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1 Abstract: The independent set, IS, on a graph G = (V, E) is V* C V such that no two vertices in V* have
> an edge between them. The MIS problem on G seeks to identify an IS with maximum cardinality, i.e. MIS.
s V* CVisa vertex cover, i.e. VC of G = (V,FE) if every e € F is incident upon at least one vertex in V*.
+  V* CV is dominating set, DS, of G = (V, E) if Vv € V either v € V* or Ju € V* and (u,v) € E. The MVC
s problem on G seeks to identify a vertex cover with minimum cardinality, i.e. MVC. Likewise, MCV seeks a
s  connected vertex cover, i.e. VC which forms one component in G, with minimum cardinality, i.e. MCV. A
7 connected DS, CDS, is a DS that forms a connected component in G. The problems MDS and MCD seek
s to identify a DS and a connected DS i.e. CDS respectively with minimum cardinalities. MIS, MVC, MDS,
o MCV and MCD on a general graph are known to be NP-complete. Polynomial time algorithms are known for
1 bipartite graphs, chordal graphs, cycle graphs, comparability graphs, claw-free graphs, interval graphs and
n  circular arc graphs for some of these problems. We introduce a novel graph class, layered graph, where each
2 layer refers to a subgraph containing at most some k vertices. Inter layer edges are restricted to the vertices in
15 adjacent layers. We show that if £ = @(log | V' |) then MIS, MVC and MDS can be computed in polynomial
uw  time and if k = O((log | V' |)®), where a < 1, then MCV and MCD can be computed in polynomial time. If
5 k=0((log | V |)}+€), for € > 0, then MIS, MVC and MDS require quasi-polynomial time. If k = @(log | V' |)
16 then MCV, MCD require quasi-polynomial time. Layered graphs do have constraints such as bipartiteness,
17 planarity and acyclicity.

1 Keywords: NP-complete, graph theory, layered graph, polynomial time, quasi-polynomial time, dynamic
19 programming, independent set, vertex cover, dominating set.

» 1 Introduction

2 The maximum independent set problem, the minimum vertex cover problem and the minimum dominating
2 set problem are well studied problems on graphs with myriad applications. All of these problems are shown to
23 be NP-complete. Thus, identifying more general graph classes that admit polynomial solutions to these problems
2 is of interest.

2 The maximum independent set problem on a graph G = (V, E) seeks to identify a subset of V with
s maximum cardinality such that no two vertices in the subset have an edge between them. If V* C V is a
» maximum independent set or MIS for short of G then Yu,v € V*, (u,v) ¢ E. In this article G is undirected, so,
» an edge (u,v) is understood to be an undirected edge.

2 Karp proposed a method for proving problems to be NP-complete [17]. The maximum independent set
» problem on a general graph is known to be NP-complete [15]. Certain classes of graphs admit a polynomial
a1 time solution for this problem. Such algorithms are known for trees and bipartite graphs [1], chordal graphs [2],
» cycle graphs [3], comparability graphs [6], claw-free graphs [7], interval graphs and circular arc graphs [8]. The
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13 maximum weight independent set problem is defined on a graph where the vertices are mapped to corresponding
s weights. The maximum weight independent set problem seeks to identify an independent set where the sum of
55 the weights of the vertices is maximized. On trees, the maximum independent set problem can be solved in
s linear time [10]. Thus, for several classes of graphs MIS can be efficiently computed.

w Hsiao et al. design an O(n) time algorithm to solve the maximum weight independent set problem on an interval
;s graph with n vertices given its interval representation with sorted endpoints list [12]. Several articles improved
w0 the complexity of the exponential algorithms that compute an MIS on a general graph [5,9]. Lozin and Milanic
w0 showed that MIS is polynomially solvable in the class of S o -free planar graphs, generalizing several previously
o known results where Sy 5, is the graph consisting of three induced paths of lengths 1, 2 and &, with a common
« initial vertex [13].

I The minimum vertex cover problem on G seeks to identify a vertex cover with minimum cardinality, i.e.
w minimum vertex cover or MVC. If Vx C V is MVC of G then Ve = (u,v) € E,u € EVv € E. In this article G
s is undirected, so, an edge (u,v) is understood to be an undirected edge. The problems minimum dominating set,
s i.e MDS and the minimum connected dominating set i.e. MCD seek to identify a DS and a CDS respectively with
«  minimum cardinalities. The MVC, MDS and MCD problems on a general graphs are known to be NP-complete
s [15]. Garey and Johnson showed that MVC is one first NP-complete problem [15]. In connected vertex cover
2 problem i.e. MCV, given a connected graph G, a connected vertex cover i.e. a CVC with minimum cardinality is
o sought. Garey and Johnson proved that MCV is NP-complete [18]. For trees and bipartite graphs the minimum
si vertex cover can be identified in polynomial time [20,21]. Garey and Johnson proved that MCV problem is
2. NP-hard in planar graphs with a maximum degree of 4 [15]. Li et. al. proved that for 4-regular graph MCV
53 problem is NP-hard [19]. It is shown that for series-parallel graphs, which are a set of planar graphs, it shown
s« that minimum vertex cover can be computed in linear time [23].

55 Garey and Johnson showed that MDS on planar graphs with maximum vertex degree 3 and planar graphs
ss that are regular with degree 4 are NP-complete [15]. MCD is NP-complete even for planar graphs that are
sv regular of degree 4 [15]. Bertossi showed that the problem of finding a MDS is NP-complete for split graphs and
s bipartite graphs [22]. Cockayne et. al. proved that MDS in trees can be computed in linear time [4]. Haiko
so and Brandstadt showed that MDS and MCD are NP-complete for chordal bipartite graphs [24]. Ruo-Wei et. al.
s proved that for a given circular arc graph with n sorted arcs, MCD is linear in time and space [25]. Fomin et. al.
s propose an algorithm with time complexity faster than 2™ for solving connected dominating set problem [26].
62 The term layered graph has been used in the literature. The hop-constrained minimum spanning tree
63 problem related to the design of centralized telecommunication networks with QoS constraints is NP-hard
s [14]. A graph that they call a layered graph is constructed from the given input graph and authors show that
s hop-constrained minimum spanning tree problem is equivalent to a Steiner tree problem. In software architecture
6 the system is divided into several layers, this has been viewed as a graph with several layers. In this article we
o7 define a new class of graphs that we call layered graphs and design an algorithm to identify the corresponding
6 Iminimum vertex cover.

o« 2 Layered Graph

70 Consider a set of undirected graphs G'1, G2, ... Gy on the corresponding vertex sets V1, Va, ...V, and the
n edge sets Eq, Eo, ... Eg ie. G; = (V;, E;). Consider a graph G that is formed from V; G; with special additional
2 edges called inter-layer edges denoted as E;; where j = i+ 1 and E;; denotes the edges between V; and V;. We
7 call such a graph a layered graph denoted as LG i-th layer is G;. Note that for any given 4, E;; where j =i+ 1
n can be ¢ and Vigg; 1;11)Ey = ¢. Every vertex within a given layer gets a label from (1,2,3,...,k). Thus,
Vi € {Vi1,Via,...Vir}. Note that Vi, is the vertex number z in layer i. However, in layer ¢ the vertex number z
7 need not exist. Further, if (Vjy, Vitq y) € FE; ;41 then it follows that vertex z is present in layer i and vertex y is
77 present in layer i + 1.

