Life Cycle Sustainability Assessment (LCSA) of Sassuolo Industrial District (Italy)

Davide Settembre-Blundo1,2*, Fernando E. García-Muiña2, Martina Pini3, Lucrezia Volpi3, Cristina Siligardi4 and Anna Maria Ferrari3

1 Gruppo Ceramiche Gresmalt, Sassuolo (Italy); davide.settembre@gresmalt.it
2 Department of Business Administration (ADO), Applied Economics II and Fundaments of Economic Analysis, Rey-Juan-Carlos University, Madrid (Spain);
3 Department of Sciences and Methods for Engineering, University of Modena and Reggio, Emilia, Reggio Emilia (Italy);
4 Department of Engineering "Enzo Ferrari", University of Modena and Reggio, Emilia, Modena (Italy)
* Correspondence: davide.settembre@gresmalt.it; Tel.: +39-0536-867-011

Abstract: One of the biggest challenges for European industry is to introduce sustainability principles into business models. This is particularly important in raw material and energy intensive manufacturing sectors such as the ceramic industry. The present state of knowledge lacks a comprehensive operational tool for industry to support decision-making processes geared towards sustainability. In the ceramic sector, the economic and social dimensions of the product and processes have not yet been given sufficient importance. Moreover, the traditional research on industrial districts lacks an analysis of the relations between firms and the territory with a view to sustainability. Finally, the attention of scholars in the field of economic and social sustainability, has not yet turned to the analysis of the Sassuolo district. Therefore, in this paper we introduce the Life Cycle Sustainability Assessment (LCSA), as a method that can be a suitable tool to fill this gap, because through a mathematical model it is possible to obtain the information useful for decision makers to integrate the principles of sustainability both at the microeconomic level in enterprises, and at the meso-economic level for the definition of economic policies and territorial governance. Environmental and socio-economic analysis was performed from the extraction of raw materials to the packaging of the product on different product categories manufactured by the Italian ceramic industries of the Sassuolo district (northern Italy). For the first time the LCSA model, usually applied to unitary processes, is extended to the economic and industrial activities of the entire district, extending the prospect of investigation from the enterprise and its value chain to the integrated network of district enterprises.

Keywords: sustainability; Life Cycle Sustainability Assessment (LCSA); Sassuolo industrial district; Italian ceramic industry; meso-economic level; interpretative method.

1. Introduction

The challenge of sustainable development embraces both environmental aspects and issues of social and economic sustainability. Sustainable development is understood to mean economic and social development compatible with social equity, environmental protection and the rights of future generations. The concept of sustainable development therefore refers to economic growth that meets the welfare needs of societies in the short, medium and, above all, long term [1]. The introduction of rules for safeguarding the environment and tools for monitoring company activities are important not only for protecting consumers and for defending principles of civilization but should also be an
important opportunity for companies that are striving to produce high-quality products. Accordingly, this capacity can be considered a strategic factor with great impact on competitive advantage building. Above and beyond short-term economic expediencies, companies are historic players whose actions influence the social life of the surrounding community. In addition, such community will evaluate firms’ actions and behaviors according to the impacts they may provoke. Following the Institutional Theory [2] the consequences of entrepreneurial decisions are not limited to the company itself but extend to the various spheres of social life and affect the various economic and social parties and territories which are no longer neutral places. Therefore, as long as firms’ impacts do not fit norms, values or game rules of the society, companies will be poorer evaluated.

This paper will conceptually develop the theme of relationships and interdependencies between companies organized in industrial districts (ID) and the territories in which they operate, and empirically will determine the environmental, economic and social impact of the main products of the ceramic district of Sassuolo in Italy, using the Life Cycle Sustainability Assessment (LCSA) structure with a territorial extension what supposes an innovative contribution to the current literature.

2. Theoretical framework and research aims

2.1 Environment and economic activity

Economic activity, like all human activity, takes place within the natural environment. The economic system and the natural environment are therefore interdependent, which determines both the way in which the economic system affects the environment and the limits that the environment places on the evolution and expansion of the economic system [3]. The environmental limits that the economic system must consider are established by the laws of thermodynamics. The first law of thermodynamics is presented first in the form of the law of the conservation of matter: matter can neither be increased nor destroyed but only transformed [4]. The material flows from the environment to the economic system are the same as the flows that return from the economic system to the environment; the economic process can only transform the material extracted from the environment to eventually return the same material to the environment in the form of waste [5].

The processes of transformation of matter that take place in the economic system imply the use of energy, defined as the "capacity to do work". The first law of thermodynamics states that energy, like matter, can neither be created nor destroyed; energy can only be transformed, converted from one form to another [6]. This energy conversion has an important effect, highlighted by the second law of thermodynamics. This law states that in every energetic transformation a part of the energy is dispersed in a form that can no longer be used to perform further work [7]. The environment is an essential resource base for the functioning of the economic system. The scarcity of resources that is the fact that they are useful and at the same time available in limited quantities compared to the request, is the condition for the talk of economic resources [8].

If environmental resource activity is over-exploited beyond regeneration or assimilation capacity, environmental resources tend to run out and the ability of the environment to provide its services to the economy in the future is compromised. This creates a conflict between exploitation and conservation of the environment which is economically relevant as the environment performs important economic functions not only because the flows of services it offers are exploited, but also because there is an interest in the conservation of the stocks of goods it contains [9]. When environmental exploitation goes beyond the natural capacities of regeneration and assimilation, it is an alternative use of non-environmental economic resources (such as capital and labor) that goes against the objective of conservation. In this case, the exploitation and preservation of the environment become alternative purposes of resource allocation [10].

