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16 Abstract: Land cover change detection (LCCD) based on bi-temporal remote sensing images plays

17 an important role in the inventory of land cover change. Due to the benefit of having spatial
18 dependency properties within the image space while using remote sensing images for detecting
19 land cover change, many contextual information based change detection methods have been
20 proposed during past decades. However, there is still a space for improvement in accuracies and

21 usability of LCCD. In this paper, a LCCD method based on adaptive contextual information is
22 proposed. First, an adaptive region is constructed by gradually detecting the spectral similarity
23 surrounding a central pixel. Second, the Euclidean distance between pairwise extended regions is
24 calculated to measure the change magnitude between the pairwise central pixels of bi-temporal
25 images. While the whole bi-temporal images are scanned pixel-by-pixel, the change magnitude
26 image (CMI) can be generated. Then, the Otsu or a manual threshold is employed to acquire the
27 binary change detection map (BCDM). The detection accuracies of the proposed approach are

28 investigated by two land cover change cases with Landsat bi-temporal remote sensing images. In
29 comparison to several widely used change detection methods, the proposed approach can achieve
30 a land cover change inventory map with a competitive accuracy.

31 Keywords: land cover change detection; adaptive contextual information; bi-temporal remote
32 sensing images

33

34  1.Introduction

35 Land cover change detection (LCCD) which is a classical problem has recently been a hot topic
36  in remote sensing[1-4]. The reason being that LCCD plays an increasingly important role in making
37  decisions to promote sustainable urban development, such as urban expansion[5,6], city temperature
38  change analysis[7,8], urban air quality analysis[9], etc. In addition, LCCD has a positive effect in
39  natural resource management on the Earth’s surface, for example, forest deformation
40  monitoring[10,11] and land use monitoring[12,13].

41 In recent decades, various LCCD techniques have been developed and applied in practice [14-
42 18]. Two main steps are usually related to these methods, i.e., the generation of a change magnitude
43  image (CMI) and the use of a binary threshold to divide the CMI into a binary change detention map
44 (BCDM). The most commonly used methods to provide CMI are image difference [2,19], image ratios
45  [20,21] and change vector analysis (CVA)[22-24]. In general, these methods usually calculate the
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46  distance between the bi-temporal images pixel-by-pixel to measure the change magnitude between
47  the bi-temporal images. Larger distances symbolize a higher change probability, and shorter
48  distances demonstrate a lower probability of change. To further acquire the BCDM, a threshold is
49  needed to divide the CMI into a BCDM. The most widely used threshold determining methods for
50 LCCD are Otsu[25,26], expectation maximization(EM)[27-29], and the customized automatic
91  threshold determine method[30]. Although a threshold can determine whether a pixel in a CMI is
52  changed or unchanged and also provides a binary change inventory map, much noise is still observed
53  in the binary change inventory map. That is because the bi-temporal remote sensing images are
54 usually different, e.g., in terms of radiation, solar angles and soil moisture. [17].

55 To improve the performance of change detection, contextual information is usually adopted for
56  LCCD with bi-temporal remote sensing images. For example, Celik et al. proposed a method based
57  onPCA and k-means clustering (PCA_Kmeans) through splitting the difference image into a number
58  of hxh overlapping blocks where h is a number of pixels [31]; Lv et al. presented a contextual
59  analysis based LCCD approach using a regular sliding window technique[32]. In recent years, level
60  sets have been found to be helpful for describing the contour of objects and extract contextual
61  information of remote sensing images for LCCD. Examples of such approaches are level set evolution
62  with local uncertainty constraints(LSELUC)[33] and the multiresolution level set (MLS)[34]. However,
63  contextual information based LCCD approaches rely on the performance of contextual information
64  extraction algorithms, and the design of the contextual information extraction algorithm is usually
65 time-consuming and dependent on experience [35-37]. Furthermore, considering contextual
66  information using a regular-single window may be unable to cover the multifarious ground targets
67  with different shapes and sizes.

