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Abstract: The independent set, IS, on a graph G = (V ,E) is V ∗ ⊆ V such that no two vertices in V ∗ have1

an edge between them. The MIS problem on G seeks to identify an IS with maximum cardinality, i.e. MIS.2

V ∗ ⊆ V is a vertex cover, i.e. VC of G = (V ,E) if every e ∈ E is incident upon at least one vertex in V ∗.3

V ∗ ⊆ V is dominating set, DS, of G = (V ,E) if ∀v ∈ V either v ∈ V ∗ or ∃u ∈ V ∗ and (u, v) ∈ E. The MVC4

problem on G seeks to identify a vertex cover with minimum cardinality, i.e. MVC. Likewise, MCV seeks a5

connected vertex cover, i.e. VC which forms one component in G, with minimum cardinality, i.e. MCV. A6

connected DS, CDS, is a DS that forms a connected component in G. The problems MDS and MCD seek7

to identify a DS and a connected DS i.e. CDS respectively with minimum cardinalities. MIS, MVC, MDS,8

MCV and MCD on a general graph are known to be NP-complete. Polynomial time algorithms are known for9

bipartite graphs, chordal graphs, cycle graphs, comparability graphs, claw-free graphs, interval graphs and10

circular arc graphs for some of these problems. We introduce a novel graph class, layered graph, where each11

layer refers to a subgraph containing at most some k vertices. Inter layer edges are restricted to the vertices in12

adjacent layers. We show that if k = Θ(log | V |) then MIS, MVC and MDS can be computed in polynomial13

time and if k = O((log | V |)α), where α < 1, then MCV and MCD can be computed in polynomial time. If14

k = Θ((log | V |)1+ε), for ε > 0, then MIS, MVC and MDS require quasi-polynomial time. If k = Θ(log | V |)15

then MCV, MCD require quasi-polynomial time. Layered graphs do have constraints such as bipartiteness,16

planarity and acyclicity.17

Keywords: NP-complete, graph theory, layered graph, polynomial time, quasi-polynomial time, dynamic18

programming, independent set, vertex cover, dominating set.19

1 Introduction20

The maximum independent set problem, the minimum vertex cover problem and the minimum dominating21

set problem are well studied problems on graphs with myriad applications. All of these problems are shown to22

be NP-complete. Thus, identifying more general graph classes that admit polynomial solutions to these problems23

is of interest.24

The maximum independent set problem on a graph G = (V ,E) seeks to identify a subset of V with25

maximum cardinality such that no two vertices in the subset have an edge between them. If V ∗ ⊆ V is a26

maximum independent set or MIS for short of G then ∀u, v ∈ V ∗, (u, v) /∈ E. In this article G is undirected, so,27

an edge (u, v) is understood to be an undirected edge.28

Karp proposed a method for proving problems to be NP-complete [17]. The maximum independent set29

problem on a general graph is known to be NP-complete [15]. Certain classes of graphs admit a polynomial30

time solution for this problem. Such algorithms are known for trees and bipartite graphs [1], chordal graphs [2],31

cycle graphs [3], comparability graphs [6], claw-free graphs [7], interval graphs and circular arc graphs [8]. The32
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maximum weight independent set problem is defined on a graph where the vertices are mapped to corresponding33

weights. The maximum weight independent set problem seeks to identify an independent set where the sum of34

the weights of the vertices is maximized. On trees, the maximum independent set problem can be solved in35

linear time [10]. Thus, for several classes of graphs MIS can be efficiently computed.36

Hsiao et al. design an O(n) time algorithm to solve the maximum weight independent set problem on an interval37

graph with n vertices given its interval representation with sorted endpoints list [12]. Several articles improved38

the complexity of the exponential algorithms that compute an MIS on a general graph [5,9]. Lozin and Milanic39

showed that MIS is polynomially solvable in the class of S1,2,k-free planar graphs, generalizing several previously40

known results where S1,2,k is the graph consisting of three induced paths of lengths 1, 2 and k, with a common41

initial vertex [13].42

The minimum vertex cover problem on G seeks to identify a vertex cover with minimum cardinality, i.e.43

minimum vertex cover or MVC. If V ∗ ⊆ V is MVC of G then ∀e = (u, v) ∈ E,u ∈ E ∨ v ∈ E. In this article G44

is undirected, so, an edge (u, v) is understood to be an undirected edge. The problems minimum dominating set,45

i.e MDS and the minimum connected dominating set i.e. MCD seek to identify a DS and a CDS respectively with46

minimum cardinalities. The MVC, MDS and MCD problems on a general graphs are known to be NP-complete47

[15]. Garey and Johnson showed that MVC is one first NP-complete problem [15]. In connected vertex cover48

problem i.e. MCV, given a connected graph G, a connected vertex cover i.e. a CVC with minimum cardinality is49

sought. Garey and Johnson proved that MCV is NP-complete [18]. For trees and bipartite graphs the minimum50

vertex cover can be identified in polynomial time [20,21]. Garey and Johnson proved that MCV problem is51

NP-hard in planar graphs with a maximum degree of 4 [15]. Li et. al. proved that for 4-regular graph MCV52

problem is NP-hard [19]. It is shown that for series-parallel graphs, which are a set of planar graphs, it shown53

that minimum vertex cover can be computed in linear time [23].54

Garey and Johnson showed that MDS on planar graphs with maximum vertex degree 3 and planar graphs55

that are regular with degree 4 are NP-complete [15]. MCD is NP-complete even for planar graphs that are56

regular of degree 4 [15]. Bertossi showed that the problem of finding a MDS is NP-complete for split graphs and57

bipartite graphs [22]. Cockayne et. al. proved that MDS in trees can be computed in linear time [4]. Haiko58

and Brandstadt showed that MDS and MCD are NP-complete for chordal bipartite graphs [24]. Ruo-Wei et. al.59

proved that for a given circular arc graph with n sorted arcs, MCD is linear in time and space [25]. Fomin et. al.60

propose an algorithm with time complexity faster than 2n for solving connected dominating set problem [26].61

The term layered graph has been used in the literature. The hop-constrained minimum spanning tree62

problem related to the design of centralized telecommunication networks with QoS constraints is NP-hard63

[14]. A graph that they call a layered graph is constructed from the given input graph and authors show that64

hop-constrained minimum spanning tree problem is equivalent to a Steiner tree problem. In software architecture65

the system is divided into several layers, this has been viewed as a graph with several layers. In this article we66

define a new class of graphs that we call layered graphs and design an algorithm to identify the corresponding67

minimum vertex cover.68

2 Layered Graph69

Consider a set of undirected graphs G1,G2, . . . Gq on the corresponding vertex sets V1,V2, . . . Vq and the70

edge sets E1,E2, . . . Eq i.e. Gi = (Vi,Ei). Consider a graph G that is formed from ∀i Gi with special additional71

edges called inter-layer edges denoted as Eij where j = i+ 1 and Eij denotes the edges between Vi and Vj . We72

call such a graph a layered graph denoted as LG i-th layer is Gi. Note that for any given i, Eij where j = i+ 173

can be φ and ∀l/∈{i−1,i+1}Eil = φ. Every vertex within a given layer gets a label from (1, 2, 3, . . . , k). Thus,74

Vi ∈ {Vi1,Vi2, . . . Vik}. Note that Vix is the vertex number x in layer i. However, in layer i the vertex number x75

need not exist. Further, if (Vix,Vi+1 y) ∈ Ei i+1 then it follows that vertex x is present in layer i and vertex y is76

present in layer i+ 1.77

We define the following restrictions on a layered graph. Several of the primary restrictions can be combined.78