The essence of the concept of sustainable development is that the exploitation of environmental resources should be contained within the limits of regeneration capacity so that the stock of these resources is not depleted. If the stock of environmental resources is to remain constant in the long term, the exploitation flow of these resources must also be kept constant within the limits of their...
natural regeneration capacity [11]. But the only way in which the flow of use of environmental resources can remain constant in the presence of a continuous growth of the domestic gross product of an economy is that the flow of use of the environment per unit of gross domestic product is continuously reduced over time [12]. This also requires a profound structural modification of production processes. For this reason, economic growth to be sustainable must be based more and more on the material recycling [13], on a non-dissipative form of energy use and on an increasing weight of the intangible production component in the gross domestic product [14].

The most recent strategic documents of the European Union and the relative EU policies aim at combining competitiveness of member countries’ enterprises and economies, social cohesion and sustainable development [15]. Further intergovernmental programmes promote the same strategic objectives of economic, social and environmental sustainability [16]. These documents identify local authorities, businesses and civil society as the actors responsible for implementing the strategic objectives set, although the key role of local authorities as relevant players in the promotion and implementation of policies and governance tools for sustainable environmental, economic and social development is highlighted. About the role of companies in contributing to greater socio-economic and environmental sustainability, the European Union has recently promoted the approach and concept of Corporate Social Responsibility (CSR). This is a way of voluntary integration, beyond the legal obligations, by companies of the social and environmental implications in their commercial operations and in their relations with the various stakeholders [17]. In order to address environmental issues, adequate information and knowledge is needed to underpin the choice of the most effective actions. Moreover, knowledge must be effectively usable and meaningful. The purpose of this information should be to provide an overview of sustainability, to overcome a sectoral view of the issues and to focus as much as possible on key elements. Finally, the issues addressed should not be limited to strictly environmental issues but should also include social and economic concerns [18]. An appropriate indicator system based on the laws of thermodynamics can be used to assess the pressures that economic and social activities exert on the environment, the resulting changes in the state of the environment, the resulting impacts (e.g. on ecosystems, human health, resource availability) and the political and social responses to these impacts through improvement actions. Sustainability indicators should reflect the mutual links between the environmental, economic and social aspects of development [19]. The sustainability assessment may cover:

- territorial systems (cities, regions, states) [20], environmental components (the atmosphere, soil, water) [21] and, lastly, socio-economic components (economic sectors, population) [22];
- actions relating to development policies (in the fields of energy [23], transport [24], urban areas [25], the protection and valorization of ecosystems [26] and Cultural Heritage [27], actions aimed at social integration and cohesion).

2.2 Environment and territory

In Italy, the geographical concentration of supply chains (based on an integrated system of production, where the entire process is controlled and managed in close collaboration with the best local producers), has allowed many companies to share in the industrial risk linked to development in harmony with the local situation. The system of districts, in fact, has had the ability to create development by reducing the distortions of capitalist systems and enhancing the integration of the industrial reality with the social and environmental fabric [28]. Economic theory has long recognized that agglomeration economies are able to improve the productivity of enterprises and encourage processes of territorial concentration of productive activity in districts [29]. In the decade of the 1990s these ideas represented the starting point for numerous theoretical studies, which forcefully brought out the link between territory and economic development [30-34]. However, research has focused almost exclusively on the benefits of economic development without considering the social costs involved. Today, in economic analysis, space ceases to be considered only a source of cost for businesses, and increasingly assumes the role of a favorable (or unfavorable) milieu, creating...
externalities (economic or non-economic) [35]. Space thus becomes the place where economic agents meet to organize forms of collaboration [36].

Industrial districts (ID) are the structures where the interaction between territories and firms in the supply chain is best observed [37]. The organizational structure of the industrial district explains the variables that are at the base of the localization and investment choices of the entrepreneurs and that therefore affect the local development [38]. The development process acquires definitively its character of "social process" and no longer only a technical process. Within an industrial district, the territory represents a determining factor in the processes of economic and social growth because the anthropological, historical, cultural and environmental factors that contradict it, affect the specificity of the models of productive organization of the district [39]. However, in the analysis of industrial districts, the relationship between companies and their local context has long lacked a fundamental dimension in the logic of sustainability: that of environmental protection, that is, the link that exists between productive activities and pollution phenomena related to them. This is inconsistent with the growing importance of sustainable development principles in business strategies and public decision makers' agendas. Only recently there has been a growing interest (both theoretically and empirically) in sustainability as a driver of growth in industrial districts [40-42]. Given the importance of the socio-territorial context to district businesses, it is inevitable that the issue of environmental sustainability will also become crucial from the point of view of competitive development [43]. A local district system can be seen as a network of locally concentrated enterprises whose stability derives from a dynamic yet balanced relationship with the community and the networks of interaction that characterize individual enterprises [44]. This balance is dynamic because even in local systems it is possible to highlight the presence of a life cycle whose trend follows that of the product, the greater the production specialization of a local system. This is the case of the Sassuolo ceramic district located in the provinces of Modena and Reggio Emilia in Italy, analyzed in this paper [45]. The dynamism of this balance can favour, both from a theoretical and managerial point of view, the adoption of a life-cycle methodological approach, to explain the dynamics of some of the most famous district systems and to describe the prevailing modes of interaction among economic operators [46-50]. However, the adoption of a life-cycle perspective requires that the main social actors do not limit their responsibility to the stages of the supply chain that they directly control but would constitute the prerequisite for a solid sustainability assessment, in order to identify opportunities for reducing environmental impact, industrial costs and, as a consequence, greater efficiency in the use of resources [51,52].

