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Abstract: Land cover change detection (LCCD) based on bi‐temporal remote sensing images plays 16 
an  important  role  in  the  inventory  of  land  cover  change. Due  to  the  benefit  of  having  spatial 17 
dependency properties within  the  image space while using remote sensing  images  for detecting 18 
land  cover  change, many  contextual  information  based  change  detection methods  have  been 19 
proposed during past decades. However, there is still a space for improvement in accuracies and 20 
usability of LCCD.  In  this paper, a LCCD method based on adaptive  contextual  information  is 21 
proposed. First, an adaptive  region  is constructed by gradually detecting  the  spectral  similarity 22 
surrounding a central pixel. Second, the Euclidean distance between pairwise extended regions is 23 
calculated  to measure  the change magnitude between  the pairwise central pixels of bi‐temporal 24 
images. While  the whole bi‐temporal  images  are  scanned pixel‐by‐pixel,  the  change magnitude 25 
image (CMI) can be generated. Then, the Otsu or a manual threshold is employed to acquire the 26 
binary  change  detection map  (BCDM).  The  detection  accuracies  of  the  proposed  approach  are 27 
investigated by two land cover change cases with Landsat bi‐temporal remote sensing images. In 28 
comparison to several widely used change detection methods, the proposed approach can achieve 29 
a land cover change inventory map with a competitive accuracy.   30 

Keywords:  land  cover  change  detection;  adaptive  contextual  information;  bi‐temporal  remote 31 
sensing images 32 

33 

1. Introduction34 

Land cover change detection (LCCD) which is a classical problem has recently been a hot topic 35 
in remote sensing[1‐4]. The reason being that LCCD plays an increasingly important role in making 36 
decisions to promote sustainable urban development, such as urban expansion[5,6], city temperature 37 
change analysis[7,8], urban air quality analysis[9], etc.  In addition, LCCD has a positive effect  in 38 
natural  resource  management  on  the  Earth’s  surface,  for  example,  forest  deformation 39 
monitoring[10,11] and land use monitoring[12,13].   40 

In recent decades, various LCCD techniques have been developed and applied in practice [14‐41 
18]. Two main steps are usually related to these methods, i.e., the generation of a change magnitude 42 
image (CMI) and the use of a binary threshold to divide the CMI into a binary change detention map 43 
(BCDM). The most commonly used methods to provide CMI are image difference [2,19], image ratios 44 
[20,21]  and  change vector  analysis  (CVA)[22‐24].  In general,  these methods usually  calculate  the 45 
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distance between the bi‐temporal images pixel‐by‐pixel to measure the change magnitude between 46 
the  bi‐temporal  images.  Larger  distances  symbolize  a  higher  change  probability,  and  shorter 47 
distances demonstrate a lower probability of change. To further acquire the BCDM, a threshold is 48 
needed to divide the CMI into a BCDM. The most widely used threshold determining methods for 49 
LCCD  are  Otsu[25,26],  expectation  maximization(EM)[27‐29],  and  the  customized  automatic 50 
threshold determine method[30]. Although a threshold can determine whether a pixel in a CMI is 51 
changed or unchanged and also provides a binary change inventory map, much noise is still observed 52 
in  the binary  change  inventory map. That  is because  the bi‐temporal  remote  sensing  images  are 53 
usually different, e.g., in terms of radiation, solar angles and soil moisture. [17]. 54 

To improve the performance of change detection, contextual information is usually adopted for 55 
LCCD with bi‐temporal remote sensing images. For example, Celik et al. proposed a method based 56 
on PCA and k‐means clustering (PCA_Kmeans) through splitting the difference image into a number 57 
of  h ൈ h  overlapping blocks where h  is a number of pixels  [31]; Lv et al. presented a  contextual 58 
analysis based LCCD approach using a regular sliding window technique[32]. In recent years, level 59 
sets  have  been  found  to  be  helpful  for  describing  the  contour  of  objects  and  extract  contextual 60 
information of remote sensing images for LCCD. Examples of such approaches are level set evolution 61 
with local uncertainty constraints(LSELUC)[33] and the multiresolution level set (MLS)[34]. However, 62 
contextual information based LCCD approaches rely on the performance of contextual information 63 
extraction algorithms, and the design of the contextual information extraction algorithm is usually 64 
time‐consuming  and  dependent  on  experience  [35‐37].  Furthermore,  considering  contextual 65 
information using a regular‐single window may be unable to cover the multifarious ground targets 66 
with different shapes and sizes. 67 

