

1 Article

2 **Land Cover Change Detection Based on Adaptive** 3 **Contextual Information Using Bi-Temporal Remote** 4 **Sensing Images**

5 **Zhiyong Lv¹, Tongfei Liu¹, Penglin Zhang^{2*}, Jón Atli Benediktsson³, and Yixiang Chen⁴**

6 1 School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China. E-mail:
7 Lvzhiyong_fly@hotmail.com (Z.Y.L) and liutongfei_home@hotmail.com (T.F.L).

8 2 School of remote sensing and information engineering, Wuhan University, Wuhan 430079, China.
9 ZPL@whu.edu.cn.

10 3 Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik IS 107, Iceland;
11 benedikt@hi.is.

12 4 Department of Surveying and Geoinformatics, Nanjing University of Posts and Telecommunications,
13 Nanjing, 210023, China. - yixiangchen@njupt.edu.cn

14 *Correspondence: ZPL@whu.edu.cn Tel.: +86-158-2967-3435

16 **Abstract:** Land cover change detection (LCCD) based on bi-temporal remote sensing images plays
17 an important role in the inventory of land cover change. Due to the benefit of having spatial
18 dependency properties within the image space while using remote sensing images for detecting
19 land cover change, many contextual information based change detection methods have been
20 proposed during past decades. However, there is still a space for improvement in accuracies and
21 usability of LCCD. In this paper, a LCCD method based on adaptive contextual information is
22 proposed. First, an adaptive region is constructed by gradually detecting the spectral similarity
23 surrounding a central pixel. Second, the Euclidean distance between pairwise extended regions is
24 calculated to measure the change magnitude between the pairwise central pixels of bi-temporal
25 images. While the whole bi-temporal images are scanned pixel-by-pixel, the change magnitude
26 image (CMI) can be generated. Then, the Otsu or a manual threshold is employed to acquire the
27 binary change detection map (BCDM). The detection accuracies of the proposed approach are
28 investigated by two land cover change cases with Landsat bi-temporal remote sensing images. In
29 comparison to several widely used change detection methods, the proposed approach can achieve
30 a land cover change inventory map with a competitive accuracy.

31 **Keywords:** land cover change detection; adaptive contextual information; bi-temporal remote
32 sensing images

34 **1. Introduction**

35 Land cover change detection (LCCD) which is a classical problem has recently been a hot topic
36 in remote sensing[1-4]. The reason being that LCCD plays an increasingly important role in making
37 decisions to promote sustainable urban development, such as urban expansion[5,6], city temperature
38 change analysis[7,8], urban air quality analysis[9], etc. In addition, LCCD has a positive effect in
39 natural resource management on the Earth's surface, for example, forest deformation
40 monitoring[10,11] and land use monitoring[12,13].

41 In recent decades, various LCCD techniques have been developed and applied in practice [14-
42 18]. Two main steps are usually related to these methods, i.e., the generation of a change magnitude
43 image (CMI) and the use of a binary threshold to divide the CMI into a binary change detection map
44 (BCDM). The most commonly used methods to provide CMI are image difference [2,19], image ratios
45 [20,21] and change vector analysis (CVA)[22-24]. In general, these methods usually calculate the

46 distance between the bi-temporal images pixel-by-pixel to measure the change magnitude between
47 the bi-temporal images. Larger distances symbolize a higher change probability, and shorter
48 distances demonstrate a lower probability of change. To further acquire the BCDM, a threshold is
49 needed to divide the CMI into a BCDM. The most widely used threshold determining methods for
50 LCCD are Otsu[25,26], expectation maximization(EM)[27-29], and the customized automatic
51 threshold determine method[30]. Although a threshold can determine whether a pixel in a CMI is
52 changed or unchanged and also provides a binary change inventory map, much noise is still observed
53 in the binary change inventory map. That is because the bi-temporal remote sensing images are
54 usually different, e.g., in terms of radiation, solar angles and soil moisture. [17].

55 To improve the performance of change detection, contextual information is usually adopted for
56 LCCD with bi-temporal remote sensing images. For example, Celik et al. proposed a method based
57 on PCA and k-means clustering (PCA_Kmeans) through splitting the difference image into a number
58 of $h \times h$ overlapping blocks where h is a number of pixels [31]; Lv et al. presented a contextual
59 analysis based LCCD approach using a regular sliding window technique[32]. In recent years, level
60 sets have been found to be helpful for describing the contour of objects and extract contextual
61 information of remote sensing images for LCCD. Examples of such approaches are level set evolution
62 with local uncertainty constraints(LSELUC)[33] and the multiresolution level set (MLS)[34]. However,
63 contextual information based LCCD approaches rely on the performance of contextual information
64 extraction algorithms, and the design of the contextual information extraction algorithm is usually
65 time-consuming and dependent on experience [35-37]. Furthermore, considering contextual
66 information using a regular-single window may be unable to cover the multifarious ground targets
67 with different shapes and sizes.

68 As mentioned previously, the opportunities for improving the accuracy and usability of LCCD
69 methods still exists despite the significant effort that has already been put into developing change
70 detection methods for bi-temporal remote sensing images. In this paper, we propose an adaptive
71 contextual information based LCCD approach which extracts contextual information adaptively
72 around a central pixel and computes the change magnitude between central pixels based on the
73 distance between adaptive extended regions. To evaluate the accuracy and performance of the
74 proposed approach, it is applied to two real land cover change events using bi-temporal remote
75 sensing images and compares the results with three widely used contextual based methods, i.e.,
76 LSELUC[33], MLS[34] and PCA_Kmeans[31].

77 The rest of this paper is organized as follows: Section 2 introduces the proposed approach.
78 Section 3 describes the experiments and comparisons. Section 4 presented the discussion and
79 conclusion is given in Section 5.

80 **2. The Proposed Method**

81 Two co-registered bi-temporal remote sensing images are $I_1 = \{I_1(i, j) | 1 \leq i \leq H, 1 \leq j \leq W\}$
82 and $I_2 = \{I_2(i, j) | 1 \leq i \leq H, 1 \leq j \leq W\}$, where, H and W are the height and width of the bi-temporal
83 images, respectively. The bi-temporal images I_1 and I_2 are acquired over the same geographic area
84 at different times. In general, I_1 and I_2 depict the land cover event before and after, such the land
85 cover scene before and after an earthquake. As shown in Figure 1, the proposed approach is
86 composed of several main blocks intended for the following tasks: (1) Extract contextual information
87 by extending an adaptive region surrounding a pixel; (2) Calculate the distance between a pairwise
88 extended region, and scan over iteratively the bi-temporal images pixel-by-pixel to generate the CMI;
89 (3) provide a threshold to divide the CMI into a BCDM. The details of the proposed approach are
90 described in subsequent sections.

