background, each weighted by its respective relative area:

Bobs
λ

!
= B(λ, Tbg)× (1− AGF

Acluster
) + B(λ, TGF)×

AGF
Acluster

(10)

B(λ, T) =
2hc2

λ5
1

e
hc

λkT−1
(11)
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Figure 6. An example of the temperature and area retrieval by dual Planck curve fitting.

where B(λ, TGF) and B(λ, Tbg) are the modelled gas flare and background radiance, respectively,
according to Planck’s law. AGF is the modelled flame area [m2].

The Bobs
λ values are approximated by fitting the parameters Tbg, TGF and AGF via the least squares

methodology. The standard deviation of the background radiances σ
bg
λ is used in the fitting as standard

deviation of the cluster radiances. The algorithm computes uncertainties for both the temperature and
the area.

3.8. Radiative power

The radiative power (RP) of the hot source may then be computed using the Stefan-Boltzmann
equation and assuming a perfect emissivity (in W):

RPGF = AGF × σSB × T4
GF (12)

where σSB is the Stefan-Boltzmann constant (5.670373× 10−8Wm−2K−4).
The respective uncertainty is computed by propagation of errors.

4. Results

4.1. Regional study: 4 flaring regions

The described algorithm was applied to observation in the four regions of West Africa, the North
sea, the Caspian sea and the Persian gulf, cf. Table 2.
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4.1.1. Temperature and area retrievals

Figure 7 shows the hot spot detections of SLSTR with temperatures in the range [500 K, 5000 K],
which we consider to be valid detections. The methodology successfully captures well-known flaring
locations such as the North Sea oil fields, the mouths of the Congo and Niger rivers, the Persian Gulf
and the Tigris and Euphrates rivers valleys. However, a large number of hot spots were also detected
outside of known flaring regions, e.g. in the North Sea, or in the plateau of central Angola and the
Southern D. R. Congo.

Figure 8 shows the temperature distributions in nine specific areas: four areas with know gas
flaring, one area with known biomass burning area and four areas without any know gas flaring
activity. The retrieved temperatures for the detections in the non-flaring areas is clearly lower than for
the flaring areas (see Figure 8). The retrieved temperatures for the biomass burning area is intermediate.
Observing fire temperature on a global scale, even only at night-time, is complementary to the widely
used burnt area and fire radiative power observations and has great potential for reducing errors in
the current fire emission datasets.

Gas flare areas seen from space could be dependent on the viewing angle. However, Figure 9
shows that the retrieved hot spot area is not dependent on the across track index, and therefore the
viewing angle.

4.1.2. Persistence

Other hot or bright events that can be observed from space in the IR part of the spectrum at night
include wildfires, auroras, industry (e.g. steel mills) and heavily lit boats. Noise and an increased
exposition of the sensor to radiation due to the South Atlantic Anomaly may also generate spurious
hot spots. [28,32] It is difficult to discriminate between these events based only on the radiance. An
analysis of the persistence of the signal at the location of a given valid detection has been proposed to
filter out noise and ephemeral phenomena [28,32].

Although not suitable for a thorough analysis due to the short sampling period, the persistent
observations (at least 3 detections within a spatial accuracy of ±0.02 degrees in longitude and latitude
over the sampling period) mainly correspond to locations within known flaring regions (see Figure
10). In future works where this methodology will be used on data from longer periods, this threshold
might need to be raised or otherwise adapted. For known interferences, persistent or semi-persistent
hot sources such as volcanoes, the use of a mask will also be useful.

4.1.3. Selection of persistent observations and radiative power computations

In order to filter low-quality determinations, cloud cover and overfitting were considered.
Clouds may interfere with the amount of radiation measured by the SLSTR instrument, in turn

interfering with the temperature, area and radiative power retrievals. However, simply discarding
cloudy pixels could incur a large omission error since pixels containing gas flares are frequently marked
as clouds, namely as isolated cloudy patches (e.g. for the VIIRS instrument [32] ). For this reason, we
analyse the cloudiness of the background, as defined in 3.2, and discard only observations with less
than 3 cloud-free background pixels.

In order to avoid too much dependence on the TIR channels, which are not subject to the
thresholding and clustering process and thus virtually always present, we discard persistent
observations for which no S6 or S7/F1 cluster were detected.