As mentioned previously, the opportunities for improving the accuracy and usability of LCCD 68 
methods still exists despite the significant effort that has already been put into developing change 69 
detection methods  for bi‐temporal remote sensing  images.  In  this paper, we propose an adaptive 70 
contextual  information  based  LCCD  approach which  extracts  contextual  information  adaptively 71 
around a  central pixel and  computes  the  change magnitude between  central pixels based on  the 72 
distance  between  adaptive  extended  regions.  To  evaluate  the  accuracy  and  performance  of  the 73 
proposed approach,  it  is applied  to  two  real  land  cover  change  events using bi‐temporal  remote 74 
sensing  images and  compares  the  results with  three widely used  contextual based methods,  i.e., 75 
LSELUC[33], MLS[34] and PCA_Kmeans[31].   76 

The  rest of  this paper  is organized  as  follows: Section  2  introduces  the proposed  approach. 77 
Section  3  describes  the  experiments  and  comparisons.  Section  4  presented  the  discussion  and 78 
conclusion is given in Section 5. 79 

2. The Proposed Method 80 

Two  co‐registered  bi‐temporal  remote  sensing  images  are  ଵܫ ൌ ሼܫଵሺ݅, ݆ሻ|1 ൑ ݅ ൑ ,ܪ 1 ൑ ݆ ൑ ܹሽ 81 
and  ଶܫ ൌ ሼܫଶሺ݅, ݆ሻ|1 ൑ ݅ ൑ ,ܪ 1 ൑ ݆ ൑ ܹሽ, where, H and W are the height and width of the bi‐temporal 82 
images, respectively. The bi‐temporal images   ଵܫ and   ଶܫ are acquired over the same geographic area 83 
at different times. In general,   ଵܫ and   ଶܫ depict the land cover event before and after, such the land 84 
cover  scene  before  and  after  an  earthquake.  As  shown  in  Figure  1,  the  proposed  approach  is 85 
composed of several main blocks intended for the following tasks: (1) Extract contextual information 86 
by extending an adaptive region surrounding a pixel; (2) Calculate the distance between a pairwise 87 
extended region, and scan over iteratively the bi‐temporal images pixel‐by‐pixel to generate the CMI; 88 
(3) provide a threshold to divide the CMI into a BCDM. The details of the proposed approach are 89 
described in subsequent sections.   90 

 91 
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Figure 1. Flowchart of the proposed approach. 92 

2.1 Adaptive Contextual Information Extraction 93 

Due to the fact that spatial distribution of ground change is full of uncertainty in terms of the 94 
shape, size and location of the change area, it is necessary to take into account the shape information 95 
for  change  area  in  an  irregular manner. To  achieve  this  aim,  an  adaptive  extension  approach  is 96 
proposed here to extract the ground information. First,  ,ଵሺ݅ܫ ݆ሻ  is a pixel of a remote sensing image 97 
at  location (i,  j). Then, the spectral difference between  ,ଵሺ݅ܫ ݆ሻ  and  its eight‐connected neighboring 98 
pixels	 ୱܲ୳୰  is calculated to determine whether the neighboring pixels belong to the extended region. 99 
The spectral difference (homogeneity) between  ,ଵሺ݅ܫ ݆ሻ  and  ୱܲ୳୰  is defined by 100 

∆d௧ଵ ൌ ,ଵሺ݅ܫ‖ ݆ሻ െ ୱܲ୳୰‖      (1) 101 

where  ∆d௧ଵ  represents  the spectral similarity between  ,ଵሺ݅ܫ ݆ሻ  and  its surrounding pixels  ୱܲ୳୰  for 102 
the remote sensing image at time t1. A greater  ∆d௧ଵ  demonstrates a greater difference between the 103 
,ଵሺ݅ܫ ݆ሻ  and its surrounding pixels  ୱܲ୳୰  where  ୱܲ୳୰  is one of the eighty‐connected neighboring pixels, 104 
sur ∈ ሾ0,7ሿ. 105 