Please see Figure 1.79
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• The size of all graphs is restricted such that | Vi |≤ k then a k-restricted layered graph i.e. LGk is obtained.80

LGqk denotes an LG with q layers. LGn,q
k denotes an LGqk with n vertices.81

• If ∀t for Vit the only permissible edges are (Vit,Vjt) where j ∈ {i− 1, i+ 1} then a linear layered graph82

i.e. LLG is obtained. LLGk denotes an LLG that is k-restricted. LLGqk denotes an LLGk with q layers.83

LLGn,q
k denotes an LLGqk with n vertices.84

• If every Gi is required to be a connected component then a single component layered graph i.e. SLG is85

obtained.86

• If G is required to be a connected component then a connected layered graph i.e. CLG is obtained.87

This article designs algorithms for LGk where every vertex within a given layer gets a label from {1, 2, 3, . . . k}.88

The results are applicable for any restrictions of LGk like LLG, SLG etc.. Consider a layered graph G whose89

first a layers and the last b layers do not have any edges. The graph is not a CLG, however, a MCV of G is90

same as the MCV of the subgraph where the first a and the last b layers are removed. Further, if every layer has91

at least one edge then MCV also requires a CLG. MCD is well defined only for CLG because it must dominate92

all vertices.93

The recursive process of generating a hypercube of dimension n+ 1 i.e. Hn+1 from two copies of Hn consists94

of creating the inter-Hn edges ∀i (v1i, v2i) where v1i and v2i are the corresponding vertices from the first copy of95

Hn and the second copy of Hn respectively. Thus, the inter-layer edges of LLG are in fact akin to a subset of96

inter-Hn edges because an inter-Hn edge exists between every pair of corresponding edges. However, in an LLG97

the successive layers need not have all allowed edges; moreover, | Vi | and | Vi+1 | need not be identical.98

The complete graph on k vertices, a clique on k vertices, is denoted by Kk. Consider a graph G formed99

from several copies of Kk say G1,G2, . . . Gq where in addition to the edges that exist in each of Gi an edge is100

introduced between every pair u, v: u ∈ Gi and v ∈ Gi+1. We denote this particular graph G that has q layers101

with Kq
k . The class of k-restricted layered graphs are in fact subgraphs of Kq

k . Thus, we call Kq
k as full LGqk.102

Likewise, a LLG that is defined on q cliques, where for any i, i+ 1 for all values of l an edge is introduced103

between vertex l of layer i and vertex l of layer i+ 1, is called as a full LLGqk. The number of layers in LGk i.e.104

q is bounded by n/k ≤ q ≤ n.105

A subgraph of G induced by vertices u1,u2, . . . ui consists of all vertices u1,u2, . . . ui and all the edges106

restricted to them. We design algorithms that compute the cardinalities of MVC, MIS and MDS of any subgraph107

of Kq
k i.e. LGn,q

k in polynomial time when k = O(logn) and the cardinalities of MCV and MCD in polynomial108

time when k = O((logn)α), α < 1. Additionally, these algorithms report the corresponding numbers of MISs,109

MVCs, MDSs, MCVs and MCDs in LGn,q
k .110

3 Algorithm111

Consider a layered graph with q layers i.e. LGn,q
k with layers (1, 2, 3, . . . , q). We design a generic dynamic112

programming algorithm for all the problems. However, certain restrictions exist corresponding to the problem at113

hand. The specific details pertaining to each problem are elucidated along with its solution. For example, MCD114

is meaningful only when the underlying graph is connected; i.e. the input graph is restricted to CLG.115
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Figure 1. From left to right: 1a) LG3,12
4r . 1b) LLG3,10

4r . 1c) SLG3,11
4r . 1d) SLLG3,11

4r . In single component
graphs, each layer has exactly one connected component. The vertices are labeled 1, 2, 3, 4 within the given
layer. The edges between the vertices of a given layer are shown with thick lines whereas an e ∈ Ei i+1 is
shown with a dotted line. The graph is labeled. In a linear graph the edges ∈ Ei i+1 connect the vertices with
identical labels from adjacent layers.

We denote the vertices chosen in a particular layer with a k-bit variable that we call as mask. The pth bit116

of the mask is set to one to include pth vertex. Otherwise, the bit is set to zero and the vertex is excluded. Let117

S =
⋃q
i=1 V

∗
i be a candidate solution for a problem where V ∗i denotes the set of nodes that are chosen from layer118

i. The candidate sub-solution for layer i is denoted as csi. For layers 1 . . . i, we maintain a combined candidate119

sub-solution denoted as ccsi. Likewise, csi,j and ccsi,j each denote instances where the vertices chosen from layer120

i are denoted by mask j. We store only the cardinality of the best options; such cardinality is called an optimum121

value. This is stored in the variable soli,j and the corresponding number of solutions that yield the optimum122

value is stored in counti,j . In this article, an optimal solution is a solution that corresponds to the optimum123

value. We say that csi,j and ccsi−1,l are compatible if csi,j
⋃
ccsi−1,l ∈ ccsi,j . That is the union of csi,j and124

ccsi−1,l yields a ccs for the first i layers. Note that compatibility is determined by csi,j and csi−1,l ∈ ccsi−1,l125

and the vertices chosen by ccsi−1,l in the earlier layers is irrelevant. This is a key feature.126

3.1 Input127

The input consists of LGn,q
k that is specified in terms of M1, . . . ,Mq and I1, . . . , Iq−1 where Mi is the 0-1128

adjacency matrix for layer i i.e. Gi. Ii is the 0-1 adjacency matrix for Ei,i+1. The rows 1, 2, . . . k of Ii correspond129

to the vertices Vi1,Vi2, . . . Vik and the columns 1, 2, . . . k of Ii are the vertices Vi+1 1,Vi+1 2, . . . Vi+1 k. It must130

be noted that for a linear graph, Ii can just be a k dimensional vector and the corresponding computation is less131

expensive where Ii[a] = 1 ⇐⇒ an edge between a ∈ Vi, a ∈ Vi+1 exists. The adjacency matrix Mi, for layer i,132

is a matrix of dimensions k× k, which means it requires O(k2) space. Similarly, each of Gi also requires O(k2)133

space. Therefore, the total space required for the input graph would be O(nk), since each layer requires O(k2)134

space and there are O(n/k) layers.135

The boolean valued function compatible is called to determine whether candidate sub-solutions (of the136

current layer and the subgraph induced up to the previous layer) can be combined; here the layer number i is137

implicit. For each mask j of a given layer i a function valid(i, j) determines if j is a feasible option for layer i.138

The helper function cardinality(j) returns the number of bits that are set in the binary representation of some139
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mask j.140

All algorithms consist of the following sequence of computational tasks.141

• Repeat (i) and (ii) for all layers 1 . . . q− 1.142

• (i) Feasible: ∀j (if valid(i, j)) then go to step(ii).143

• (ii) Extension: If j and l are compatible then store the cardinality of csi,j
⋃
ccsi−1,l in soli,j and the count144

of ccsi,j in counti,j . Corresponding to each csi,j if 2k additional variables are present then update them145