68 As mentioned previously, the opportunities for improving the accuracy and usability of LCCD
69  methods still exists despite the significant effort that has already been put into developing change
70 detection methods for bi-temporal remote sensing images. In this paper, we propose an adaptive
71 contextual information based LCCD approach which extracts contextual information adaptively
72 around a central pixel and computes the change magnitude between central pixels based on the
73  distance between adaptive extended regions. To evaluate the accuracy and performance of the
74  proposed approach, it is applied to two real land cover change events using bi-temporal remote
75  sensing images and compares the results with three widely used contextual based methods, i.e.,
76  LSELUC[33], MLS[34] and PCA_Kmeans[31].

77 The rest of this paper is organized as follows: Section 2 introduces the proposed approach.
78  Section 3 describes the experiments and comparisons. Section 4 presented the discussion and
79  conclusion is given in Section 5.

80 2. The Proposed Method

81 Two co-registered bi-temporal remote sensing images are I; = {/;(i,j)|1 <i<H,1<j<W}
82 and I, = {I,(i,/))|1 <i < H,1<j < W} where, Hand W are the height and width of the bi-temporal
83  images, respectively. The bi-temporal images I, and I, are acquired over the same geographic area
84  at different times. In general, I; and I, depict the land cover event before and after, such the land
85  cover scene before and after an earthquake. As shown in Figure 1, the proposed approach is
86  composed of several main blocks intended for the following tasks: (1) Extract contextual information
87 by extending an adaptive region surrounding a pixel; (2) Calculate the distance between a pairwise
88  extended region, and scan over iteratively the bi-temporal images pixel-by-pixel to generate the CMI;
89  (3) provide a threshold to divide the CMI into a BCDM. The details of the proposed approach are
90  described in subsequent sections.

91
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92 Figure 1. Flowchart of the proposed approach.
93 2.1 Adaptive Contextual Information Extraction

94 Due to the fact that spatial distribution of ground change is full of uncertainty in terms of the

95  shape, size and location of the change area, it is necessary to take into account the shape information

96  for change area in an irregular manner. To achieve this aim, an adaptive extension approach is

97  proposed here to extract the ground information. First, I;(i,j) is a pixel of a remote sensing image

98  at location (i, j). Then, the spectral difference between I,(i,j) and its eight-connected neighboring

99  pixels Py, is calculated to determine whether the neighboring pixels belong to the extended region.
100  The spectral difference (homogeneity) between I;(i,j) and Py, is defined by

101 Adn = "Il(i'j) - Psur” (1)

102  where Ad,; represents the spectral similarity between I;(i,j) and its surrounding pixels P, for
103  the remote sensing image at time ti. A greater Ad,; demonstrates a greater difference between the
104  1,(i,)) anditssurrounding pixels P, where Py, isone of the eighty-connected neighboring pixels,
105 sure[0,7].

106 The shape and size of the region around a pixel I,(i,j) is extended gradually by comparing the
107  spectral similarity between I,(i,j) and Py,,. The extension is in an iterative manner considering that
108 the following conditions are satisfied :1) Ad,, is less than a predefined threshold Ti1, and 2) the total
109  number of the extended pixels is less than another predefined threshold T.. The extension is
110  terminated if either of these conditions is not met. It can be seen that the shape and size of the
111  convolution region is constructed in a pixel-by-pixel manner, where the region of each pixel has a
112 relatively high homogeneity. Due to a ground object (e.g., meadow) usually being composed of a set
113 of homogeneous pixels in spectra, the shape and size of the extended region is adaptive and usually
114  consistent with the ground object.

115 2.2 Generate Change Magnitude Image

116 Based on the aforementioned, the extended region around a pixel I;(i,j) for the ti- time image

117 is defined as R{}, and the corresponding extended region for the t-image around the pixel I,(i, )

118  is Rf}. In contrast, in the proposed approach, the distance between the pairwise pixels I, (i,j) and
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119 L(,)) for the bi-temporal images is defined by the distance between Rf} and R{}. To solve this

120  problem, the mean value of the pixels within the extended region is defined as

121
1 n=N
123 mi=g > @
n=1
122
1 n=K
125 mE=— ) )
n=1
124
126 where m{} and m{} is the mean value of the pixels within the extended region Rf} and R{?,

127 respectively. Thus, pi! is the spectral value of a pixel within Rf} and N is the total number of the
128  pixels within R{} . Furthermore, p;? and K have similar meanings, respectively, for the

{7. Therefore, the distance between R{} and R{} can be defined as

129  corresponding adaptive region R
130

131 Adyj = [ImiF —miF]| (4)

132

133 where Ad;; is the distance between the pairwise adaptive extended region Rf} and Rf}. Here,
134 A4 ;is used to measure of the change magnitude between the pixel I;(i,j) and I,(i,j) for the bi-
135  temporal images at t1 and t2, respectively. To generate the change magnitude image, the entire bi-
136  temporal images are scanned and calculated in this manner, and each pixel will be taken as once the
137  central pixel for an adaptive extension.