2.3 Life-cycle paradigm from a territorial approach

The implementation of sustainability policies requires the development of increasingly refined quantitative and qualitative tools for analyzing the environmental, economic and social impacts, the Triple Bottom Line (TBL) associated with collective and individual choices, both with more limited effects and with more complex medium and long-term implications [53]. Life Cycle Sustainability Assessment (LCSA) can be a suitable tool for this purpose, since through a mathematical model, it describes the set of business solutions that integrate into the decision-making processes supporting the development of a product (from its conception to its withdrawal from the market), both the view of the life cycle and the economic, environmental and social assessments necessary for the management of processes, with a total sharing of data related to it between the various company functions [54]. This quantitative analysis tool allows to implement the principles of sustainability in business practices through the integration of three different impact assessment tools: Environmental Life Cycle Assessment (LCA) for the environmental dimension [55]; Life Cycle Costing (LCC) for the economic dimension [56]; and Social Life Cycle Assessment (S-LCA) for the social dimension [57]. The integration of the three impact assessment methods is expressed in Klöpffer’s conceptual formula [58]:

\[
LCSA = LCA + LCC + S-LCA
\]

The life-cycle paradigm based on the three pillars of sustainability offers a systemic perspective for decision making [59]. The strategic choice between alternative options should be made by looking at the "pluses" and "minuses" that characterize a product, process or activity "from the cradle to the
grave”, reconciling, as far as possible, the environmental, economic and social concerns of economic operators within the supply chain and the territory [60]. Sustainability Analysis, as a tool to monitor a production process, or an integrated supply chain and to develop and valorize a territory, is a topic that is having growing interest in the literature [61]. To this end, the LCA guidelines have recently been adapted to carry out an environmental assessment of a territory. The expectations of this framework, called “Territorial LCA”, are in line with the European Directive (2001/42/EC) on Strategic Environmental Assessment applied to spatial planning programmes, i.e. to provide an environmental reference basis and compare spatial planning scenarios [62]. However, there is still no empirical evidence in the literature of the integration of the territorial factor into the assessment of economic and social impact, since studies are limited to the environmental dimension. Integrating the territorial dimension in the impact assessment means moving the field of observation from the microeconomic level (the company and its processes and products) to the meso-economic level, then to the entire supply chain with its flows of materials, energy resources, semi-finished and finished products [63]. Mesoeconomic systems are dynamic, complex and open systems with dynamic elements that reflect the complexity of the ways in which macro-targets are achieved [64]. The purpose of their operation is to achieve maximum efficiency from the use of their resources and know-how. Their efficient network structure of interdependent microeconomic agents connected through a division of task, promotes the rational use of the available economic potential of the macro-system, balancing development and minimizing operational risks [65]. According to this definition, the concept of industrial district (ID) can be described as localized meso-economic systems, consisting of interconnected heterogeneous, but complementary, microeconomic agents and specific local institutions that determine the role of these agents and stimulate the innovative development of these systems [66].

2.4 Aim and scope

This work presents an empirical study conducted with the Life Cycle Sustainability Assessment (LCSA) approach for the analysis at mesoeconomic level of the environmental, economic and social performance of the Sassuolo ceramic district in Italy. The research integrates the elements of an evolutionary industrial approach, the life cycle one, with economic-environmental theories, which are interested in the process of forming organizations, their growth and evolution. Based on the literature analysis, for the first time an evaluation of the economic and social impact of the Italian ceramic industry is carried out, as well as for the first time the integrated approach of LCSA is applied. In fact, there are no published studies by LCC and/or S-LCA concerning the Sassuolo ceramic district. The only known study is the sectorial Environmental Product Declaration (EPD) based on an analysis of the environmental data of Italian ceramic tile manufacturers, promoted by the Italian ceramic industry association (Confindustria Ceramica) [67]. To fill this gap, we propose the following main objectives:

- Assessment of the environmental and socio-economic impacts associated with the entire production life cycle for different types of ceramic tiles located in the Sassuolo industrial district.
- Verification of the usefulness of LCSA as a tool to support decision-making processes from a sustainable supply chain management perspective.

3. Materials and Assumptions

The Sassuolo industrial district is made up of a network of 79 companies that manufacture ceramic tiles, located in ten municipalities straddling the provinces of Modena and Reggio Emilia. During 2016, ceramic companies produced about 341 million square meters, equal to 82% of Italian production, with a turnover of 5.4 billion euros [68]. Of the ceramic companies that make up the
district, six have a turnover of more than 200 million euro, nine have a turnover of between 200 and 240 million euro, and the rest are below 100 million euro. These data have been elaborated by consulting the financial statements of the firms of the district, filed with the local Chambers of Commerce.

Four main types of product are manufactured in the Sassuolo district:

- **Porous double-fired wall tiles**: the tiles are obtained by a process divided into two distinct phases: a first phase of firing of the support which is then glazed and then fired again to obtain the fusion of the glaze. Two different kilns are used. The product, mainly intended for wall coverings, is characterized by high porosity (greater than 10 wt% water absorption), brilliance of the glazes and definition of colours. This typology corresponds to 6% of the total production.

- **Porous single-fired wall tiles (or "monoporosa")**: The tiles are obtained through a technique that involves single firing of the product: both bisque and glaze are fired in a single process, only one kiln is used. The product is porous (greater than 7 wt% water absorption) with aesthetic effects of smoothness and brightness on the surface and it is suitable for indoor wall covering. This typology corresponds to 3% of the total production.

- **Glazed porcelain stoneware**: the tiles are obtained by a single high-temperature firing cycle (1220°C) to obtain complete sintering of the ceramic body, which therefore has frost-hardy properties (water absorption less than 0.5% by weight). The glazing and surface decoration give the product valuable aesthetic effects, as well as resistance to staining agents and chemical reagents, facilitating cleaning operations. For these properties glazed porcelain stoneware tiles are particularly suitable for indoor use. This typology corresponds to 60% of the total production.