78 We define the following restrictions on a layered graph. Several of the primary restrictions can be combined.
7 Please see Figure 1.
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so o  The size of all graphs is restricted such that | V; |< k then a k-restricted layered graph i.e. LG}, is obtained.

81 LGZ denotes an LG with ¢ layers. LGZ’q denotes an LGZ with n vertices.

2 o If V; for Vi the only permissible edges are (Vj, Vj;) where j € {i —1,i+ 1} then a linear layered graph
83 i.e. LLG is obtained. LLG} denotes an LLG that is k-restricted. LLGZ denotes an LLGy with g layers.
8 LLGZ’q denotes an LLG% with n vertices.

s o If every G, is required to be a connected component then a single component layered graph i.e. SLG is
86 obtained.
sz o If (G is required to be a connected component then a connected layered graph i.e. CLG is obtained.

88 This article designs algorithms for LG, where every vertex within a given layer gets a label from {1,2,3,...k}.
s The results are applicable for any restrictions of LGy, like LLG, SLG etc.. Consider a layered graph G whose
o first a layers and the last b layers do not have any edges. The graph is not a CLG, however, a MCV of G is
o same as the MCV of the subgraph where the first a and the last b layers are removed. Further, if every layer has
o at least one edge then MCV also requires a CLG. MCD is well defined only for C' LG because it must dominate
o3 all vertices.

o The recursive process of generating a hypercube of dimension n 41 i.e. Hyy1 from two copies of H,, consists
o of creating the inter-H,, edges V; (v1;,v2;) where v1; and vg; are the corresponding vertices from the first copy of
o Hpy and the second copy of H, respectively. Thus, the inter-layer edges of LLG are in fact akin to a subset of
o7 inter-H, edges because an inter-H,, edge exists between every pair of corresponding edges. However, in an LLG
s the successive layers need not have all allowed edges; moreover, | V; | and | V;11 | need not be identical.

99 The complete graph on k vertices, a clique on k vertices, is denoted by K. Consider a graph G formed
100 from several copies of K}, say G1,Go,...Gy where in addition to the edges that exist in each of G; an edge is
1w introduced between every pair u,v: u € G; and v € G;+1. We denote this particular graph G that has ¢ layers
w02 with KZ. The class of k-restricted layered graphs are in fact subgraphs of KZ. Thus, we call Kg as full LGZ.
w3 Likewise, a LLG that is defined on ¢ cliques, where for any 4,7 + 1 for all values of [ an edge is introduced
e between vertex [ of layer ¢ and vertex [ of layer ¢ + 1, is called as a full LLGZ. The number of layers in LGy, i.e.
105 ¢ is bounded by n/k < ¢ < n.

106 A subgraph of G induced by vertices uy,ug,...u; consists of all vertices uy,ug,...u; and all the edges
w7 restricted to them. We design algorithms that compute the cardinalities of MVC, MIS and MDS of any subgraph
s of KZ ie. LGZ’q in polynomial time when k& = O(logn) and the cardinalities of MCV and MCD in polynomial
0o time when k = O((logn)%), a < 1. Additionally, these algorithms report the corresponding numbers of MISs,
o MVCs, MDSs, MCVs and MCDs in LGZ’q.

w3 Algorithm

112 Consider a layered graph with ¢ layers i.e. LG)"? with layers (1,2,3,...,¢). We design a generic dynamic
n3  programming algorithm for all the problems. However, certain restrictions exist corresponding to the problem at
ns  hand. The specific details pertaining to each problem are elucidated along with its solution. For example, MCD
us is meaningful only when the underlying graph is connected; i.e. the input graph is restricted to CLG.
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Figure 1. From left to right: 1a) LGi;}Q. 1b) LLGZ;}O. 1c) SLGi;ll. 1d) SLLGZ;II. In single component
graphs, each layer has exactly one connected component. The vertices are labeled 1,2, 3,4 within the given
layer. The edges between the vertices of a given layer are shown with thick lines whereas an e € Ej; ;41 is
shown with a dotted line. The graph is labeled. In a linear graph the edges € E; ;11 connect the vertices with
identical labels from adjacent layers.

116 We denote the vertices chosen in a particular layer with a k-bit variable that we call as mask. The p* bit
ur  of the mask is set to one to include pt" vertex. Otherwise, the bit is set to zero and the vertex is excluded. Let
us S = ngl V.* be a candidate solution for a problem where V;* denotes the set of nodes that are chosen from layer
o 4. The candidate sub-solution for layer i is denoted as cs;. For layers 1...4, we maintain a combined candidate
1o sub-solution denoted as ccs;. Likewise, cs; j and ccs; j each denote instances where the vertices chosen from layer
w1 are denoted by mask j. We store only the cardinality of the best options; such cardinality is called an optimum
122 value. This is stored in the variable sol; ; and the corresponding number of solutions that yield the optimum
s value is stored in count; ;. In this article, an optimal solution is a solution that corresponds to the optimum
s value. We say that cs;; and ccs;_1,; are compatible if cs; j|Jces;—1; € cesij. That is the union of ¢s; ; and
s ccsj_q, yields a ccs for the first i layers. Note that compatibility is determined by cs; ; and e¢s;_1; € ccs;—1y
s and the vertices chosen by ccs;_1; in the earlier layers is irrelevant. This is a key feature.

o 3.1 Input

128 The input consists of LG, ’? that is specified in terms of My, ..., M, and Iy, ..., I, 1 where M; is the 0-1
120 adjacency matrix for layer ¢ i.e. G;. I; is the 0-1 adjacency matrix for F; ;1. The rows 1,2,...k of I; correspond
10 to the vertices Vi1, Via, ... Vjr and the columns 1,2,...k of I; are the vertices Vi11 1, Vit1 2,... Vig1 k. It must
11 be noted that for a linear graph, I; can just be a k dimensional vector and the corresponding computation is less
12 expensive where [;[a] =1 <= an edge between a € V;,a € V11 exists. The adjacency matrix M;, for layer i,
153 is a matrix of dimensions k& x k, which means it requires O(k?) space. Similarly, each of G; also requires O(k?)
1« space. Therefore, the total space required for the input graph would be O(nk), since each layer requires O(k?)
s space and there are O(n/k) layers.

136 The boolean valued function compatible is called to determine whether candidate sub-solutions (of the
w current layer and the subgraph induced up to the previous layer) can be combined; here the layer number i is
s implicit. For each mask j of a given layer i a function valid(i,j) determines if j is a feasible option for layer i.
1 The helper function cardinality(j) returns the number of bits that are set in the binary representation of some
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1 mask j.
1w All algorithms consist of the following sequence of computational tasks.

w2 o  Repeat (i) and (ii) for all layers 1...¢ — 1.
us o (i) Feasible: V; (if valid(i,)) then go to step(ii).
s o (ii) Extension: If j and [ are compatible then store the cardinality of cs; ;|Jces;—1, in sol; ; and the count

145 of ccs; ; in count; ;. Corresponding to each cs; ; if 2k additional variables are present then update them
146 (e.g. DS problems).

uw e  (iii) Summarize: At layer ¢ : execute (i) and (ii). Identify the optimum cardinality among V;sol, ; and the
148 corresponding count.