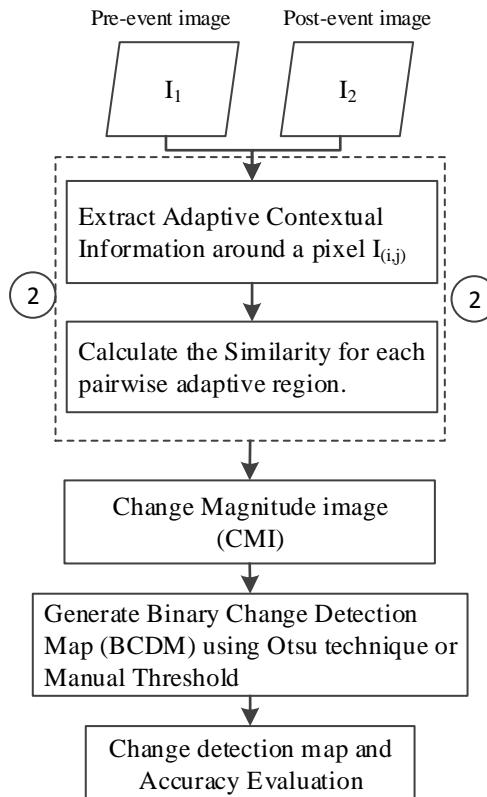


Figure 1. Flowchart of the proposed approach.

92 **2.1 Adaptive Contextual Information Extraction**

93 Due to the fact that spatial distribution of ground change is full of uncertainty in terms of the
 94 shape, size and location of the change area, it is necessary to take into account the shape information
 95 for change area in an irregular manner. To achieve this aim, an adaptive extension approach is
 96 proposed here to extract the ground information. First, $I_1(i,j)$ is a pixel of a remote sensing image
 97 at location (i, j). Then, the spectral difference between $I_1(i,j)$ and its eight-connected neighboring
 98 pixels P_{sur} is calculated to determine whether the neighboring pixels belong to the extended region.
 99 The spectral difference (homogeneity) between $I_1(i,j)$ and P_{sur} is defined by
 100

101
$$\Delta d_{t1} = \|I_1(i,j) - P_{\text{sur}}\| \quad (1)$$

102 where Δd_{t1} represents the spectral similarity between $I_1(i,j)$ and its surrounding pixels P_{sur} for
 103 the remote sensing image at time t_1 . A greater Δd_{t1} demonstrates a greater difference between the
 104 $I_1(i,j)$ and its surrounding pixels P_{sur} where P_{sur} is one of the eighty-connected neighboring pixels,
 105 $\text{sur} \in [0,7]$.

106 The shape and size of the region around a pixel $I_1(i,j)$ is extended gradually by comparing the
 107 spectral similarity between $I_1(i,j)$ and P_{sur} . The extension is in an iterative manner considering that
 108 the following conditions are satisfied :1) Δd_{t1} is less than a predefined threshold T_1 , and 2) the total
 109 number of the extended pixels is less than another predefined threshold T_2 . The extension is
 110 terminated if either of these conditions is not met. It can be seen that the shape and size of the
 111 convolution region is constructed in a pixel-by-pixel manner, where the region of each pixel has a
 112 relatively high homogeneity. Due to a ground object (e.g., meadow) usually being composed of a set
 113 of homogeneous pixels in spectra, the shape and size of the extended region is adaptive and usually
 114 consistent with the ground object.

115 **2.2 Generate Change Magnitude Image**

116 Based on the aforementioned, the extended region around a pixel $I_1(i,j)$ for the t_1 - time image
 117 is defined as R_{ij}^{t1} , and the corresponding extended region for the t_2 -image around the pixel $I_2(i,j)$ is
 118 R_{ij}^{t2} . In contrast, in the proposed approach, the distance between the pairwise pixels $I_1(i,j)$ and

119 $I_2(i,j)$ for the bi-temporal images is defined by the distance between R_{ij}^{t1} and R_{ij}^{t2} . To solve this
 120 problem, the mean value of the pixels within the extended region is defined as
 121

123
$$m_{ij}^{t1} = \frac{1}{N} \cdot \sum_{n=1}^{n=N} p_n^{t1} \quad (2)$$

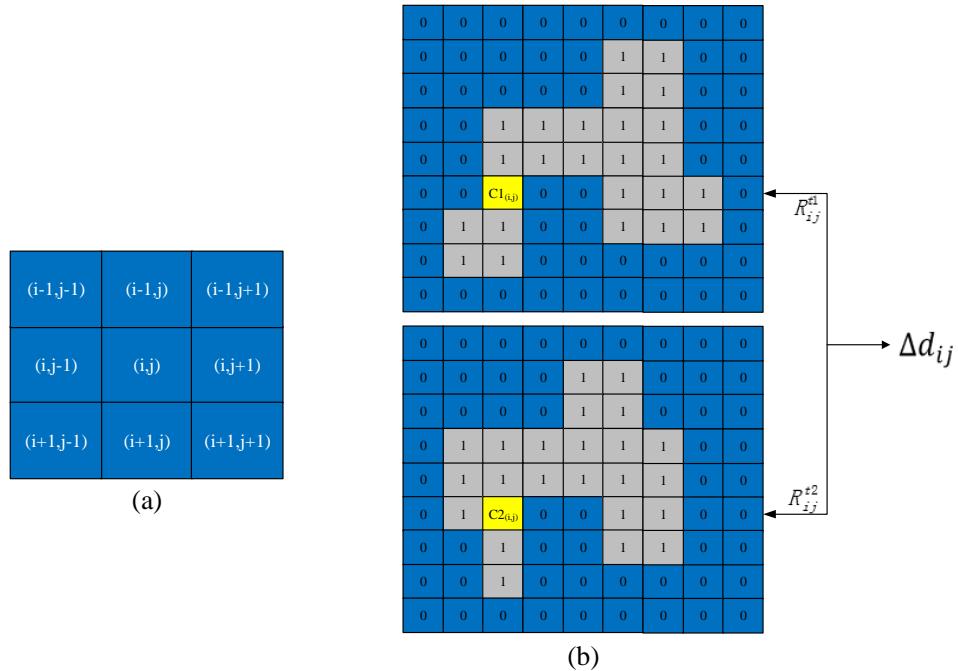
122 125
$$m_{ij}^{t2} = \frac{1}{K} \cdot \sum_{n=1}^{n=K} p_n^{t2} \quad (3)$$

124 126 where m_{ij}^{t1} and m_{ij}^{t2} is the mean value of the pixels within the extended region R_{ij}^{t1} and R_{ij}^{t2} ,
 127 respectively. Thus, p_n^{t1} is the spectral value of a pixel within R_{ij}^{t1} and N is the total number of the
 128 pixels within R_{ij}^{t1} . Furthermore, p_n^{t2} and K have similar meanings, respectively, for the
 129 corresponding adaptive region R_{ij}^{t2} . Therefore, the distance between R_{ij}^{t1} and R_{ij}^{t2} can be defined as
 130

131
$$\Delta d_{ij} = \|m_{ij}^{t1} - m_{ij}^{t2}\| \quad (4)$$

132 133 where Δd_{ij} is the distance between the pairwise adaptive extended region R_{ij}^{t1} and R_{ij}^{t2} . Here,
 134 Δd_{ij} is used to measure of the change magnitude between the pixel $I_1(i,j)$ and $I_2(i,j)$ for the bi-
 135 temporal images at t_1 and t_2 , respectively. To generate the change magnitude image, the entire bi-
 136 temporal images are scanned and calculated in this manner, and each pixel will be taken as once the
 137 central pixel for an adaptive extension.