138 To clearly demonstrate the generation of the CMI, an extended example is shown in Figure 2. In
139  Figure 2, where Clij and C2gj are the central pixels of bi-temporal images, Figure 2-(a) is an eight
140  neighboring extension detector, and the pixels which are composed of an adaptive extended regions
141  are marked by”1”. In the progress of an extension, it is extended gradually from a central pixel to an
142 adaptive extended region by using the extension detector, the spectral similarity between the central
143  pixel and its neighboring pixels are measured to decide whether a neighboring pixel should be
144 marked as “1” or not according to a pre-defined threshold T1. The extensions will be terminated when
145  the size of the extended region meets the predefined threshold T.. Finally, the change magnitude
146  between the two central pixels (Clsj and C2j) is measured by the distance (Ad; ;) between the two
147 adaptive extended regions, more details can be tracked in formula-(2), -(3), and (4).
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148 Figure 2. Examples of Adaptive Extended Regions: (a) An eight neighboring extension detector,

149  and (b) the two regions labeled by “1” are the adaptive extended regions surrounding the central
150  pixel Clgj and C2¢j, respectively.

151 From a theoretical viewpoint, it is worth noting that advantage of the proposed strategy for
152 generating change magnitude image lies in the following aspects: 1) since the shape and size of the
153  extended region is adaptive, the pixels within an adaptive region give a higher similarity in spectra,
154 it is more objective than considering the contextual information through a regular window or a
155 mathematical model; 2) Based on the constraints of the two parameters T1and Tz, the extension of a
156  region around a pixel is self-adaptive and the mean value of the pixels within an extended region is
157  used to measure the change magnitude between the pairwise pixel. Hence, the proposed strategy can
158  smooth the intra-class noise, and improve the performance of change detection.

159 It is well known that image difference is one of the simplest and most widely used methods for
160  generating change magnitude image [3,4,25,33]. To illustrate the advantage of the proposed approach,
161  the change magnitude image for a bi-temporal image is respectively acquired by image difference
162  and the proposed approach, and the results are compared in Figure 3. The local standard deviation
163  (std) of CMI is compared using the same window (40 x 40) which is highlighted in each sub-figures.
164  Lower standard deviation performs a higher homogeneity of the change or unchanged area. As
165  shown in Figure 3, the standard deviation is reduced from std=13.83 to std=12.76 with the T: range
166  from 30 to 70. Compared with Figure 3-(a), the standard deviation (std=19.48) of the observed
167  window which is based on the CMI obtained by the image difference method, the CMI of the
168  proposed approach achieves a smaller standard deviation. Therefore, it can be found that the
169  proposed approach has an advantage in improving the homogeneity of a local area, and this
170  improvement is beneficial for LCCD.


http://dx.doi.org/10.20944/preprints201804.0377.v1
http://dx.doi.org/10.3390/rs10060901

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2018 d0i:10.20944/preprints201804.0377.v1

6of 14

171 Figure 3. Change Magnitude Image Comparisons between the Image Difference and The
172  Proposed Approach: (a) is the CMI obtained by image difference method; (b)~(f) are the CMIs
173  obtained by the proposed approach with a fixed T>=50. T1is equal to 30, 40, 50, 60, and 70 for each
174 sub-figs from (b) to (f), respectively.