The shape and size of the region around a pixel  ,ଵሺ݅ܫ ݆ሻ  is extended gradually by comparing the 106 
spectral similarity between  ,ଵሺ݅ܫ ݆ሻ  and  ୱܲ୳୰. The extension is in an iterative manner considering that 107 
the following conditions are satisfied :1)	∆d௧ଵ  is less than a predefined threshold T1 , and 2) the total 108 
number  of  the  extended  pixels  is  less  than  another  predefined  threshold  T2.  The  extension  is 109 
terminated  if  either of  these  conditions  is not met.  It  can be  seen  that  the  shape  and  size of  the 110 
convolution region is constructed in a pixel‐by‐pixel manner, where the region of each pixel has a 111 
relatively high homogeneity. Due to a ground object (e.g., meadow) usually being composed of a set 112 
of homogeneous pixels in spectra, the shape and size of the extended region is adaptive and usually 113 
consistent with the ground object. 114 

2.2 Generate Change Magnitude Image 115 

Based on the aforementioned, the extended region around a pixel  ,ଵሺ݅ܫ ݆ሻ  for the t1‐ time image 116 
is defined as  ܴ௜௝

௧ଵ,  and the corresponding extended region for the t2‐image around the pixel  ,ଶሺ݅ܫ ݆ሻ 117 
is  ܴ௜௝

௧ଶ. In contrast, in the proposed approach, the distance between the pairwise pixels  ,ଵሺ݅ܫ ݆ሻ  and 118 

Change detection map and 
Accuracy Evaluation

Extract Adaptive Contextual 
Information around a pixel I(i,j)

Pre-event image

I1

Post-event image

I2

Calculate the Similarity for each 
pairwise adaptive region.

Change Magnitude image
(CMI)

Generate Binary Change Detection 
Map (BCDM) using Otsu technique or 
Manual Threshold
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,ଶሺ݅ܫ ݆ሻ  for  the bi‐temporal  images  is defined by  the distance between  ܴ௜௝
௧ଵ  and  ܴ௜௝

௧ଶ. To  solve  this 119 
problem, the mean value of the pixels within the extended region is defined as   120 

 121 

݉௜௝
௧ଵ ൌ

1
ܰ
∙ ෍ ௡௧ଵ݌
௡ୀே

௡ୀଵ

										ሺ2ሻ 123 

   122 

݉௜௝
௧ଶ ൌ

1
ܭ
∙ ෍ ௡௧ଶ݌
௡ୀ௄

௡ୀଵ

										ሺ3ሻ 125 

     124 
where  ݉௜௝

௧ଵ   and  ݉௜௝
௧ଶ   is  the mean  value  of  the  pixels within  the  extended  region  ܴ௜௝

௧ଵ   and  ܴ௜௝
௧ଶ , 126 

respectively. Thus,   ௡௧ଵ݌ is the spectral value of a pixel within  ܴ௜௝
௧ଵ  and N is the total number of the 127 

pixels  within  ܴ௜௝
௧ଵ .  Furthermore,  ௡௧ଶ݌   and  K  have  similar  meanings,  respectively,  for  the 128 

corresponding adaptive region  ܴ௜௝
௧ଶ. Therefore, the distance between  ܴ௜௝

௧ଵ  and  ܴ௜௝
௧ଶ  can be defined as   129 

 130 
∆݀௜௝ ൌ ฮ݉௜௝

௧ଵ െ ݉௜௝
௧ଶฮ            (4) 131 

 132 
where  ∆݀௜௝   is  the  distance  between  the  pairwise  adaptive  extended  region  ܴ௜௝

௧ଵ   and  ܴ௜௝
௧ଶ . Here, 133 

∆݀௜௝	is used  to measure of  the change magnitude between  the pixel  ,ଵሺ݅ܫ ݆ሻ  and  ,ଶሺ݅ܫ ݆ሻ  for  the bi‐134 
temporal  images at t1 and t2, respectively. To generate the change magnitude image, the entire bi‐135 
temporal images are scanned and calculated in this manner, and each pixel will be taken as once the 136 
central pixel for an adaptive extension.   137 