(e.g. DS problems).146

• (iii) Summarize: At layer q : execute (i) and (ii). Identify the optimum cardinality among ∀jsolq,j and the147

corresponding count.148

Each problem has specific characteristics. The compatibility criteria and other specifics for each of the149

problems is elucidated below.150

3.2 MIS151

Consider the structure of a MIS on LGn,q
k . Say, V ∗ =

⋃q
j=1 V

∗
j where V ∗j are the vertices in MIS from layer152

j. Clearly, V ∗j must be an IS. Let G1 be the subgraph of LGn,q
k induced by V 1 =

⋃i
j=1 Vj and let G2 be the153

subgraph of LGn,q
k induced by V 2 =

⋃q
j=i+1 Vj . Consider the IS of G. IF M1 =

⋃i
j=1 V

∗
j and M2 =

⋃q
j=1+1 V

∗
j154

then M1 and M2 are ISs. Let the set of edges crossing the cut C = (M1,M2) be EC . It follows that M1
⋃
M2155

is an IS of G with cardinality |M1 | + |M2 | when there is no edge crossing C. Only edges in Ei i+1 need to be156

considered. Thus, the cardinality of an MIS of LGn,q
k = max(∀EC=φ |M1 | + |M2 |).157

• feasible(j): the mask j must denote an IS for Gi.158

• compatible(j, l): the union of two ISs must be an IS.159

• Extension: if(cardinality(j) + soli−1,l > soli,j) soli,j ← cardinality(j) + soli−1,l.160

• Summarize: Let opt ← max(∀jsolq,j);count ← 0; ∀j if(solq,j = opt)count count+ countq,j ; Return161

(opt, countq,j))162

3.3 MVC and MCV163

Consider the VC V ∗ =
⋃q
j=1 V

∗
j of LGn,q

k where V ∗j denotes the set of vertices in V ∗ from layer j. Clearly,164

V ∗j is a VC for layer j. V ∗j depends only on V ∗j−1 and V ∗j+1.165

Consider two adjacent layers p and p+ 1. V ∗p
⋃
V ∗p+1 must cover all inter-layer edges between layers p166

and p+ 1. Specifically, V ∗ =
⋃p+1
j=1 V

∗
j must cover all edges in the corresponding induced subgraph including167

Ep p+1. Similar constraints hold for MCV. Additionally the induced subgraph of V ∗ must be a single connected168

component. The time and space complexity analysis for both the problems is mentioned in later sections.169

Clearly each layer must choose a mask that is a VC. In the case of MCV, when considering a mask j for170

the current layer i the following cases exist.171

(a) The previous layer mask l corresponds to one component.172

(b) l corresponds to more than one component.173

Case(a): For layer i the mask j is infeasible if no vertex from j connects with l or all the edges in Ii are not174

covered. Otherwise, it is feasible.175

If at least one edge exists across j and l: (i) j is a single connected component then the result is also a single176

component (consisting of all chosen vertices).177

(ii) j has more than one connected component and all of them connect to l then the result is also a single178

component.179

(iii) j has more than one connected component and only some of them connect to l then the result consists180

of many components. All components from j connected to l become one component all the rest are separate181

components.182

(iv) Thus, for a j we store all partitions of vertices where when j is chosen and the current components are183
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denoted by the sets in a partition the sub-solution with minimum cardinality is chosen.184

(v) Thus, for each mask j we have at most Bell Number(k) solutions stored. When the mask x is chosen for the185

last layer then the vertices of the mask must be connected to the components of the previous layer and yield a186

single component.187

• feasible(j): the mask j must denote a VC for Gi. For MCV j must be connected.188

• compatible(j, l): the union of two VCs must be a VC for edges in Gi,Gi+1 and Ei,j .189

• Extension: if(cardinality(j) + soli−1,l < soli,j) soli,j ← cardinality(j) + soli−1,l. For MCV masks j and l190

must have at least one edge in between.191

• Summarize: Let opt ← min(∀jsolq,j);count ← 0; ∀j if(solq,j = opt)count count+ countq,j ; Return192

(opt, count)193

3.4 MDS and MCD194

Let the MDS on LGn,q
k say V ∗ =

⋃q
j=1 V

∗
j where V ∗j are the vertices in this MDS from layer j. Clearly, V ∗j195

need not be a DS of layer j because the Vj can be dominated by any subset of V ∗j−1
⋃
V ∗j

⋃
V ∗j+1. It follows that196 ⋃p+1

j=1 V
∗
j must dominate all vertices in

⋃p
j=1 Vj . Further, V ∗ which is obtained by V ∗ =

⋃q−1
j=1 V

∗
j

⋃
V ∗q must197

dominate
⋃q
j=1 Vj . A vertex that is not dominated is undominated.198

Consider mask = j in layer i. Say, csi,j
⋃
ccsi−1,l dominates layer i− 1. However, this particular union of199

vertices does not dominate some vertices in layer i. The number of such choices is 2k; each choice is denoted200

by a k-bit variable that we call mask, here, a mask of exclusion. Further, when one processes layer i+ 1 this201

information is significant. We show that O(2k) triples stored for each mask of a given layer suffice to compute202

MDS of LGk. For a chosen mask j in layer i it suffices to store 2k triples of the form (u, s, c). Here u is the203

mask of the vertices that are not dominated in layer i, s is the cardinality of the vertices chosen so far and c is204

the number of choices corresponding to un for a particular j in layer i.205

In the case of MCD, it suffices to store O(Bk2k) triples of the form (lo,un, r) where Bk is the k-th Bell206

Number. This corresponds to O(Bk) component layouts lo for a mask j and O(2k) masks un of the vertices207

that are not dominated in layer i, and O(2k) triples r of the form (m, s, c) for every unique pair of (lo,un).208

Here, m is the mask of the current layer that produced the respective (lo,un) pair i.e. mask j, while s and c209

are same as that for MDS, corresponding to mask m and pair (lo,un). The particular mask in the previous210

layer that is the cause for a particular triple in the current layer need not be carried forward. So, for MDS soli,j211

indicates an array of 2k triples. As for MCD it indicates O(Bk2k) triples where O(2k) triples are associated212

with each of the O(Bk2k) unique pairs of (lo,un). Also, we use k = O(logn) for MDS while k = O(logn)α,213

α < 1, for MCD, so that the algorithm runs in polynomial time.214

Consider the following analysis for MDS. Let mask j be chosen in layer i, it can potentially be combined215

with every mask ( O(2k) masks) of the previous layer. Thus, potentially (O(2k)) triples need be stored. Further,216

the total number of triples of the form (un, s, c) is Ω(n.2k) because un can potentially assume any of 0 . . . 2k − 1,217

s is O(n) and c can in fact be exponential in n
k . Here we make the following critical observations.218

• Let the chosen mask for layer i is j. When all the compatible vertex sets of the previous layer are considered219

then let the resultant triples for the choice of j in layer i be set S.220

• In S for any two triples with the same mask we need only retain the triples with the least size. The other221

triples cannot lead to an optimal solution.222

• If two triples have the same mask and the minimum size then they can be combined into one triple where223

the respective counts are added.224

• Thus, only 2k triples suffice for a chosen mask for layer i. Which implies 22k triples suffice ∀j csi,j . We225

store the information of only two layers. Thus, the algorithm needs O(k22k) space. This is in addition to226

the space required by the input graph, which is O(nk). For k = O(logn), O(k22k) is the dominating term,227

so the space complexity is O(k22k).228

• Thus, for a chosen mask for layer i potentially 22k triples of previous layer must be processed. That is, for229

all masks of layer i, a total of 23k triples must be processed.230
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• Consider the mask j in layer i and mask l in layer i− 1. Recall that there are 2k triples stored corresponding231

to mask l in layer i− 1. All the vertices that are covered by the combination of j and l in layer i− 1232

say A and not covered in layer i say B can be computed in O(k2). This needs to be computed only233

once. Subsequently, for each triples stored corresponding to l in layer i− 1 we need only check if the234

undominated vertices are a subset of B in O(k) time. Thus, O(k2k) is the dominating term in the time235

complexity yielding O(k22k) for all masks of the previous layer. So, for all masks of the current layer the236

time complexity is O(k23k). Thus, the time complexity of the algorithm is O(n
k
k23k) = O(n23k).237