Figure 11 shows the distributions of the retrieved temperature, area and radiative power for
detections that have been filtered with persistence, cloud cover and S6/S7/F7 availability criteria
described above. We will label these "quality persistent" below. The distributions of the quality
persistent observations fall within the expected range for gas flares. The retrieved temperatures show
a clearly unimodal distribution approximately centered at 1600K for the Persian Gulf and the Caspian
Sea test regions. For the North Sea test region, the distribution is bi-modal, with modes around 1000K
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Figure 7. Maps of the valid detections within the test regions. The rectangles represent the 9 study
areas (red for flaring, green for biomass burning, blue for non-flaring)
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Figure 8. Temperature retrievals distribution for the valid detections within each study area defined in
Figure 7.

Table 3. Summary of the detections based on SLSTR and spatial comparison with VIIRS Nightfire.

N. Sea C. Sea P. Gulf W. Africa
SLSTR

valid detections 1131 1708 4889 1193
persistent observations 479 1220 4187 394

persistent locations 72 148 359 57
quality persistent observations 203 919 3188 15

persistent locations detected by VIIRS 71 148 359 57

and 1600K. There were very few quality persistent observations for the West Africa test region due to
unfavourable cloud conditions.

4.1.4. Comparison with VIIRS Nightfire

The SLSTR valid detections at persistent locations were compared to the VIIRS Nightfire data for
a same time period and a roughly similar area. The VIIRS Nightfire results were subject to the same
spatial persistency analysis as the SLSTR data (3 times within a spatial accuracy of 0.02 degrees in
longitude and latitude). VIIRS detects more gas flaring locations than SLSTR, which can be traced back
to its wider swath (3040 km against 1420 km), and thus a shorter revisit time. Another reason for the
larger number of detections by VIIRS is that the Nightfire algorithm processes single pixels, selected
as the local maxima of pixels above the threshold, the method here aggregates contiguous hot pixels
into clusters. Despite these limitations, all but one persistent locations detected by SLSTR were also
detected by VIIRS.

The clustering of contiguous hot pixels used in the present method also explains why the VIIRS
Nightfire temperature retrievals tend to peak at higher values than the SLSTR ones (Figure 12).
Selecting only pixels which are local maxima, as the VIIRS Nightfire algorithm does, will produce
detections with higher radiances and mostly higher temperatures will be retrieved.

4.2. Single site study: Bovanenkovo, Yamal peninsula

As another test case, a flaring site in the Bovanenkovo field was observed in more detail. The
Bovanenkovo field, located on the western shore of the Yamal peninsula in northern Siberia, Russia,
produces natural gas and condensates. The flaring location was repeatedly observed by the sensors
SLSTR, HSRS and VIIRS over a sampling period of 19 days (between 15/12/2016 and 2/12/2017),
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Figure 9. Retrieved gas flare area for valid detections as a function of the across track index.
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Figure 10. Maps of the persistent observations.
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Figure 11. Violin plots for the temperature, area and the radiative power retrieval distributions of the
quality persistent observations. The number of quality persistent observations is also indicated.
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Figure 12. Comparison between temperature, area and radiative power retrieved by SLSTR and VIIRS
at persistent locations.
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Table 4. Summary of the detections at the Bovanenkovo gas and condensates field in the Yamal
Peninsula, Siberia.

SLSTR HSRS VIIRS Total
Location 1 0 1 0 1
Location 2 1 2 17 20
Location 3 2 3 6 11
Location 4 1 0 0 1

Total 4 6 23 33

with very high temporal co-location between SLSTR and HSRS. The detections are clustered around 4
distinct locations (see Figure 13) and are summarized in Table 4

Due to clustering in the SLSTR and HSRS data analysis, these sensors may detect one cluster in a
situation, in which the VIIRS product lists two or more flares in very close proximity. For SLSTR, the
observing conditions were very close to twilight (the night-only mask was not considered in order to
have the opportunity to observe the same flaring site by the three sensors), and thus not ideal.

Figure 14 shows the temperature, area and radiative power determinations at Locations 2 and 3
for the 3 instruments.

At Location 2, the single SLSTR observation agrees well with the determinations based on VIIRS
and HSRS for the temperature. At Location 3, the temperature determinations based on SLSTR
are lower than those based on VIIRS but in the same range as those based on HSRS. The gas flare
temperature depends on the flared gas composition and the completeness of combustion, which
depends on flare design and meteorological conditions [44–47]. Thus the flaring characteristics may
vary in time. The methodological differences may also explain lower temperatures in the SLSTR
product as explained above. The agreement between SLSTR and HSRS is noteworthy since HSRS uses
a bi-spectral method based on the MIR and TIR, the latter of which is prone to low signal/noise ratios
for hot spots.

