

1 *Type of the Paper (Article)*

2 **Spectrally-selective energy-harvesting solar windows** 3 **for public infrastructure and greenhouse applications**

4 **Mikhail Vasiliev*, Kamal Alameh and Mohammad Nur-E-Alam**

5 Electron Science Research Institute (ESRI), Edith Cowan University, 270 Joondalup Dr, 6027, WA, Australia;

6 E-mails: m.vasiliev@ecu.edu.au (M. V.) k.alameh@ecu.edu.au (K. A.), m.nur-e-alam@ecu.edu.au (M. N. A.)

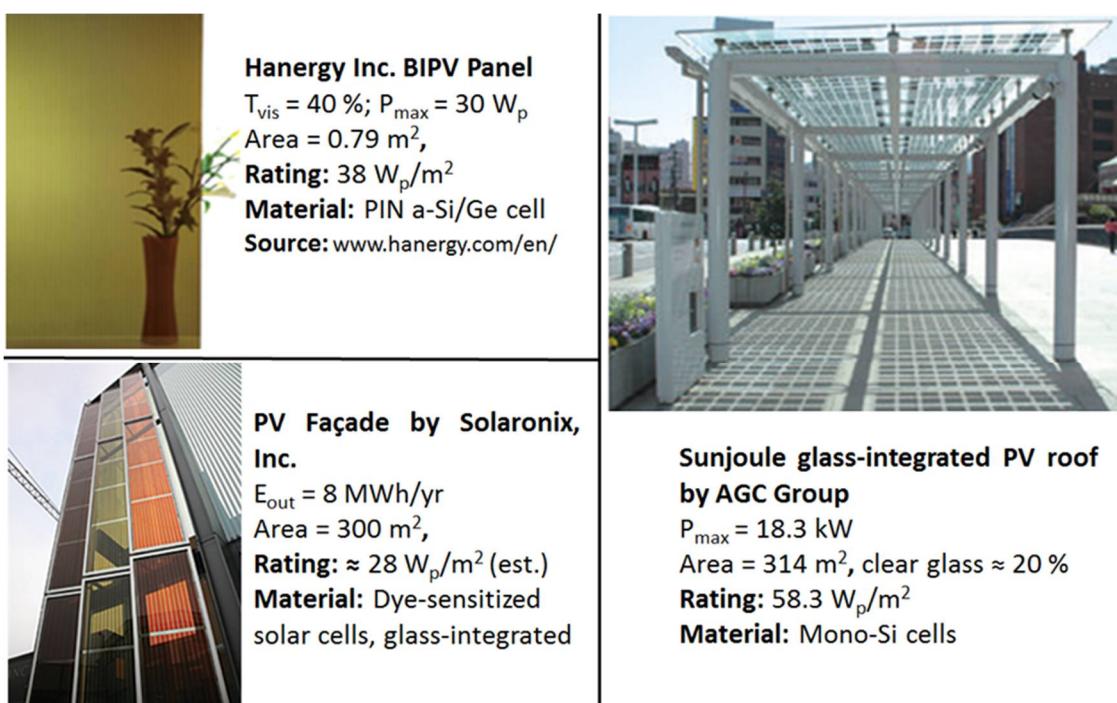
7 * Correspondence: m.vasiliev@ecu.edu.au

8

9 **Featured Application: Off-grid infrastructural installations powered by solar windows.**

10 **Abstract:** A study of photovoltaic solar window technologies is reported, focusing on their
11 structural features, functional materials, system development, and suitability for use in practical
12 field applications, e.g. public infrastructures and agricultural installations. Energy generation
13 performance characteristics are summarized and compared to theory-limit predictions. Working
14 examples of pilot-trial solar window-based installations are described. We also report on achieving
15 electric power outputs of about 25 W_P/m² from clear and transparent large-area glass-based solar
16 windows.

17 **Keywords:** solar windows; advanced glazings; low-emissivity spectrally-selective coatings;
18 photovoltaics


19

20 **1. Introduction**

21 In recent years, there has been a significant and growing research interest dedicated to the
22 engineering and characterization of unconventional photovoltaic devices and systems, in particular,
23 large-area transparent luminescent solar concentrators (LSC) [1-4], and solar windows [5-8], which
24 are currently receiving increasing attention. Of special importance is the emergence of newly-
25 commercialized semi-transparent photovoltaic technologies and building-integrated photovoltaic
26 (BIPV) systems, which have been demonstrated in practical architectural deployment applications
27 [9-12]. At present, most commercial energy-generating solar glass and solar window technologies
28 suitable for BIPV applications feature semi-transparent (up to about 40% of spectrally-averaged
29 visible-range transmission) appearance, and are most often not colour-neutral. This is due to typically
30 relying on the use of either amorphous silicon-based, or dye-sensitized solar cell materials integrated
31 into glass panel structures (in BIPV applications). In building-applied (BAPV) applications, the
32 energy conversion is typically accomplished by either silicon, or CIS/CIGS solar cell modules
33 embedded into, or onto, glass panels, building roofs, or façade walls. While such BAPV systems
34 generate adequate electricity, their transparent area fraction is limited, often making them
35 unattractive in architectural installations. A number of recent studies have been dedicated to
36 uncovering the potential of renewable energy technologies (including photovoltaics) for reaching the
37 important goal of net-zero energy consumption in buildings and infrastructural installations [13-18].
38 Figure 1 summarizes three well-known commercialized (and recent) examples of the relevant
39 technologies, and also provides the data on the currently-available electric power generation
40 capacities per unit wall area. Somewhat naturally, the electric outputs of solar window-type systems
41 decrease with increasing visible-range transparency, regardless of the materials or technologies used.
42 This is true for either the light concentrating or light-trapping (eg LSC) technologies, or the systems
43 relying on solar cell-based direct wide-area PV conversion. The figure of 38 W_P/m² from Hanergy
44 product manual [10] reported for a window panel of 40% averaged visible-range transparency

45 appears to describe the top performance among all (or at least most) direct wide-area semitransparent
 46 glass-based energy converters available to date. This reported figure of performance is also well
 47 ahead (to the best of our knowledge) of all transparent concentrator-based window technologies or
 48 systems reported so far.
 49