Similar constraints hold for MCD. Additionally the induced subgraph of V ∗ must be a single connected238

component. Thus, ∀p
⋂
V ∗p is connected. We carry forward the existing connected components and eventually239

when the final layer is processed all the components must be connected. The MCD algorithm is explained in240

detail in Theorem 4 along with time and space complexity analysis.241

• feasible(j): For MCD j must be connected. For MDS any j is valid.242

• compatible(j, l): the union must dominate all vertices of Vi−1. For MCD masks j and l must have at least243

on edge in between.244

• Extension: Performed as per critical observations listed above. The choice of the final layer must ensure245

that the final layer is dominated.246

• Summarize: Let opt ← min(∀j∀dsizeq,j,d);count ← 0; ∀j∀d if (sizeq,j,d = opt) then count ← count+247

ccountq,j,d; Return (opt, count)248

The function compatible receives two masks denoting chosen vertices from layers i and i+ 1. If the vertices in249

layer i+ 1 dominate the so far undominated vertices in layer i then the function returns true. Otherwise, it250

returns false.251

3.5 Algorithm Compatible252

Algorithm Compatible253

1: Input: LGk, j, l, and I. //The function call: compatible(j, l). l: Mask for layer i.254

2: Output: 0 (incompatible) or 1 (compatible). //j: Mask for layer i + 1. I denotes matrix for Ei i+1.255

3: // bitc(i) returns true if bit c is set in i else returns false.256

257
4: Case MIS: // Input: two valid MISs of two adjacent layers258

5: if independent(j, l) then // independent(j, l): for any a, b : bita(l) and bitb(j):259

6: return 1; //if I [a][b] = 1 return 0; otherwise return 1; O(k2) algorithm.260

7: else261

8: return 0; //∃ a pair of vertices across the layers joined with an edge.262

9: end if263

264
10: Case MVC: // Input: two VCs of two adjacent layers265

11: if cover(j, l) then // cover(j, l): ∀a,b where I [a][b] = 1: bita(l) ∨ bitb(j) = 1266

12: return 1; // then return 1; otherwise return 0; O(k2) algorithm.267

13: else268

14: return 0;269

15: end if270

271
16: Case MCV: // Input: two masks of two adjacent layers; need not be MCVs of their respective layers.272

17: if ccover(j, l) then // ccover(j, l): ∀a,b where I [a][b] = 1: bita(l) ∨ bitb(j) = 1273

18: return 1; // and ∃c,d : I [c][d] = 1∧ bitc(l) ∧ bitd(j)274

19: else // then return 1; otherwise return 0; O(k2) algorithm.275

20: return 0;276

21: end if277

278
22: Case MDS: // Input: two masks of two adjacent layers,279

23: if dom(j, l) then // dom(j, l): D ← csi,l
⋃

csi+1,j
⋃

Adj(csi,l)
⋃

Adj(csi+1,j)280
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24: return 1; // i < q− 1: if Vi ⊆ D then return 1; otherwise return 0;281

25: else // i = q− 1: if Vi

⋃
Vi+1 ⊆ D then return 1; otherwise return 0;282

26: return 0; //Vi or Vi

⋃
Vi+1 is not dominated. O(k2) algorithm.283

27: end if // Adj(V ) is the set of all vertices neighboring any vertex in V284

285
28: Case MCD: // Input: two masks of two adjacent layers,286

29: // ∃c,d : I [c][d] = 1∧ bitc(l) ∧ bitd(j)287

30: if dom(j, l) then // dom(j, l): D ← csi,l
⋃

csi+1,j
⋃

Adj(csi,l)
⋃

Adj(csi+1,j)288

31: return 1; // i < q− 1: if Vi ⊆ D then return 1; otherwise return 0;289

32: else // i = q− 1: if Vi

⋃
Vi+1 ⊆ D then return 1; otherwise return 0;290

33: return 0; //Vi or Vi

⋃
Vi+1 is not dominated. O(k2) algorithm.291

34: end if // Adj(V ) is the set of all vertices neighboring any vertex in V292

3.6 Algorithm Generic Optimum293

The algorithms for MIS, MVC and MDS problems on LGn,q
k are similar while those for MCV and MCD294

require additional processing related to connected components. We give a generic dynamic programming based295

algorithm for both sets of problems. Some specific instances are shown in the Appendix.296

Initialization: ∀i sol0i = sol1i = 0; ∀i count0i = count1i = 0; solij : The optimum value (of IS, VC, MCD etc.)297

up to layer i where the chosen vertices of the layer i are given by the binary value of j. countij : the number of298

ways the jth mask in layer i yields the corresponding optimum value.299

Algorithm Generic Optimum300

Input: LGn,q
k301

Output: The cardinality and corresponding count for the respective problem.302

for (i = 0, ..., 2k − 1) do303

if valid(1, i) then //for layer 1304

count0i = 1; sol0i = cardinality(i); // For all valid masks set their count305

end if306

end for307

for (i = 2, ....q) do //For layers 2 through maximum308

for (j = 0, ....2k − 1) do //For all masks of current layer309

Compose larger sub-solutions by considering all compatible masks of the310

previous layer and any accompanying information.311

end for//Masks of previous layer312

end for//For all layers313

The current layer being processed is the final layer.314

best← 0; sum← 0;315

for (i = 0, ..., 2k − 1) do316

Identify best, the cardinality of an optimal solution.317

end for318

for (i = 0, ..., 2k − 1) do319

Compute sum, the count of optimal solutions.320

end for321

return(best, sum)322

4 Correctness and complexity323

The Algorithm Generic Optimum when adapted to a specific problem, say MVC, is referred to as Algorithm324

MVC. The correctness is shown for MIS, MVC and MCD problems. The time complexities for MIS, MVC, and325

MDS are respectively O(nk22k), O(nk22k) and O(n23k), where k = O(logn), and the space complexities are326

O(nk), O(nk) and O(k22k) respectively. For MCV and MCD problems, the time complexity is O(n1+ε) for any327

ε > 0, where the number of vertices in a layer is k = O((logn)α) for α < 1. The space complexity is O(nk) for328
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MCD and MCV. The analysis is given for MVC and MCD. The proofs of correctness for the remaining problems329

are similar. The time complexity for MDS was presented earlier.330

Theorem 1. Algorithm MIS correctly computes the MIS on LGn,q
k .331

Proof. Let G = (V ,E) be a graph and let V be partitioned into V 1,V 2. Further let I1, I2 be the ISs of the332

graphs induced by V 1,V 2 respectively and let I = I1
⋃
I2. If you consider the cut C = (I1, I2) on I where EC333

is the set of edges crossing the cut then it follows that I is an IS of G if EC = φ. Further the cardinality of an334