While the retrieved areas from TET-1 are larger than those from SLSTR, area determinations based
on VIIRS and SLSTR are close for both locations except the highly uncertain SLSTR observation on
2/1/2017. The shape of the flame, and thus its area as observed by a satellite, is dependent on the flow
rate and the meteorological conditions [45,48] and therefore also variable in time as its temperature.

Despite the variability seen between sensors due to inherent variability of flares and
methodological differences, the radiative power determinations, the variable to which the emissions
computations are linked, compare well between sensors.

5. Conclusions

We have adapted the VIIRS Nightfire algorithm [32] for the detection and characterisation of gas
flares using the SLSTR instrument on-board the Copernicus Sentinel-3 satellite [40]. The algorithm is
based on fitting Planck curves that represent the hot source and the cool background to all the available
satellite observations in the short-wave, mid and thermal infrared spectral range. This approach relies
on radiometrically calibrated radiance data as input.

The main difference to the original methodology is that we analyse the integrated radiances
of contiguous clusters of hot pixels instead of the maximal radiances detected in the clusters. We
expect this representation to be more realistic and accurate for large arrays of gas flares. The presented
algorithm furthermore tolerates misregistration and variable footprint areas between different spectral
channels. The misregistration itself is quantified in a post-processing step. Finally, a new hot spot
detection algorithm is employed and spurious cloud masking of just the hot source is ignored.

The concept of monitoring gas flares with SLSTR using the new algorithm has been tested using
Sentinel-3A observations in four regions of interest: North Sea, Caspian Sea, Persian Gulf and Gulf of
Guinea.
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Figure 13. Location of the detections in the Bovanenkovo area between 15/12/2016 and 02/01/2017
(upper) and location of Bovanenkovo in Eurasia (lower).
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Figure 14. Temperature, area and radiative power determination for the detections at locations 2 and 3.
Radiative power determinations based on VIIRS for a same overpass were added.
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Our methodology detects gas flaring activity at locations coincident with oil extraction sites and
comparisons to the established VIIRS Nightfire product show that the location of the detections is
largely consistent. The characterisation of the gas flares in terms of temperature, area and radiative
power is also similar. Thus we conclude that night-time gas flaring can be monitored and characterised
with the Sentinel-3 satellites. The retrieved gas flare temperatures are slightly lower, areas are slightly
larger and radiative power is slightly larger than in the VIIRS Nightfire product. This is expected
from the algorithmic difference and thought to more realistically represent large arrays of multiple gas
flares.

Our methodology was also tested with a short time series of observations over an individual
flaring site at Bovanenkovo on the Yamal peninsula in Siberia. Here, we compare near-coincidental
overpasses of Sentinel-3A (SLSTR), TET-1 (HSRS) and Suomi-NPP (VIIRS). In terms of temperature,
both SLSTR and HSRS show similar results, while VIIRS retrievals deliver slightly higher temperatures.
Areas derived from SLSTR data are similar to those from VIIRS, and smaller than those from HSRS.
Taking into consideration the inherent variability of the operation of gas flares, we consider those
values, as well as the derived radiative power values, from the three instruments to be in good
agreement.

The presented algorithm is suitable for the generation of an operational global gas flaring product
from the series of Copernicus Sentinel-3 satellites. Based on the derived FRP of the gas flares, the
product may also include estimates of the flared gas volume (BCM) and the emissions of black carbon
and other smoke constituents.

Including the gas flaring emissions into the Copernicus Atmosphere Monitoring Service (CAMS
)[49,50] will be necessary to simulate realistic black carbon deposition rates in the Arctic and quantify
the corresponding albedo reduction and climate effects. This could be achieved by including black
carbon emissions from a new Sentinel-3 gas flaring product or by extending the Global Fire Assimilation
System (GFAS, [51]) of CAMS to ingest and interpret also FRP from gas flaring as reported by VIIRS
Nightfire and a potential future "SLSTR Nightfire" product.

Estimates of the temperatures of vegetation fires are also provided, albeit only at night-time. This
is a new observational capability. It is complementary to the burnt area and fire radiative products,
which are currently being used for vegetation fire emission estimation, and carries a high potential for
reducing some of the large uncertainties in these estimates.
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