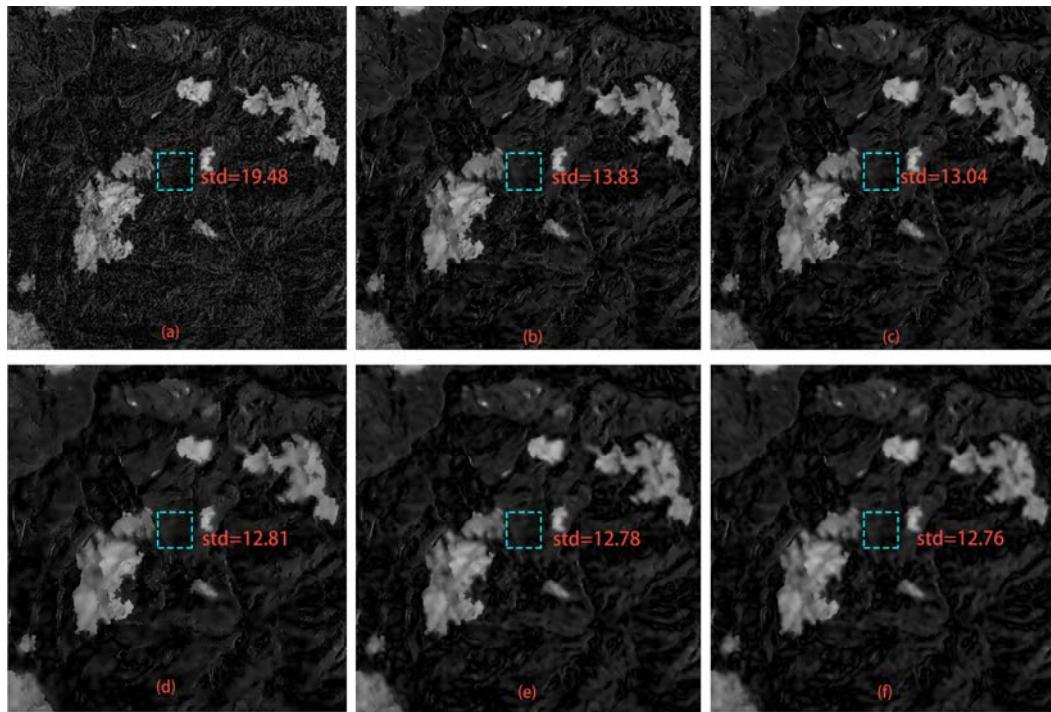
138 To clearly demonstrate the generation of the CMI, an extended example is shown in Figure 2. In
 139 Figure 2, where $C1_{(i,j)}$ and $C2_{(i,j)}$ are the central pixels of bi-temporal images, Figure 2-(a) is an eight
 140 neighboring extension detector, and the pixels which are composed of an adaptive extended regions
 141 are marked by "1". In the progress of an extension, it is extended gradually from a central pixel to an
 142 adaptive extended region by using the extension detector, the spectral similarity between the central
 143 pixel and its neighboring pixels are measured to decide whether a neighboring pixel should be
 144 marked as "1" or not according to a pre-defined threshold T_1 . The extensions will be terminated when
 145 the size of the extended region meets the predefined threshold T_2 . Finally, the change magnitude
 146 between the two central pixels ($C1_{(i,j)}$ and $C2_{(i,j)}$) is measured by the distance (Δd_{ij}) between the two
 147 adaptive extended regions, more details can be tracked in formula-(2), -(3), and (4).



148 **Figure 2.** Examples of Adaptive Extended Regions: (a) An eight neighboring extension detector,
149 and (b) the two regions labeled by “1” are the adaptive extended regions surrounding the central
150 pixel $C1_{(i,j)}$ and $C2_{(i,j)}$, respectively.

151 From a theoretical viewpoint, it is worth noting that advantage of the proposed strategy for
152 generating change magnitude image lies in the following aspects: 1) since the shape and size of the
153 extended region is adaptive, the pixels within an adaptive region give a higher similarity in spectra,
154 it is more objective than considering the contextual information through a regular window or a
155 mathematical model; 2) Based on the constraints of the two parameters T_1 and T_2 , the extension of a
156 region around a pixel is self-adaptive and the mean value of the pixels within an extended region is
157 used to measure the change magnitude between the pairwise pixel. Hence, the proposed strategy can
158 smooth the intra-class noise, and improve the performance of change detection.

159 It is well known that image difference is one of the simplest and most widely used methods for
160 generating change magnitude image [3,4,25,33]. To illustrate the advantage of the proposed approach,
161 the change magnitude image for a bi-temporal image is respectively acquired by image difference
162 and the proposed approach, and the results are compared in Figure 3. The local standard deviation
163 (std) of CMI is compared using the same window (40×40) which is highlighted in each sub-figures.
164 Lower standard deviation performs a higher homogeneity of the change or unchanged area. As
165 shown in Figure 3, the standard deviation is reduced from std=13.83 to std=12.76 with the T_1 range
166 from 30 to 70. Compared with Figure 3-(a), the standard deviation (std=19.48) of the observed
167 window which is based on the CMI obtained by the image difference method, the CMI of the
168 proposed approach achieves a smaller standard deviation. Therefore, it can be found that the
169 proposed approach has an advantage in improving the homogeneity of a local area, and this
170 improvement is beneficial for LCCD.



171 **Figure 3.** Change Magnitude Image Comparisons between the Image Difference and The
 172 Proposed Approach: (a) is the CMI obtained by image difference method; (b)~(f) are the CMIs
 173 obtained by the proposed approach with a fixed $T_2=50$. T_1 is equal to 30, 40, 50, 60, and 70 for each
 174 sub-figs from (b) to (f), respectively.

