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12 Abstract: Accumulative roll bonding (ARB) is one of methods of severe plastic deformation which
13 is relevant for industrial production of sheets. While mechanical properties of several magnesium
14 alloys subjected to ARB process have been studied, the physical properties have been reported only
15 for some magnesium alloys. These properties are influenced by the texture developed during the
16 ARB process and the temperature load. In the presented contribution, we studied thermal
17 diffusivity and thermal conductivity of an AZ31 magnesium alloy after 1 and 2 passes through the
18 rolling mill. Thermal diffusivity was measured with the laser-flash method in the temperature
19 range between 20 and 350 °C. Thermal conductivity depends on the number of rolling passes. The
20 microstructure and texture of sheets are significant factors influencing the thermal properties.
21 Keywords: magnesium alloy; accumulative roll bonding; thermal conductivity; texture
22

23 1. Introduction

24 Mg-Al-Zn alloys due to their low density and high specific strength belong to the most used
25  magnesium materials. The strength of these alloys increases with increasing Al content. An AZ31
26  alloy can be applied as wrought alloy. The mechanical properties of Mg-Al-Zn alloys can be
27  improved using methods of severe plastic deformation (SPD) due to Hall-Petch strengthening.
28  Several SPD methods have been described among them methods based on the rolling process as
29  differential speed rolling (DSR) [1, 2], single roller drive rolling (SRDR) [3] or accumulative roll
30  bonding (ARB) [4-6]. ARB allows preparing big sheets with a predetermined thickness. On the other
31  hand, such materials exhibit developed planar anisotropy of mechanical properties as a consequence
32 of the texture formed during the rolling process. The texture influence on properties of hexagonal
33 magnesium materials is significant due to large anisotropy of magnesium itself. The anisotropy of
34 mechanical properties has been reported several times in the literature [7-9]. On the other hand, the
35  developed texture affects not only mechanical properties (strength, modulus) but also physical
36  properties (thermal expansion coefficient, internal friction, electrical resistivity). The effect of the
37  texture on the thermal properties was studied only rarely [10-13].

38 Thermal properties of alloys belong to the important characteristics of structural materials.
39  Dimensional stability and distribution of the heat in the thermally loaded devices are problems of
40  the highest priority. In this study the temperature dependence of the thermal conductivity of a
41  magnesium alloy AZ31 is measured with the aim to estimate the effect of the ARB process on the
42 thermal conductivity.

43
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44 2. Materials and Methods

45 AZ31 (commercial purity) magnesium alloy sheets with initial thickness of 2 mm were used in
46  this study. Table 1 shows the chemical composition of the used AZ31 alloy. Before the rolling, the
47  surfaces of the sheets were wire brushed and clean with acetone to obtain free from oxide surface
48  with sufficient roughness for high-quality joints. To set the cleaned surfaces in contact the sheets
49  were riveted along one side. Then the sheets were annealed at 400 °C for 15 min. Four-high rolling
50 mill configuration with the rolling speed of 0.4 ms and 50% rolling reduction in each pass was used.
51  We performed up to 2 passes through the rolling mill. ARB_2, resp. ARB_1 indicates the samples
52 subjected to 2, resp. 1 pass of the ARB process. ARB_0 stands for the as-received sheet.

53
54 Table 1: Chemical composition of the alloy in wt%.
55
Al Zn Mn Si Ce Fe Mg
316 129 041 001 0.055 0.02 Bal
56
57 Laser flash method LINSEIS LFA 1000) was applied for the thermal diffusivity and specific heat

58  measurements from 20 up to 350 °C in vacuum. The dimensions of the specimens were 12.7 mm in
59  diameter and 2 mm in thickness and the measurement was performed across the sample thickness.
60  The samples were coated with graphite on both sides to ensure homogenous absorption of the laser
61  energy. At the same time four samples were measured three times, for each sample the median of
62 the three values was taken and then the mean value and the standard deviation was calculated. The
63  main principle of the thermal diffusivity measurements is to measure the temperature rise on the
64  rear side of the samples with liquid-nitrogen cooled infrared detector after the laser pulse. Then, the
65  thermal diffusivity coefficient a is calculated according to the formula: a = 0.1388(2/tos, where { is the
66  thickness of the specimen and fos is the time at 50% of temperature increase. For the specific heat
67  measurement comparison method was used. Pure Molybdenum (3N8) was used as a reference
68  sample. Then, the specific heat coefficient corresponds to the total temperature increase according to
69  the formula: cp=cp:(AT:/ AT)(m:/m), where cp, cpr are the specific heats of sample and reference
70 sample; AT, AT: are temperature increases induced by laser pulse; m, m: are the masses of the sample
71 and reference sample, respectively.