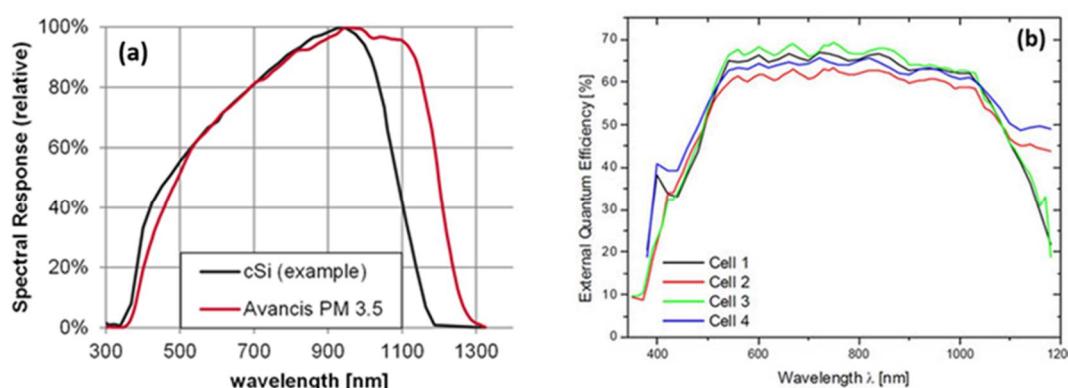
50
 51
Figure 1. Commercial solar window technology examples [10, 11, 19] and their reported (or estimated)
 52 metrics in terms of energy-output characteristics.
 53

54
 55 A notable example of semitransparent photovoltaic façade installation engineered by Solaronix,
 56 Inc. and EPFL [19] is yet to undergo long-term performance characterization and testing, however,
 57 we can derive a figure of performance of about $28 \text{ W}_p/\text{m}^2$ of electric output, using the reported data
 58 on the predicted annual energy generation, the energy-converting area installed within the façade,
 59 and by approximating the other parameters (eg. using the reported 300 m^2 figure for the wall area,
 60 and by estimating 5 peak sunshine-hours per day, and about 190 sunny days per year).

61 Future BIPV technologies are widely expected to feature a combination of energy-saving
 62 functionality (due to superior thermal insulation properties provided by advanced glazing systems
 63 and low-emissivity coatings), and smart-window functionality offering active control over window
 64 transparency, together with a possibility of significant energy-harvesting performance available in
 65 increasingly high-transparency glazings [8, 9, 20]. The motivation for producing this article has been
 66 to highlight the emergence of a new class of highly-transparent solar windows, which are now ready
 67 for industrialization, and to compare the performance metrics of this emergent solar-window
 68 technology with other examples of solar window-type devices. We also aim at highlighting the actual
 69 potential of these solar windows for use in several practical applications.

70 **2. Design features and performance characteristics of transparent solar windows**

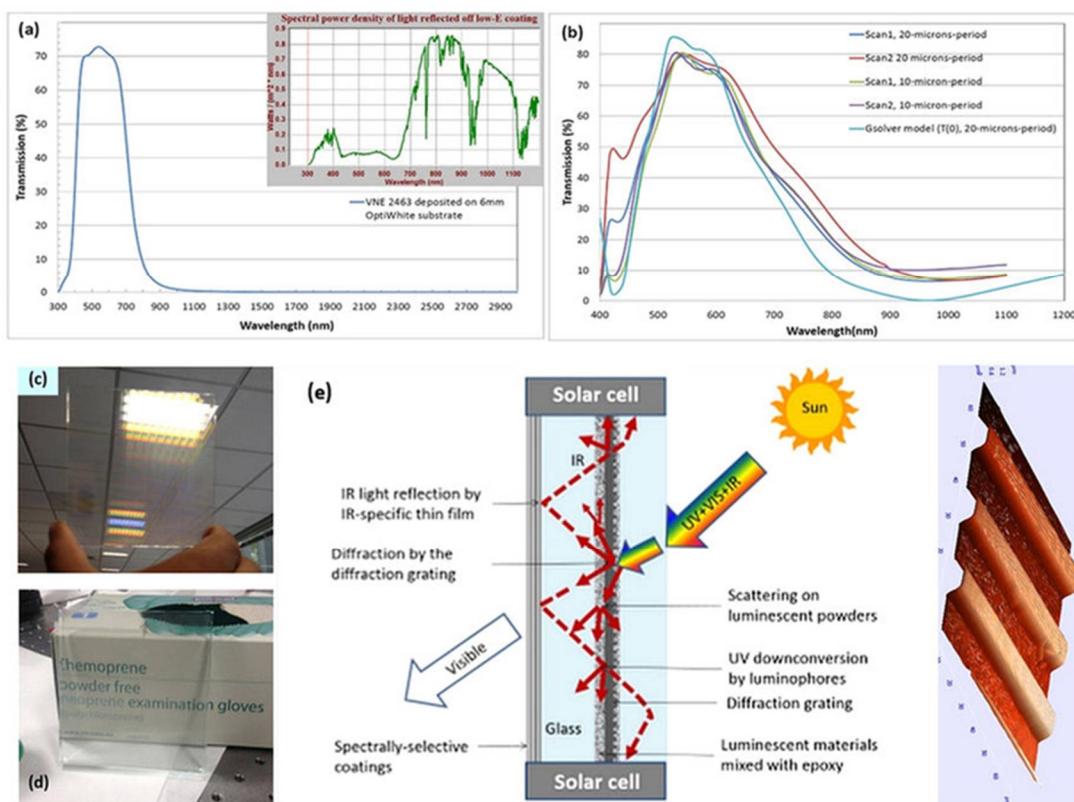
71 In order to ensure the energy-harvesting functionality in visibly-transparent concentrator-type
 72 windows, it is important to target specifically the non-visible parts of the solar spectrum (eg the UV
 73 and near-infrared (IR) spectral regions) in terms of both the light-trapping and also the energy-
 74 conversion functionalities. Therefore, the requirement for high visible-range transparency (and also
 75 the minimized haze) dictates the selection of all suitable functional materials, components, and
 76 structures for use within these advanced glazing systems. In particular, in concentrators relying on
 77 the LSC principle, the selection of luminophore materials is usually based on the requirement to


78 harvest the energy within both the UV and also the near-IR spectral regions, and luminescent
 79 materials with large Stokes shift values are required to avoid excessive loss of light due to self-
 80 absorption [1-4, 7, 20, 21].

81 *2.1 Materials and structures used within transparent energy-harvesting glazing systems*

82 To efficiently convert the available near-IR energy (which, in spectrally-selective LSCs, is routed
 83 towards glass panel edges), it is very important to select the appropriate solar cell chemistry and solar
 84 module construction type, which will enable the photovoltaic conversion of this near-IR energy
 85 within the broadest possible spectral window, with the highest possible efficiency. Of particular
 86 importance for solar window applications is the selection of PV modules, which can maintain their
 87 efficiency (to the maximum extent possible) in the presence of significant adverse factors, such as
 88 transverse or longitudinal geometric shading from the incoming sunlight, as well as "spectral
 89 shading"- a condition in which the solar module is not illuminated by the full-spectrum sunlight, for
 90 which the selected PV module type was designed to operate. Despite the fact that the short-circuit
 91 current (I_{sc}) of any PV cell (or module) only depends on the incident optical power available at any
 92 given wavelength and the corresponding responsivity, the power-generation behaviour (and also the
 93 fill factor (FF) and efficiency) of PV modules connected to external electric loads becomes markedly
 94 more complicated in the presence of a combined influence of the geometric and spectral types of
 95 shading. These conditions are practically always encountered in concentrator-type solar window
 96 applications, where the cell modules are located at or near the glass panel edges, due to both the
 97 geometry of sunlight incidence and the device construction geometry itself. We found experimentally
 98 that the properties and performance of Avancis PowerMax 3.5 CuInSe₂ (CIS) PV modules were the
 99 most suitable for solar window applications, due to a large number of important technical
 100 considerations listed below:

- 101 • Broad spectral responsivity band of the CIS modules, which is a key factor for the design of
 102 visibly-transparent solar windows; their high efficiency (12.3%) is also a factor;
- 103 • The possibility of fitting the shape and size of CIS modules to the application requirements –
 104 by cutting and re-encapsulating the suitably-sized strips out of commercial CIS panels;
- 105 • A high degree of control over the electric circuit configuration performance in window
 106 modules. Also, the possibility of obtaining a high V_{oc} (up to about 50-55V) without extensive
 107 series connections;
- 108 • Mechanical robustness and reliability – the 2mm glass substrates are much more robust than
 109 mono-Si wafers;
- 110 • Superior (compared to many other cell types) performance of CIS modules in shading
 111 conditions and at elevated cell temperatures;
- 112 • The efficiency in factory-produced CIS cells has been increasing continuously in recent years.

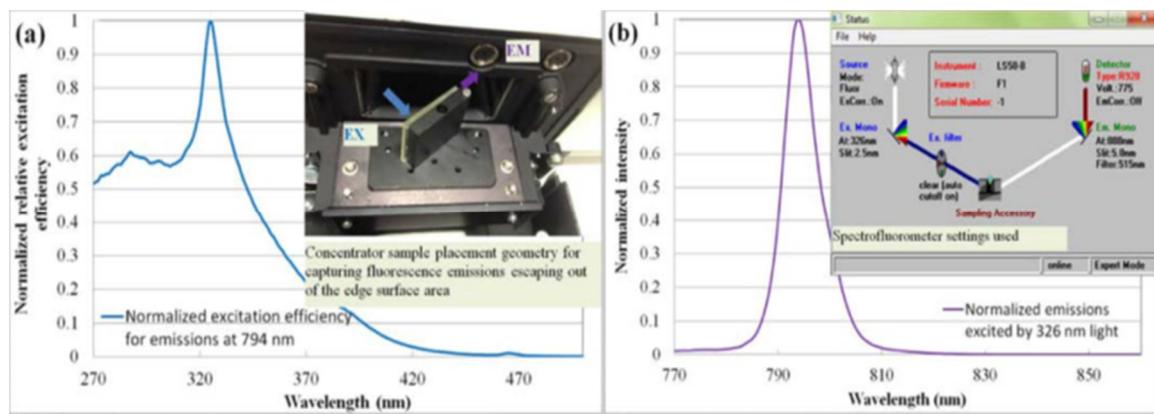

113 Figure 2 shows the spectral responsivity of Avancis PV modules relative to the crystalline Si
 114 cells, and their external quantum efficiency (EQE) spectrum.

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Figure 2. Avancis PowerMax 3.5 CIS cell modules' spectral performance characteristics. (a) Spectral responsivity curve measured relatively to the monocrystalline Si cells. These data are courtesy of Avancis, Inc. (Germany); (b) External Quantum Efficiency (EQE) of earlier Avancis CIS modules. These data are reproduced with permission from Ref [22].

125 Other spectrally-selective functional materials and glazing system components suitable for
126 preferentially harvesting the non-visible parts of the solar spectrum energy in highly-transparent
127 hybrid-type solar concentrators have been described in significant technical detail in [7] and [21]. For
128 illustration and schematic purposes, Figure 3 outlines the main optical properties of glazing system
129 components (the data of Figure 3 is reproduced from Ref. 7). The term "hybrid-type solar
130 concentrator" refers to using simultaneously several types of physical mechanisms (eg luminescence,
131 diffractive deflection, total internal reflection, and even scattering as a short-range light-trapping
132 mechanism) - to promote the spectrally-selective concentration of light in near-edge regions of
133 glazing-system panels. Using scattering, which in LSC field is generally known as a loss mechanism,
134 as a (short-range) light-trapping mechanism working in conjunction with luminescence is a relatively
135 new approach, discussed in some relevant detail within Refs. 6, 7, 21, and 23.

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


Figure 3. Components and structures used for constructing ClearVue PV window modules, and their main properties. Graphics is reproduced from Ref 7, for system structure illustration purposes. (a) Transmission spectrum of a high spectral selectivity low-e coating (Viracon, Inc. VNE 2463) and graph showing the spectral power density curve for the AM1.5G sunlight reflected off this coating; (b) Zero-order (direct) transmission of several transparent spectrally-selective diffraction grating samples measured using a spectrophotometer; (c) – (d) Visual appearance of either the unencapsulated, or the encapsulated diffraction grating; (e) overall schematic of an advanced transparent glazing system for energy harvesting concurrent with high thermal insulation, in which any internal air gap(s) are omitted for simplicity.

The main components which define both the visible transparency and the spectrally-selective energy harvesting properties of the glazing system are (i) the high-spectral-selectivity low-emissivity thin-film coating, and (ii) the visibly-transparent (when encapsulated using UV-curable epoxy and coverglass) spectrally-selective diffraction grating. The diffraction grating is designed to effectively

152 deflect the incident light in both the UV and the near-IR spectral ranges into multiple orders of
 153 transmission. The experimental methods suitable for the fabrication of suitable diffraction gratings
 154 are described in detail in [7]; the methods for the production of suitable types of optical thin-film
 155 coatings have been discussed in [24].

156 A unique combination of high-performance luminescent materials, which helps collect a large
 157 part of the incident UV energy and also a fraction of the incident near-IR energy from within a rather
 158 broad spectral region between about 900–1100 nm has been described in detail within the
 159 Supplementary dataset of [21]. Figure 4 (reproduced from Ref. 21) illustrates the functionality of a
 160 ZnS : (Ag, Tm)-based luminophore capable of efficiently converting the energy from a broad UV-blue
 161 wavelength range into a narrow emissions band centered at 794 nm, thus avoiding self-absorption
 162 losses.