MIS of G is max(∀EC=φ | I1 | + | I2 |). It is possible that either | I1 |= 0 or | I2 |= 0.335

Let G be LGn,q
k . Let G1 be the subgraph of LGn,q

k induced by V 1 =
⋃i
j=1 Vj and let G2 be the subgraph336

of LGn,q
k induced by V 2 =

⋃q
j=i+1 Vj . Consider the IS of G. Let I1 and I2 be the independent sets of G1 and337

G2 respectively. Let the set of edges crossing the cut C = (I1, I2) be EC . It follows that I = I1
⋃
I2 is an IS of338

G with cardinality | I1 | + | I2 | when there is no edge crossing C. Only edges in Ei i+1 need to be considered.339

Thus, the cardinality of an MIS of LGn,q
k = max(∀EC=φ |M1 | + |M2 |). When the last layer is processed the340

cardinalities of ISs of subgraphs induced by V and V − Vq both are known. Further, these ISs have maximum341

cardinalities with respect to the vertices chosen in layers q− 1 and q respectively. The theorem follows. Likewise,342

countij gives the number of ways an independent set of maximum cardinality that can be formed when the343

vertices chosen in the layer i are given by j. Thus, countqj corresponding to the maximum value of solqj yields344

the total number of MISs.345

Theorem 2. Algorithm MVC correctly computes the MVC on LGn,q
k .346

Proof. Consider the structure of MVC on LGn,q
k . Let G1 be the subgraph of LGn,q

k induced by V 1 =
⋃i
j=1 Vj347

and let G2 be the subgraph of LGn,q
k induced by V 2 =

⋃q
j=i+1 Vj . Consider a VC of G. Let M1 and M2 be348

the vertex covers of G1 and G2 respectively. Let the set of edges crossing the cut C = (M1,M2) be EC . It349

follows that the cardinality of a VC of G is |M1 | + |M2 | when every edge crossing C is covered by either M1350

or M2. Note that the only edges from Ei i+1 = EC can go across the cut. Thus, the cardinality of MVC of351

LGn,q
k = min(|M1 | + |M2 |) for any such cut. When the last layer is processed this property is ensured. The352

theorem follows. Similarly, countij gives the number of ways an vertex cover of minimum cardinality that can353

be formed when the vertices chosen in the layer i are given by j. Thus, countqj corresponding to the minimum354

value of solqj yields the total number of MVCs.355

Theorem 3. Algorithm MVC on LGn,q
k runs in polynomial time in n when k = O(logn). The space required is356

O(nk).357

Proof. We presume that Ii, the 0-1 adjacency matrix for the subgraph induced by Vi
⋃
Vi+1 where the edges358

are restricted to Ei i+1 is given. Likewise, we assume that the 0-1 adjacency matrix Mi for each of Gi are given.359

Recall that LGn,q
k was formed from G1,G2, . . . Gq. For a linear graph, Ii is just a k−dimensional vector where if360

bit j is set then there is an edge between Vij and Vi+1 j .361

• The initialization step requires O(2k) time.362

• Given a mask for layer i it can be determined if it is a valid VC in O(k2) time with Mi. That is, for any363

two Mi[a][b] that is set the mask should have either bit a or bit b set.364

• Given two masks mask1,mask2 for layers i, i+ 1 respectively and Ii it can be directly determined if their365

union is a VC of a subgraph induced by
⋃i+1
i Vj of LGn,q

k in O(k2) time.366

• In order to determine the MVC up to layer i whose mask is j; j must be checked for compatibility with all367

masks of the previous layer. Thus, O(k22k) time is required. For all masks of the current layer O(k222k)368

time is required. For all layers, the time required is maximized when each layer has k vertices yielding369

O(
n

k
k222k) = O(nk22k) time.370
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The time complexity is clearly exponential in k; however, if k = O(1) the time complexity is O(n). The time371

complexity remains polynomial when k = O(logn); specifically O(n3 logn) when k = logn. The additional372

space required is O(k2k) because for two layers we store 4.2k mask and count variables each of size k. The373

space required is O(nk) for storing the graph and an additional space of O(k2k) that is needed by the algorithm.374

When k = O(logn) the space complexity is O(nk).375

Lemma 1. Let 0 ≤ α < 1.0 where α ∈ R+. If x = (logn)α then x! = O(nε), for any ε > 0.376

Proof.
Let f(n) = (logn)α, α < 1

Let h(n) = nε, ε > 0

Now, consider f(n)!
⇒ f(n)! = (logn)α!

Taking log on both sides,
log(df(n)!e) = log 1 + log 2 + · · ·+ log(d(logn)αe)

=

d(logn)αe∑
x=1

log x

≈
∫ (logn)α

1
log xdx

= [x log x− x](logn)α
1

= α(logn)α log logn− (logn)α + 1
≈ (logn)α(α log logn− 1)
= g(n), say

Assume that,
g(n) = O(ε logn)

⇒ (logn)α(α log logn− 1) ≤ cε logn

⇒ (α log logn− 1)
(logn)1−α ≤ cε

Let 1− α = β,β > 0 and cε = γ

⇒ (α log logn− 1)
(logn)β

≤ γ

Let logn = x

⇒ (α log x− 1)
(x)β

≤ γ

⇒ (α log x− 1) ≤ γ(x)β

We know that logarithmic functions grow slower than polynomial functions.

So, the above inequality holds which means our assumption was correct.
⇒ (logn)α(α log logn− 1) = O(ε logn)
∴ ((logn)α!) = O(nε) α < 1, ε > 0

Hence, proved.377

Lemma 2. If x = (logn) then x! is quasi-polynomial and (x!) = O(nlog logn).378

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 May 2018                   doi:10.20944/preprints201805.0012.v1

http://dx.doi.org/10.20944/preprints201805.0012.v1


11 of 20

Proof.
Let f (n) = log n

⇒ f (n!) = log(n!)

From Stirling’s Approximation, we have
⇒ log(n!) = θ(n logn)

⇒ (log(logn)!) = θ(logn log logn)

⇒ ((logn)!) = 2θ(logn log logn)

This can be written as,
((logn)!) = nlog logn

⇒ (f(n)!) = nlog logn

The above result is quasi-polynomial.

Hence, proved.379

Lemma 3. If k = Θ((logn)1+ε), for any ε > 0 then Algorithm MIS, Algorithm MVC and Algorithm MDS run380

in quasi-polynomial time.381

Proof. The time complexities of all these algorithms can be written as O(f(n)g(k)2ck) where f(n) = Θ(n),382

g(k) = O(k) and c = O(1). Thus, when k = Θ((logn)1+ε) for ε > 0 the complexities for all the algorithms will383

be quasi-polynomial.384

Theorem 4. Algorithm MCD correctly computes the cardinality of a connected minimum dominating set for385

LGk with a time complexity of O(n1+ε), for any ε > 0 when k = O(logn)α and α < 1. The space complexity of386

the algorithm is O(nk).387

Proof: First, we show that the algorithm correctly computes the cardinality of a connected minimum dominating388

set. Consider the structure of CDS on a connected graph G. Let V be arbitrarily partitioned into V 1,V 2 where389

both | V 1 |> 0 and | V 2 |> 0. Let G1 be the subgraph of G induced by V 1 and let G2 be the subgraph of G390

induced by V 2. Let M1 ⊆ V 1 and M2 ⊆ V 2 be DSs of G1 and G2. Let C be the cut (M1,M2) and let EC be391

the edges that cross this cut. Clearly M = M1
⋃
M2 is DS for G. Further, M is a CDS for G if | EC |> 0392

and M forms a connected component in G. For a given partition V 1,V 2 of V , M is a MCD if it minimizes393

|M1 | + |M2 | where M forms a connected component in G.394

Let G be a LGn,q
k in particular let G be a CLGn,q

k let V 1 =
⋃q−1
j=1 Vj and V 2 = Vq. Let G1 be the subgraph395

of G induced by V 1 and let G2 be the subgraph of G induced by V 2. Let M1 ⊆ V 1 and M2 ⊆ V 2 be DSs of396