175 *2.3 Threshold for obtaining binary change detection map*

176 As in many existing LCCD methods, a threshold is needed to determine if a pixel of CMI is
 177 changed or unchanged and to generate the binary change detection map. In the proposed approach,
 178 a most popular binary method, named Otsu[25,26,38], is used to automatically participate a change
 179 magnitude image into a binary change detection map. The Otsu approach assumes that the CMI
 180 contains two classes (change and unchanged) of pixels. It then calculates the optimum threshold
 181 dividing the two classes to minimize the intra-class variance or equivalently. In other words, the Otsu
 182 method searches exhaustively for the threshold which can minimize the variance within the changed
 183 pixel and unchanged pixels. In addition, a manual threshold is allowed to divide CMI into a binary
 184 change detection map in the proposed approach.

185 **3. Experiment**

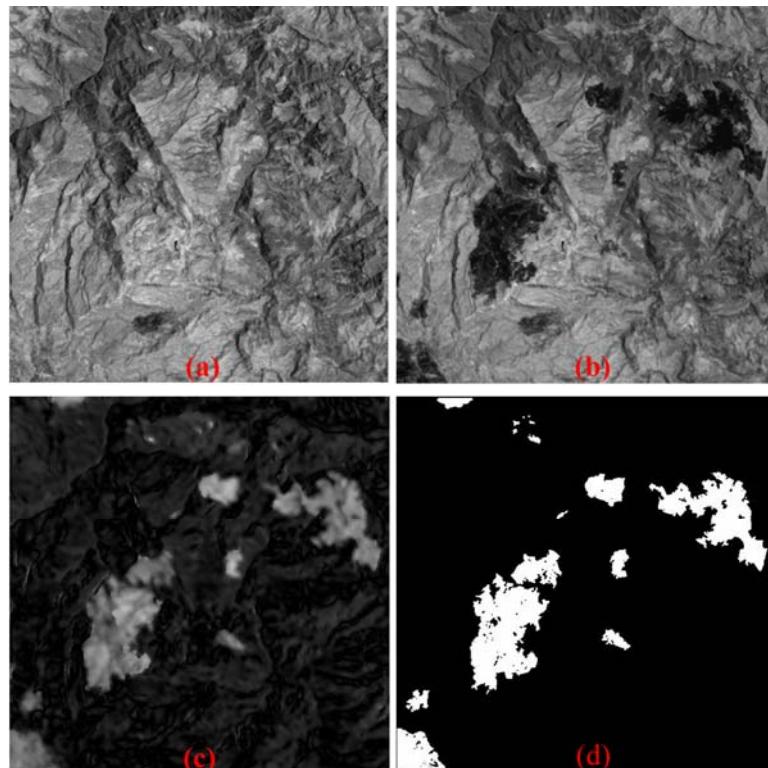
186 In this section, the proposed approach was investigated by two experiments based on two
 187 images scenes which depict the different land cover change events. Three widely used contextual
 188 information based methods, i.e., LSELUC[33], MLS[34] and PCA_Kmeans [31], were compared with
 189 the proposed approach in terms of performance of effectiveness.

190 *3.1 Data Set Description*

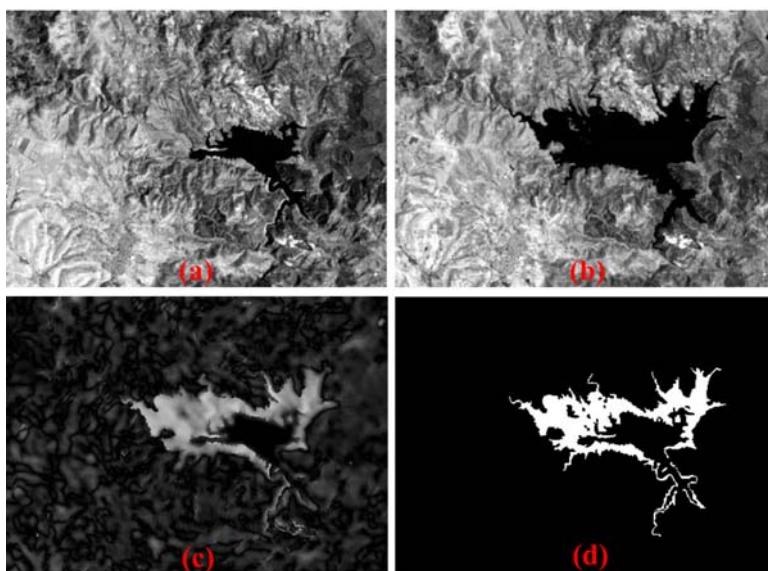
191 Two image datasets which depict land cover change event in the real world are used to
 192 investigate the performance of different contextual information based LCCD methods, including the
 193 proposed approach. Details of the datasets are presented in this section as follows:

194 The first dataset is an open-access dataset for change detection evaluation. As shown in Figure
 195 4, this dataset depicts a land cover change event in Mexico, which is related to a forest fire in May,
 196 2002. The images are composed of two 8-bits images acquired by Landsat-7 satellite sensor in April
 197 2000 and May 2002. The size of the entire image scene is 512×512 pixels with a spatial resolution
 198 30 meters/pixel. For comparison of the bi-temporal images, it should be noted that fire destroyed a
 199 large portion of the forest in the considered change area. The reference change map was interpreted
 200 manually to obtain a quantitative evaluation, as shown in Figure 4-(d)

201 The second dataset is also free-access and the two images are composed of two 8-bit images
 202 acquired by Landsat-5 satellite on September 1995 and July 1996, respectively. The size of the images
 203 is 412×300 pixels with a spatial resolution 30 meters/pixel. This dataset depicts the water lever
 204 change event of the Lake Mulargia on Sardinia Island (Italy) between the two aforementioned acquisition
 205 dates. The ground reference map is shown in Figure 4-(d), and it is defined manually according to the detailed
 206 visual analysis base on the bi-temporal image comparisons.
 207



208 **Figure 4.** Images of Mexico Area: (a) band 4 of the Landsat ETM+ captured in April 2000, (b) band 4 of the Landsat
 209 ETM+ captured in May 2002, (c) corresponding CMI obtained by the proposed approach, and (d) reference map
 210 of the changed area.



211 **Figure 5.** Image of Sardinia Island area in Italy: (a) band 4 of the Landsat TM image captured in September 1995,
 212 (b) band 4 of the Landsat TM image captured in July 1996, (c) corresponding CMI based on the proposed
 213 approach, and (d) reference map of the changed area.

214 *3.2 Experimental Setup and Parameter Setting*

215 To test the effectiveness of the proposed approach for LCCD using bi-temporal remote sensing
 216 images, three popular LCCD methods, including LSELUC[33], MLS[34] and PCA_Kmeans [31], were
 217 compared with the proposed approach. For each dataset, the optimal parameters of each experiment
 218 were obtained by the trial-and-error approach, the parameter details of each approach were
 219 summarized in Table 1. In addition, to present quantitative comparisons, the number of ground
 220 reference pixels for each dataset is given in Table 2.