- **Unglazed porcelain stoneware**: the tiles are obtained by a single firing process at a very high temperature (1220-1230°C) capable of reaching the complete greification of the product. For this reason, porcelain stoneware is the most performing type of ceramic from a technological point of view and is above all used in solutions for use where high mechanical resistance, absolute frost and chemical inertia are required. Porcelain stoneware is available in various surface finishes. This typology corresponds to 31% of the total production.

The production of ceramic tiles requires large quantities of raw materials that can be schematically divided into at least four fundamental components:

- **Clay raw materials**: clays and kaolin which give sufficient plasticity to ensure good formability.

- **Melting raw materials**: such as feldspars, which produce the glass phases necessary to promote solid-solid sintering reactions.

- **Inert raw materials**: feldspar sand and sand which have the function of balancing the composition of ceramic bodies, also containing the cost, as these are the cheapest raw materials.

- **Additives raw materials**: calcite and/or dolomite used mainly in the production of porous types of, or in smaller quantities as promoters of eutectic to facilitate the melting of feldspars into porcelain stoneware.

Using this classification, it is essential to refer to the composition of the ceramic bodies from which the different types of tiles are obtained. To this end, 15 industrially spray-dried powders [69] of ceramic body, corresponding to the four main product categories of the Sassuolo district, were collected from the main ceramic companies of the district. Chemical analyses were carried out on these powders to determine their composition and establish a compositional range that defines each type of ceramic in a representative way (Table 1a). From the average chemical compositions, through a reverse engineering (RE) process [70], it was possible to reconstruct the formulation of a "medium" body, typical for each product category, using the main raw materials available on the market (Table 1b).
expressed in Nm³/m² was obtained. The cost of electricity (methane gas) per m² of product.

The total cost therefore amounts to 0.224 euro/Nm³. The same procedure was adopted for quantifying the average thermal energy consumption per m² of finished product. Table 2a shows the data relating to the average weight of each category expressed as wt% of raw material and quantity of dough to produce 1 m² of tiles [71-74].

3.1 Definition of industrial processes

In order to configure a "standard" production plant that could be taken as a reference for the various product categories, it was based on the concept that the plants for the production of ceramic products all have the same plant characteristics, the main differences consist of the particularity of the machinery. The possible differences between the machines can be considered irrelevant for the analysis of aggregate average quantities as in this study. In this respect, it should be noted that the great differences between the various product categories do not lie in the machinery used, but in the different grinding and firing cycles and pressing loads, which have a clear impact on energy consumption per m² of finished product. Table 2a shows the data relating to the average weight of the various product categories and the relative loss on ignition (L.O.I) from which it was possible to derive the firing efficiency and then determine the value of the surplus of raw material, expressed in kg per m², to be added to the theoretical value. During the input phase of the dough creation data on the impact assessment software, the values in the fourth column were considered to determine the amount of raw material to be input.

3.2 Energy consumption estimation

For the quantification of average energy consumption, the data for 2016 was used. Table 2b shows the cost of electricity (expressed in euro/m²) and heat for each product category. When entering the data in the calculation software, it was decided to enter the average electricity consumption for each m² of product; it was therefore considered appropriate to convert the unit of measurement in kWh/m². The average electricity consumption, expressed in kWh/m², has been calculated using a conversion factor that considers 0.11 €/kWh as the cost of electricity for users of the order of at least 20 GWh/year. The same procedure was adopted for quantifying the average thermal energy consumption (methane gas) per m² of product. The total cost therefore amounts to 0.224 euro/Nm³ of methane gas and dividing the cost per square meter by this value, the energy consumption expressed in Nm³/m² was obtained.
3.3 Air pollutant emissions

For the calculation of emission factors of the main pollutants present in gaseous emissions deriving from production processes, reference was made to the data calculated based on the measurements made by ARPAE (Regional Agency for the Environment and Energy of Emilia-Romagna) [75]. For the bodies in which carbonates were introduced (Porous single-fired: 10% of calcite; Porous double-fired: 20% of calcite; Unglazed porcelain stoneware: 1.5% of dolomite and Glazed porcelain stoneware: 0.5% of calcite), CO₂ emissions deriving from the decarbonization process had to be calculated. The reasoning followed to reach the CO₂ emission value per m² of product is based on molar ratios and on the approximation that all the Carbon released is fully bound to oxygen. Having calculated the Kg of calcite, CaCO₃, and dolomite, CaMg(CO₃)₂, present in one m² of product, and having their weights and molar ratios, CO₂ emissions were calculated.

3.4 Water consumption

The ceramic tile industry has a relatively high-water requirement, associated with the various functions that water must perform (grinding of raw materials and glazes, cooling, washing of lines, etc.). A large proportion of the incoming water is, however, destined to be re-entered into the environment through gaseous emissions (evaporated water). While the use of water as a washing fluid generally corresponds to the production of waste water. Based on the data collected, it was established that average water consumption was 11 kg/m².

3.5 Cost of raw materials

Table 3a shows the average market prices of the main raw materials used in the manufacture of tiles, including the costs incurred for transport from the suppliers’ mines to the Sassuolo district area. Based on the compositions shown in Table 1b, the cost of each ceramic body was obtained for all the product categories considered (Table 3b).

3.6 Production costs

The cost analysis was based on the “value chain” developed by Porter, which disaggregates a company according to its strategically relevant activities [76].

Table 4: average production costs by product type in euro/m² and percentage on total incidence.