149 Each problem has specific characteristics. The compatibility criteria and other specifics for each of the

150 problems is elucidated below.

m 3.2 MIS

152 Consider the structure of a MIS on LG, ?. Say, V* = ‘]1-:1 V; where V* are the vertices in MIS from layer
153 j. Clearly, V¥ must be an IS. Let G1 be the subgraph of LG} induced by V! = 3‘:1 V; and let Ga be the
i subgraph of LG} induced by V? = (Ji_;,, V. Consider the IS of G. TF M; = Uiy V" and My = Ui V)
155 then M7 and My are ISs. Let the set of edges crossing the cut C = (M, M2) be EC. 1t follows that M, U M,
156 is an IS of G with cardinality | My | + | M2 | when there is no edge crossing C. Only edges in E; ;41 need to be

157 considered. Thus, the cardinality of an MIS of LG)»? = max(Vpo_y | My | + | Ma |).

15 o  feasible(j): the mask j must denote an IS for G;.

s ®  compatible(j,1): the union of two ISs must be an IS.

w o  Extension: if(cardinality(j) 4 sol;_1; > sol; j) sol; j + cardinality(j) + sol;_1 .

o e  Summarize: Let opt <— max(V;soly j);count < 0; V; if(soly; = opt)count  count + county j; Return
162 (opt, county ;))

163 3.3 MVC and MCV

164 Consider the VC V* = U?:1 Vi of LG} where V;* denotes the set of vertices in V* from layer j. Clearly,
165 V]* is a VC for layer j. VJ* depends only on V]f"_1 and V]*+1
166 Consider two adjacent layers p and p+ 1. V U V;)*H must cover all inter-layer edges between layers p

s and p+ 1. Specifically, V* = Ufi_i V]* must cover all edges in the corresponding induced subgraph including
e Ep pi1. Similar constraints hold for MCV. Additionally the induced subgraph of V* must be a single connected
10 component. The time and space complexity analysis for both the problems is mentioned in later sections.

170 Clearly each layer must choose a mask that is a VC. In the case of MCV, when considering a mask j for
m  the current layer ¢ the following cases exist.

2 (a) The previous layer mask [ corresponds to one component.

s (b) I corresponds to more than one component.

wm  Case(a): For layer ¢ the mask j is infeasible if no vertex from j connects with [ or all the edges in I; are not
s covered. Otherwise, it is feasible.

s If at least one edge exists across j and I: (i) j is a single connected component then the result is also a single
w7 component (consisting of all chosen vertices).

ws (ii) 7 has more than one connected component and all of them connect to ! then the result is also a single
179 component.

1o (iii) j has more than one connected component and only some of them connect to ! then the result consists
11 of many components. All components from j connected to I become one component all the rest are separate
12 components.

183 (iv) Thus, for a j we store all partitions of vertices where when j is chosen and the current components are


http://dx.doi.org/10.20944/preprints201805.0012.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 May 2018 d0i:10.20944/preprints201805.0012.v1

6 of 20

1a  denoted by the sets in a partition the sub-solution with minimum cardinality is chosen.

15 (v) Thus, for each mask j we have at most Bell Number(k) solutions stored. When the mask z is chosen for the
186 last layer then the vertices of the mask must be connected to the components of the previous layer and yield a
17 single component.

w o  feasible(j): the mask j must denote a VC for G;. For MCV j must be connected.

1w o  compatible(j,l): the union of two VCs must be a VC for edges in G, Gi+1 and E; ; .

w e  Extension: if(cardinality(j) + sol;_1; < sol; j) sol; j < cardinality(j) + sol;_1 ;. For MCV masks j and !
101 must have at least one edge in between.

w2 e  Summarize: Let opt <— min(Vjsoly;);count < 0; V; if(solg; = opt)count  count + county ;; Return
103 (opt, count)

1w 3.4 MDS and MCD

105 Let the MDS on LGZ’q say V* = 3:1 V]* where V]* are the vertices in this MDS from layer j. Clearly, V]*
s need not be a DS of layer j because the V; can be dominated by any subset of Vj*_1 U V}* U V]*+1 It follows that
107 U?:} * must dominate all vertices in (Jf_; V;. Further, V* which is obtained by V* = Ug;} ViUV must
1 dominate U?:l Vj. A vertex that is not dominated is undominated.

199 Consider mask = j in layer i. Say, cs; j|Jccs;—1,; dominates layer i — 1. However, this particular union of
a0 vertices does not dominate some vertices in layer . The number of such choices is 2F; each choice is denoted
20 by a k-bit variable that we call mask, here, a mask of exclusion. Further, when one processes layer ¢ + 1 this
22 information is significant. We show that 0(2’“) triples stored for each mask of a given layer suffice to compute
2 MDS of LG},. For a chosen mask j in layer i it suffices to store 2F triples of the form (u,s,c). Here u is the
24 mask of the vertices that are not dominated in layer i, s is the cardinality of the vertices chosen so far and c is
205 the number of choices corresponding to un for a particular j in layer i.

206 In the case of MCD, it suffices to store O(B2¥) triples of the form (lo,un,r) where By is the k-th Bell
27 Number. This corresponds to O(By) component layouts lo for a mask j and O(2¥) masks un of the vertices
25 that are not dominated in layer i, and O(2¥) triples 7 of the form (m, s, c) for every unique pair of (lo,un).
20 Here, m is the mask of the current layer that produced the respective (lo,un) pair i.e. mask j, while s and ¢
20 are same as that for MDS, corresponding to mask m and pair (lo,un). The particular mask in the previous
au  layer that is the cause for a particular triple in the current layer need not be carried forward. So, for MDS sol; ;
2 indicates an array of 2 triples. As for MCD it indicates O(Bj2") triples where O(2F) triples are associated
23 with each of the O(B2¥) unique pairs of (lo,un). Also, we use k = O(logn) for MDS while & = O(logn)®,
aa < 1, for MCD, so that the algorithm runs in polynomial time.

215 Consider the following analysis for MDS. Let mask j be chosen in layer i, it can potentially be combined
26 with every mask ( O(2F) masks) of the previous layer. Thus, potentially (O(2F)) triples need be stored. Further,
27 the total number of triples of the form (un, s, c) is Q(n.2%) because un can potentially assume any of 0...2% — 1,

25 s is O(n) and ¢ can in fact be exponential in . Here we make the following critical observations.

29 @  Let the chosen mask for layer i is j. When all the compatible vertex sets of the previous layer are considered

220 then let the resultant triples for the choice of j in layer ¢ be set S.

21 e In S for any two triples with the same mask we need only retain the triples with the least size. The other
222 triples cannot lead to an optimal solution.

223 o  If two triples have the same mask and the minimum size then they can be combined into one triple where
204 the respective counts are added.

»s o  Thus, only 2 triples suffice for a chosen mask for layer i. Which implies 2%* triples suffice V; cs;j. We
226 store the information of only two layers. Thus, the algorithm needs O(k22k ) space. This is in addition to
227 the space required by the input graph, which is O(nk). For k = O(logn), O(k2?*) is the dominating term,
228 so the space complexity is O(k22%).