221 **Table 1.** Parameter settings of different LCCD methods for the two datasets.

Method	Parameter Settings	
	Mexico dataset	Sardinia set
LSELUC[33]	$S = 7$	$S = 3$
MLS[34]	$L = 2, \mu = 0.1$	$L = 2, \mu = 0.3$
PCA_Kmeans[31]	$h = 9, s = 3$	$h = 5, s = 3$
The proposed	$T_1 = 75, T_2 = 50$	$T_1 = 110, T_2 = 50$

222 **Table 2.** Details of ground reference pixels for each dataset.

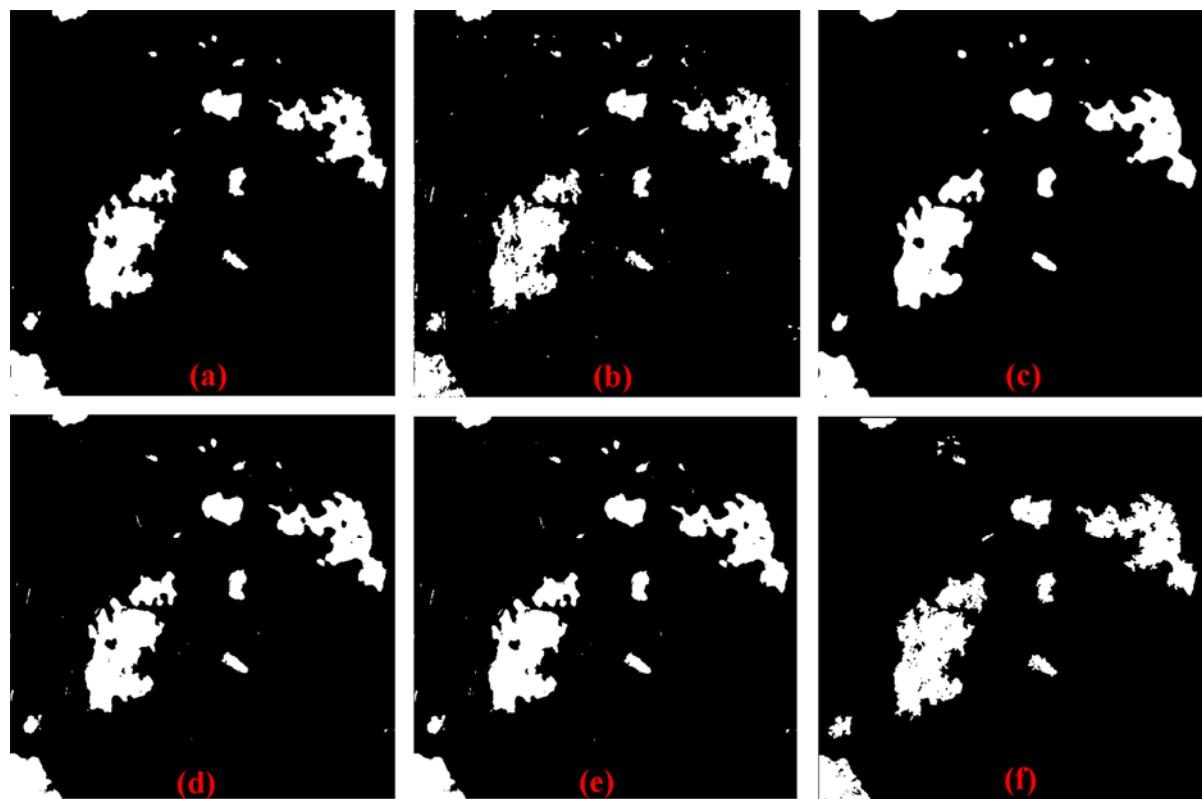
Data Set	Pixel's Number of Ground Reference for Each Data Set	
	No. of Unchanged Pixels	No. of Changed Pixels
1 Mexico	236555	25589
2 Sardinia	115974	7626

223 *3.3 Results and Quantitative Evaluation*

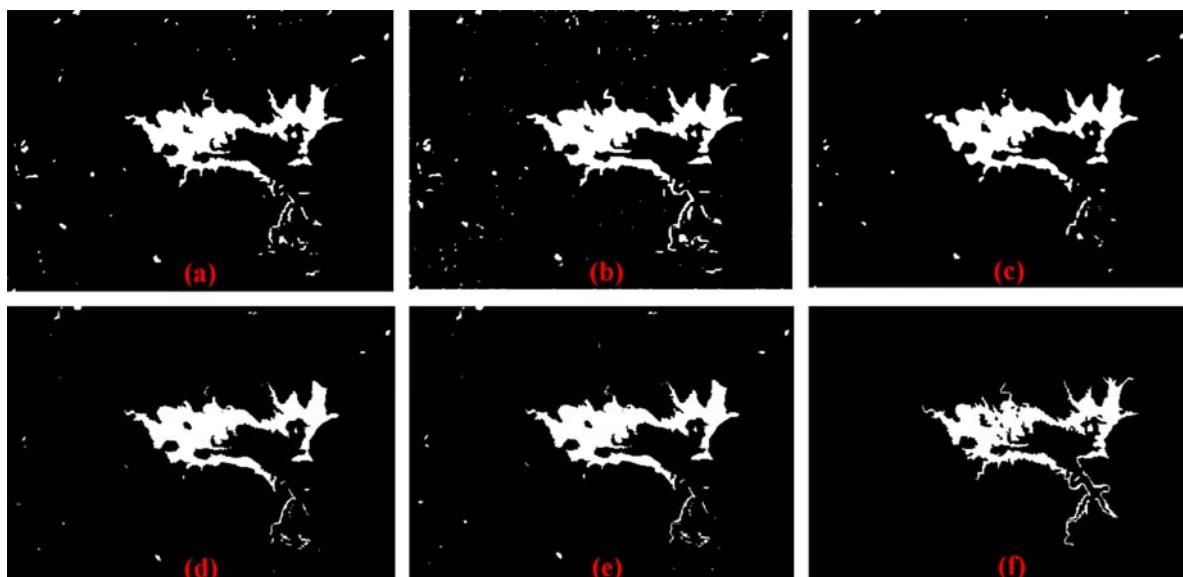
224 Three quantitative evaluation measurements, i.e., false alarm (FA), missed alarm (MA), and total
 225 error (TE), are employed for experimental comparisons to evaluate the proposed approach
 226 quantitatively [39]. To present the meaning of these indices, we defined UC as the number of change
 227 pixels that are actually unchanged pixels in BCDM when compared with the ground reference, TRU
 228 is the number of pixels that are unchanged pixels in the ground reference, CU is the unchanged pixels
 229 in the BCDM but is changed pixels in the ground reference, TRC is the total number of changed pixels
 230 in the ground reference truth. Based on this definition, FA, MA and TE can be defined as the $\frac{UC}{TRU} \times$
 231 100% , $\frac{CU}{TRC} \times 100\%$, and $\frac{UC+CU}{TRC+TRU} \times 100\%$, respectively.