Table 3: (a) cost of raw materials in the Sassuolo area (€/Ton.); (b) cost per kg and per m² of ceramic bodies for each product category.
functional logic of "cost centers" [77]. A survey carried out recently by Confindustria Ceramica (Association of Italian Ceramic Producers) on the dynamics of costs has involved 60 production units concentrated for 89% in the district of Sassuolo and divided into the four types of this study. Employment of the sample companies accounts for 46% of the total number of employees in the sector. Just under 45%, the weight of production. It is therefore a representative sample and the results are shown in Table 4.

3.7 Social issues

The collection of social data was carried out through the adoption of the Participatory Process [78] of social agents operating in the district. From the methodological point of view, the same procedure has been followed as that already used by the authors themselves for a study concerning the restoration of an architectural work of historical and artistic value [79]. As socioeconomic indicators relevant to ceramic production on Sassuolo District, the expectations of the main Stakeholder have been adopted.

Table 5: stakeholder mapping involved in the ceramic production of Sassuolo District (Source: our elaboration based on the SETAC/UNEP guidelines and the AA1000 standard).

<table>
<thead>
<tr>
<th>STAKEHOLDER CATEGORIES</th>
<th>STAKEHOLDER SUBCATEGORIES</th>
<th>STAKEHOLDER DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Human Resources</td>
<td>1.1 Staff Personnel</td>
<td>1.1.1 Blue-collar Workers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.2 Employees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.3 Managers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1.4 Top Management</td>
</tr>
<tr>
<td></td>
<td>1.2 Trade Unions</td>
<td>1.2.1 Confederated Trade Unions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2.2 Independent Trade Unions</td>
</tr>
<tr>
<td>2. Local Community</td>
<td>2.1 Local Public Institutions</td>
<td>2.1.1 Regional Governments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.2 Provincial Governments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1.3 Municipalities</td>
</tr>
<tr>
<td>3. Society</td>
<td>3.1 Private Business</td>
<td>3.1.1 Company’s Shareholders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1.2 Association of Manufacturing and Service Companies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1.3 Chambers of Commerce</td>
</tr>
<tr>
<td></td>
<td>3.2 Public and Private Organization</td>
<td>3.2.1 Regulatory Authorities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2.2 Research Community</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2.3 National and International Public Institutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2.4 Civil Society Organizations</td>
</tr>
<tr>
<td></td>
<td>3.3 Environment</td>
<td>3.3.1 Natural Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3.2 Future Generations</td>
</tr>
<tr>
<td></td>
<td>3.4 Media</td>
<td>3.4.1 Newspapers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4.2 Professional Magazines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4.3 TV and Radio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4.4 Internet</td>
</tr>
<tr>
<td>4. Consumers</td>
<td>4.1 Trade Channel Operators</td>
<td>4.1.1 Resellers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1.2 Trading Partners</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1.3 Business Customers</td>
</tr>
<tr>
<td></td>
<td>4.2 Final Consumer</td>
<td>4.2.1 Private Customers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2.2 Consumers Associations</td>
</tr>
<tr>
<td></td>
<td>5.1 Suppliers</td>
<td>5.1.1 Large-Scale Suppliers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1.2 Small-Scale Suppliers</td>
</tr>
<tr>
<td></td>
<td>5.2 Partners</td>
<td>5.2.1 Practitioners and Professionals</td>
</tr>
<tr>
<td></td>
<td>5.3 Competitors</td>
<td>5.3.1 Direct Competitors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3.2 Indirect Competitors</td>
</tr>
</tbody>
</table>

The first step of the Participatory Approach consists of selecting stakeholders. For the operational identification of the Stakeholder we have used an adaptation of the tools contained in the guidelines of the AA1000 "Stakeholder Engagement Standard" (AA1000SES). These guidelines were published in 2015 and provide a framework for organizations to identify, respond and prioritize their sustainability challenges [80]. The AA1000 standard is a liability standard focused on ensuring the quality of social and ethical accounting, auditing and reporting [81]. In this way and in accordance with the SETAC/UNEP guidelines, we have identified the stakeholder involved in the ceramic production adopting the principles of Responsibility, Influence, Proximity, Dependency and Representation described in AA1000 standard. Table 5 shows the correspondences between the categories defined by the SETAC/UNEP guidelines and sub categories of stakeholder of Sassuolo District.

4. Method and data processing

The procedure we propose for the Life Cycle Sustainability Assessment (LCSA), provides for the integration between the three tools of impact assessment (LCA, LCC, S-LCA), so in accordance with
ISO 14040, ISO 14044 and ISO 15686 standards we will adopt the same main phases for each dimension (environment, economy and society): goal and scope, inventory analysis, impact assessment and interpretation. We will also upscale the traditional LCSA to the ceramic district, considering the territorial component by processing data relating to the management of the entire supply chain.

4.1 Goal and scope definition

The objective of the study is to assess the environmental and socio-economic impact of ceramic production in the Sassuolo district.

4.1.1 System Studied

Ceramic tiles, produced by the companies belonging to the District of Sassuolo, which extends territorially between the provinces of Modena and Reggio Emilia in Italy and includes the municipalities of Sassuolo, Fiorano Modenese, Formigine, Maranello, Castelvetro, Castellaro, Scandiano, Casalgrande, Viano and Rubiera.

4.1.2 Function of the system

For this study four types of medium ceramic products were identified and adopted, representing the entire district production: porous double-fired wall tiles, porous single-fired wall tiles, glazed porcelain stoneware and unglazed porcelain stoneware. The ceramic tiles under study are intended and applied for both floor and wall coverings, installed both in internal and external environments.

4.1.3 Functional unit

For the purpose of this study, the functional unit chosen, is 1m² of each of the selected product categories.