G1 and G2 respectively. Let C be the cut (M1,M2) and let EC be the edges that cross this cut. Note that397

EC = Eq−1 q. When the algorithm processes layer q it chooses M = M1
⋃
M2 such that | M1 | + | M2 | is398

minimized where M forms a connected component in G. Thus, the theorem follows. Similarly, countij gives the399

number of ways a CDS of minimum cardinality can be formed when the vertices chosen in the layer i are given400

by j. Thus, ∀jΣcountqj corresponding to the minimum value of ∀jsolqj yields the total number of MDSs.401

Time complexity of the algorithm is analyzed below. We presume that similar prerequisites are provided as402

in Theorem 3 earlier. The steps are as below.403

• A global structure sol consisting of sol0 and sol1 corresponding to the previous and current layers is404

maintained for the whole algorithm. The final solution for the problem can be determined just by using405

information from sol0 and sol1. This structure is maintained for the whole algorithm and not for every406

layer.407
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• sol0 and sol1 each consist of a maximum of Bk2k triples of the form (lo,un, r). This corresponding to408

a maximum of Bk (kth Bell number) component layouts (lo), 2k masks, un, of undominated vertices of409

the current layer and a maximum 2k triples, r of the form (m, s, c) for every unique pair (lo,un). Here,410

m: mask of the current layer that produced the respective (component layout, undominated vertices)411

pair, s minimum cardinality of the sub-solution corresponding to mask m and pair (lo,un), c: count of s412

corresponding to mask m and pair (lo,un).413

• Throughout the algorithm, sol0 and sol1 are maintained by clearing sol0 when the current layer is processed414

and using the information of sol1 as sol0 for the next layer.415

• sol0 is initialized with the triple (lo,un, r) corresponding to 2k masks of the first layer. The initialization416

takes O(k22k).417

• A candidate sub-solution for layers 1 . . . i induces connected components in layer i that are defined in terms418

of vertices of layer i. We call this as the component layout.419

• Number of component layouts is upper bounded by Bell Number(k) or Bk, the number of ways of partitioning420

k vertices of a layer. Here k = f(n), f(n) = O(logn)α, α < 1. Bk = O(f(n)!). From Lemma 1, we know421

that f(n)! = O(nε), for any ε > 0.422

• A mask j of the current layer can be combined with a component layout for mask l of the previous layer423

to form a new component layout for the current layer. With the same mask l, j can form a new mask424

corresponding to the undominated vertices of the current layer.425

• Every such unique pair of (lo, un), where lo is component layout and un is mask of undominated vertices,426

is maintained and a list of triples r consisting of triples of the form (m, s, c) is associated with it. Here m is427

the current layer mask, s is the minimum cardinality of the sub-solution corresponding to m and c is the428

count of s. The number of such tuples (lo,un, r) is upper bounded by Bk22k, where Bk2k is the possible429

number of unique pairs of (lo,un) and 2k is the possible number of triples that can exist for each pair.430

• Starting from the i-th layer, i > 1, every 2k mask of the current layer and the tuple values from the previous431

layer are used to generate the tuples for the current layer.432

• For a unique pair (lo,un) of the previous layer, if mask j dominates the undominated vertices of mask un433

and forms a connected component with the layout lo, then we consider that a sub-solution using mask j is434

feasible. Here, a mask j and a component layout lo are considered to form a connected component if every435

component in lo has at least one edge to a node in mask j. Each such check takes O(k2) time. So, the436

total time to determine if a sub-solution with mask j is feasible is O(k2).437

• If a mask j is feasible to give a sub-solution, then it is combined with the component layout lo of the438

previous layer to form a new component layout for the current layer corresponding to mask j. This is439

performed using a DFS which takes O(k2) for the given input matrix.440

• Mask j is then combined with mask l of the previous layer corresponding to the pair (lo,un), that is under441

consideration, to form a mask for the current layer vertices that are not dominated by j or l. This takes442

O(k2) time.443

• Using the mask j of the current layer and minimum cardinality s for the pair (lo,un) of the previous layer,444

the new cardinality for the sub-solution is computed.445

• The count of the new cardinality will be same as that of c of the (lo,un) pair for the previous layer.446

• This new pair of component layout and undominated mask computed for mask j of the current layer is447

checked with the existing pairs of the current layer to determine if it is unique or not. We maintain the448

structure of the tuples such that an entry can be accessed in O(1) time, indexed by the pair (lo,un) and449

the corresponding mask m for the previous and the current layer.450

• If it is unique, the tuple value consisting of the newly computed (lo,un) pair and its corresponding triple451

consisting of the mask j, respective cardinality and the count are added as a new tuple for the current layer.452

• Consider that the current mask j produces the new pair (lo,un) with values s = sx and c = cx. If the453

new pair is not unique then there are three cases. Consider the existing entry of the (lo,un) pair and the454

corresponding j to have values s = sy and c = cy.455

(a) if sy = sx then cy ← cy + cx;456

(b) if sy > sx then sy ← sx; cy ← cx;457

(c) if sy < sx then no update is required.458
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• The above procedure is performed till the last layer where the final solution is computed from the current459

layer information corresponding to the last layer. Of all the Bk2k pairs for the current layer, a solution is460

considered to be feasible if the mask for the undominated vertices for any of the Bk component layouts is 0,461

as this would mean all the vertices are dominated. The cardinality of MCD is the minimum value among462

all the feasible solutions. The count is then computed by considering each feasible entry with the minimum463

cardinality computed above and adding its corresponding count.464

• Thus, the solution and the corresponding count of optimal solutions for MCD problem are computed.465

For the whole algorithm, we maintain the global structure as mentioned above. It consists of a maximum466

of O(Bk2k) entries corresponding to unique pairs of (lo,un) and another 2k triples for each such pair. We467

maintain this information for only the previous and the current layers. So, the space used by the data structure468

is O(Bk22k). This can be shown to be equal to O(nε), for any ε > 0, based on the proof for Lemma 1. This469

space requirement is in addition to the space required by the input graph which is O(nk). For k = O((logn)α),470

O(nk) is the dominating term compared to O(nε). So, the space complexity is O(nk). The following is the471

proof for time complexity of the algorithm.472

First, we derive an expression for the runtime of the algorithm. The initialization using the first layer473

takes O(k22k) time. For each layer after the first, the 2k masks of the current layer is combined with the Bk2k474

pairs of the previous layer. For each pair, a current layer mask is combined with a maximum of 2k masks of475

the previous layer that generated this pair. Checking the feasibility of a mask of the current layer takes O(k2)476

time. Computing the new component layout and the new undominated mask takes O(k2) time each. The477

undominated mask is calculated for 2k masks of the previous layer for each mask of the current layer. Accessing478

and updating an entry takes O(1) time as mentioned above. This is done for O(n/k) layers. So, the time479

complexity expression can be written as,480

T = O(
n

k
2kBk2k(k2 + 2kk2))

= O(
n

k
k!22k(2kk2)) ∵ (Bk = O(k!), Lemma 1)

= O(nk23kk!) (1)

If k = O(1), the time complexity becomes T = O(n). If we assume the worst case number of nodes in each481

layer, i.e. k = f(n) then the corresponding time complexity is T = O(n1+ε) as shown below.482

Let f(n) = (logn)α α < 1

Let h(n) = nγ γ > 0

From Lemma 1 we have
x! = O(nγ) for some γ > 0, where x = (logn)α

⇒ f(n)! = O(nγ) = O(h(n))

The running time of the algorithm, is given by
T = O(nk23kf(n)!)