232 The first image scene depicts a land cover change event about a forest fire in Mexico, as
 233 illustrated in Figure 4. Visual comparisons are shown in Figure 6, from these comparisons, it clearly
 234 demonstrates that the proposed approach with Otsu or manual threshold performed better than that
 235 of LSELUC[33], MLS[34], and PCA_Kmeans [31]. Compared with the ground reference, the results
 236 of the proposed approach produce less noise. In addition, quantitative comparisons are presented in
 237 Table 3 where “The proposed” and “The proposed+” presented the proposed approach with Otsu
 238 binary threshold method and a manual binary threshold, respectively. It can be seen that the
 239 proposed approach achieved the best accuracies in terms of MA and TE. This comparison further
 240 demonstrates the superiority of the proposed approach.

241 To further investigate the performance of the proposed approach, another land cover change
 242 event about water-area change was evaluated in the second experiment. In this experiment, two
 243 images which cover the same geographic area, called Lake Mulargia on Sardinia Island, were adopted
 244 for experimental comparisons, as displayed in Figure 5. The results of the different methods are
 245 compared in Figure 7, from this comparisons, it can be seen that the proposed approach achieved a
 246 better performance with less noise, compared with that of LSELUC[33], MLS[34], and PCA_Kmeans
 247 [31]. The quantitative comparisons in Table 4 strengthen further the conclusion of the visual
 248 comparison and clearly demonstrate that the result based on the proposed approach and the
 249 proposed+ approach gave better accuracies in terms of MA and TE.



250 **Figure 6.** Mexico dataset: Binary change detection map generated by different methods: (a)LSELUC[33];
251 (b)MLS[34]; (c)PCA_Kmeans [31]; (d) and (e) the proposed approach with Otsu binary threshold and manual
252 threshold respectively; (f) the ground reference.



253 **Figure 7.** Sardinia Island dataset: Binary change detection map generated by different methods: (a)LSELUC[33];
254 (b)MLS[34]; (c)PCA_Kmeans [31]; (d) and (e) the proposed approach with Otsu binary threshold and manual
255 threshold respectively; (f) the ground reference.

257

Table 3. Comparison between other methods and the proposed approach for the Mexico data set

Method	FA	MA	TE
LSELUC	0.426	12.2	1.58
MLS	0.578	11.9	1.68
PCA_Kmeans	0.781	10.3	1.71
The proposed	0.746	9.18	1.57
The proposed+	0.79	8.47	1.54

258

Table 4. Comparison between other methods and the proposed approach for the Sardinia data

Method	FA	MA	TE
LSELUC	1.42	10.1	1.96
MLS	2.4	8.56	2.78
PCA_Kmeans	1.15	12.2	1.83
The proposed	0.995	13.3	1.76
The proposed+	1.12	12.3	1.81

259

4. Discussion

260
261
262
263

From the abovementioned comparison, it can be concluded that the proposed approach is competitive compared with the LSELUC[33], MLS[34], and PCA_Kmeans [31] in terms of change detection accuracies and performance. To promote the application of the proposed approach in practice, we discuss two aspects of the proposed approach below.

264
265
266
267
268
269
270
271
272
273
274
275

First, we discuss the sensitivity between the parameter settings and the land cover detection accuracies. In the first experiment with the Mexico dataset, as shown in Figure 8-(a), when the value of T_1 ranges from 5 to 75 with T_2 is fixed at 50, the accuracy-MA of the proposed approach decreases initially but the accuracy of FA and TE fluctuates in a small range. However, when the value of T_1 becomes larger than 75, the accuracies of MA are posed to a horizontal level. When T_1 is fixed at 75 and the value of T_2 varies, as shown in Figure 8-(b), the MA decreases from 13.5 to 9.2 with the value of T_2 ranging from 5 to 50. Then, despite the value of T_2 being increased larger than 50, the accuracy varies in a small range. From this discussion, it can be seen that T_1 indicates the spectral difference between the central pixel and its surrounding pixels, and T_2 indicates the maximum number of searched pixels around a central pixel. Furthermore, T_1 and T_2 complement each other, when one of the parameters is fixed, the accuracies will pose to a horizontal level, and the accuracies will not increase additionally with the increase of another parameter.