4.1.4 System boundary

The system boundaries include the whole life cycle of the product consistently with the LCA (cradle-to-grave) procedure: extraction, transport and grinding of raw materials; pressing, glazing, decoration, firing and packaging of tiles; in addition to the use, maintenance and disposal of equipment, emissions to air and water during manufacture and management of scrap and processing waste [82]. In this study, we have also adopted the spatialization of each phase of the LCA [61], considering also the flows of raw materials and their impacts that come from other territories both in Italy (Tuscany, Piedmont, Sardinia) and abroad (Germany, Turkey and Ukraine).

4.1.5 Data quality and impact assessment methodology

Primary data on raw material extraction processes have been provided directly by mining companies, as well as data on inks, glazes and pigments production processes have been provided by the chemical companies producing these materials. Instead, the Ecoinvent database [83] was used as a secondary data source. For the study, the SimaPro 8.0.2 software and the IMPACT 2002 evaluation method were adopted to calculate the environmental impacts.

4.2 Inventory analysis

Life cycle inventory background data, costs including inputs and outputs in processes to produce ceramic tiles as well the emissions and social issues, have already been described in detail in paragraphs 3.

5. Results and Discussion

5.1 LCA: Impact Assessment

Table 6 shows the impact assessments for the four types of ceramic products, and the total corresponding weight factor (Pt), these values are represented in the graphic in Figure 1. The processes produce an impact due to 19,7% to the porous double firing wall tiles, 22,2% to porous single firing wall tiles, 25,7% to glazed porcelain stoneware and 32,3% to unglazed porcelain stoneware. In order to estimate the environmental damage that ceramic production has on the district, a further calculation was made by weighting the impacts with the square meters produced for each type of product considered. In this way we have passed from the level of microeconomic analysis (which refers only to the functional unit of 1 m² of ceramic tiles) to the level of meso-economic analysis which refers to the entire district. The results are shown in Figure 1a.
Table 6: results of environmental damage for the four product categories expressed in Pt and obtained with the Impact 2002 model.

The greatest impact for all products corresponds to the category of damage to human health.

The detrimental effect on human health is mainly related to the NOX (nitrogen oxide) emissions associated with transportation of raw materials from the extraction sites to the factory sites (41.9% overall). Clearly the same NOX emissions affect climate changes (24.2% in total). Figure 1b shows, in a comparative diagram, the results of the environmental impact of the production categories for the entire district in aggregate form.

The environmental impact analysis carried out at micro level, having as a reference 1 m² of ceramic tiles for each product category, showed that the types with the most moderate impact are unglazed porcelain stoneware and glazed porcelain stoneware, while no significant variations were observed in the category of damage between the various typologies. Changing the perspective of observation and moving on to meso level, then to the district level considering production volumes, takes the effect of weighting volumes downwind and, of course, the product category most impacting is glazed porcelain stoneware.

5.2 LCA: Results Interpretation

The environmental impact analysis carried out at micro level, having as a reference 1 m² of ceramic tiles for each product category, showed that the types with the most moderate impact are unglazed porcelain stoneware and glazed porcelain stoneware, while no significant variations were observed in the category of damage between the various typologies. Changing the perspective of observation and moving on to meso level, then to the district level considering production volumes, takes the effect of weighting volumes downwind and, of course, the product category most impacting is glazed porcelain stoneware.

5.3 LCC: Inventory Costs

Consistent with the LCA analysis discussed before, the same functional unit was adopted for the assessment of costs, for the four product categories already described above: porous double-fired...
wall tiles, porous single-fired wall tiles, glazed porcelain stoneware and unglazed porcelain stoneware (Paragraphs 3.5 and 3.6).

5.4 LCC: Costs Assessment

In an integrated process for the manufacturing of a product, the life cycle of costs is the sum of the costs attributable to the individual life cycle stages [84]:

\[\text{LCC}_{\text{TOT}} = \text{Development Costs} + \text{Utilization Costs} + \text{Disposal Costs} \] \hspace{1cm} (2)

To adapt the above conceptual formula (2) to the specific case under study, we propose this new empirical formula:

\[\text{LCC}_{\text{TOT}} = \text{Production Costs} + \text{Utilization Costs} + \text{Externalities} \] \hspace{1cm} (3)

Table 7: LCC calculation scheme based on inventory data and applying the empirical formula (2).

