

1 Article

2 **Respiratory condition of family farmers exposed to**
3 **pesticides in the state of Rio de Janeiro, Brazil**4 Rafael J. Buralli ^{1,*}, Helena Ribeiro ¹, Thais Mauad ², Luís F. Amato-Lourenço ², João M. Salge ³,
5 Fredi A. Diaz-Quijano ⁴, Renata S. Leão ⁵; Rejane C. Marques ⁶; Daniele S. Silva ⁶, and Jean Remy
6 Davée Guimarães ⁶7 ¹ Department of Environmental Health, School of Public Health, University of São Paulo, Av. Dr. Arnaldo,
8 715, 01246-904, São Paulo, SP, Brazil; E-mail: rafael_buralli@usp.br (R.J.B.); lena@usp.br (H.R.)9 ² Departament of Pathology, School of Medicine, University of São Paulo, Av. Dr. Arnaldo, 455, sala 1155
10 01246-903, São Paulo, SP, Brazil; E-mail: tmauad@usp.br (T.M.); luisfamato@gmail.com (L.F.A.-L.)11 ³ Pneumology, Hospital das Clínicas School of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de
12 Aguiar, 44 - Bloco II, 5 andar, 05403000, São Paulo, SP, Brazil; E-mail: joao.salge@incor.usp.br13 ⁴ Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715,
14 01246-904, São Paulo, SP, Brazil; E-mail: frediazq@msn.com15 ⁵ Technology Centre in Carbon Nanomaterials - CTNANO, Rua Prof. José Vieira de Mendonça, 1000,
16 31310-260, Belo Horizonte, MG, Brazil; E-mail: rspolti@hotmail.com17 ⁶ Federal University of Rio de Janeiro, Biophysics Institute, Av. Carlos Chagas Filho 373 - Bloco G-CCS, Ilha
18 do Fundão, 21941902, Rio de Janeiro, RJ, Brazil; E-mail: rejaneccmarques@hotmail.com (R.C.M.);
19 silva.danielesantos@gmail.com (D.S.S.); jeanrdg@biof.ufrj.br (J.R.D.G.)

20 * Correspondence: rafael_buralli@usp.br; Tel.: +55 11 3061-7894

21 Pesticide exposure is a growing concern for public health. Although Brazil is the world's largest
22 consumer of pesticides, a few studies addressed the health effects among farmers. This study
23 aimed to evaluate whether pesticide exposure is associated with respiratory outcomes among rural
24 workers and relatives in Brazil during the crop and off-seasons. 82 family farmers were
25 interviewed about occupational history and respiratory symptoms, and cholinesterase tests were
26 conducted in the crop-season. Spirometry was performed during the crop and off-season.
27 Respiratory outcomes were compared between seasons and multiple regressions were conducted
28 to search for associations with exposure indicators. Participants were occupationally and
29 environmentally exposed to multiple pesticides from an early age. During the crop and off-season,
30 respectively, they presented a prevalence of 40% and 30.7% for cough, 30.7% and 24% for nasal
31 allergies, and 24% and 17.3% for chest tightness. Significant relations between spirometry
32 impairments and exposure indicators were found both during the crop and off-season. These
33 findings provide complementary evidence about the association of pesticide exposure with adverse
34 respiratory effects among family farmers in Brazil. This situation requires special attention as it
35 may increase the risk of pulmonary dysfunctions, and the morbidity and mortality burden
36 associated with these diseases.37 **Keywords:** pesticides; spirometry; respiratory symptoms; cholinesterase; rural workers; family
38 farmers.40 **1. Introduction**41 Careless use of pesticide is a major problem for human health, particularly in low and
42 middle-income countries where public policies tend to be less restrictive and health surveillance less
43 effective [1,2]. In Brazil, agriculture plays a crucial role in the economic development, and since 2008,
44 the country has been the world's largest consumer of pesticides [1]. Brazilian family farmers are
45 often exposed to large amounts of pesticides due to the low risk-awareness and educational level,
46 lack or misuse of personal protective equipment (PPE), lack of technical support, frequent use of
47 highly toxic compounds, proximity of households and application sites, and relatives working or

48 helping in different cultivation tasks, among others [1,3,4].