≤ cn ∗ k ∗ 23k ∗ h(n)

≤ cn1+γ ∗ (logn)α∗23(logn)α (1) (∵ h(n) = nγ)

Consider F (n) = (logn)α ∗ 23(logn)α

Let g1(n) = nδ and g2(n) = nµ δ > 0,µ > 0
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We know that logarithmic functions grow slower than polynomial functions.
⇒ (logn)α ≤ cg1(n)

⇒ (logn)α = O(nδ)

Now, we claim that 23(logn)α ≤ cg2(n) for some α < 1, a positive real number c and n > n0, where n0 is some
positive integer

Consider the following proof.

Taking log on both sides, we get
log(23(logn)α) ≤ log(cg2(n))

⇒ 3(logn)α ≤ log c+ log g2(n)

⇒ 3(logn)α ≤ µ logn (∵ g2(n) = nµ)

Since α < 1, (logn)α < logn
⇒ 3(logn)α = O(µ logn)

⇒ 23(logn)α ≤ cnµ

Hence, we proved our claim.
∴ 23(logn)α = O(nµ)

From above we have,
F (n) = (logn)α ∗ 23(logn)α

⇒ F (n) ≤ cnδ ∗ nµ

⇒ F (n) ≤ cnδ+µ

∴ F (n) = O(nδ+µ) δ > 0,µ > 0
From (1), we get

T ≤ cn1+γ ∗ nδ+µ

≤ cn1+γ+δ+µ

We can write it as,
T ≤ cn1+ε ε = γ + δ + µ

By arbitrarily taking small values for µ, δ and γ, ε can be made a small value such that ε > 0
∴ T = O(n1+ε) ε > 0

Hence, proved. �

Theorem 5. Algorithm MCV correctly computes a connected VC of minimum cardinality for LGk with a time483

complexity of O(n1+ε), for any ε > 0 when k = O(logn)α and α < 1. The space complexity is O(nk).484

Proof. MCV algorithm is similar to MCD algorithm. A mask j of layer i must be a valid VC for layer i. The485

check takes O(k2) time additionally though the total time complexity can be proved to be same as that of MCD.486

So, the proofs of correctness and time complexity follow from the proofs for the same of the MCD algorithm.487

Hence, the time complexity is O(n1+ε) for any ε > 0 when the number of vertices in each layer is k, where488

k = O((logn)α) and α < 1. Similarly, the space complexity can be shown to be O(nk).489

Lemma 2 proves that (logn)! is quasi-polynomial. Using this, we can show that if k = Θ(logn) for MCV490

and MCD problems then the running time of algorithm is quasi-polynomial. Proving this is quite straightforward.491

By substituting (logn)! for k! in equation (1) in Theorem 4, we get a product of quasi-polynomial factor and a492

polynomial factor. Thus, the time complexity is quasi-polynomial.493

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 May 2018                   doi:10.20944/preprints201805.0012.v1

http://dx.doi.org/10.20944/preprints201805.0012.v1


15 of 20

4.1 Minor Enhancements494

The current layer requires the information only from the previous layer. So, only the variables of the current495

layer i and the previous layer i− 1 are maintained. In the pseudocode shown for all algorithms, for simplicity, the496

variables of current layer are stored at index 1 and the previous layer at index 0 of the data structure sol. When497

the current layer i is completely processed the variables from index 1 overwrite the corresponding variables in498

index 0. This can be avoided by alternating the index of current layer between indices 0 and 1 thereby reducing499

the execution time by a factor of O(1).500

We generate the optimum cardinalities for each of the problems by using minimal additional space. For501

example, Algorithm MVC employs only O(k2k) space in addition to the space required by the graph. If for each502

mask in each layer we store a best compatible mask from its previous layer then we can generate a solution.503

There are O(n/k) layers each having O(2k) k-bit masks. This requires O(n2k) space instead of O(k2k) space.504

However, if we want to generate all solutions then for each mask of a given layer we need to store all compatible505

masks of its previous layer that yield the optimum value requiring O(n22k) space.506

4.2 Cyclic Layered Graphs507

A cyclic layered graph is a layered graph with one additional feature. In addition to the edges that are508

allowed for a layered graph, in a cyclic layered graph there can be edges between the first and the last layer.509

The problems that are solved on a layered graph in this article can be solved on a cyclic layered graph also by510

modifying the solution in the following manner. Along with every candidate sub-solution that is stored at a511

layer i the corresponding masks of layer 1 that can lead to the solution are also stored. Note that at most 2k512

such masks exist. When the last layer is processed when choosing the mask for the last layer the edges between513

the vertices of the last and first layers are considered. This imposes an additional constraint on what masks are514

feasible for the last layer. These additional tasks that must be performed for cyclic layered graphs do not change515

the asymptotic time and space complexities of the existing algorithms for layered graphs.516

5 Conclusions517

A novel graph class called layered graph is defined. It includes a subset of bipartite graphs and a subset of518

trees on n vertices and can have exponential number of cycles. The typical restrictions on graph classes that519

admit polynomial time solutions for hard problems like bipartiteness, planarity, acyclicity are not applicable520

for this class. The known NP-complete problems on these graphs are shown to be in class P when layer size is521

O(log | V |) for MIS, MVC and MDS, and O((log | V |)α), where α < 1, for MCV and MCD. We also compute522

the count of the corresponding optimal solutions.523
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A Appendix531

The generic algorithm was presented earlier. Here, we present a detailed algorithm each for MIS and MVC.532

A relatively high-level description for the MCD algorithm is mentioned.533
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A.1 Algorithm MIS534

Input: LGn,q
k535

Output: The cardinality of MIS and the count of the maximum independent sets.536

Initialization: ∀i sol0i = sol1i = 0;537

∀i count0i = count1i = 0;538

//solij : The maximum value of an independent set up to layer i where the chosen539

//vertices of the layer i are given by the binary value of j.540

//countij : the number of ways the jth mask in layer i yields the corresponding maximum value.541

//valid(i, j) is a boolean function that returns true if the vertex assignment corresponding to542

//the binary value of j in layer i forms an IS. Otherwise it returns false.543

//∧ is the bitwise AND operator.544

//cardinality(j) is the number of bits that are set in the binary representation of j.545

// For each solij one k-bit variable that remembers the mask of the layer i− 1 that546