To clearly demonstrate the generation of the CMI, an extended example is shown in Figure 2. In 138 
Figure 2, where C1(i,j)   and C2(i,j) are the central pixels of bi‐temporal images, Figure 2‐(a) is an eight 139 
neighboring extension detector, and the pixels which are composed of an adaptive extended regions 140 
are marked by”1”. In the progress of an extension, it is extended gradually from a central pixel to an 141 
adaptive extended region by using the extension detector, the spectral similarity between the central 142 
pixel  and  its  neighboring pixels  are measured  to decide whether  a  neighboring pixel  should  be 143 
marked as “1” or not according to a pre‐defined threshold T1. The extensions will be terminated when 144 
the size of  the extended region meets  the predefined  threshold T2. Finally,  the change magnitude 145 
between the two central pixels (C1(i,j)   and C2(i,j)) is measured by the distance (∆݀௜௝) between the two 146 
adaptive extended regions, more details can be tracked in formula‐(2), ‐(3), and (4). 147 
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Figure 2. Examples of Adaptive Extended Regions: (a) An eight neighboring extension detector, 148 
and (b) the two regions  labeled by “1” are the adaptive extended regions surrounding the central 149 
pixel C1(i,j) and C2(i,j), respectively. 150 

From a  theoretical viewpoint,  it  is worth noting  that advantage of  the proposed  strategy  for 151 
generating change magnitude image lies in the following aspects: 1) since the shape and size of the 152 
extended region is adaptive, the pixels within an adaptive region give a higher similarity in spectra, 153 
it  is more objective  than  considering  the  contextual  information  through  a  regular window or  a 154 
mathematical model; 2) Based on the constraints of the two parameters T1 and T2, the extension of a 155 
region around a pixel is self‐adaptive and the mean value of the pixels within an extended region is 156 
used to measure the change magnitude between the pairwise pixel. Hence, the proposed strategy can 157 
smooth the intra‐class noise, and improve the performance of change detection.   158 

It is well known that image difference is one of the simplest and most widely used methods for 159 
generating change magnitude image [3,4,25,33]. To illustrate the advantage of the proposed approach, 160 
the change magnitude image for a bi‐temporal image is respectively acquired by image difference 161 
and the proposed approach, and the results are compared in Figure 3. The local standard deviation 162 
(std) of CMI is compared using the same window (40 ൈ 40) which is highlighted in each sub‐figures. 163 
Lower  standard deviation performs  a higher homogeneity of  the  change or unchanged  area. As 164 
shown in Figure 3, the standard deviation is reduced from std=13.83 to std=12.76 with the T1 range 165 
from  30  to  70. Compared with  Figure  3‐(a),  the  standard  deviation  (std=19.48)  of  the  observed 166 
window which  is  based  on  the CMI  obtained  by  the  image  difference method,  the CMI  of  the 167 
proposed  approach  achieves  a  smaller  standard  deviation.  Therefore,  it  can  be  found  that  the 168 
proposed  approach  has  an  advantage  in  improving  the  homogeneity  of  a  local  area,  and  this 169 
improvement is beneficial for LCCD.   170 
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Figure  3.  Change Magnitude  Image  Comparisons  between  the  Image  Difference  and  The 171 
Proposed Approach:  (a)  is  the CMI  obtained  by  image  difference method;  (b)~(f)  are  the CMIs 172 
obtained by the proposed approach with a fixed T2=50. T1 is equal to 30, 40, 50, 60, and 70 for each 173 
sub‐figs from (b) to (f), respectively. 174 

2.3 Threshold for obtaining binary change detection map 175 

As  in many existing LCCD methods, a  threshold  is needed  to determine  if a pixel of CMI  is 176 
changed or unchanged and to generate the binary change detection map. In the proposed approach, 177 
a most popular binary method, named Otsu[25,26,38], is used to automatically participate a change 178 
magnitude  image  into a binary change detection map. The Otsu approach assumes  that  the CMI 179 
contains  two classes  (change and unchanged) of pixels.  It  then calculates  the optimum  threshold 180 
dividing the two classes to minimize the intra‐class variance or equivalently. In other words, the Otsu 181 
method searches exhaustively for the threshold which can minimize the variance within the changed 182 
pixel and unchanged pixels. In addition, a manual threshold is allowed to divide CMI into a binary 183 
change detection map in the proposed approach. 184 

3. Experiment 185 

In  this  section,  the  proposed  approach was  investigated  by  two  experiments  based  on  two 186 
images scenes which depict  the different  land cover change events. Three widely used contextual 187 
information based methods, i.e., LSELUC[33], MLS[34] and PCA_Kmeans [31], were compared with 188 
the proposed approach in terms of performance of effectiveness.   189 