<table>
<thead>
<tr>
<th>LIFE CYCLE COSTING</th>
<th>POROUS DOUBLE-FIRED WALL TILES</th>
<th>POROUS SINGLE-FIRED WALL TILES</th>
<th>GLAZED PORCELAIN STONeware</th>
<th>UNGLAZED PORCELAIN STONeware</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION COST</td>
<td>Production (m²)</td>
<td>22.978.356</td>
<td>13.545.628</td>
<td>236.734.900</td>
</tr>
<tr>
<td></td>
<td>Production Costs (€/m²)</td>
<td>6.15</td>
<td>7.72</td>
<td>6.85</td>
</tr>
<tr>
<td></td>
<td>TOTAL PRODUCTION COSTS</td>
<td>161.316.889</td>
<td>104.572.248</td>
<td>1.621.634.065</td>
</tr>
<tr>
<td>UTILIZATION COST</td>
<td>TOTAL UTILIZATION COSTS</td>
<td>3.592.298.557</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilization Costs (€/m²)</td>
<td>6.56</td>
<td>6.85</td>
<td>8.99</td>
</tr>
<tr>
<td></td>
<td>TOTAL UTILIZATION COSTS</td>
<td>150.738.015</td>
<td>92.787.552</td>
<td>2.128.010.016</td>
</tr>
<tr>
<td>EXTERNALITIES</td>
<td>TOTAL EXTERNALITIES</td>
<td>305.457.871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Health</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>Ecosystem Production Capacity</td>
<td>0.11</td>
<td>0.14</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>Abiotic Stock Resource</td>
<td>0.54</td>
<td>0.83</td>
<td>0.41</td>
<td>0.50</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>0.0014</td>
<td>0.0015</td>
<td>0.0018</td>
<td>0.0023</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.76</td>
<td>1.10</td>
<td>0.71</td>
<td>0.86</td>
</tr>
<tr>
<td>TOTAL EXTERNALITIES</td>
<td>305.457.871</td>
<td>17.443.293</td>
<td>14.896.295</td>
<td>168.293.988</td>
</tr>
<tr>
<td>TOTAL PRODUCT COST €/m²</td>
<td>13.47</td>
<td>15.67</td>
<td>16.55</td>
<td>18.93</td>
</tr>
<tr>
<td>TOTAL COSTS BY CATEGORY</td>
<td>309.498.197.60</td>
<td>212.256.095.04</td>
<td>3.917.938.069.26</td>
<td>2.308.539.272.52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.748.231.634</td>
<td>2.850.475.207</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The calculation of production and utilization (distribution, installation and use phases) costs of the end product, were determined per m² and then projected on a “meso” scale on the basis of production volumes by category and total for the entire district (Table 7). The economic impact assessment (LCC), which is carried out in parallel with the environmental impact assessment (LCA), makes it possible to quantify environmental damage economically. The production of ceramic tiles, as well as other economic activities, uses resources that come from the environment without, however, considering the economic value of the environmental damage caused by the use of these factors of production. Costs incurred by some parts of society because of activities that affect the environmental balance of a territory are referred to as negative environmental externalities or external costs [85]. The EPS 2000 model has been used to estimate externalities. It estimates the economic cost of pollutant emissions based on the willingness to pay (WTP) of the entity responsible, in order to avoid a worsening of the situation created or to remedy a damage caused, attributing an economic value to the damage. Each impact category in the EPS 2000 model attributes a specific weight to the severity of the impact in environmental and social terms. This weight is defined as the ELU (Environmental Load Unit), whose value is 1 ELU = 1. Table 7 shows the costs of environmental externalities relating to the damage category for each type of ceramic product considered.
5.5 LCC: Results Interpretation

The adoption of the external costs approach allowed us to monetize the environmental impact of different ceramic tiles production. The LCC analysis integrates the directional accounting because it introduces into it not only the industrial costs and those of use, but also those that the environment and the company must pay in order to maintain the manufacturing conditions of the ceramic product. The transformation of environmental externalities into internal costs makes it possible to go beyond the individual production units and to consider the territory, switching from micro to the meso level.

5.6 S-LCA: Social Assessment

The three impact assessment systems S-LCA, LCA and LCC all refer to the guidelines set out in ISO 14040 which provides for four phases Therefore, for the determination of the social impact, implementing the same Objective and Scope of LCA and LCC, using the so-called Participatory Approach [78] already used for the engagement of stakeholders involved in the management of Cultural Heritage [79]. In the case under consideration in this study, the expectations of the Stakeholders involved in the value chain of the Sassuolo district were adopted as an indicator of social impact. To determine the expectations of the main stakeholders, the qualitative analysis has required the use of various data collection techniques, such as: structured online interviews and focus groups. Subsequently, in order to define the degree of influence that the expectations of the stakeholders have on the producers of ceramic tiles, it was necessary to assign to each stakeholder a prioritization index, constructed with the criteria of power, urgency and proximity already described in the AA1000 standard [80].

![Figure 2](image_url)

Figure 2: Scenario 1. Entrepreneurial perspective: (a) mapping, (b) prioritization and (c) graphic representation of the significance of stakeholders.

The social research applied to this case study, raised relevant methodological questions. It has been verified that the analyst’s position is not neutral, when he observes social events to infer conclusions, he “interprets” social phenomena based on his background (experience, knowledge and conscience) [86]. Therefore, the research team was confronted with the intrinsic partiality of each member when collecting, processing and analyzing social data [87]. The construction of knowledge is therefore done through a continuous exchange of points of view, including those of the research team, but not only. The interpretative process and the construction of reality is also influenced by the context in which the social event occurs. Converging multiple points of view, such as stakeholder expectations, is a way to build and describe reality. Through the interpretation of these different points of view, the background of the researcher/analysts merges with those of other social agents, creating a new and more complete understanding of the reality under examination [88].
Figure 3: Scenario 2, worker’s perspective: (a) mapping, (b) prioritization and (c) graphic representation of the significance of stakeholders.

For this reason, the importance of Stakeholders was declined into three sets characterized by three different perspectives of observation of reality. Scenario 1, entrepreneurial perspective (Figure 2); Scenario 2, worker’s perspective (Figure 3) and Scenario 3 public institutions’ perspective (Figure 4).

Table "a" of each scenario considered (Figures: 2, 3 and 4), indicates that for each main stakeholder category and each criterion, a priority index has been assigned (from 1 to 10). The total index is obtained from their sum. Assuming the value 30 (10 + 10 + 10) as the maximum prioritization index, the percentage deviation for each stakeholder indicates the “distance” of this value from the maximum possible index. In the following Table "b" (Figures: 2, 3 and 4) stakeholder groups are ordered by total index of decreasing prioritization and by weighting factor obtained by dividing this index with the maximum index of prioritization (30). In this way, it was possible to aggravate the stakeholders in four priority groups. Finally, radial diagram “c” (Figures: 2, 3 and 4) graphically traces the relative relevance of the stakeholders with respect to the index of maximum prioritization.