2 o  Thus, for a chosen mask for layer i potentially 2% triples of previous layer must be processed. That is, for
230 all masks of layer i, a total of 2%% triples must be processed.
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2 e  Consider the mask j in layer ¢ and mask [ in layer i — 1. Recall that there are 2 triples stored corresponding

23 to mask [ in layer ¢ — 1. All the vertices that are covered by the combination of j and [ in layer i — 1
233 say A and not covered in layer ¢ say B can be computed in O(kQ). This needs to be computed only
234 once. Subsequently, for each triples stored corresponding to [ in layer ¢ — 1 we need only check if the
23 undominated vertices are a subset of B in O(k) time. Thus, O(k2¥) is the dominating term in the time
236 complexity yielding O(k2%F) for all masks of the previous layer. So, for all masks of the current layer the
237 time complexity is O(k2%¥). Thus, the time complexity of the algorithm is O(%kﬁgk) = 0(n2%F).

238 Similar constraints hold for MCD. Additionally the induced subgraph of V* must be a single connected

20 component. Thus, V) V' is connected. We carry forward the existing connected components and eventually
20  when the final layer is processed all the components must be connected. The MCD algorithm is explained in
2 detail in Theorem 4 along with time and space complexity analysis.

22 o  feasible(j): For MCD j must be connected. For MDS any j is valid.

23 o  compatible(j,1): the union must dominate all vertices of V;_1. For MCD masks j and [ must have at least
204 on edge in between.

»s o  Extension: Performed as per critical observations listed above. The choice of the final layer must ensure
246 that the final layer is dominated.

27  Summarize: Let opt < min(V;Vysizey j q)icount < 0; V;Vq if (sizeqjq = opt) then count « count +
24 ccounty ; 4; Return (opt, count)

29 The function compatible receives two masks denoting chosen vertices from layers ¢ and ¢ 4 1. If the vertices in
0 layer ¢ + 1 dominate the so far undominated vertices in layer ¢ then the function returns true. Otherwise, it
1 returns false.

» 3.5 Algorithm Compatible
3 Algorithm Compatible

¢ 1: Input: LGy, j,(, and I. //The function call: compatible(j,l). I: Mask for layer i.
5 2: Output: 0 (incompatible) or 1 (compatible). //j: Mask for layer ¢ + 1. I denotes matrix for F; ;41.
36 3 // bitc(i) returns true if bit c is set in ¢ else returns false.

:; 4: Case MIS: // Input: two valid MISs of two adjacent layers

0 5 if independent(j,l) then // independent(j,1): for any a,b: bitq(l) and bit,(j):

%0 6 return 1; //if I[a][b] = 1 return 0; otherwise return 1; O(k?) algorithm.
261 7: else

%2 8 return 0; //3 a pair of vertices across the layers joined with an edge.

263 9: end if

s 10: Case MVC: // Input: two VCs of two adjacent layers

%6 11: if cover(j,l) then // cover(j,1): Vo where I[a][b] = 1: bitq (1) V bity(j) =1

67 12: return 1; // then return 1; otherwise return 0; O(k2) algorithm.

68 13: else

%0 14: return 0;

270 15: end if

271

a2 16: Case MCV: // Input: two masks of two adjacent layers; need not be MCVs of their respective layers.
a3 17: if ccover(j,l) then // ccover(j,1): ¥qp where I[a][b] = 1: bitq(l) V bity(j) = 1

e 18: return 1; // and 3¢ g : I[c][d] = 1 A bite(l) Abitg(5)

a5 19: else // then return 1; otherwise return 0; O(k?) algorithm.

276 20: return 0O;

a7 21: end if

278

a9 22: Case MDS: // Input: two masks of two adjacent layers,
20 23: if dom(j,l) then // dom(5,1): D« cs; \esiv1,; U Adj(csii) |JAdj(esivr,j)
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81 24: return 1; // i< q—1: if V; C D then return 1; otherwise return 0;
282 25: else // i=q—1:if V;|Vit1 C D then return 1; otherwise return 0;
23 26 return 0; //Vi or V; | Vi1 is not dominated. O(k?) algorithm.
28+ 27: end if // Adj(V) is the set of all vertices neighboring any vertex in V
28!
232 28: Case MCD: // Input: two masks of two adjacent layers,
287 20 // 3e.a: Id][d] = 1 Abitc(l) Abity(F)
28 30: if dom(j,l) then // dom(j,1): D < cs;\Jesitr,; U Adj(esip)|JAdj(esivr ;)
289 31: return 1; // i< q—1:if V; C D then return 1; otherwise return 0;
200 32: else // i=q—1:if V;|JVit1 C D then return 1; otherwise return 0;
201 33: return 0; //Vi or V;|J Vit1 is not dominated. O(k?) algorithm.
22 34: end if // Adj(V) is the set of all vertices neighboring any vertex in V
23 3.6 Algorithm Generic Optimum
204 The algorithms for MIS, MVC and MDS problems on LGZ’Q are similar while those for MCV and MCD

25 require additional processing related to connected components. We give a generic dynamic programming based
206 algorithm for both sets of problems. Some specific instances are shown in the Appendix.

27 Initialization: Vi solo; = soly; = 0; Vi counto; = counti; = 0; sol;j : The optimum value (of IS, VC, MCD etc.)
2s  up to layer ¢ where the chosen vertices of the layer i are given by the binary value of j. count;; : the number of
20 ways the j¥ mask in layer i yields the corresponding optimum value.

s  Algorithm Generic Optimum
301 Input: LGZ’q

302 Output: The cardinality and corresponding count for the respective problem.
ws  for (i=0,..2"-1) do

304 if walid(1,7) then //for layer 1

305 counto; = 1; solg; = cardinality(i); // For all valid masks set their count
306 end if

307 end for

308 for (i =2,....q) do //For layers 2 through maximum

309 for (j =0,...2¥ —1) do //For all masks of current layer

310 Compose larger sub-solutions by considering all compatible masks of the
311 previous layer and any accompanying information.

312 end for//Masks of previous layer

313 end for//For all layers

314 The current layer being processed is the final layer.

315 best < 0; sum < 0;

26 for (i=0,..,28—1) do

317 Identify best, the cardinality of an optimal solution.

318 end for

2 for (i=0,..,2" —1) do

320 Compute sum, the count of optimal solutions.

321 end for

322 return(best, sum)

» 4 Correctness and complexity

324 The Algorithm Generic Optimum when adapted to a specific problem, say MVC, is referred to as Algorithm
s MVC. The correctness is shown for MIS, MVC and MCD problems. The time complexities for MIS, MVC, and
26 MDS are respectively O(nk22%), O(nk22*) and O(n23%), where k = O(logn), and the space complexities are
2 O(nk), O(nk) and O(k2%#) respectively. For MCV and MCD problems, the time complexity is O(n'*€) for any
»s € > 0, where the number of vertices in a layer is k = O((logn)®) for a < 1. The space complexity is O(nk) for
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29 MCD and MCV. The analysis is given for MVC and MCD. The proofs of correctness for the remaining problems
;0 are similar. The time complexity for MDS was presented earlier.

s Theorem 1. Algorithm MIS correctly computes the MIS on LGZ’q.

s Proof. Let G = (V, E) be a graph and let V' be partitioned into V1, V2. Further let I, I be the ISs of the
s graphs induced by V', V2 respectively and let I = I |J Io. If you consider the cut C' = (I, I3) on I where B¢
s is the set of edges crossing the cut then it follows that I is an IS of G if E¢ = ¢. Further the cardinality of an
3 MIS of G is maz(Ygo_y | It | + | I2 |). Tt is possible that either | I; [= 0 or | Iz [= 0.