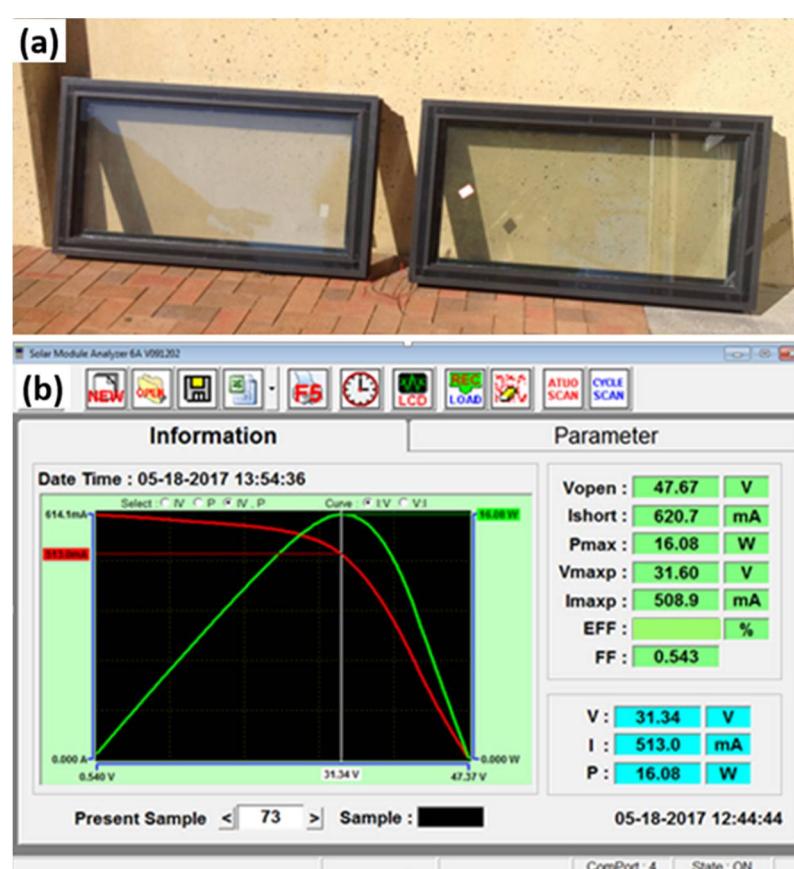
163

164

165

166 **Figure 4.** Measurements of the excitation and emission spectra of epoxy-based lamination interlayers
 167 containing suspended particles of ZnS : (Ag, Tm) luminophore. A Perkin-Elmer LS-50B luminescence
 168 spectrometer was used to collect and analyze the optical radiation flux propagating out of an edge area of
 169 $50 \times 50 \times 3 \text{ mm}^3$ concentrator samples composed of two 1mm-thick Corning glass plates connected via a UV-
 170 cured functionalized epoxy interlayer. Luminophore particles were dispersed uniformly within liquid
 171 epoxy at concentrations not exceeding 1 wt%. Strong emission intensities were observed near 794 nm,
 172 almost saturating the spectrometer detection system, under normal-incidence UV excitation and when the
 173 sample edge area aperture was aligned with the input aperture of the emissions monochromator. This
 174 graphical dataset is reproduced from the Supplementary dataset of Ref 21.

175


176 Hybrid-type transparent planar solar concentrators employing the mechanisms of
 177 luminescence, scattering, and diffractive deflection of light form the basis of our approach to building
 178 practical solar windows suitable for architectural deployment. The apparent synergy between
 179 practically all of the above-named light-collection mechanisms (which is observed provided that the
 180 sizes and concentrations of all luminophore powder particles were selected carefully) was our
 181 significant finding, which governed the design of advanced glazings in multiple laboratory samples
 182 and factory-produced window modules.

183 2.2 Summary of solar windows performance and comparisons with theory limits

184 Two similar factory-assembled models of large-area ($\approx 0.85 \text{ m}^2$) installation-ready framed solar
 185 windows were fabricated at Qingdao Rocky Ltd (China) in small test-run production batches during
 186 2016-2017. Their performance characteristics varied slightly between window types, and from sample
 187 to sample, however, the electric power outputs per window started to approach about 20W in early
 188 samples produced industrially. Figure 5 shows solar windows during outdoor testing experiments
 189 (conducted in Perth, Australia, in May 2017) and the I-V curve measurement results. The windows
 190 demonstrated their maximum electric power output when placed into a sun-facing near-vertical
 191 position, with a small ($\approx 25^\circ$) tilt away from the vertical plane. The measurement results obtained were
 192 consistent with the expected weather-dependent autumn performance, and the observed orientation-
 193 angle dependency of output power (which yet to be characterized in detail and reported elsewhere)

194

195 was not significant. Rather large angular orientation changes applied to windows (up to 30-40
 196 degrees in either direction away from the optimum orientation) in either the horizontal or vertical
 197 plane resulted typically in less than 20% of I_{sc} variations.
 198

199
 200

201 **Figure 5.** Solar windows constructed using glass panel dimensions of 1200 mm x 600 mm and their
 202 performance in autumn conditions. (a) Factory-assembled solar window samples; (b) Measured I-V
 203 curve data and electric output parameters. The measurements were performed on a hazy autumn day
 204 in Perth, with low UV index and solar irradiation intensity not exceeding 800 W/m², with sun-facing
 205 samples slightly tilted backwards from vertical position.
 206

207 The window design features three parallel-connected solar-module (CIS) subsystems, each
 208 using stripe-shaped Avancis PowerMax 3.5 CIS circuit module cut-outs: (i) the edge-mounted
 209 modules, (ii) the backside perimeter-mounted modules, and (iii) external frame-mounted modules,
 210 which are used to stabilize the overall window-module operation and to achieve maximized energy-
 211 harvesting performance over the course of day. As is evident from the data of Figure 5, the overall
 212 module fill factor (MFF) of a solar window employing multiple interconnected CIS modules is
 213 significantly lower than the nominal FF (of near 0.66) of Avancis CIS products. This is largely due to
 214 the fact that each individual CIS module installed into a window receives substantially different
 215 amounts of illumination (and also shading), due to the variations in their geometric orientation with
 216 respect to the incoming sunlight, and also due to some shading caused by the framing system. Many
 217 individual CIS modules also differ in length (and thus the number of series-connected CIS cells), and
 218 therefore in V_{oc} . These variations lead to changes in the I-V curve shape features and affect the overall
 219 system FF, which in turn reduces the effective CIS-module efficiency compared to its nominal value.
 220