3.1 Data Set Description 190 

Two  image  datasets which  depict  land  cover  change  event  in  the  real world  are  used  to 191 
investigate the performance of different contextual information based LCCD methods, including the 192 
proposed approach. Details of the datasets are presented in this section as follows: 193 

The first dataset is an open‐access dataset for change detection evaluation. As shown in Figure 194 
4, this dataset depicts a land cover change event in Mexico, which is related to a forest fire in May, 195 
2002. The images are composed of two 8‐bits images acquired by Landsat‐7 satellite sensor in April 196 
2000 and May 2002. The size of the entire image scene is  512 ൈ 512  pixels with a spatial resolution 197 
30 meters/pixel. For comparison of the bi‐temporal images, it should be noted that fire destroyed a 198 
large portion of the forest in the considered change area. The reference change map was interpreted 199 
manually to obtain a quantitative evaluation, as shown in Figure 4‐(d) 200 
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The second dataset  is also  free‐access and  the  two  images are composed of  two 8‐bit  images 201 
acquired by Landsat‐5 satellite on September 1995 and July 1996, respectively. The size of the images 202 
is  412 ൈ 300  pixels with a spatial resolution 30 meters/pixel. This dataset depicts  the water  lever 203 
change event of the Lake Mulargia on Sardinia Island (Italy) between the two aforementioned acquisition 204 
dates. The ground reference map is shown in Figure 4-(d), and it is defined manually according to the detailed 205 
visual analysis base on the bi-temporal image comparisons. 206 

 207 

Figure 4. Images of Mexico Area: (a)band 4 of the Landsat ETM+ captured in April 2000, (b) band 4 of the Landsat 208 

ETM+ captured in May 2002, (c) corresponding CMI obtained by the proposed approach, and (d) reference map 209 

of the changed area. 210 

Figure 5. Image of Sardinia Island area in Italy: (a)band 4 of the Landsat TM image captured in September 1995, 211 

(b) band  4 of  the Landsat TM  image  captured  in  July  1996,  (c)  corresponding CMI based on  the proposed 212 

approach, and (d) reference map of the changed area. 213 
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3.2 Experimental Setup and Parameter Setting 214 

To test the effectiveness of the proposed approach for LCCD using bi‐temporal remote sensing 215 
images, three popular LCCD methods, including LSELUC[33], MLS[34] and PCA_Kmeans [31], were 216 
compared with the proposed approach. For each dataset, the optimal parameters of each experiment 217 
were  obtained  by  the  trial‐and‐error  approach,  the  parameter  details  of  each  approach  were 218 
summarized  in Table  1.  In  addition,  to present quantitative  comparisons,  the number of ground 219 
reference pixels for each dataset is given in Table 2. 220 

Table 1. Parameter settings of different LCCD methods for the two datasets. 221 

Method 
Parameter Settings 

Mexico dataset  Sardinia set 

LSELUC[33]  S = 7  S = 3 

MLS[34]  L = 2,  μ  = 0.1  L = 2,  μ= 0.3 

PCA_Kmeans[31]  h= 9, s = 3  h= 5, s = 3 

The proposed  T1 = 75, T2 = 50  T1 = 110, T2 = 50 

Table 2. Details of ground reference pixels for each dataset. 222 

Data Set 
Pixel’s Number of Ground Reference for Each Data Set   

No. of Unchanged Pixels  No. of Changed Pixels 

1  Mexico  236555  25589 

2  Sardinia  115974  7626 

3.3 Results and Quantitative Evaluation 223 

Three quantitative evaluation measurements, i.e., false alarm (FA), missed alarm (MA), and total 224 
error  (TE),  are  employed  for  experimental  comparisons  to  evaluate  the  proposed  approach 225 
quantitatively [39]. To present the meaning of these indices, we defined UC as the number of change 226 
pixels that are actually unchanged pixels in BCDM when compared with the ground reference, TRU 227 
is the number of pixels that are unchanged pixels in the ground reference, CU is the unchanged pixels 228 
in the BCDM but is changed pixels in the ground reference, TRC is the total number of changed pixels 229 
in the ground reference truth. Based on this definition, FA, MA and TE can be defined as the 