175 2.3 Threshold for obtaining binary change detection map

176 As in many existing LCCD methods, a threshold is needed to determine if a pixel of CMI is
177  changed or unchanged and to generate the binary change detection map. In the proposed approach,
178  a most popular binary method, named Otsu[25,26,38], is used to automatically participate a change
179  magnitude image into a binary change detection map. The Otsu approach assumes that the CMI
180  contains two classes (change and unchanged) of pixels. It then calculates the optimum threshold
181  dividing the two classes to minimize the intra-class variance or equivalently. In other words, the Otsu
182  method searches exhaustively for the threshold which can minimize the variance within the changed
183  pixel and unchanged pixels. In addition, a manual threshold is allowed to divide CMI into a binary
184  change detection map in the proposed approach.

185 3. Experiment

186 In this section, the proposed approach was investigated by two experiments based on two
187  images scenes which depict the different land cover change events. Three widely used contextual
188  information based methods, i.e., LSELUC[33], MLS[34] and PCA_Kmeans [31], were compared with
189  the proposed approach in terms of performance of effectiveness.

190 3.1 Data Set Description

191 Two image datasets which depict land cover change event in the real world are used to
192  investigate the performance of different contextual information based LCCD methods, including the
193  proposed approach. Details of the datasets are presented in this section as follows:

194 The first dataset is an open-access dataset for change detection evaluation. As shown in Figure
195 4, this dataset depicts a land cover change event in Mexico, which is related to a forest fire in May,
196  2002. The images are composed of two 8-bits images acquired by Landsat-7 satellite sensor in April
197 2000 and May 2002. The size of the entire image scene is 512 x 512 pixels with a spatial resolution
198 30 meters/pixel. For comparison of the bi-temporal images, it should be noted that fire destroyed a
199  large portion of the forest in the considered change area. The reference change map was interpreted
200  manually to obtain a quantitative evaluation, as shown in Figure 4-(d)
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201 The second dataset is also free-access and the two images are composed of two 8-bit images
202  acquired by Landsat-5 satellite on September 1995 and July 1996, respectively. The size of the images
203  is 412 x 300 pixels with a spatial resolution 30 meters/pixel. This dataset depicts the water lever
204  change event of the Lake Mulargia on Sardinia Island (Italy) between the two aforementioned acquisition
205  dates. The ground reference map is shown in Figure 4-(d), and it is defined manually according to the detailed
206  visual analysis base on the bi-temporal image comparisons.

207

208 Figure 4. Images of Mexico Area: (a)band 4 of the Landsat ETM+ captured in April 2000, (b) band 4 of the Landsat
209 ETM+ captured in May 2002, (c) corresponding CMI obtained by the proposed approach, and (d) reference map
210 of the changed area.

211 Figure 5. Image of Sardinia Island area in Italy: (a)band 4 of the Landsat TM image captured in September 1995,
212 (b) band 4 of the Landsat TM image captured in July 1996, (c) corresponding CMI based on the proposed
213  approach, and (d) reference map of the changed area.
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214 3.2 Experimental Setup and Parameter Setting

215 To test the effectiveness of the proposed approach for LCCD using bi-temporal remote sensing
216  images, three popular LCCD methods, including LSELUC[33], MLS[34] and PCA_Kmeans [31], were
217  compared with the proposed approach. For each dataset, the optimal parameters of each experiment
218  were obtained by the trial-and-error approach, the parameter details of each approach were
219  summarized in Table 1. In addition, to present quantitative comparisons, the number of ground
220  reference pixels for each dataset is given in Table 2.

221 Table 1. Parameter settings of different LCCD methods for the two datasets.
Parameter Settings
Method - & —
Mexico dataset Sardinia set
LSELUC[33] S=7 S=3
MLS[34] L=2 p=01 L=2 p=03
PCA_Kmeans[31] h=9,s=3 h=5,5=3
The proposed T1 =75, T>=50 T1 =110, To=50
222 Table 2. Details of ground reference pixels for each dataset.
Pixel’s Number of Ground Reference for Each Data Set
Data Set
No. of Unchanged Pixels No. of Changed Pixels
1  Mexico 236555 25589
2 Sardinia 115974 7626