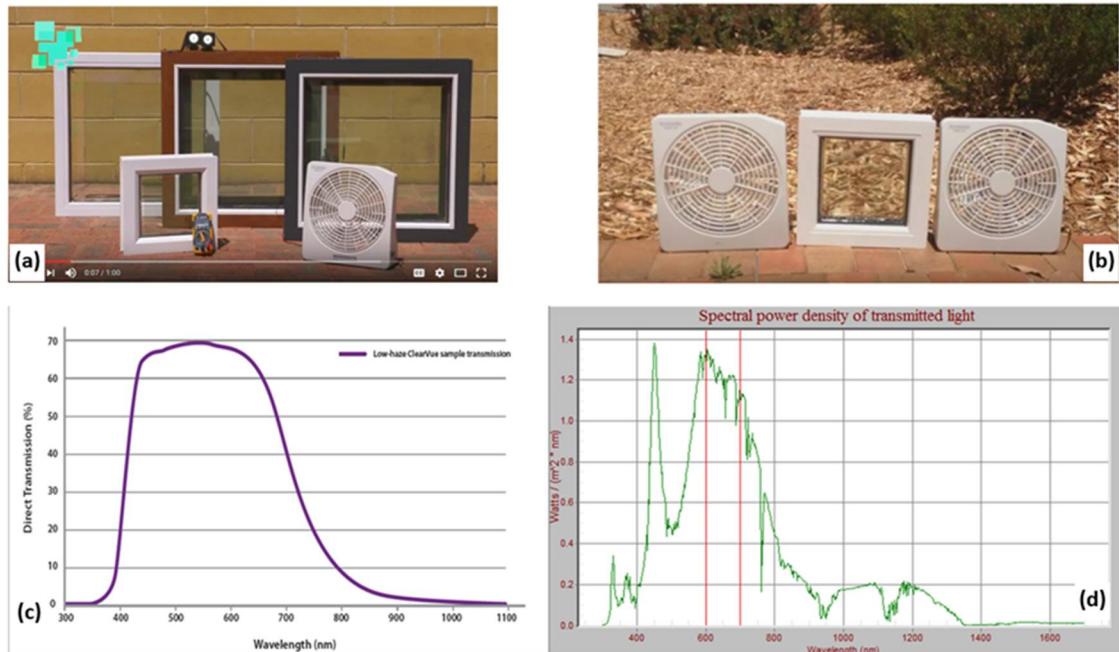
221 A summary of measured window performance data obtained from another production batch of
 222 similarly-designed solar windows of total area 0.85 m² is shown in Table 1.
 223

223 **Table 1.** Electric output summary and parameters of solar windows used in prototype bus-stop installation.
 224 The measurement conditions are described in detail, in order to provide an outlook on the potential usefulness
 225 of solar window products for use in different applications, versus using conventional PV modules.
 226

Electric output parameters at peak	Measurement conditions / notes
<ul style="list-style-type: none"> • $V_{oc} = 54-55 \text{ V}$ • $I_{sc} = 0.75-0.8 \text{ A}$ • $FF = 0.49-0.52$ • $P_{max} = (21.36 \pm 1.52) \text{ W}_p$ • $P_{max} \approx 25-26 \text{ W}_p/\text{m}^2$ 	<ul style="list-style-type: none"> • Measurements performed in field conditions, on a very hot summer day. • Measurements made at near-peak weather and at near-peak window orientation and tilt. • The surface temperature of all CIS modules was $> 40 \text{ }^{\circ}\text{C}$. • Nominal CIS module efficiency 12.3%; nominal CIS module FF = 0.663. • Framed window area $A_{tot} = 0.85 \text{ m}^2$; the total area of CIS cells installed $A_{CIS} = 0.28 \text{ m}^2$. • Avancis PowerMax 3.5 130 CIS modules output nominally 97 W/m^2 at NOCT and AM 1.5 G. • External cells facing direct full-spectrum sunlight occupied 37% of the total A_{CIS} and contributed about 43% of total P_{max}; the edge-mounted cells occupied 29% of A_{CIS} and contributed 25.3% of P_{max}.

227
 228 Each window within this batch had a glass panel area of 0.75 m^2 and external CIS modules area
 229 of 0.1 m^2 . Due to cutting of original Avancis circuits, their re-encapsulation processes, and the overall
 230 factors affecting the window-module performance, the FF reduced from nominal 0.66 to ≈ 0.5 , which
 231 effectively manifested in running all individual CIS cell modules at an averaged reduced efficiency
 232 of about 9.3%. The electrical mismatch losses within the window circuit partially resulted from a
 233 requirement to fit the external dimensions of windows to the required values, which affected the
 234 design features of the electric circuitry through limitations imposed on the CIS cut-out lengths. The
 235 electric power output per 1 m^2 of the total framed window area reached about $25 \text{ W}_p/\text{m}^2$, and
 236 therefore approached about 26% of the nominal output available from 1 m^2 of standard Avancis CIS
 237 module.

238 Theoretical performance limits for high-transparency window-type luminescent concentrators
 239 have been reported recently in [20]. An alternative way of calculating the same performance limit for
 240 an arbitrary level of window transparency presumes the idealized (complete) optical power
 241 collection of all available incident light by solar cells of known efficiency. Both calculations point to
 242 the same region of data for the maximum theoretical electric power output between $46-57 \text{ W}_p/\text{m}^2$ at
 243 $T_{vis} = 70 \text{ %}$, if using CIS cells of 12.3 % nominal efficiency (and also by considering the Shockley-
 244 Queisser limit for CIGS cells if following the methodology of Ref. 20). This theory-limit performance
 245 is calculated for the peak geometric orientation and tilt of concentrator panels, at AM1.5G, 1000 W/m^2 .
 246 The practically-achieved solar window performance (in factory-assembled framed window samples)
 247 is near 50 % of its theoretical limit. It is interesting to compare this result with the record-performing
 248 CIGS cells ($\eta \approx 20 \text{ %}$), which themselves operate at near 65 % of the Shockley-Queisser limit, as
 249 reported in [25].


250 3. Results

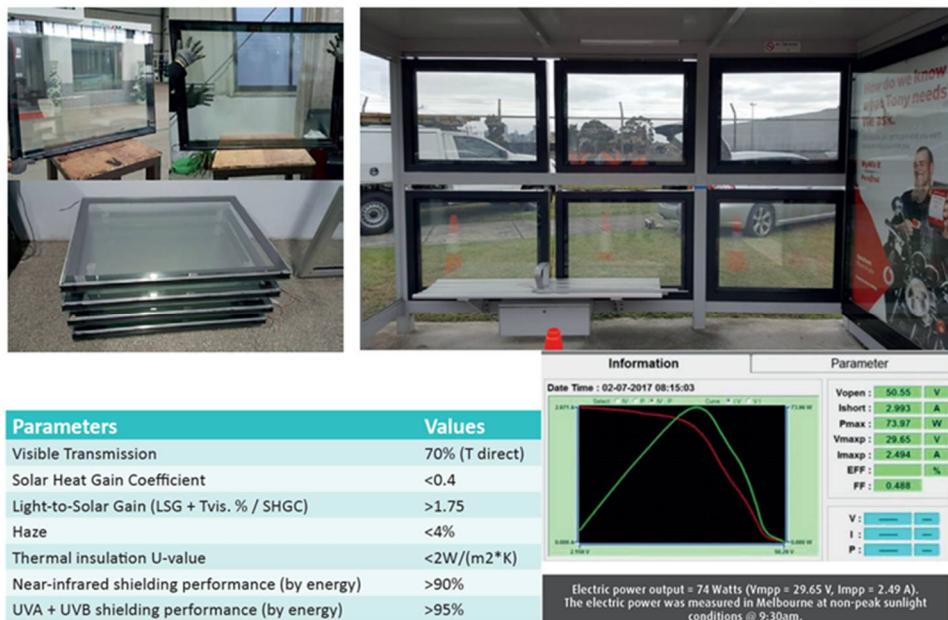
251 3.1 Principal results and future directions