௎஼

்ோ௎
ൈ230 

100%, 
஼௎

்ோ஼
ൈ 100%, and 

௎஼ା஼௎

்ோ஼ା்ோ௎
ൈ 100%, respectively. 231 

The  first  image  scene  depicts  a  land  cover  change  event  about  a  forest  fire  in Mexico,  as 232 
illustrated in Figure 4. Visual comparisons are shown in Figure 6, from these comparisons, it clearly 233 
demonstrates that the proposed approach with Otsu or manual threshold performed better than that 234 
of LSELUC[33], MLS[34], and PCA_Kmeans [31]. Compared with the ground reference, the results 235 
of the proposed approach produce less noise. In addition, quantitative comparisons are presented in 236 
Table 3 where “The proposed” and “The proposed+” presented the proposed approach with Otsu 237 
binary  threshold method  and  a manual  binary  threshold,  respectively.  It  can  be  seen  that  the 238 
proposed approach achieved the best accuracies  in terms of MA and TE. This comparison further 239 
demonstrates the superiority of the proposed approach. 240 

To further  investigate the performance of the proposed approach, another  land cover change 241 
event about water‐area  change was  evaluated  in  the  second  experiment.  In  this  experiment,  two 242 
images which cover the same geographic area, called Lake Mulargia on Sardinia Island, were adopted 243 
for  experimental  comparisons, as displayed  in Figure 5. The  results of  the different methods are 244 
compared in Figure 7, from this comparisons, it can be seen that the proposed approach achieved a 245 
better performance with less noise, compared with that of LSELUC[33], MLS[34], and PCA_Kmeans 246 
[31].  The  quantitative  comparisons  in  Table  4  strengthen  further  the  conclusion  of  the  visual 247 
comparison  and  clearly  demonstrate  that  the  result  based  on  the  proposed  approach  and  the 248 
proposed+ approach gave better accuracies in terms of MA and TE. 249 
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Figure  6. Mexico  dataset:  Binary  change  detection  map  generated  by  different  methods:  (a)LSELUC[33]; 250 

(b)MLS[34]; (c)PCA_Kmeans [31]; (d) and (e) the proposed approach with Otsu binary threshold and manual 251 

threshold respectively; (f) the ground reference. 252 

Figure 7. Sardinia Island dataset: Binary change detection map generated by different methods: (a)LSELUC[33]; 253 

(b)MLS[34]; (c)PCA_Kmeans [31]; (d) and (e) the proposed approach with Otsu binary threshold and manual 254 

threshold respectively; (f) the ground reference. 255 

  256 
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Table 3. Comparison between other methods and the proposed approach for the Mexico data set 257 

Method  FA  MA  TE 

LSELUC  0.426  12.2  1.58 

MLS  0.578  11.9  1.68 

PCA_Kmeans  0.781  10.3  1.71 

The proposed  0.746  9.18  1.57 

The proposed+  0.79  8.47  1.54 

Table 4. Comparison between other methods and the proposed approach for the Sardinia data   258 

Method  FA  MA  TE 

LSELUC  1.42  10.1  1.96 

MLS  2.4  8.56  2.78 

PCA_Kmeans  1.15  12.2  1.83 

The proposed  0.995  13.3  1.76 

The proposed+  1.12  12.3  1.81 

4. Discussion 259 

From  the  abovementioned  comparison,  it  can  be  concluded  that  the  proposed  approach  is 260 
competitive compared with  the LSELUC[33], MLS[34], and PCA_Kmeans  [31]  in  terms of change 261 
detection  accuracies  and  performance.  To  promote  the  application  of  the  proposed  approach  in 262 
practice, we discuss two aspects of the proposed approach below.   263 

First, we discuss  the sensitivity between  the parameter settings and  the  land cover detection 264 
accuracies. In the first experiment with the Mexico dataset, as shown in Figure 8‐(a), when the value 265 
of T1 ranges from 5 to 75 with T2 is fixed at 50, the accuracy‐MA of the proposed approach decreases 266 
initially but the accuracy of FA and TE fluctuates in a small range. However, when the value of T1 267 
becomes larger than 75, the accuracies of MA are posed to a horizontal level. When T1 is fixed at 75 268 
and the value of T2 varies, as shown in Figure 8‐(b), the MA decreases from 13.5 to 9.2 with the value 269 
of T2 ranging from 5 to 50. Then, despite the value of T2 being increased larger than 50, the accuracy 270 
varies in a small range. From this discussion, it can be seen that T1 indicates the spectral difference 271 
between  the  central pixel  and  its  surrounding pixels,  and T2  indicates  the maximum number  of 272 
searched pixels around a central pixel. Furthermore, T1 and T2 complement each other, when one of 273 
the parameters  is  fixed,  the accuracies will pose  to a horizontal  level, and  the accuracies will not 274 
increase additionally with the increase of another parameter.   275 