336 Let G be LGZ’q. Let G be the subgraph of LGZ’q induced by V! = Ué-:l V; and let G be the subgraph
s of LGZ’q induced by V2 = ?:iﬂ Vj. Consider the IS of G. Let I; and I3 be the independent sets of G1 and
1 Go respectively. Let the set of edges crossing the cut C' = (11, I2) be EC. Tt follows that I = I, U2 is an IS of
10 G with cardinality | I1 | + | I2 | when there is no edge crossing C. Only edges in E; ;11 need to be considered.
s Thus, the cardinality of an MIS of LG} = max(Vgc_, | M1 | + | Mz |). When the last layer is processed the
s1  cardinalities of ISs of subgraphs induced by V' and V' —V; both are known. Further, these ISs have maximum
a2 cardinalities with respect to the vertices chosen in layers ¢ — 1 and g respectively. The theorem follows. Likewise,
us  counti; gives the number of ways an independent set of maximum cardinality that can be formed when the
s vertices chosen in the layer ¢ are given by j. Thus, county; corresponding to the maximum value of soly; yields
us  the total number of MISs. [

us  Theorem 2. Algorithm MVC correctly computes the MVC on LGZ’q.

w  Proof. Consider the structure of MVC on LG}, Let G1 be the subgraph of LG}'? induced by V! = 3‘:1 V;

us and let G be the subgraph of LGZ’q induced by V2 = §:i+1 Vj. Consider a VC of G. Let My and M> be
s the vertex covers of G and Gy respectively. Let the set of edges crossing the cut C' = (Mj, M3) be EC. Tt
30 follows that the cardinality of a VC of G is | Mj | 4+ | My | when every edge crossing C' is covered by either M,
s or My. Note that the only edges from E; ;41 = EC¢ can go across the cut. Thus, the cardinality of MVC of
s LGP =min(| My | + | Mz |) for any such cut. When the last layer is processed this property is ensured. The
353 theorem follows. Similarly, count;; gives the number of ways an vertex cover of minimum cardinality that can
s+ be formed when the vertices chosen in the layer i are given by j. Thus, count,; corresponding to the minimum

s value of soly; yields the total number of MVCs. [

6  Theorem 3. Algorithm MVC on LGZ’q runs in polynomial time in n when k = O(logn). The space required is
357 O(nk)

s Proof. We presume that [;, the 0-1 adjacency matrix for the subgraph induced by V; |J Vi41 where the edges
30 are restricted to E; ;41 is given. Likewise, we assume that the 0-1 adjacency matrix M; for each of G; are given.
0 Recall that LGZ’q was formed from G1,Go,...Gy. For a linear graph, I; is just a k—dimensional vector where if
1 bit j is set then there is an edge between V;; and V1 ;.

% o  The initialization step requires O(2*) time.
% o  Given a mask for layer i it can be determined if it is a valid VC in O(k?) time with M;. That is, for any

304 two M;[a][b] that is set the mask should have either bit a or bit b set.

ws o  Given two masks maskl, mask2 for layers ¢, + 1 respectively and I; it can be directly determined if their
366 union is a VC of a subgraph induced by ;™! V; of LG in O(k?) time.

7 o  In order to determine the MVC up to layer 4 whose mask is j; j must be checked for compatibility with all
368 masks of the previous layer. Thus, O(k?2*) time is required. For all masks of the current layer O(k:222k)
369 time is required. For all layers, the time required is maximized when each layer has k vertices yielding

- 0(%k222k) = O(nk22%) time.
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s The time complexity is clearly exponential in k; however, if k = O(1) the time complexity is O(n). The time
72 complexity remains polynomial when k = O(logn); specifically O(n3logn) when k& = logn. The additional
w3 space required is O(k2k ) because for two layers we store 4.2F mask and count variables each of size k. The
s space required is O(nk) for storing the graph and an additional space of O(k2¥) that is needed by the algorithm.
w5 When k& = O(logn) the space complexity is O(nk). O

s Lemma 1. Let 0 < a < 1.0 where « € RT. If & = (logn)® then 2! = O(n¢), for any € > 0.

Proof.
Let f(n) = (logn)*, a <1
Let h(n) =nce>0
Now, consider f(n)!

= f(n)! = (logn)*!
Taking log on both sides,

log([f(n)!]) = log1+log2+ - -+ log([(logn)*])
[(logn)]

= Z log

=1

(logn)>
~ / log xdx
1

= [zlogx — 7] ?Og n)*

= a(logn)*loglogn — (logn)* + 1
~ (logn)*(aloglogn —1)
=g(n), say
Assume that,
g9(n) = O(elogn)
= (logn)“(aloglogn —1) < celogn

loglogn — 1
_ (aloglogn —1)

<
(logn)t—e = ce

Let 1 —a=4,5>0and ce =~
(aloglogn —1) <

(logn)? =
Let logn = x
alogr —1
(alogz—1) ,
(z)P

= (alogz —1) < ~v(z)?
We know that logarithmic functions grow slower than polynomial functions.
So, the above inequality holds which means our assumption was correct.
= (logn)®(aloglogn —1) = O(elogn)
- ((logn)®!) = O(n) a<le>0

sz Hence, proved. [

7 Lemma 2. If x = (logn) then 2! is quasi-polynomial and (z!) = O(nl°8los™),
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Proof.
Let f(n) =logn
= f(n!) =log(n!)

From Stirling’s Approximation, we have

= log(n!) = 6(nlogn)
= (log(logn)!) = O(lognloglogn)
=2

= ((log n)') 6(log nloglogn)

This can be written as,
(logn)!) = nlosiosn
= (f(n)') _ nloglogn

The above result is quasi-polynomial.

s Hence, proved. [

w0 Lemma 3. If k = ©O((logn)'*), for any e > 0 then Algorithm MIS, Algorithm MVC and Algorithm MDS run
1 I quasi-polynomial time.

% Proof. The time complexities of all these algorithms can be written as O(f(n)g(k)2%*) where f(n) = @(n),
% g(k) = O(k) and ¢ = O(1). Thus, when k = @((logn)! ™€) for € > 0 the complexities for all the algorithms will
s be quasi-polynomial. [

s Theorem 4. Algorithm MCD correctly computes the cardinality of a connected minimum dominating set for
w LG with a time complexity of O(n'*€), for any € > 0 when k = O(logn)® and o < 1. The space complexity of
s the algorithm is O(nk).

s Proof: First, we show that the algorithm correctly computes the cardinality of a connected minimum dominating
w0 set. Consider the structure of CDS on a connected graph G. Let V be arbitrarily partitioned into V1, V2 where
w0 both | V! |>0and | V2 |> 0. Let G1 be the subgraph of G induced by V! and let Go be the subgraph of G
s induced by V2. Let M; C V! and My C V? be DSs of G and Ga. Let C be the cut (My, M) and let E€ be
w2 the edges that cross this cut. Clearly M = Mj|JMs is DS for G. Further, M is a CDS for G if | E¢ |> 0
. and M forms a connected component in G. For a given partition V1, V2 of V, M is a MCD if it minimizes
s | My | 4| Mz | where M forms a connected component in G.