252 The principal results of large-area solar window module development indicated that the
 253 technology of building transparent solar concentrator-type windows has now reached the stage, at
 254 which practical test-bedding applications within public infrastructure installations were feasible.
 255 Adshel Pty. Ltd. (Port Melbourne, Australia) has provided a public bus stop as a site for testing the
 256 applicability of ClearVue Technologies Ltd. solar windows for generating electric energy in self-

257 sustainable bus stops fitted with backlit advertising panels and LED lighting appliances. At the same
 258 time, ECU research team started considering the construction of a pilot greenhouse fitted with
 259 energy-generating clear windows. Figure 6 illustrates a range of previously-developed framed solar
 260 window types and highlights the differences in the optical transmission spectra of windows between
 261 two different application-area types (either the construction or agriculture industries). The core idea
 262 of using solar windows in new greenhouses is related to the possibility of spectrally tailoring the
 263 transmission spectra of glazing systems to the biological requirements of plants. The horticulturally-
 264 grown plants often favour the blue and red spectral regions for their illumination, in order to
 265 maximize crop productivity. We have adjusted the low-emissivity IR-reflector coating design
 266 techniques reported in [24] to fit the glazing-system transmission spectrum to plant-optimized
 267 requirements.

268

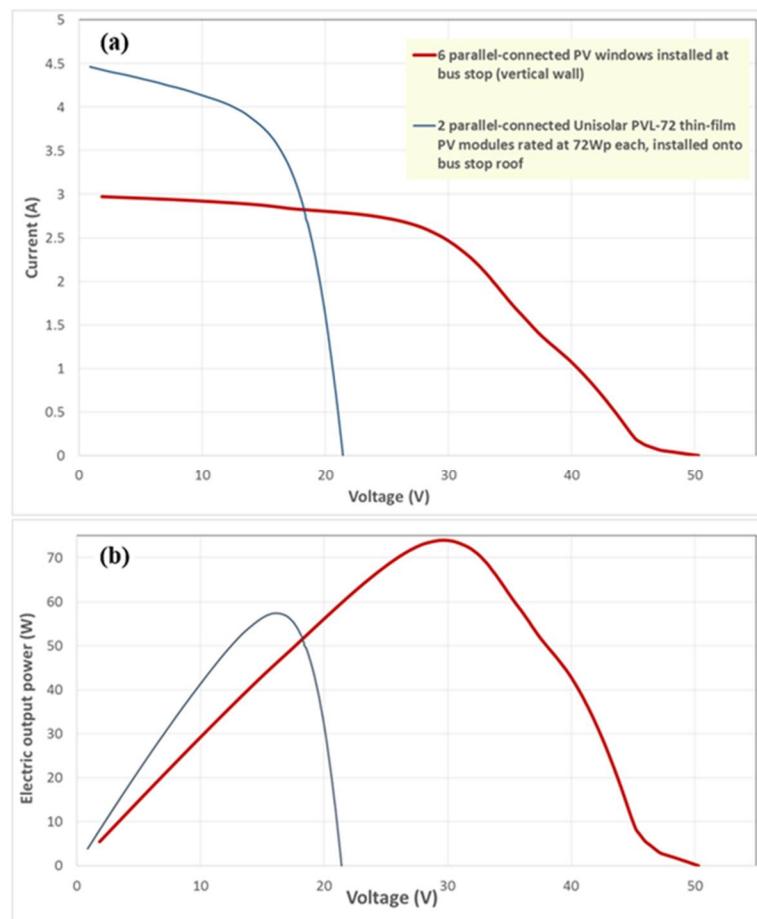
269


270

271 **Figure 6.** Examples of several earlier solar window design types (a, b); the optical transmission (or
 272 transmitted solar energy density) spectra of window systems designed for either the construction (c), or
 273 agriculture (d) applications.

274

275 The pilot bus-stop installation included six framed solar windows placed vertically along the
 276 backside wall of an existing bus stop. Figure 7 shows the front view of this bus stop, which featured
 277 also a charge controller and battery storage system, which was being charged either from the
 278 combined (parallel-connected PV windows) output, or (previously) from a combination of two
 279 Unisolar PVL-72 flexible PV modules rated at 72 W_P each and mounted on the roof of the same bus
 280 stop.


281

282
283

284 **Figure 7.** Transparent photovoltaic wall of windows installed into a Port Melbourne bus stop powering
 285 an advertising display and lighting appliances. Several unframed PV window modules are also shown
 286 during factory assembly process at Qingdao Rocky Ltd (China); shown on left. Several optical
 287 transmission and thermal-insulation related parameters and electrical testing data summary are also
 288 shown.

289

290 The battery-charging current was being measured by the charge controller in real time, and was
 291 observed to be at around 4 A, thus replenishing the energy stored in two 12 V parallel-installed
 292 batteries, simultaneously with powering all electric loads (consuming 45 W in total), when the system
 293 was connected to the wall of solar windows. The total electric power output observed from six solar
 294 windows in morning conditions (9:30 am, 07 February 2017, at about 20°C ambient air temperature)
 295 reached 74 W, and exceeded that obtained at the same time from two parallel-connected PVL-72 roof-
 296 mounted modules (up to 57 W). Figure 8 illustrates the main PV measurement data for both system
 297 types.

298
299
300
301
302
303

Figure 8. Measured PV I-V curves of a 6-window vertically-oriented bus-stop wall installation and comparison with a reference PV module output. (a) I-V curves of both PV modules measured concurrently in field conditions using PROVA 200A Solar Module Analyzer; (b) the corresponding power-voltage curves data.

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

The actual measurement time was near 9:30 am on Feb 07, 2017 (when the Sun altitude angle was near 32° , according to the astronomical data from www.suncalc.org). The Sun azimuth angle was 84.8° , and the direction of normal to the vertically-installed wall of PV windows was practically due East, according to Google maps data. A part of bus-stop roof area was overhanging, and shaded some of the solar cell (and also glass) areas from the direct sunlight across the top row of windows. The two parallel-connected Unisolar PVL-72 flexible PV modules (rated at 72 W_p each and covering, in total, 2.24 m² of horizontal roof area). Some environmentally-induced contamination was possibly present on top of the active areas of these roof-mounted modules, which might have accounted (together with the weather-related and geometric orientation factors) for some reduction in the measured output of these modules, compared to both the peak ratings and also the expected values – we only observed up to 57.37 W of electric output from the roof-based PV system. Based on this measured electric output, and accounting for the precise geometric orientation of PVL-72 panels with respect to the incoming sunlight and their peak rating, an estimate of the instantaneous direct-beam solar irradiation intensity can be made, resulting in about 752 W/m², if any module-area contamination effects or aging-related performance reductions were neglected.