// yielded solij will help in constructing MISs. Union of such masks (1/layer) is an MIS.547

for (i = 0, ..., 2k − 1) do548

if valid(1, i) then // for layer 1549

count0i = 1; sol0i = cardinality(i); // No. of valid ISs of layer 1550

end if551

end for552

for (p = 2, ....q) do //For layers 2 through maximum553

for (j = 0, ....2k − 1) do //For all masks of current layer554

if valid(p, j) then //j is valid555

size← 0556

for (l = 0, ..., 2k − 1) do //Masks of previous layer557

if ((count0l > 0) ∧ (compatible(j, l))) then //sol0l = 0→Invalid IS558

if (cardinality(j) + sol0l ≥ size) then // Better IS for the current mask559

if (cardinality(j) + sol0l > size) then560

size = cardinality(j) + sol0l; count0l = count0l + 1561

end if562

count0l ← count0l + 1563

end if564

end if565

end for//Masks of previous layer566

for (l = 0, ..., 2k − 1) do //Masks of previous layer567

if (size = cardinality(j) + sol0l) then //Instance of max568

count1j ← count1j + count0l; // Count corr. to max wrt mask=j569

end if570

end for//Masks of previous layer571

sol1j size572

end if// j is valid573

end for//For all masks of current layer574

∀x count0x ← count1x; sol0x ← sol1x; count1x sol1x ← 0;575

end for//For layers 2 through maximum576

best← 0; sum← 0;577

for (i = 0, ..., 2k − 1) do578

if sol0i > best then //Get the max value of ∀isolpi579

best = sol0i;580

end if581

end for582

for (i = 0, ..., 2k − 1) do583

if sol0i = best then //Corr. to the best value of MIS(LGn,q
k )584

sum← sum+ count1i; //Get the count of MISs585
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end if586

end for587

return(best, sum) //MIS cardinality and the count of such MISs588

A.2 Algorithm MVC589

Input: LGn,q
k590

Output: The cardinality and the count for the resp. problem.591

//solij : The minimum value of a vertex cover up to layer i where the chosen592

//vertices of the layer i are given by the binary value of j.593

// valid(i, j) is a boolean function that returns true if the vertex assignment corresponding to594

//the binary value of j in layer i forms a VC. Otherwise it returns false.595

//countij : the number of ways the jth mask in layer i yields the corresponding minimum value.596

//cardinality(j) is the number of bits that are set in the binary representation of j.597

for (i = 0, ..., 2k − 1) do598

if valid(1, i) then //for layer 1599

count0i = 1; sol0i = −1; // No. of valid VCs of layer 1600

end if601

end for602

for (p = 2, ....q) do //For layers 2 through maximum603

for (j = 0, ....2k − 1) do //For all masks of current layer604

if valid(p, j) then //j is valid605

size← (i+ 1) ∗ k606

for (l = 0, ..., 2k − 1) do //Masks of previous layer607

if ((count0l > 0) ∧ (compatible(j, l))) then //sol0l = 0→Invalid VC608

if (cardinality(j) + sol0l ≤ size) then // Better VC for the current mask609

size = cardinality(j) + sol0l;610

if (cardinality(j) + sol0l = size then count1j ← count1j + count0l;611

else count1j ← count0l; sol1j ← size)612

end if613

end if614

end if615

sol1j size616

end for//Masks of previous layer617

for (l = 0, ..., 2k − 1) do //Masks of previous layer618

if (size = cardinality(j) + sol0l;) then //Instance of max619

count1j ← count1j + count0l; // Count corr. to max wrt mask=j620

end if621

end for//Masks of previous layer622

end if// j is valid623

end for//For all masks of current layer624

∀x count0x ← count1x; sol0x ← sol1x; count1x sol1x ← 0;625

end for//For layers 2 through maximum626

best← inf; sum← 0;627

for (i = 0, ..., 2k − 1) do628

if sol1i < best then //Get the max value of ∀isolpi629

best = sol1i;630

end if631

end for632

for (i = 0, ..., 2k − 1) do633

if sol1i = best then //Corr. to the best value of MVC(LGn,q
k )634

sum← sum+ count1i; //Get the count of MVCs635
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end if636

end for637

return(best, sum) //MVC cardinality and the count of such MVCs638

A.3 Algorithm MCD639

// A brief outline of the MCD algorithm640

// The algorithm maintains a global structure, sol which consists of sol0 and sol1 corresponding to the641

previous and current layers. sol1 consists of Bk2k triples of the form (lo,un, r). This corresponding to a642

maximum of Bk (kth Bell number) component layouts, 2k masks of undominated vertices of the current layer643

and a maximum 2k triples, r, of the form (m, s, c) for every unique pair (lo,un). lo: is a component layout,644

un: mask of undominated vertices of the current layer, r: triples of the form (m, s, c) where m: mask of645

the current layer that produced the respective (component layout, undominated vertices) pair, s minimum646

cardinality of the sub-solution corresponding to mask m and pair (lo,un), c: count of s corresponding to647

mask m and pair (lo,un). All unique pairs of (component layout, undominated vertices) need not yield a648

(sub)solution. sol0 consists of the same information for the previous layer.649

// Mask i refers to the mask of the vertices of current layer that can yield a sub-solution (with minimum650

value of s for some pair (lo,un)). The component layout refers to the list of the connected components of the651

current layer vertices (which can form a component employing some vertices from the previous layers). It is652

determined by the respective mask, and the corr. sub-solution from the previous layer whose combination653

yields the minimum value of s for some pair (lo,un) .654

// If the current layer mask j produces (lo,un) pair with values s = sx and c = cx then we have two cases (i)655

There is no entry corr. (lo,un) and j. Here we just add (lo,un) and j with corr. s and c. (ii) There is an656

entry corr. (lo,un) and j with s = sy and c = cy then657
(a) if sy = sx then cy ← cy + cx;658
(b) if sy > sx then sy ← sx; cy ← cx;659
(c) if sy < sx then no update is required.660

for (i = 0, ..., 2k − 1) do //for layer 1661

Initialize sol0i ← (lo,un, r); r ← (m, cardinality(i), 1)662

end for663

for (p = 2,...,q) do //for layers 2 through q664

for (j = 0,...,2k − 1) do //j: current layer mask665

for (v = 0,...,no. of (lo,un) pairs) do // Of sol0666

If j dominates the nodes of un of sol0v then continue.667

If every component of lo of sol0v has an edge to any node in j then continue.668

Compute the new component layout using mask j and layout lo.669

for (x = 0,..., size of r corr. (l,u)) do // No. of triples in r670

Compute the new mask of the undominated vertices using masks j671

of current layer and m corresponding to x-th triple of sol0v.672

Compute the minimum cardinality of the sub-solution corresponding to673

mask j for the current layer using s of the x-th triple of sol0v.674

The count of the newly computed sub-solution will be equal to c675

of the x-th triple corresponding to mask m.676

If component layout lo and the undominated mask un that are computed corr. j677

do not exist in sol1, then insert the tuple (lo,un, r) , into sol1678

where r has a single triple whose mask is j.679

If the (lo,un) pair was already generated by j and a previous mask of the680

previous layer, then if needed update the minimum cardinality681

and the corresponding count.682

Else, insert the new triple (m, s, c) for the corresponding (l,u) pair in sol1.683

end for684

end for685
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end for686

end for687

best← inf, sum← 0688

Consider the values of sol1 in layer q.689

Here the component layout can be ignored as, an entry would mean that it forms a connected component.690

For a solution to be considered, the undominated mask must be 0.691

for (i = 0,...,no. of (lo,un) pairs) do // for sol1692

Identify best, the cardinality of the optimal solution.693

end for694

for (i = 0,...,no. of (lo,un) pairs) do // size of sol1695

Compute sum, the count of such optimal solutions.696

end for697

return(best, sum)698
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