49 Occupational exposure to pesticides can represent a serious risk to the respiratory system [5–7].
50 Epidemiological studies have linked it to respiratory symptoms [8–10], asthma [11–13], chronic
51 bronchitis [9,14–16], and lung cancer [7]. Spirometry was performed in workers occupationally
52 exposed to pesticides and revealed a significant decrease in the lung function parameters both in
53 cross-sectional studies comparing with non-exposed controls [8,9,17,18] and in prospective cohort
54 studies [16,19,20]. Only few cross-sectional studies were conducted with pesticide-exposed rural
55 workers in Brazil and reinforce the findings regarding its effects on the respiratory symptoms
56 [3,21,22]. One study, published in 2005, evaluated the lung function of rural workers in Brazil and
57 found a high prevalence of ventilatory disorders [23].

58 Assessing the individual exposure to pesticides is a main challenge in studies with
59 occupationally exposed communities. Biological monitoring is often used to estimate the extent of
60 exposure and establish causal relations with health outcomes. Despite all concerns about its
61 specificity, sensitivity, and individual and laboratory variations, the most common test used in
62 Brazil is the quantification of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity,
63 which are inhibited by organophosphorus (OF) and carbamate (CM) pesticides [1,4].

64 Therefore, the present study aimed to explore whether exposure to pesticides is associated with
65 the prevalence of respiratory symptoms and lung function impairments among workers and their
66 families in small rural properties in Brazil during both crop season and off-season, using
67 cholinesterase exams, among other research instruments.

68

69 **2. Materials and Methods**

70 This study was carried out in two stages: a) during the crop season (July and August 2014),
71 questionnaire-based interviews about sociodemographic characteristics, clinical information and
72 detailed exposure history to pesticide were conducted, biomarkers were collected for analysis, and
73 the respiratory assessment was performed; b) during the off-season period (January 2015), all
74 participants underwent the respiratory assessment again to compare higher and lower exposure
75 periods. This study was approved by the Ethical Board of the University Hospital Clementino Fraga
76 Filho of the Federal University of Rio de Janeiro, and all participants provided written informed
77 consent.

78

79 *2.1. Study area and population*

80 São José de Ubá (SJU) is a small town located in the northwest of Rio de Janeiro State, Brazil. It
81 has approximately 7,000 inhabitants, 45% in the urban center and 55% distributed in rural
82 neighborhoods of 200 to 300 people. The economy is based on family farming, especially tomato
83 cultivation [24], which demands intensive phytosanitary care for pest control, usually based on the
84 use of significant amounts of pesticides [25]. Studies previously conducted in the area evaluated the
85 quality of surface and groundwater and found Nitrate, Aluminum, Iron, Manganese, Boron, Zinc
86 and pesticides (organochlorine and OF) in disagreement with the levels allowed by Brazilian
87 legislation as a result of agricultural practices, livestock and untreated sewage disposal [26,27].

88 The sample in our study consisted of 82 individuals older than 18 years from approximately 750
89 individuals working in tomato cultivation in SJU. Participants were rural workers (n=48) or relatives
90 (n=34) residing in the rural area. Rural workers were those daily involved in tomato cultivation at
91 the time the study was conducted, which included pesticide handling. Relatives were those
92 members of the same family (relatives that lived in the same household), which could eventually
93 help in agricultural-related activities. Recruitment of participants was done by convenience in
94 agricultural areas upon indication of SJU residents and stakeholders. Individuals were contacted in
95 the rural properties and invited to participate. Participants were sought for reevaluation in the
96 off-season period. The sample was obtained sequentially, including all eligible subjects that could be
97 contacted during the study period. Thus, the final sample size was delimited by the projects' time
98 and budget constraints.

99 Demographic data such as age, gender and body mass index (BMI) were obtained from each
100 subject. Socio-economic status, educational level, smoking habits (pack-years), marital status and
101 alcohol consumption data were also collected. The Brazilian minimum salary was used as the basis
102 to calculate the monthly family income, which was R\$ 954 Brazilian reais (\pm 293 US\$) in 2018.
103

104 *2.2. Exposure Assessment*

105 Exposure assessment was obtained through a questionnaire-based interview conducted by a
106 trained researcher during the crop season. Information related to the duration of pesticide exposure,
107 manipulation frequency, use of personal protective equipment (PPE), pesticide use in the off-season,
108 domestic exposure, intoxication history, and hygiene habits after pesticide manipulation (washing
109 hands and taking a shower after work or eating at the crop field) were obtained. It was asked the
110 types of pesticides most frequently used by rural workers and they were classified according to the
111 Brazilian National Sanitary Surveillance Agency (ANVISA): class I (extremely toxic), II (highly
112 toxic), III (moderately toxic) and IV (low toxicity) [1]. It was also assessed whether rural workers and
113 relatives received technical orientation or training in safety procedures.