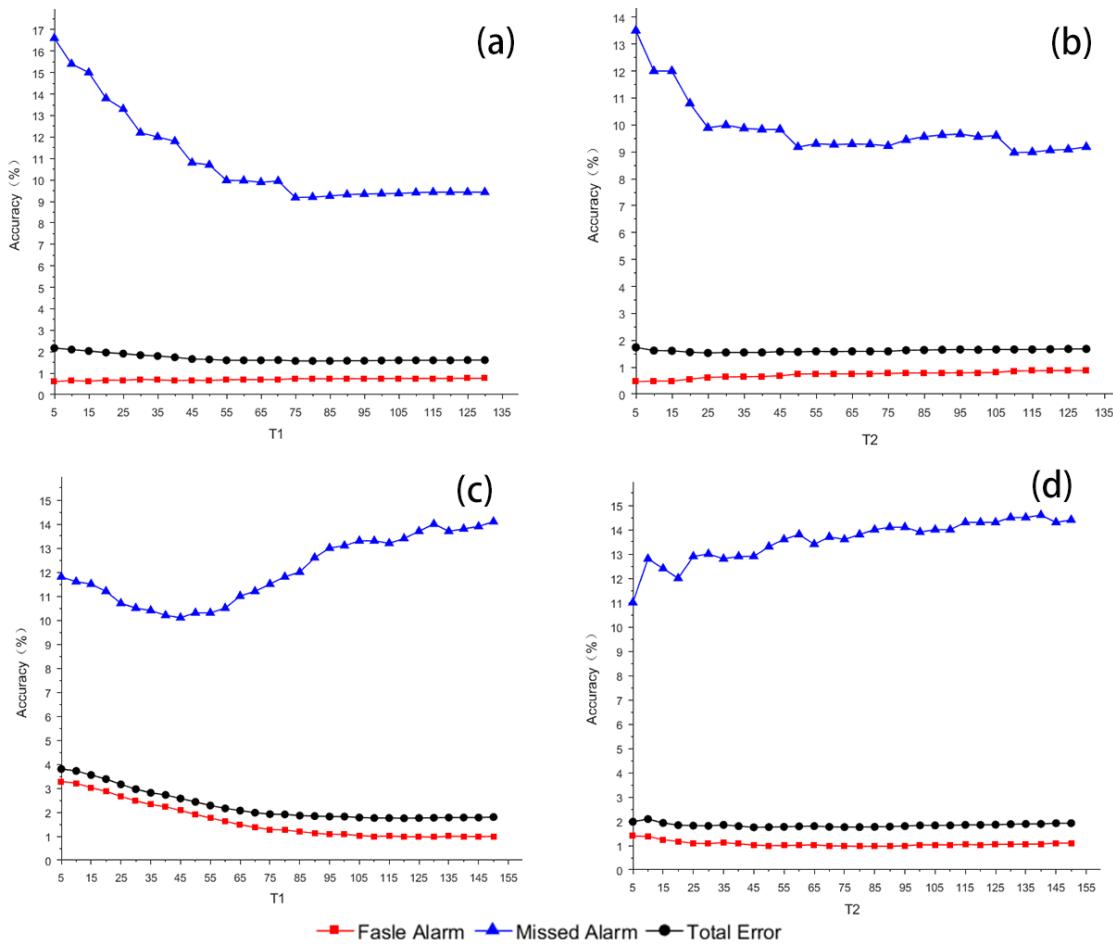
276
277
278
279
280
281
282
283
284
285

In the second experiment with the Sardinia Island dataset, the sensitivity between T_1 and the detection accuracies with $T_2=50$ is shown in Figure 8-(c). This sensitivity result clearly indicates that MA decreases gradually when the value of T_1 ranges from 5 to 50. However, MA increases when the T_1 is larger than 50. That is because a larger T_1 will allow the consideration of more sufficient spatial neighboring information around a central pixel. However, a too large T_1 may result in more heterogeneous pixels in an adaptive extended region. This is detrimental to the subsequent calculation of the change magnitude image. In addition, FA and TE gradually posed to a stable trend after T_1 reaches the value of 110, as shown in Figure 8-(c). However, when T_1 is fixed at 110, and T_2 varies from 5 to 150, as shown in Figure 8-(d), it can be seen that MA increases with the increase of T_2 , but FA and TE nearly maintain a horizontal level.

286
287
288
289

Based on the above discussion of the two experiments, it is seen that 1) the parameter settings of the proposed approach should be adjusted according to the different dataset, the settings of the optimal composition parameters may be different for different image scenes, and 2) the value of FA and TE is usually small and they will pose to a horizontal level while one parameter is fixed and the

290 other varies. This is beneficial in practice for the setting of parameters setting when the proposed
 291 approach is applied.



292 **Figure 8.** Relationship between detection accuracy and setting of parameters (T_1 and T_2) for the proposed
 293 approach with Otsu binary threshold in each experiment: (a) and (b) give the relationship between T_1 , T_2 for the
 294 Mexico dataset, respectively; (c) and (d) gives the relationship between T_1 , T_2 for the Sardinia Island dataset,
 295 respectively.

296 5. Conclusion

297 In this work, a simple yet effective LCCD approach is proposed. The proposed approach
 298 progressively and adaptively extends a contextual region from a central pixel to a labeled pixel group
 299 which is spectrally similar and spatially contiguous. Then, the change magnitude between pairwise
 300 pixels of bi-temporal images is instead computed in the pairwise adaptive extended region. The entire
 301 bi-temporal images are scanned and processed to generate a change magnitude image (CMI). Finally,
 302 an Otsu binary automatic method or manual binary threshold is employed to obtain the binary
 303 change detection result. The contribution of this study can be briefly summarized as follows:

304 (1) The proposed approach provides competitive change detection results. For the two image
 305 scenes that are related to two different real land cover change events, the detection results
 306 demonstrate the effectiveness and superiority of the proposed approach in terms of visual
 307 performance and quantitatively accuracies when compared to widely used methods, such
 308 as LSELUC[33], MLS[34], and PCA_Kmeans[31].

309 (2) To the best of our knowledge, here for the first time, adaptive regions based distance is
 310 applied instead of single pixel-based distance to measure the change magnitude between
 311 pairwise pixels of bi-temporal images. The experimental results demonstrate that this
 312 proposed approach is helpful for improving the change detection accuracies and
 313 performance. The reason for this is that the pixels are highly correlated with their neighbors

314 in the image spatial domain, especially for a ground object (such as a meadow), and this
315 correlation is consistent with the shape and size of an object. Therefore, the proposed
316 contextual information around a pixel based on adaptive region can be considered objective
317 and reasonable.

318 In the future study, extensive investigations of the proposed approach will be conducted with
319 the following focus: 1) the automation of parameters of the proposed approach should be considered.
320 If T_1 and T_2 can be estimated in an automatic manner, it will be helpful for improving the automation
321 degree of the proposed approach ; 2) More investigations based on different remote sensing images,
322 such as unmanned aerial vehicle images and satellite images with very high spatial resolutions will
323 be conducted in order to enhance the robustness of the approach. Furthermore, extensive
324 investigations will broaden the useability of the proposed approach.

325 **Acknowledgment:** The authors thank the editor-in-chief, associate editor, and reviewers for their insightful
326 comments and suggestions. This work was supported by the National Science Foundation China (61701396), the
327 Natural Science Foundation of Shaan Xi Province (2017JQ4006),Engineering Research Center of Geospatial
328 Information and Digital Technology ,NASG (SIDT20171003), Natural
329 Science Foundation of Jiangsu Province, China (BK20150835), and Tibet Natural Science Foundation-The study
330 of Tibet crop condition monitoring based on crop growth model and multi-source remote sensing data (2016-
331 ZR-15-18).

332 **Author Contributions:** Dr. ZhiYong Lv was primarily responsible for the original idea and experimental design.
333 Mr. TongFei Liu and Dr. YiXiang Chen did the experiments and provided several helpful suggestions.
334 Prof.PengLin Zhang provided contributions to improve the quality of the paper in the writing procedure. Prof.
335 Jón Atli Benediktsson provided ideas to improve the quality of the paper.

336 **Conflicts of Interest:** The authors declare no conflict of interest.

337 **References**

- 338 1. Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review article digital change
339 detection methods in ecosystem monitoring: A review. *International journal of remote sensing*
340 **2004**, *25*, 1565-1596.
- 341 2. Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A
342 systematic survey. *IEEE transactions on image processing* **2005**, *14*, 294-307.
- 343 3. Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. *International journal
344 of remote sensing* **2004**, *25*, 2365-2401.
- 345 4. Singh, A. Review article digital change detection techniques using remotely-sensed data.
346 *International journal of remote sensing* **1989**, *10*, 989-1003.
- 347 5. Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban
348 expansion and land use change in Shijiazhuang, China, by using gis and remote sensing.
349 *Landscape and urban planning* **2006**, *75*, 69-80.
- 350 6. Shahraki, S.Z.; Sauri, D.; Serra, P.; Modugno, S.; Seifolddini, F.; Pourahmad, A. Urban sprawl
351 pattern and land-use change detection in Yazd, Iran. *Habitat International* **2011**, *35*, 521-528.
- 352 7. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance
353 relationship for urban heat island studies. *Remote sensing of Environment* **2004**, *89*, 467-483.
- 354 8. Lo, C.; Quattrochi, D.A. Land-use and land-cover change, urban heat island phenomenon,
355 and health implications. *Photogrammetric Engineering & Remote Sensing* **2003**, *69*, 1053-1063.