72 The thermal expansion coefficient, o, was measured using a LINSEIS L75PT-1600 dilatometer at
73 heating and cooling rates of 1 C/min in a resistance furnace in an argon protective atmosphere.
74  Length changes were measured by linear variable differential transformer (LVDT) sensor through
75 quartz push-rods. A2Os reference was used for correction measurements.

76 Density of samples was estimated by the hydrostatic weighing at room temperature.
77  Microstructure characteristics and texture of samples were studied using light microscopes
78  (OLYMPUS and NEOPHOT) and by a FEI Quanta 200 FX scanning electron microscope equipped
79  with EDAX EBSD system; orientation imaging map software was utilized for EBSD observations.
80  The step size used for EBSD measurements was 0.8 pm.

81 3. Results

82 3.1. Microstructure of samples

83 Light micrographs taken from the sheets surface of the ARB_0, ARB_1 and ARB_2 samples are
84  depicted in Figs. 1, 2 and 3. Non-uniform grain structure consisting of bigger grains surrounded by
85  small grains was found in the rolled sheet (Fig. 1). After the first ARB process the grain structure was
86  refined as it is obvious from Fig. 2, anyway it remained still non-uniform. The result of the second
87  ARB pass is shown in Fig. 3. As can be seen the microstructure is nearly uniform with fine grains.
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Figure 1. Microstructure taken from the ARB_0 Figure 2. Microstructure taken from the ARB_1
surface surface.
89
% : ‘1;00£m*
Figure 3. Microstructure taken from the ARB_2 Figure 4. New interface formed in the ARB_1
surface. sample.
90
91 Particles visible in Fig. 1-3 were analyzed using EDX line spectroscopy. Particles represent an

92  Al-Mn binary phase. In the literature, these particles were identified as AlsMnsand/or
93 AluiMna phases [14,15]. New interface formed in the ARB process is visible in the light micrograph
94  presented in Fig. 4.

95 3.2 Thermal measurements

96 The thermal conductivity x (W/(m K)) can be calculated according to known relationship
97
98 K=a.p.Cp, @

99  where a is the thermal diffusivity (cm?/s), p is the density (kgm), ¢p is the specific heat capacity
100 (J/kg/K) at constant pressure. Taking into account the thermal expansivity of the sample thickness
101  and volume

102 €=t [1+0.(T-20)], 2)
103 we obtained for the sample density following relationship

104

105 p=p ) [1+ ou(T-20)]. 3)

106  The thermal conductivity can be calculated according to formula:
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2
108 = 2138850 o 6y (T)/[1 + . (T — 20)] @)
to.5(T)
109 Experimental values of the specific heat, cp, and the thermal expansion coefficient, o, used for the
110 calculation, are reported in Table 2.
111
112 Table 2. Specific heat, cp,and thermal expansion coefficient, o, estimated at various temperatures.
113
Material ARB_0 ARB_1 ARB_2
T (°C) o (Jkg'K1)  ax104K1)  cp (Jkg'K?)  ox106K1)  cp (Jkg'K1)  ax10-4(KT)
20 1010 26.53 1002 26.27 1036 25.73
50 1012 26.72 1037 26.47 1087 25.94
100 1060 27.04 1070 26.80 1101 26.31
150 1090 27.36 1107 27.12 1133 26.67
200 1112 27.68 1120 27.45 1159 27.04
250 1130 27.99 1113 27.77 1186 27.40
300 1161 28.31 1146 28.10 1186 27.77
350 1184 28.63 1166 28.43 1203 28.13
114
115 The temperature dependence of the thermal conductivity is shown in Fig. 5. The thermal
116  conductivity increases with increasing number of passes at all temperatures. This is better seen in
117  Fig. 6 where the thermal conductivity, measured at room temperature, rapidly increases with
118  increasing number of passes.
119
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Figure 5. Temperature dependence of thermal Figure 6. Thermal conductivity estimated at room
conductivity. temperature depending on number of passes.
120 4. Discussion
121 The conductivity of magnesium alloys has been reported in many papers. Mostly, binary and
122 ternary magnesium alloys consist of a-grains containing the solid solution of the alloying elements
123 in Mg and various phases. Generally, the thermal conductivity depends on their composition and
124 thermal history [9,11,13-25]. Results of these studies were ambiguous. Ying et al [9] studied extruded
125  Mg-Al alloys in the temperature interval from room temperature up to 250 °C. While the thermal
126  conductivity of pure Mg and Mg-0.5at.%Al decreases with increasing temperature, the thermal
127

conductivity of Mg-0.9at.%Al remains almost unchanged, and the thermal conductivity of
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128  Mg-1.5at.%Al decreases with increasing temperature. Similar results were found for Mg-Zn alloys
129 [11]. For Zn contents higher than 1wt.%, the thermal conductivity increases with increasing
130 temperature from 303 up to 513 K. Precipitation of the second phase particles increases the thermal
131  conductivity due to purification of the matrix [21]. The thermal conductivity of an AZ31 alloy
132 prepared by twin roll casting was measured in a wide temperature range from -125 °C up to 400 °C
133 [21]. The thermal conductivities estimated by Lee et al. in [20] and our results of ARB_0 are shown in
134 Fig.7. It can be seen that obtained results are very close even of different manufacture conditions
135 were used.
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136 Figure 7. Thermal conductivity of rolled sheets.