114 Based on previous studies [18,28–30], an individual exposure burden (IEB) variable was created
115 with a range of 0-10, using: current contact with pesticides (no=0/yes=2); domestic exposure, such as
116 manipulation of contaminated clothes and domestic use for pest control (no=0/yes=1); previous
117 intoxication after pesticide exposure (no=0/yes=1); frequency of pesticides manipulation (no
118 contact=0, once a month or less=1, 2-3 times/month=2, 1-3 times/week=3 or 5-7 times/week=4); and
119 distance from home to crop areas (more than 1km=0, from 500m to 1km=1 or up to 500m=2).

120 Regarding the cholinesterase activity measurement, blood samples (10 ml) were collected from
121 74 individuals by qualified personnel using heparinized Vacutainer tubes during the crop season.
122 Samples were immediately centrifuged, frozen and sent to the Centro de Estudos da Saúde do
123 Trabalhador e Ecologia Humana (CESTEH - Human Study Center for Worker's Health and Human
124 Ecology) from the National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ) for
125 analysis. Cholinesterase activity (AChE and BChE) was quantified by using a Shimadzu UV/VIS
126 1601 spectrophotometer, through the Ellman method, modified by Oliveira-Silva et al. [31]. This
127 method is indicated when blood sampling is performed far from the laboratory and allows
128 cholinesterase determination after freezing of plasma and erythrocyte fractions. Obtained values
129 were compared to the exposure indicators and to reference values determined by CESTEH from
130 studies involving populations non-exposed to pesticides, being 0.56 mmol/min/mg for AChE (for
131 both genders) and 2.29 and 1.61 mmol/min/mg for BChE, for men and women, respectively [31].
132 Cholinesterase activity was considered normal when subjects presented values above the reference
133 values.
134

135 *2.3. Respiratory Health Assessment*

136 Prevalence of respiratory symptoms was assessed by a questionnaire-guided interview, using
137 the European Community Respiratory Health Survey (ECRHS), validated in Brazil by Ribeiro et al.
138 [32]. This questionnaire evaluates respiratory symptoms in the previous 12 months. However, in the
139 off-season period, it was adapted to identify the symptoms prevalence in the previous 4 months, in
140 order to avoid overlapping with the crop season.

141 Spirometry was performed following the recommendations of the ATS/ERS - American
142 Thoracic Society and the European Respiratory Society [33] with a Koko PFT spirometer, calibrated
143 daily. We used reference values proposed by Polgar and Promadhat [34] for males up to 24 years
144 and females up to 20 years old and by Pereira et al. [35] for males aged over 25 years and females
145 over 21 years old. Although only the latter set was derived from the Brazilian population, both are
146 recommended by the Brazilian Thoracic Society [36]. In the crop season, the respiratory assessment
147 was conducted one week after the first interview due to exam preparation.

148 This study focused on the forced vital capacity (FVC), the forced expiratory volume in the first
149 second (FEV₁), the FEV₁/FVC ratio, and the forced expiratory flow between 25-75% (FEF_{25-75%}).
150 Individuals with the FEV₁/FVC ratio below the predicted lower limit were classified as having an

151 obstructive defect (OD). In these cases, severity classification was measured according to the FEV₁
 152 value in relation to the predicted: mild (FEV₁ > 60%), moderate (FEV₁ > 41 < 60%) and severe (FEV₁ ≤
 153 40%). A restrictive pattern (RP) was defined for cases with simultaneous reduction of FVC and FEV₁,
 154 but with FEV₁/FVC ratio within the predicted range associated with at least one of the following (i)
 155 FVC reduction to levels below 50% of predicted value or (ii) presence of FEF_{25-75%}/FVC ratio above
 156 150% of predicted that may characterize increased intermediate expiratory flows, due to a rise in
 157 elastic recoil traction of lungs. Altered cases that did not meet the criteria for definition as an
 158 obstructive defect or restrictive pattern were classified as a nonspecific pattern (NSP) [33,37].
 159