356 9. Sun, L.; Wei, J.; Duan, D.; Guo, Y.; Yang, D.; Jia, C.; Mi, X. Impact of land-use and land-cover
357 change on urban air quality in representative cities of china. *Journal of Atmospheric and Solar-
358 Terrestrial Physics* **2016**, *142*, 43-54.

359 10. Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based
360 method. *Remote sensing of Environment* **2006**, *102*, 1-11.

361 11. Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection,
362 characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-
363 derived time-series metrics. *Remote sensing of Environment* **2015**, *170*, 121-132.

364 12. El-Kawy, O.A.; Rød, J.; Ismail, H.; Suliman, A. Land use and land cover change detection in
365 the western Nile delta of Egypt using remote sensing data. *Applied Geography* **2011**, *31*, 483-
366 494.

367 13. Prakasam, C. Land use and land cover change detection through remote sensing approach:
368 A case study of kodaikanal taluk, tamil nadu. *International journal of Geomatics and Geosciences*
369 **2010**, *1*, 150.

370 14. Jin, S.; Yang, L.; Zhu, Z.; Homer, C. A land cover change detection and classification protocol
371 for updating alaska nlcd 2001 to 2011. *Remote sensing of Environment* **2017**, *195*, 44-55.

372 15. Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection
373 method for updating the national land cover database to circa 2011. *Remote sensing of
374 Environment* **2013**, *132*, 159-175.

375 16. Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using
376 all available landsat data. *Remote sensing of Environment* **2014**, *144*, 152-171.

377 17. Zhang, P.; Lv, Z.; Shi, W. Local spectrum-trend similarity approach for detecting land-cover
378 change by using spot-5 satellite images. *IEEE Geoscience and Remote Sensing Letters* **2014**, *11*,
379 738-742.

380 18. Lv, Z.; Liu, T.; Wan, Y.; Benediktsson, J.A.; Zhang, X. Post-processing approach for refining
381 raw land cover change detection of very high-resolution remote sensing images. *Remote
382 Sensing* **2018**, *10*, 472.

383 19. Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised
384 change detection. *IEEE Transactions on Geoscience and Remote Sensing* **2000**, *38*, 1171-1182.

385 20. Xu, L.; Zhang, S.; He, Z.; Guo, Y. In *The comparative study of three methods of remote sensing
386 image change detection*, Geoinformatics, 2009 17th International Conference on, 2009; IEEE: pp
387 1-4.

388 21. Lu, D.; Mausel, P.; Batistella, M.; Moran, E. Land-cover binary change detection methods for
389 use in the moist tropical region of the amazon: A comparative study. *International journal of
390 remote sensing* **2005**, *26*, 101-114.

391 22. Malila, W.A. In *Change vector analysis: An approach for detecting forest changes with Landsat*,
392 LARS symposia, 1980; p 385.

393 23. Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based
394 on change vector analysis in the polar domain. *IEEE Transactions on Geoscience and Remote
395 Sensing* **2007**, *45*, 218-236.

396 24. Chen, Q.; Chen, Y. Multi-feature object-based change detection using self-adaptive weight
397 change vector analysis. *Remote Sensing* **2016**, *8*, 549.

398 25. Lv, Z.; Shi, W.; Zhou, X.; Benediktsson, J.A. Semi-automatic system for land cover change
399 detection using bi-temporal remote sensing images. *Remote Sensing* **2017**, *9*, 1112.

400 26. Otsu, N. A threshold selection method from gray-level histograms. *IEEE transactions on
401 systems, man, and cybernetics* **1979**, *9*, 62-66.

402 27. Hao, M.; Shi, W.; Zhang, H.; Li, C. Unsupervised change detection with expectation-
403 maximization-based level set. *IEEE Geoscience and Remote Sensing Letters* **2014**, *11*, 210-214.

404 28. Celik, T. A Bayesian approach to unsupervised multiscale change detection in synthetic
405 aperture radar images. *Signal processing* **2010**, *90*, 1471-1485.

406 29. Celik, T. Change detection in satellite images using a genetic algorithm approach. *IEEE
407 Geoscience and Remote Sensing Letters* **2010**, *7*, 386-390.

408 30. Ng, H.-F. Automatic thresholding for defect detection. *Pattern recognition letters* **2006**, *27*,
409 1644-1649.

410 31. Celik, T. Unsupervised change detection in satellite images using principal component
411 analysis and k -means clustering. *IEEE Geoscience and Remote Sensing Letters* **2009**, *6*, 772-
412 776.

413 32. Lv, Z.; Zhang, W. Contextual analysis based approach for detecting change from high
414 resolution satellite imagery. *Journal of the Indian Society of Remote Sensing* **2018**, *46*, 43-50.

415 33. Zhang, X.; Shi, W.; Liang, P.; Hao, M. Level set evolution with local uncertainty constraints
416 for unsupervised change detection. *Remote Sensing Letters* **2017**, *8*, 811-820.

417 34. Bazi, Y.; Melgani, F.; Al-Sharari, H.D. Unsupervised change detection in multispectral
418 remotely sensed imagery with level set methods. *IEEE Transactions on Geoscience and Remote
419 Sensing* **2010**, *48*, 3178-3187.

420 35. ZhiYong, L.; Shi, W.; Benediktsson, J.A.; Gao, L. A modified mean filter for improving the
421 classification performance of very high-resolution remote-sensing imagery. *International
422 journal of remote sensing* **2018**, *39*, 770-785.

423 36. Lv, Z.; Zhang, P.; Atli Benediktsson, J. Automatic object-oriented, spectral-spatial feature
424 extraction driven by Tobler's first law of geography for very high resolution aerial imagery
425 classification. *Remote Sensing* **2017**, *9*, 285.

426 37. Huang, X.; Zhang, L.; Li, P. An adaptive multiscale information fusion approach for feature
427 extraction and classification of IKONOS multispectral imagery over urban areas. *IEEE
428 Geoscience and Remote Sensing Letters* **2007**, *4*, 654-658.

429 38. Gong, M.; Zhou, Z.; Ma, J. Change detection in synthetic aperture radar images based on
430 image fusion and fuzzy clustering. *IEEE transactions on image processing* **2012**, *21*, 2141-2151.

431 39. Yetgin, Z. Unsupervised change detection of satellite images using local gradual descent.
432 *IEEE Transactions on Geoscience and Remote Sensing* **2012**, *50*, 1919-1929.

433