395 Let G bea LGZ’q in particular let G be a CLGZ’q let VI = Ug;} V; and V2 = V4. Let G be the subgraph
0 of G induced by V! and let Gy be the subgraph of G induced by V2. Let M; C V! and My C V2 be DSs of
w7 (1 and G respectively. Let C be the cut (M7, M2) and let EC be the edges that cross this cut. Note that
w FEY = F;_1 4 When the algorithm processes layer ¢ it chooses M = My |J My such that | My | + | My | is
0 minimized where M forms a connected component in G. Thus, the theorem follows. Similarly, count;; gives the
wo  number of ways a CDS of minimum cardinality can be formed when the vertices chosen in the layer i are given
a1 by j. Thus, V;Xcount; corresponding to the minimum value of Vjsoly; yields the total number of MDSs.

102 Time complexity of the algorithm is analyzed below. We presume that similar prerequisites are provided as
a3 in Theorem 3 earlier. The steps are as below.

s o A global structure sol consisting of soly and sol; corresponding to the previous and current layers is
405 maintained for the whole algorithm. The final solution for the problem can be determined just by using
406 information from soly and sol;. This structure is maintained for the whole algorithm and not for every
407 layer.
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ws o  solg and sol; each consist of a maximum of Bj2F triples of the form (lo,un,r). This corresponding to

409 a maximum of By, (k** Bell number) component layouts (lo), 2¥ masks, un, of undominated vertices of
410 the current layer and a maximum 2% triples, r of the form (m, s, c) for every unique pair (lo,un). Here,
a m: mask of the current layer that produced the respective (component layout, undominated vertices)
a2 pair, s minimum cardinality of the sub-solution corresponding to mask m and pair (lo,un), ¢: count of s
a13 corresponding to mask m and pair (lo,un).

ae o  Throughout the algorithm, soly and sol; are maintained by clearing solyp when the current layer is processed
a1 and using the information of sol; as soly for the next layer.

a6 ®  solg is initialized with the triple (lo,un,r) corresponding to 2% masks of the first layer. The initialization
417 takes O(k22k)

a5 o A candidate sub-solution for layers 1...7 induces connected components in layer ¢ that are defined in terms
419 of vertices of layer . We call this as the component layout.

20 e  Number of component layouts is upper bounded by Bell Number (k) or By, the number of ways of partitioning
2 k vertices of a layer. Here k = f(n), f(n) = O(logn)®, a < 1. By = O(f(n)!). From Lemma 1, we know
2 that f(n)! = O(n¢), for any ¢ > 0.

23 e A mask j of the current layer can be combined with a component layout for mask [ of the previous layer
o to form a new component layout for the current layer. With the same mask [, j can form a new mask
a5 corresponding to the undominated vertices of the current layer.

w2 o  Every such unique pair of (lo, un), where lo is component layout and un is mask of undominated vertices,
a7 is maintained and a list of triples r consisting of triples of the form (m, s,c) is associated with it. Here m is
28 the current layer mask, s is the minimum cardinality of the sub-solution corresponding to m and c is the
420 count of s. The number of such tuples (lo,un,r) is upper bounded by Bj22k, where Bj2" is the possible
430 number of unique pairs of (lo,un) and 2F is the possible number of triples that can exist for each pair.

s e  Starting from the i-th layer, i > 1, every 2F mask of the current layer and the tuple values from the previous
e layer are used to generate the tuples for the current layer.

= e  For a unique pair (lo,un) of the previous layer, if mask j dominates the undominated vertices of mask un
234 and forms a connected component with the layout lo, then we consider that a sub-solution using mask j is
435 feasible. Here, a mask j and a component layout lo are considered to form a connected component if every
436 component in lo has at least one edge to a node in mask j. Each such check takes O(k2) time. So, the
a7 total time to determine if a sub-solution with mask j is feasible is O(k?).

2 o  If a mask j is feasible to give a sub-solution, then it is combined with the component layout lo of the
439 previous layer to form a new component layout for the current layer corresponding to mask j. This is
240 performed using a DFS which takes O(k?) for the given input matrix.

w1 o  Mask j is then combined with mask [ of the previous layer corresponding to the pair (lo,un), that is under
a2 consideration, to form a mask for the current layer vertices that are not dominated by j or I. This takes
443 O(k‘Q) time.

ws o  Using the mask j of the current layer and minimum cardinality s for the pair (lo,un) of the previous layer,
s the new cardinality for the sub-solution is computed.

us o  The count of the new cardinality will be same as that of ¢ of the (lo,un) pair for the previous layer.

w7 o  This new pair of component layout and undominated mask computed for mask j of the current layer is

a8 checked with the existing pairs of the current layer to determine if it is unique or not. We maintain the
449 structure of the tuples such that an entry can be accessed in O(1) time, indexed by the pair (lo,un) and
450 the corresponding mask m for the previous and the current layer.

st o If it is unique, the tuple value consisting of the newly computed (lo,un) pair and its corresponding triple
152 consisting of the mask j, respective cardinality and the count are added as a new tuple for the current layer.
3 o  Consider that the current mask j produces the new pair (lo,un) with values s = s, and ¢ = ¢;. If the
454 new pair is not unique then there are three cases. Consider the existing entry of the (lo,un) pair and the
455 corresponding j to have values s = s, and ¢ = ¢y.

456 (a) if sy = s then ¢y <= ¢y + g

457 (b) if sy > s, then sy < sz5¢y a3

458 (c) if s, < s, then no update is required.
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50 o  The above procedure is performed till the last layer where the final solution is computed from the current

460 layer information corresponding to the last layer. Of all the B;2F pairs for the current layer, a solution is
461 considered to be feasible if the mask for the undominated vertices for any of the By component layouts is 0,
162 as this would mean all the vertices are dominated. The cardinality of MCD is the minimum value among
463 all the feasible solutions. The count is then computed by considering each feasible entry with the minimum
464 cardinality computed above and adding its corresponding count.

s o  Thus, the solution and the corresponding count of optimal solutions for MCD problem are computed.

ws For the whole algorithm, we maintain the global structure as mentioned above. It consists of a maximum
w7 of O(Bk2k ) entries corresponding to unique pairs of (lo,un) and another 2F triples for each such pair. We
w8 maintain this information for only the previous and the current layers. So, the space used by the data structure
wo is O(B2%F). This can be shown to be equal to O(n¢), for any € > 0, based on the proof for Lemma 1. This
w0 space requirement is in addition to the space required by the input graph which is O(nk). For k = O((logn)%),
m  O(nk) is the dominating term compared to O(n€). So, the space complexity is O(nk). The following is the
a2 proof for time complexity of the algorithm.

73 First, we derive an expression for the runtime of the algorithm. The initialization using the first layer
as takes O(k?2F) time. For each layer after the first, the 2 masks of the current layer is combined with the B;2*
w5 pairs of the previous layer. For each pair, a current layer mask is combined with a maximum of 2¥ masks of
w6 the previous layer that generated this pair. Checking the feasibility of a mask of the current layer takes O(k?)
a7 time. Computing the new component layout and the new undominated mask takes O(k2) time each. The
s undominated mask is calculated for 2% masks of the previous layer for each mask of the current layer. Accessing
w and updating an entry takes O(1) time as mentioned above. This is done for O(n/k) layers. So, the time
a0 complexity expression can be written as,

- 0(%k!22k(2’%2)) " (By, = O(k!), Lemma 1)
= O(nk2%Fk!) (1)

s If k = O(1), the time complexity becomes T' = O(n). If we assume the worst case number of nodes in each
@ layer, i.e. k= f(n) then the corresponding time complexity is 7' = O(n' ) as shown below.