319
320
321
322
323
324
325

At 9:30 am, near 450 W/m² of solar irradiation intensity fell onto the horizontally-oriented surface, according to the published graphs showing the solar irradiation intensities recorded in Melbourne (Caulfield South, <http://caulfieldsouthweatherstation.com/charts/solar> during the same day). The theoretically maximum radiation intensity falling onto the horizontal roof area would have been (at perfect, AM1.5G peak-weather conditions corresponding to 1000W/m² of direct-beam irradiation intensity) near 1000W/m²•sin (32°), or 530 W/m². Therefore, an estimate for the power scaling factor characterizing the weather-dependent system performance applicable to

326 measurements made on Feb 07, 2017 can be quantified as $W = 450/530 = 0.849$. This figure corresponds
 327 to 849 W/m^2 of direct-beam irradiation intensity, and significantly exceeds the 752 W/m^2 obtained
 328 from pure geometry and rated system performance. Thus, using 849 W/m^2 irradiation intensity can
 329 be considered sufficiently conservative for use in our estimates of the peak-weather performance of
 330 this PV wall in field conditions, especially considering that some hazy clouds were visually observed
 331 during our measurements. The atmospheric path length was also greater than the standard
 332 atmospheric path at AM1.5 conditions (due to the Sun altitude angle being 32°).

333 Therefore, ClearVue 6-window vertical PV wall can be predicted to have demonstrated, at peak
 334 weather conditions, approximately the following power output:

$$335 P(\max, 32^\circ \text{ Sun angle, at } 1000 \text{ W/m}^2) = (74 \text{ W}/0.849) * 100 = 87.16 \text{ W},$$

336 where we still haven't accounted for any geometric shading effects induced by the overhanging
 337 roof section.

338 This figure relates to the maximum electric output power expected in real conditions at 32° Sun
 339 altitude angle, and would be increased by a further 7-8%, if standard cell-surface temperature of 25°C
 340 was used instead (for the NOCT of 40°C), together with temperature coefficient of power (- $0.39\%/\text{C}$).
 341 However, for the bus stop application, it is preferable to measure the actual output power at realistic
 342 cell-surface temperatures, which are normally in excess of 40°C in Australian summer conditions.
 343 Accounting for the sunlight incidence geometry, only about 84.8% of the total direct-irradiation flux
 344 cross-section was intercepted by the vertically-positioned windows, for Sun altitude angle of 32° .
 345 Thus, we can generate an idealized conditions-based prediction for the maximum electric output
 346 rating of this PV wall (when illuminated by 1000 W/m^2 sunlight at normal incidence, achieved by
 347 tilting the windows backwards, until an optimum output is achieved). Thus, $P(\max, \text{est. for the}$
 348 optimally-tilted wall angle, at $1000 \text{ W/m}^2) = 102.8 \text{ W}$.

349 Considering that the total wall area covered by the six framed windows was about 5.1 m^2 , for a
 350 maximum predicted power output rating being close to 102.8 W_p , these data corresponds to the
 351 maximum electric output per unit optimally-angled PV wall area being up to 20.2 W/m^2 . This figure
 352 is slightly less than up to $24\text{--}26 \text{ W/m}^2$ per unit of framed window area measured with individual
 353 windows, due to using conservatively-estimated weather-related data, and the overall performance
 354 of a 6-window parallel-connected wall module being limited by its module fill factor (MFF) being
 355 slightly smaller than the MFFs of individual (and unshaded) optimally-tilted windows. In all
 356 calculations, we also neglected the horizontal-orientation angle effects arising due to the geometric
 357 wall normal angle of the bus stop not being aligned perfectly with the Sun azimuth direction. As is
 358 practically evident from Figure 9 (taken in slightly cloudier conditions, but only about one hour after
 359 making the electrical output measurements), the 849 W/m^2 figure used in irradiation estimates was
 360 more than appropriate in terms of conservativeness.

361

362
 363
 364

Figure 9. Solar window-powered bus stop installed by Adshel, Inc. (Melbourne, Australia).

365

366 Making direct irradiation intensity measurements in field conditions simultaneously with the I-
367 V curve measurements was not a perfect option at the time, due to the cloud-coverage variations
368 taking place even during the data-logging process duration. Several media outlets worldwide,
369 including ABC Australia, have published reports on this trial bus-stop installation of solar windows,
370 in March 2017.

371 *3.2 Future applications in greenhouse agriculture*

372 A small-scale (4m x 4m) pre-prototype of a greenhouse fitted with several solar windows and
373 energy-storage system has also been constructed, in order to provide the initial evaluation-grade data
374 on the ways in which future horticultural greenhouse installations need to be built and designed.
375 Figure 10 shows this initial trial installation in its early stages of construction.

376

377

378

379 **Figure 10.** Mini-scale (4m x 4m) prototype greenhouse installation featuring clear solar windows and
380 energy storage/AC conversion technologies used for test-bedding the foundations of relevant
381 greenhouse construction technologies.

382

383 A unique combination of features will be tested in a new 300 m² pilot greenhouse installation to
384 be constructed during 2018. We predict achieving a demonstration of significant energy savings in
385 climate control, electricity generation, and possibly even approaching self-sustainable operation
386 mode. Features including on-site water desalination are also expected to be feasible, and crop yield
387 improvements are expected to be demonstrated due to spectrally shaping the illuminating light.

388

4. Conclusions

389

390 In summary, we have successfully achieved a demonstration of a range of practical and visually-
391 clear solar windows, which have been developed at ECU (Perth, Australia) in collaboration with
392 ClearVue Technologies Ltd. Using Avancis CIS PV modules of nominal conversion efficiency 12.3%,
393 the achieved electric power output per unit area of framed large-size (0.85 m²) glass windows was up
394 to about 25 W_p/m². With current 15.6 %-efficiency Avancis CIS PV modules, an electric power output
395 exceeding 30 W_p/m² can be attained. The principal suitability of these world-first transparent large-
396 scale solar windows for public infrastructure and agricultural applications has been tested and
397 confirmed. Emerging agricultural applications, which are subject to ongoing work, include advanced
398 self-sustainable greenhouses, in which solar windows will shape the transmitted light spectra to the
requirements of specific growing plants.

399 **Author Contributions:** All authors (M. V., K. A. and M. N. A.) have contributed to the design of experiments
400 and data collection; M. V. analyzed the data and prepared the manuscript; M. N. A., M. V. and K. A. discussed
401 the data and their presentation; M. V. and K. A. reviewed and improved the manuscript.