In the second experiment with the Sardinia Island dataset, the sensitivity between T1 and the 276 
detection accuracies with T2=50 is shown in Figure 8‐(c). This sensitivity result clearly indicates that 277 
MA decreases gradually when the value of T1 ranges from 5 to 50. However, MA increases when the 278 
T1 is larger than 50. That is because a larger T1 will allow the consideration of more sufficient spatial 279 
neighboring  information  around  a  central  pixel.  However,  a  too  large  T1  may  result  in  more 280 
heterogeneous  pixels  in  an  adaptive  extended  region.  This  is  detrimental  to  the  subsequent 281 
calculation of the change magnitude image. In addition, FA and TE gradually posed to a stable trend 282 
after T1 reaches the value of 110, as shown in Figure 8‐(c). However, when T1 is fixed at 110, and T2 283 
varies from 5 to 150, as shown in Figure 8‐(d), it can be seen that MA increases with the increase of 284 
T2, but FA and TE nearly maintain a horizontal level. 285 

Based on the above discussion of the two experiments, it is seen that 1) the parameter settings of 286 
the proposed  approach  should be  adjusted  according  to  the different dataset,  the  settings of  the 287 
optimal composition parameters may be different for different image scenes, and 2) the value of FA 288 
and TE is usually small and they will pose to a horizontal level while one parameter is fixed and the 289 
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other varies. This  is beneficial  in practice for the setting of parameters setting when the proposed 290 
approach is applied. 291 

Figure 8. Relationship between detection  accuracy  and  setting of parameters  (T1  and T2)  for  the proposed 292 
approach with Otsu binary threshold in each experiment: (a) and (b) give the relationship between T1, T2 for the 293 
Mexico dataset, respectively; (c) and (d) gives the relationship between T1, T2 for the Sardinia Island dataset, 294 
respectively. 295 

5. Conclusion 296 

In  this work,  a  simple  yet  effective  LCCD  approach  is  proposed.  The  proposed  approach 297 
progressively and adaptively extends a contextual region from a central pixel to a labeled pixel group 298 
which is spectrally similar and spatially contiguous. Then, the change magnitude between pairwise 299 
pixels of bi‐temporal images is instead computed in the pairwise adaptive extended region. The entire 300 
bi‐temporal images are scanned and processed to generate a change magnitude image (CMI). Finally, 301 
an Otsu binary  automatic method or manual binary  threshold  is  employed  to obtain  the binary 302 
change detection result. The contribution of this study can be briefly summarized as follows: 303 

(1) The proposed approach provides competitive change detection results. For the two image 304 
scenes that are related to two different real land cover change events, the detection results 305 
demonstrate the effectiveness and superiority of the proposed approach in terms of visual 306 
performance and quantitatively accuracies when compared to widely used methods, such 307 
as LSELUC[33], MLS[34], and PCA_Kmeans[31]. 308 

(2) To  the best of our knowledge, here  for  the  first  time, adaptive  regions based distance  is 309 
applied  instead of single pixel‐based distance to measure the change magnitude between 310 
pairwise  pixels  of  bi‐temporal  images.  The  experimental  results  demonstrate  that  this 311 
proposed  approach  is  helpful  for  improving  the  change  detection  accuracies  and 312 
performance. The reason for this is that the pixels are highly correlated with their neighbors 313 
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in the  image spatial domain, especially for a ground object (such as a meadow), and this 314 
correlation  is  consistent with  the  shape  and  size  of  an  object.  Therefore,  the  proposed 315 
contextual information around a pixel based on adaptive region can be considered objective 316 
and reasonable. 317 

In the future study, extensive investigations of the proposed approach will be conducted with 318 
the following focus: 1) the automation of parameters of the proposed approach should be considered. 319 
If T1 and T2 can be estimated in an automatic manner, it will be helpful for improving the automation 320 
degree of the proposed approach ; 2) More investigations based on different remote sensing images, 321 
such as unmanned aerial vehicle images and satellite images with very high spatial resolutions will 322 
be  conducted  in  order  to  enhance  the  robustness  of  the  approach.  Furthermore,  extensive 323 
investigations will broaden the useability of the proposed approach. 324 
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