160 *2.4. Statistical Analysis*

161 Depending on their distribution, data were presented as mean and standard deviation (SD) or
 162 median and interquartile range (IQR). Comparison between groups was performed using T-test or
 163 Mann-Whitney test and comparison between categorical variables was performed using Chi-Square
 164 test. The associations of independent variables (including the IEB) and variables such as lung
 165 function results, AChE and BChE were evaluated in a regression analysis using Generalized Linear
 166 Models (GLM) [38]. Variables with $p < 0.10$ in the univariate analysis were considered for the multiple
 167 models. The GLM was fitted using the log-link function and Poisson scale response. Akaike's
 168 Information Criterion (AIC) was applied to indicate the best fitting model. All models tested were
 169 controlled for smoking and age. Gender, weight and height were considered to establish the
 170 predicted values for spirometry. Socioeconomic status was similar among all participants and not
 171 included in the analysis. Each person was compared to himself for the presence of respiratory
 172 symptoms during the crop season and off-season, and the Odds Ratio was calculated through the
 173 McNemar test, as they were a matched control case. Statistical analysis was performed using IBM
 174 SPSS software (version 22 IBM Corp., Chicago, IL, USA). P-values < 0.05 were considered significant.
 175

176 **3. Results**

177 *3.1. Study Population*

178 Of 82 participants in the exposure assessment, some refused to participate in the cholinesterase
 179 test, or their samples were insufficient, remaining 74 (90.2%) valid blood samples for analysis.
 180 Spirometry was performed in 70 (85.4%) individuals during the crop season and 62 (75.6%) in the
 181 off-season. Seventy-five (91.5%) individuals answered to the respiratory symptoms questionnaire in
 182 both periods.

183 Table 1 presents sociodemographic characteristics of the studied population divided by the
 184 group of exposure. Most rural workers were men (83.3%) with a mean age of 42.9 ± 12.4 (sd) and
 185 relatives were women (85.3%) aging 45.7 ± 14.9 (sd) on average. They were married and, as many
 186 individuals in relatives' group were married to participant rural workers, family income was similar
 187 among groups (up to 2 Brazilian minimum wages: ± 586 US\$). In general, 86.6% had primary or
 188 lower educational level, and only 13.4% had studied more than eight years. Most rural workers
 189 (60.4%) and relatives (76.5%) had never smoked, whereas 20.8% and 17.6% were ex-smokers, and
 190 only 18.8% and 5.9% were smokers at the time of data collection, respectively. Although the number
 191 of current smokers was higher among rural workers, the non-statistical significance may have
 192 occurred because of the small size of the subgroups. Among rural workers and relatives,
 193 respectively, 50% and 38.2% had low or normal weight, 41.7% and 29.4% were overweight, and 8.3%
 194 and 32.4% were obese.

195

196 **Table 1.** Sociodemographic and pesticide exposure characteristics of a rural population in SJU, divided by
 197 groups of exposure.

Sociodemographic variables	Total <i>n</i> = 82 (%)	Rural workers <i>n</i> = 48 (%)	Relatives <i>n</i> = 34 (%)	<i>p</i> - Value
Age (mean in years \pm sd)	44.0 ± 13.5	42.9 ± 12.4	45.7 ± 14.9	0.35 ^b
Gender				

Male	45 (54.9%)	40 (83.3%)	5 (14.7%)	<0.001 ^b
Female	37 (45.1%)	8 (16.7%)	29 (85.3%)	
Marital status				
Married/cohabiting partner	71 (86.6%)	40 (83.3%)	31 (91.2%)	0.31 ^b
Single or divorced	11 (13.4%)	8 (16.7%)	3 (8.8%)	
Monthly family income \$				
Up to 2 salaries	58 (70.7%)	37 (77.1%)	21 (61.8%)	0.133 ^b
More than 2 salaries	24 (29.3%)	11 (22.9%)	13 (38.2%)	
Years of education (median; IQR*)	4 (3.3 - 8)	4 (3 - 6.5)	5 (4 - 8)	0.30 ^c
Body Mass Index (mean ± sd)	26.4 ± 5.6	25 ± 4	28.5 ± 6.9	0.48 ^c
Low or normal weight	37 (45.1%)	24 (50%)	13 (38.2%)	
Overweight	30 (36.6%)	20 (41.7%)	10 (29.4%)	0.021 ^b
Obese	15 (18.3%)	4 (8.3%)	11 (32.4%)	
Smoking status				
Never	55 (67.1%)	29 (60.4%)	26 (76.5%)	0.16 ^a
Past (ex)	16 (19.5%)	10 (20.8%)	6 (17.6%)	0.78 ^a
Current	11 (13.4%)	9 (18.8%)	2 (5.9%)	0.11 ^a
Mean / Median (pack-years)	2.8 / 0	6.4 / 0	1.0 / 0	0.09 ^c
Alcohol consumption (if yes)	24 (29.3%)	14 (29.2%)	10 (29.4%)	1.00 ^a