Let f(n) = (logn)® a<1
Let h(n) =nY >0
From Lemma 1 we have
x! = O(n") for some v > 0, where z = (logn)®
= f(n)! = 0(n?) = O(h(n))
The running time of the algorithm, is given by
T = O(nk2% f(n)!)
< en sk x 2% % h(n)
< en7 x (log n) *x23(log ™) (1) (. h(n)=n")
Consider F(n) = (logn)® x 23(egn)®
Let g1(n) = n? and ga(n) = n* §>0,u>0
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We know that logarithmic functions grow slower than polynomial functions.
= (logn)® < cg1(n)
= (logn)* = O(n°)

(logn)®

Now, we claim that 23 < cga(n) for some o < 1, a positive real number ¢ and n > ng, where ng is some

positive integer
Consider the following proof.
Taking log on both sides, we get
log(23(1°9)%) < log(cga(n))

= 3(logn)® <logc+logga(n)

= 3(logn)® < plogn (. g2(n) = nt)
Since a < 1, (logn)* < logn

= 3(logn)® = O(ulogn)

_ 93(logn)* < pp
Hence, we proved our claim.

- 93(l09m)® _ ()

From above we have,

From (1), we get

T < CnH»’y *n5+u

< en Ty Hotn

We can write it as,
T < cntte e=v+d+p
By arbitrarily taking small values for u, § and 7, € can be made a small value such that € > 0
“T=0(n")  €e>0
Hence, proved. [

w3 Theorem 5. Algorithm MCYV correctly computes a connected VC of minimum cardinality for LGy, with a time
w  complexity of O(n'T€), for any € > 0 when k = O(logn)® and o < 1. The space complexity is O(nk).

w5 Proof. MCV algorithm is similar to MCD algorithm. A mask j of layer ¢ must be a valid VC for layer i. The
a5 check takes O(k2) time additionally though the total time complexity can be proved to be same as that of MCD.
w7 S0, the proofs of correctness and time complexity follow from the proofs for the same of the MCD algorithm.
@ Hence, the time complexity is O(n'*€) for any € > 0 when the number of vertices in each layer is k, where
w k=0((logn)*) and a < 1. Similarly, the space complexity can be shown to be O(nk). O

490 Lemma 2 proves that (logn)! is quasi-polynomial. Using this, we can show that if &k = ©(logn) for MCV
21 and MCD problems then the running time of algorithm is quasi-polynomial. Proving this is quite straightforward.
w2 By substituting (logn)! for k! in equation (1) in Theorem 4, we get a product of quasi-polynomial factor and a
w3 polynomial factor. Thus, the time complexity is quasi-polynomial.
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0 4.1 Minor Enhancements

205 The current layer requires the information only from the previous layer. So, only the variables of the current
w6 layer ¢ and the previous layer i — 1 are maintained. In the pseudocode shown for all algorithms, for simplicity, the
w7 variables of current layer are stored at index 1 and the previous layer at index 0 of the data structure sol. When
w8 the current layer i is completely processed the variables from index 1 overwrite the corresponding variables in
w0 index 0. This can be avoided by alternating the index of current layer between indices 0 and 1 thereby reducing
s the execution time by a factor of O(1).

501 We generate the optimum cardinalities for each of the problems by using minimal additional space. For
se  example, Algorithm MVC employs only O(k?k ) space in addition to the space required by the graph. If for each
s mask in each layer we store a best compatible mask from its previous layer then we can generate a solution.
su  There are O(n/k) layers each having O(2¥) k-bit masks. This requires O(n2*) space instead of O(k2¥) space.
sos However, if we want to generate all solutions then for each mask of a given layer we need to store all compatible
sos  masks of its previous layer that yield the optimum value requiring O(n22k ) space.

sor 4.2 Cyclic Layered Graphs

508 A cyclic layered graph is a layered graph with one additional feature. In addition to the edges that are
so0 allowed for a layered graph, in a cyclic layered graph there can be edges between the first and the last layer.
s The problems that are solved on a layered graph in this article can be solved on a cyclic layered graph also by
su  modifying the solution in the following manner. Along with every candidate sub-solution that is stored at a
s layer i the corresponding masks of layer 1 that can lead to the solution are also stored. Note that at most 2*
si3 such masks exist. When the last layer is processed when choosing the mask for the last layer the edges between
su the vertices of the last and first layers are considered. This imposes an additional constraint on what masks are
sis  feasible for the last layer. These additional tasks that must be performed for cyclic layered graphs do not change
si6  the asymptotic time and space complexities of the existing algorithms for layered graphs.

s b Conclusions

518 A novel graph class called layered graph is defined. It includes a subset of bipartite graphs and a subset of
si9 trees on n vertices and can have exponential number of cycles. The typical restrictions on graph classes that
s0  admit polynomial time solutions for hard problems like bipartiteness, planarity, acyclicity are not applicable
sa1 for this class. The known NP-complete problems on these graphs are shown to be in class P when layer size is
s2 O(log | V' |) for MIS, MVC and MDS, and O((log | V' |)%), where a < 1, for MCV and MCD. We also compute
s3 the count of the corresponding optimal solutions.
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= A Appendix

532 The generic algorithm was presented earlier. Here, we present a detailed algorithm each for MIS and MVC.
533 A relatively high-level description for the MCD algorithm is mentioned.
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s» A1 Algorithm MIS
535 Input: LG}
536 Output: The cardinality of MIS and the count of the maximum independent sets.
537 Initialization: Vi solg; = soly; = 0;
538 Vi county; = county; = 0;
539 //s0li; : The maximum value of an independent set up to layer i where the chosen
540 //vertices of the layer i are given by the binary value of j.
541 //count;j : the number of ways the 4" mask in layer ¢ yields the corresponding maximum value.
542 //valid(i, j) is a boolean function that returns true if the vertex assignment corresponding to
543 //the binary value of j in layer ¢ forms an IS. Otherwise it returns false.
544 //A is the bitwise AND operator.
ss [ /cardinality(j) is the number of bits that are set in the binary representation of j.
546 // For each sol;; one k-bit variable that remembers the mask of the layer i — 1 that
547 // vielded sol;; will help in constructing MISs. Union of such masks (1/layer) is an MIS.
ss  for (i=0,..,2"-1) do
549 if walid(1,i) then // for layer 1
550 counto; = 15 solg; = cardinality(i); // No. of valid ISs of layer 1
551 end if
552 end for
553 for (p = 2,....q) do //For layers 2 through maximum
554 for (j =0,....2¢F — 1) do //For all masks of current layer
555 if valid(p,7) then //j is valid
556 size <— 0
557 for (1=0,...,28 —1) do //Masks of previous layer
558 if ((county; > 0) A (compatible(j,1))) then //soly; = 0 —Invalid IS
550 if (cardinality(j) + solg; > size) then // Better IS for the current mask
560 if (cardinality(j) + solg > size) then
561 size = cardinality(j) + soly; county, = countoy + 1
562 end if
563 counto; < county; + 1
564 end if
565 end if
566 end for//Masks of previous layer
567 for (I1=0,...,2F — 1) do //Masks of previous layer
568 if (size = cardinality(j) + soly) then //Instance of max
569 countyj < countyj + countqy; // Count corr. to max wrt mask=j
570 end if
511 end for//Masks of previous layer
572 soly; size
573 end if// j is valid
574 end for//For all masks of current layer
575 V& countoy < countig; solpy < soliz;countiy — soliy < 0;
576 end for//For layers 2 through maximum
577 best < 0; sum < 0;
s5  for (i =0,...,2" —1) do
579 if solp; > best then //Get the max value of V;solp;
580 best = soly;;
581 end if
582 end for
583 for (i :0,...,2k—1) do
584 if solpi = best then //Corr. to the best value of MIS(LG?)