223 3.3 Results and Quantitative Evaluation

224 Three quantitative evaluation measurements, i.e., false alarm (FA), missed alarm (MA), and total
225  error (TE), are employed for experimental comparisons to evaluate the proposed approach
226  quantitatively [39]. To present the meaning of these indices, we defined UC as the number of change
227  pixels that are actually unchanged pixels in BCOM when compared with the ground reference, TRU
228  isthe number of pixels that are unchanged pixels in the ground reference, CU is the unchanged pixels
229  inthe BCDM but is changed pixels in the ground reference, TRC is the total number of changed pixels
230  in the ground reference truth. Based on this definition, FA, MA and TE can be defined as the % X

231 100%, %x 100%, and —2<*<Y

TRC+TRU
232 The first image scene depicts a land cover change event about a forest fire in Mexico, as

233 illustrated in Figure 4. Visual comparisons are shown in Figure 6, from these comparisons, it clearly
234 demonstrates that the proposed approach with Otsu or manual threshold performed better than that
235  of LSELUC[33], MLS[34], and PCA_Kmeans [31]. Compared with the ground reference, the results
236  of the proposed approach produce less noise. In addition, quantitative comparisons are presented in
237  Table 3 where “The proposed” and “The proposed+” presented the proposed approach with Otsu
238  binary threshold method and a manual binary threshold, respectively. It can be seen that the
239  proposed approach achieved the best accuracies in terms of MA and TE. This comparison further
240  demonstrates the superiority of the proposed approach.

241 To further investigate the performance of the proposed approach, another land cover change
242  event about water-area change was evaluated in the second experiment. In this experiment, two
243  images which cover the same geographic area, called Lake Mulargia on Sardinia Island, were adopted
244 for experimental comparisons, as displayed in Figure 5. The results of the different methods are
245  compared in Figure 7, from this comparisons, it can be seen that the proposed approach achieved a
246  better performance with less noise, compared with that of LSELUC[33], MLS[34], and PCA_Kmeans
247  [31]. The quantitative comparisons in Table 4 strengthen further the conclusion of the visual
248  comparison and clearly demonstrate that the result based on the proposed approach and the
249  proposed+ approach gave better accuracies in terms of MA and TE.

x 100%, respectively.
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250 Figure 6. Mexico dataset: Binary change detection map generated by different methods: (a)LSELUC[33];
251 (b)MLS[34]; (c)PCA_Kmeans [31]; (d) and (e) the proposed approach with Otsu binary threshold and manual
252 threshold respectively; (f) the ground reference.

253 Figure 7. Sardinia Island dataset: Binary change detection map generated by different methods: (a)LSELUC[33];
254 (b)MLS[34]; (c)PCA_Kmeans [31]; (d) and (e) the proposed approach with Otsu binary threshold and manual
255 threshold respectively; (f) the ground reference.

256
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257 Table 3. Comparison between other methods and the proposed approach for the Mexico data set
Method FA MA TE
LSELUC 0426 122 1.58
MLS 0578 119 1.68
PCA_Kmeans 0.781 103 1.71
The proposed  0.746 9.18 1.57
The proposed+ 0.79 8.47 1.54
258 Table 4. Comparison between other methods and the proposed approach for the Sardinia data
Method FA MA TE
LSELUC 1.42 10.1 1.96
MLS 24 8.56 2.78
PCA_Kmeans 1.15 12.2 1.83
The proposed 0.995 13.3 1.76
The proposed-+ 1.12 12.3 1.81
259 4. Discussion
260 From the abovementioned comparison, it can be concluded that the proposed approach is

261 competitive compared with the LSELUC[33], MLS[34], and PCA_Kmeans [31] in terms of change
262  detection accuracies and performance. To promote the application of the proposed approach in
263  practice, we discuss two aspects of the proposed approach below.

264 First, we discuss the sensitivity between the parameter settings and the land cover detection
265 accuracies. In the first experiment with the Mexico dataset, as shown in Figure 8-(a), when the value
266  of Ti ranges from 5 to 75 with T2 is fixed at 50, the accuracy-MA of the proposed approach decreases
267  initially but the accuracy of FA and TE fluctuates in a small range. However, when the value of T
268  becomes larger than 75, the accuracies of MA are posed to a horizontal level. When Ti s fixed at 75
269 and the value of T2 varies, as shown in Figure 8-(b), the MA decreases from 13.5 to 9.2 with the value
270 of T2ranging from 5 to 50. Then, despite the value of Tz being increased larger than 50, the accuracy
271  varies in a small range. From this discussion, it can be seen that T1 indicates the spectral difference
272  between the central pixel and its surrounding pixels, and T indicates the maximum number of
273  searched pixels around a central pixel. Furthermore, T1 and T> complement each other, when one of
274 the parameters is fixed, the accuracies will pose to a horizontal level, and the accuracies will not
275  increase additionally with the increase of another parameter.