5.7 S-LCA: Assessment Interpretation

By merging the different perspectives and expectations of the stakeholders of the Sassuolo ceramic district, it was possible to arrive at a new construction of the reality that has overcome the subjection of each individual economic agent or stakeholder group, as well as to reduce the problem of partiality of the members of the research team in the data collection and analysis phases. Figure 5 shows the interpretative process for the three scenarios considered: entrepreneurs, workers and public institutions.
The table above in Figure 5 represents the logic of stakeholder prioritization for each scenario. Entrepreneurs, workers and public institutions have a different construction of reality depending on the specificity of their expectations. After collecting these different visions, the research team, through a hermeneutical process [89], has carried out the fusion of the three different interpretative horizons to arrive at a new construction of reality that is represented in the table below in Figure 5 [90]. It represents a new prioritization of the stakeholders of the Sassuolo district on the basis of the perspectives of the three scenarios that have been considered. The new stakeholder list was built by combining scenarios (in columns) with priority groups (in rows) across them and listing them in descending order of priority, switching from micro to meso level. The new list of stakeholders can be the basis for defining the most appropriate strategies for engagement.

6. Conclusions

In this paper it was shown that the LCSA approach helps to incorporate the full social cost of an environmental transaction into the price of products, avoiding attributing the external costs to the community and responding to market failures. The research bridges the gap between scholars and practitioners in the field of integrating sustainability principles into business models and economic and industrial policies for the governance of territories.

In a theoretical perspective, the change of the analysis unit, from the enterprise (at micro level) to the district (at meso level), allows to take into account those externalities that would otherwise remain outside the “gates” of the economic actors and allows to transform them into sector internalities. The LCSA model also highlighted that the transport of raw materials is one of the most impacting factors, but above all it showed that it is not only a transaction cost (the transport from the mine to the factories), but also an environmental cost not exclusively attributable to the individual company, but to the entire sector. The determination of the monetary value of externalities has questioned the hypothesis of the “isotropicity” of space considered in terms of “pure distance”, that is, that spatial element that must be filled in order to transport people with raw materials and finished products. Distance is not only transaction cost, but also environmental cost. Externalities have the
consequence of creating situations of interdependence between subjects who are not among themselves in contractual relations. This vision raises the question of managing interactions between economic agents and internalizing externalities that cannot be left exclusively to market coordination. This is a problem of governance of the system and the implementation of appropriate economic policies aimed at attributing the cost of externalities to those who have been able to use public assets for the exercise of their economic activity. The economic quantification of external costs in aggregate terms, broadens the knowledge on the factors of pressure offering private decision makers and public administrators, useful information to prepare responses and targeted interventions of economic policies. We could therefore move from the coercive logic of “forbidding” to the positive logic of “doing better”, in which the environment is no longer perceived as externality, a threat to the brake and obstacle to the development of businesses, but as an opportunity to stimulate product and process innovation.

From a managerial perspective, this experimental research has shown how the correct use of an appropriate scientific tool (the LCSA model) allows to quantify the economic, environmental and social impact, using process data normally available to economic agents and otherwise not always used profitably. Empirically, the study, adopting the holistic perspective of the life cycle, showed that the transport of raw materials constitutes about 20-25 % of the environmental damage produced by the entire life cycle, for all the production categories of the Sassuolo ceramic district. However, there are not great differences between the different processes of the product categories considered, in terms of environmental impact, as a demonstration of the standardization of the production phases. The process of technological standardization has also made less relevant the reduction of transaction costs related to the territorial proximity and the outsourcing of production phases and the efficiency of learning processes that are at the basis of innovation. The effects of the industrial activities of the Sassuolo district extend beyond the traditional concept of local territory to reach beyond national borders, to the countries from which the raw materials necessary to produce ceramic tiles are sourced. The social dimension of industrial activity in the district and the related costs has led us to ask ourselves about the ways in which economic actors interact and about the model of "government" of the territory. The interpretative study of the expectations of the various stakeholders, divided into three different scenarios, would evoke the creation of a district governance that guides the efforts and investments of all companies towards cost efficiency, value innovation, market presence with an adequate policy of brand, the ability to develop and integrate into international markets.

Acknowledgments: This research was funded by European Union under the LIFE Programme (LIFE16 ENV/IT/000307: LIFE Force of the Future)

Author Contributions: Anna Maria Ferrari designed and coordinated the research team, Martina Pini and Lucrezia Volpi experimentally carried out the environmental impact analyses, Cristina Siligardi conducted the technological tests on ceramic materials, Fernando E. García Muiña developed the socio-economic analysis and Davide Settembre Blundo wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.
References

28. Camuffo, A., Grandinetti, R. Italian industrial districts as cognitive systems: are they still reproducible?. *Entrepreneurship & Regional Development*, 2011, 23(9-10), 815-852. DOI.

47. Martin, R., & Sunley, P. Conceptualizing cluster evolution: beyond the life cycle model?. *Regional Studies*, 2011, 45(10), 1299-1318. DOI.
51. Ceschin, F. Critical factors for implementing and diffusing sustainable product-Service systems: insights from innovation studies and companies’ experiences. *Journal of Cleaner Production*, 2013, 45, 74-88. DOI.

73. Gulsoy, O. Y., Can, N. M., Bayraktar, I., Ersayin, S., Hizal, M., & Sahin, A. I. Two stage flotation of sodium feldspar–from laboratory to industrial application. Mineral Processing and Extractive Metallurgy, 2004, 113(3), 139-144. DOI.

84. Sell, I., Ott, D., & Kralisch, D. Life cycle cost analysis as decision support tool in chemical process development. ChemBioEng Reviews, 2014, 1(1), 50-56. DOI.

85. Chava, S. Environmental externalities and cost of capital. Management Science, 2014, 60(9), 2223-2247. DOI.
86. Berger, R. Now I see it, now I don’t: Researcher’s position and reflexivity in qualitative research. *Qualitative research, 2015*, 15(2), 219-234. DOI.