585 sum + sum + county;; //Get the count of MISs
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586 end if
587 end for
ss  return(best, sum) //MIS cardinality and the count of such MISs
s0 A2  Algorithm MVC
590 Input: LGZ’q
591 Output: The cardinality and the count for the resp. problem.
592 //s0li; : The minimum value of a vertex cover up to layer ¢ where the chosen
503 //vertices of the layer i are given by the binary value of j.
504 // valid(i, j) is a boolean function that returns true if the vertex assignment corresponding to
595 //the binary value of j in layer ¢ forms a VC. Otherwise it returns false.
596 //count;; : the number of ways the 4 mask in layer i yields the corresponding minimum value.
507 //cardinality(j) is the number of bits that are set in the binary representation of j.
598 for (i:O,...,Qk—l) do
599 if wvalid(1,i) then //for layer 1
600 counto; = 1;s0lp; = —1; // No. of valid VCs of layer 1
601 end if
602 end for
603 for (p = 2,....q) do //For layers 2 through maximum
604 for (j =0,....28 —1) do //For all masks of current layer
605 if valid(p,7) then //j is valid
606 size + (i+1)xk
607 for (1=0,...,2" —1) do //Masks of previous layer
608 if ((county, > 0) A (compatible(j,1))) then //soly; = 0 —Invalid VC
609 if (cardinality(j) + solg < size) then // Better VC for the current mask
610 size = cardinality(j) + soly;
611 if (cardinality(j) + soly = size then countij < county; + county;
612 else countyj < county; soly; < size)
613 end if
614 end if
615 end if
616 sollj size
617 end for//Masks of previous layer
o1 for (1=0,...,2F — 1) do //Masks of previous layer
610 if (size = cardinality(j) + solg;;) then //Instance of max
620 countyj < countyj + countoy; // Count corr. to max wrt mask=j
621 end if
622 end for//Masks of previous layer
623 end if// j is valid
624 end for//For all masks of current layer
625 V& countoy < countiy; solpy, < soliy; counti, — soliy < 0;
626 end for//For layers 2 through maximum

627 best < inf; sum < 0;
628 for (i :0,...,2k—1) do

620 if soly; < best then //Get the max value of V;solp;

630 best = soly;;

631 end if

632 end for

e for (i =0,..,2F —1) do

63 if soly; = best then //Corr. to the best value of MV C(LG"?)

635 sum < sum + county;; //Get the count of MVCs
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636 end if
637 end for
638 return(best, sum) //MVC cardinality and the count of such MVCs
a0 A.3 Algorithm MCD
640 // A brief outline of the MCD algorithm
641 // The algorithm maintains a global structure, sol which consists of soly and sol; corresponding to the
642 previous and current layers. sol; consists of By2F triples of the form (lo,un,r). This corresponding to a
643 maximum of By, (k'th Bell number) component layouts, 2% masks of undominated vertices of the current layer
644 and a maximum 2¥ triples, r, of the form (m, s, ¢) for every unique pair (lo,un). lo: is a component layout,
645 un: mask of undominated vertices of the current layer, r: triples of the form (m, s, c) where m: mask of
646 the current layer that produced the respective (component layout, undominated vertices) pair, s minimum
647 cardinality of the sub-solution corresponding to mask m and pair (lo,un), ¢: count of s corresponding to
648 mask m and pair (lo,un). All unique pairs of (component layout, undominated vertices) need not yield a
649 (sub)solution. soly consists of the same information for the previous layer.
650 // Mask i refers to the mask of the vertices of current layer that can yield a sub-solution (with minimum
651 value of s for some pair (lo,un)). The component layout refers to the list of the connected components of the
652 current layer vertices (which can form a component employing some vertices from the previous layers). It is
653 determined by the respective mask, and the corr. sub-solution from the previous layer whose combination
es  yields the minimum value of s for some pair (lo,un) .
655 // If the current layer mask j produces (lo,un) pair with values s = s, and ¢ = ¢, then we have two cases (i)
6 There is no entry corr. (lo,un) and j. Here we just add (lo,un) and j with corr. s and ¢. (ii) There is an
o7 entry corr. (lo,un) and j with s = s, and ¢ = ¢, then
658 a) if s, = s, then cy < ¢y + cg;
659 b) if sy > s, then sy < sg;¢y < ca5.
660 c) if s, < s; then no update’is required.
o61 for (i =0,...,2%F — 1) do //for layer 1
662 Initialize soly; < (lo,un,r); r < (m, cardinality(i), 1)
663 end for
664 for (p = 2,...,q) do //for layers 2 through ¢
665 for (j =0,....28 —1) do  //j: current layer mask
666 for (v =0,...,n0. of (lo,un) pairs) do // Of soly
667 If 7 dominates the nodes of un of solg, then continue.
668 If every component of lo of soly, has an edge to any node in j then continue.
669 Compute the new component layout using mask j and layout lo.
670 for (x = 0,..., size of r corr. (I,u)) do // No. of triples in r
671 Compute the new mask of the undominated vertices using masks j
672 of current layer and m corresponding to z-th triple of solg,.
673 Compute the minimum cardinality of the sub-solution corresponding to
674 mask j for the current layer using s of the z-th triple of solg,.
675 The count of the newly computed sub-solution will be equal to ¢
676 of the z-th triple corresponding to mask m.
677 If component layout lo and the undominated mask un that are computed corr. j
678 do not exist in solj, then insert the tuple (lo,un,r) , into sol;
679 where 7 has a single triple whose mask is j.
680 If the (lo,un) pair was already generated by j and a previous mask of the
681 previous layer, then if needed update the minimum cardinality
682 and the corresponding count.
o83 Else, insert the new triple (m, s, c) for the corresponding (I, %) pair in sol;.
684 end for

685 end for
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686 end for
687 end for
688 best < inf, sum < 0
689 Consider the values of sol; in layer q.
690 Here the component layout can be ignored as, an entry would mean that it forms a connected component.
601 For a solution to be considered, the undominated mask must be 0.
w2 for (i = 0,...,n0. of (lo,un) pairs) do // for soly
693 Identify best, the cardinality of the optimal solution.
604 end for
695 for (i = 0,...,n0. of (lo,un) pairs) do // size of soly
696 Compute sum, the count of such optimal solutions.
697 end for
ws  return(best, sum)
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