402 **Funding:** This research was funded by the Australian Research Council (grants LP130100130 and LP160101589)
403 and Edith Cowan University.

404 **Acknowledgments:** The authors would like to acknowledge the support from ClearVue Technologies Ltd.
405 (www.clearvuepv.com), the Australian Research Council, and Edith Cowan University.

406 **Conflicts of Interest:** The authors declare no conflict of interest.

407 References

- 408 1. Li, H.; Wu, K.; Lim, J.; Song, H.-J.; Klimov, V. I. Doctor-blade deposition of quantum dots onto standard
409 window glass for low-loss large-area luminescent solar concentrators. *Nature Energy*. **2016**, *1*, 16157, doi:
410 10.1038/NENERGY.2016.157.
- 411 2. Zhao, Y.; Lunt, R. R. Transparent luminescent solar concentrators for large-area solar windows enabled by
412 massive stokes-shift nanocluster phosphors. *Adv. Energy Mater.* **2013**, *3*, 1143–1148.
- 413 3. Meinardi, F.; Ehrenberg, S.; Dhamo, L.; Carulli, F.; Mauri, M.; Bruni, F.; Simonutti, R.; Kortshagen U.;
414 Brovelli, S. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap
415 silicon quantum dots. *Nature Photonics*. **2017**, doi: 10.138/NPHOTON.2017.5.
- 416 4. Merkx, E. P. J.; Ten Kate, O. M.; Van Der Kolk, E. Rapid optimization of large-scale luminescent solar
417 concentrators: evaluation for adoption in the built environment. *Opt. Express*. **2017**, *25*, A547,
418 <https://doi.org/10.1364/OE.25.00A547>.
- 419 5. Extance, A. The dawn of solar windows, IEEE Spectrum. **2018**, online publication,
420 <https://spectrum.ieee.org/energy/renewables/the-dawn-of-solar-windows> (sighted in Feb. 2018).
- 421 6. Cocilovo, B.; Hashimura, A.; Tweet, D. J.; Voutsas, T.; Norwood, R. A. Highly transparent light-harvesting
422 window film. *Appl. Opt.* **2015**, *54*, 8990–8998.
- 423 7. Vasiliev, M.; Alghamedi, R.; Nur-E-Alam, M.; Alameh, K. Photonic microstructures for energy-generating
424 clear glass and net-zero energy buildings. *Sci. Rep.* **2016**, *6*, 31831, doi:10.1038/srep31831.
- 425 8. Rezaei, S. D.; Shannigrahi, S.; Ramakrishna, S. A review of conventional, advanced, and smart glazing
426 technologies and materials for improving indoor environment. *Solar Energy Materials and Solar Cells*. **2017**,
427 *159*, 26–51.
- 428 9. Dalapati, G. K.; Kushwaha, A. K.; Sharma, M.; Suresh, V.; Shannigrahi, S.; Zhuk, S.; Masudy-Panah, S.
429 Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact
430 of materials design, micro-structural, and interface quality on the THR performance. *Prog. Mater. Sci.* **2018**,
431 *95*, 45–131.
- 432 10. Hanergy Product Manual 201411, Section 1.3 (2014), p. 11, downloaded from www.hanergy.com/en in May
433 2017.
- 434 11. Sunjoule Product Brochure by Asahi Glass Corp., p. 11, downloaded from <http://www.agc-solar.com/agc->
435 [solar-products/bipv.html](http://www.agc-solar-products/bipv.html) in May 2017.
- 436 12. Cornaro, C.; Basciano, G.; Puggioni, V. A.; Pierro, M. Energy saving assessment of semi-transparent
437 photovoltaic modules integrated into NZEB. *Buildings*. **2017**, *7*, 9.
- 438 13. Elinwa, U. K.; Radmehr, M.; Ogbeba, J. E. Alternative energy solutions using BIPV in apartment buildings
439 of developing countries: a case study of North Cyprus. *Sustainability*. **2017**, *9*, 1414.
- 440 14. Yang, W.; Deng, H.; Wang, Z.; Zhao, X.; He, S. Performance investigation of the novel solar-powered
441 dehumidification window for residential buildings. *Energies*. **2017**, *10*, 1369.
- 442 15. Khan, H. S.; Asif, M.; Mohammed, M. A. Case study of a nearly zero energy building in Italian climatic
443 conditions. *Infrastructures*. **2017**, *2*, 19.
- 444 16. Rey-Hernandez, J. M.; Velasco-Gomez, E.; San Jose-Alonso, J. F.; Tejero-Gonzalez, A.; Rey-Martinez, F. J.
445 Energy analysis at a near zero energy building. A case study in Spain. *Energies*. **2018**, *11*, 857.
- 446 17. Lee, J.; Park, J.; Jung, H-J.; Park, J. Renewable energy potential by the application of a building integrated
447 photovoltaic and wind turbine system in global urban areas. *Energies*. **2017**, *10*, 2158.
- 448 18. Espeche, J. M.; Noris, F.; Lennard, Z.; Challet, S.; Machado, M. PVSITES: Building-integrated photovoltaic
449 technologies and systems for large-scale market deployment. *Proceedings*. **2017**, *1*, 690.
- 450 19. <https://www.forumforthefuture.org/greenfutures/articles/massive-solar-façade-swiss-convention-centre>,
451 sighted in April 2018.
- 452 20. Yang, C.; Lunt, R. R. Limits of visibly transparent luminescent solar concentrators. *Adv. Opt. Mater.* **2017**,
453 *5*, 1600851.

454 21. Alghamedi, R.; Vasiliev, M.; Nur-E-Alam, M.; Alameh, K. Spectrally-selective all-inorganic scattering
455 luminophores for solar energy-harvesting clear glass windows. *Sci. Rep.* **2014**, *4*, 6632,
456 doi:10.1038/srep06632.

457 22. Marlein, J.; Burgelman, M. Electrical properties of CIGS cells, In Proc. 22nd European Photovoltaic Solar
458 Energy Conference (Milan, Italy), **2007**, 2401–2404.

459 23. Hughes, M. D.; Borca-Tasciuc, D.-A.; Kaminski, D. A. Highly efficient luminescent solar concentrators
460 employing commercially available luminescent phosphors. *Solar Energy Materials and Solar Cells*, **2017**, *171*,
461 293–301.

462 24. El Mouedden, Y.; Alghamedi, R.; Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Thin film coatings for solar
463 and thermal radiation control prepared by physical vapour deposition. In Proc. 9th International
464 Conference on High Capacity Optical Networks and Enabling Technologies (HONET) **2012**, doi:
465 10.1109/HONET.2012.6421440.

466 25. Topič, M.; Geisthardt, R.M.; Sites, J.R. Performance limits and status of single-junction solar cells with
467 emphasis on CIGS. *IEEE J. Photovolt.*, **2015**, *5*, 360–365.

468