276 In the second experiment with the Sardinia Island dataset, the sensitivity between Ti and the
277  detection accuracies with T>=50 is shown in Figure 8-(c). This sensitivity result clearly indicates that
278  MA decreases gradually when the value of Tiranges from 5 to 50. However, MA increases when the
279  Tiis larger than 50. That is because a larger T1 will allow the consideration of more sufficient spatial
280  neighboring information around a central pixel. However, a too large T: may result in more
281  heterogeneous pixels in an adaptive extended region. This is detrimental to the subsequent
282  calculation of the change magnitude image. In addition, FA and TE gradually posed to a stable trend
283 after T1 reaches the value of 110, as shown in Figure 8-(c). However, when Tiis fixed at 110, and T
284 varies from 5 to 150, as shown in Figure 8-(d), it can be seen that MA increases with the increase of
285 Tz, but FA and TE nearly maintain a horizontal level.

286 Based on the above discussion of the two experiments, it is seen that 1) the parameter settings of
287  the proposed approach should be adjusted according to the different dataset, the settings of the
288  optimal composition parameters may be different for different image scenes, and 2) the value of FA
289  and TE is usually small and they will pose to a horizontal level while one parameter is fixed and the
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290  other varies. This is beneficial in practice for the setting of parameters setting when the proposed
291  approach is applied.
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292 Figure 8. Relationship between detection accuracy and setting of parameters (T1 and T2) for the proposed
293 approach with Otsu binary threshold in each experiment: (a) and (b) give the relationship between Ti, T2 for the

294 Mexico dataset, respectively; (c) and (d) gives the relationship between Ti, T2 for the Sardinia Island dataset,
295 respectively.

296 5. Conclusion

297 In this work, a simple yet effective LCCD approach is proposed. The proposed approach
298  progressively and adaptively extends a contextual region from a central pixel to a labeled pixel group
299  which is spectrally similar and spatially contiguous. Then, the change magnitude between pairwise
300  pixels of bi-temporal images is instead computed in the pairwise adaptive extended region. The entire
301  bi-temporal images are scanned and processed to generate a change magnitude image (CMI). Finally,
302  an Otsu binary automatic method or manual binary threshold is employed to obtain the binary
303  change detection result. The contribution of this study can be briefly summarized as follows:

304 (1) The proposed approach provides competitive change detection results. For the two image
305 scenes that are related to two different real land cover change events, the detection results
306 demonstrate the effectiveness and superiority of the proposed approach in terms of visual
307 performance and quantitatively accuracies when compared to widely used methods, such
308 as LSELUC[33], MLS[34], and PCA_Kmeans[31].

309 (2) To the best of our knowledge, here for the first time, adaptive regions based distance is
310 applied instead of single pixel-based distance to measure the change magnitude between
311 pairwise pixels of bi-temporal images. The experimental results demonstrate that this
312 proposed approach is helpful for improving the change detection accuracies and

313 performance. The reason for this is that the pixels are highly correlated with their neighbors
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314 in the image spatial domain, especially for a ground object (such as a meadow), and this
315 correlation is consistent with the shape and size of an object. Therefore, the proposed
316 contextual information around a pixel based on adaptive region can be considered objective
317 and reasonable.
318 In the future study, extensive investigations of the proposed approach will be conducted with

319  the following focus: 1) the automation of parameters of the proposed approach should be considered.
320  If T1and T2 can be estimated in an automatic manner, it will be helpful for improving the automation
321  degree of the proposed approach ; 2) More investigations based on different remote sensing images,
322 such as unmanned aerial vehicle images and satellite images with very high spatial resolutions will
323  be conducted in order to enhance the robustness of the approach. Furthermore, extensive
324 investigations will broaden the useability of the proposed approach.
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