137 As it was shown in several papers, the microstructure and microstructure changes influence the
138  thermal conductivity [12,13,16-25]. The main changes in the microstructure occurred during the ARB
139 process are grain refinement and development of the texture. While the grain refinement influence
140  on the thermal conductivity was found as an effect of the second order [15], the influence of texture
141  was observed only rarely in the literature [10-13,26]. Rolled sheets from magnesium materials
142 exhibit a typical texture, where basal planes (0001) are mostly parallel to the sheet surface. Observed
143 textures of our samples are presented in Fig. 8a for ARB_0, Fig. 8b (ARB_1) and Fig. 8c (ARB_2)..
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145 Figure 8. Texture of ARB_0 (a), ARB_1 (b) and ARB_2 samples (c).
146 After the repeated rolling in the first and second pass the grain refinement occurred in a

147  continuous rotational dynamic recrystallization (RRX) process. This mechanism involves dynamic
148  polygonization of rotated lattice regions adjacent to the grain boundaries [26,27]. The texture after
149 the first and the second pass is nearly perfect (Fig. 8), i.e. the most grains are oriented with their basal
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150  planes parallel to the sheet surface. The results presented in this study show that discussion of the
151  thermal conductivity of magnesium sheets exhibiting certain texture in terms of polycrystalline
152 quasi-isotropic materials is not correct.

153 The thermal conductivity can be attributed to the heat transport by electrons and by phonons. When
154 both can be considered as independent then: k= & + & The maximum in the phonon part & is
155  typically at temperature about 0.10p, Op is the Debye temperature of a material (b(Mg)=318 K) [28].
156 It means that the measured thermal conductivity in our case can be attributed to the electronic
157 contribution .. According to the Wiedemann-Franz law [29]

158 =LooT, 5)

159  where o is the electrical conductivity and Lo is the standard Lorentz number and T absolute
160  temperature. For highly degenerated systems such as metals Lo = 2.45x10-8 W Q K2 [30]. Supposing a
161  weak temperature dependence of electrical conductivity due to temperature independent scattering
162 on impurities and defects [31], we can simply explain the measured increasing temperature
163 dependence of the thermal conductivity (Fig. 5).

164  In a conductor, the electronic conductivity ke (either electric or thermal) is done as
165 J=k E, (6)

166  where ] is the flow density (electric current density or heat flow density) and E the field (electric field
167  or temperature gradient). Generally the conductivity is a tensor. Non scalar conductivity can be
168  found also in materials with hexagonal symmetry. Bass [32] estimated that the electrical conductivity
169  of a magnesium single crystal along the <c> axis is higher than that in the <a> direction, i.e. we can
170  also expect for the thermal conductivity, i.e. x(c)/x(a)>1.

171  In the textured sheet, the hexagonal cells are preferentially oriented such that the <c¢> axis is
172 perpendicular to the sheet surface. The thermal conductivity was measured in the same orientation,
173 ie.in directions preferentially close to the <c> direction. The texture strengthening after the first and
174  second passes increased the number of grains oriented with the ¢ axis perpendicular to the sheet
175  surface, therefore, resulting in an increase in the thermal conductivity. In Mg where basal planes are
176  close packed, the mean free path of electrons is higher in the <c> direction than in the basal plane.
177  This simple view of the nature of the conductivity anisotropy is supported by the fact that the
178  anisotropy of electrical conductivity of hexagonal metals is higher for those with a higher <c>/<a>
179  ratio [32].

180 5. Conclusions

181 Thermal conductivity of AZ31 magnesium alloy was measured in the temperature range from
182  room temperature up to 350 °C. Samples for the conductivity measurements were prepared by
183  accumulative roll bonding. The conductivity measurements were performed in the direction
184  perpendicular to the sheet surface.

185 e ARB process refined the sheets microstructure.

186 ¢ Rolled sheets exhibit developed texture where basal planes (0001) are prefentially parallel to
187 the sheet surface.

188 e Thermal conductivity increases with temperature and increasing number of rolling passes.
189 e Observed increase of thermal conductivity with the increasing number of rolling passes can
190 be explained with the texture improvement and anisotropy of thermal properties of
191 magnesium.

192 e This anisotropy can be of advantage in cases where the heat dissipation occurs in one
193 direction.

194
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