Exposure variables

Duration of pesticide exposure (mean in years ± sd)	25.7 ± 15.1	30.2 ± 13.6	19.3 ± 15.1	0.001 ^b
Current direct contact in the crop (if yes)	42 (51.2%)	38 (79.2%)	4 (11.8%)	<0.001 ^a
Frequent handling in the crop season**	41 (50%)	38 (79.2%)	3 (8.8%)	<0.001 ^a
Pesticide use in the off-season	6 (7.3%)	6 (12.5%)	0	0.03 ^a
Use of any PPE***	53 (64.6%)	43 (89.6%)	10 (29.4%)	<0.001 ^a
Use of respiratory PPE (mask or respirator)	39 (47.6%)	37 (77.1%)	2 (5.9%)	<0.001 ^b
Use of eyes PPE (visor)	11 (13.4%)	11 (22.9%)	0	0.003 ^b
Use of hand PPE (gloves)	41 (50%)	35 (72.9%)	6 (17.6%)	<0.001 ^b
Use of shoes PPE (boots)	42 (51.2%)	36 (75%)	6 (17.6%)	<0.001 ^b
Domestic exposure (if yes)	72 (87.8%)	40 (83.3%)	32 (94.1%)	0.141 ^a
Residential distance from plantation site				
Up to 500 meters	44 (53.7%)	23 (47.9%)	21 (61.8%)	0.215 ^b
More than 500 meters	38 (46.3%)	25 (52.1%)	13 (38.2%)	
Previous intoxication ever	14 (17.1%)	11 (22.9%)	3 (8.8%)	0.095 ^a
Received training or technical support	11 (13.4%)	11 (22.9%)	0 (0%)	0.003 ^a
Washes hands after handling pesticides	63 (76.8%)	42 (87.5%)	21 (61.8%)	0.007 ^a
Takes shower after handling pesticides	47 (57.3%)	33 (68.8%)	14 (41.2%)	0.013 ^a
Consumes food and water in the field	71 (86.6%)	46 (95.8%)	25 (73.5%)	0.004 ^a

¹⁹⁸ \$ Based on Brazilian minimum salary (± 293 US\$) * IQR - Interquartile range (P25 - P75) ** Frequent pesticide
¹⁹⁹ handling = more than 1 to 3 times per week; *** PPE: Personal protective equipment; ^aChi-Square - Fisher
²⁰⁰ exact test; ^bOne-way ANOVA; ^cKruskal-Wallis one-way ANOVA.

3.2. Exposure Assessment

Table 1 shows pesticide exposure characteristics of participants divided by groups of exposure. The duration of pesticide exposure was long for both groups. Rural workers had a mean age of 42.9 years and a length of pesticide exposure of 30.2 ± 13.6 (sd) years, with an average of 10.7 ± 2.3 (sd) hours worked per day in the crop season. Among relatives, the mean age was 45.7 years, and the duration of exposure was 19.3 ± 15.1 (sd) years. Significantly fewer relatives stated to have direct contact with pesticide in the crop (n=4; 11.8%) and to frequently handle pesticides (n=3; 14.7%) at the time of data collection. Nevertheless, 29 (85.3%) relatives have claimed to assist in agricultural activities in the crop season as re-entry workers although only 10 (29.4%) declared to use any PPE. Thirty-eight rural workers (79.2%) reported handling and spraying pesticides by manual pumping or backpack tank more than once a week, and five of them (11.9%) used pesticides 4 to 7 times per

213 week. About 75% of rural workers affirmed to wear respiratory protection, gloves and boots, but
214 only 23% claimed to use eyes protection while applying pesticides.

215 Besides the occupational exposure, some participants are frequently environmentally exposed
216 either by domestic use of pesticides or by their residential proximity to planting areas. Most
217 individuals (53.7%) lived up to 500 meters from a planting site. Forty rural workers (83.3%) and
218 thirty-two relatives (94.1%) were domestically exposed to pesticides by using them at home or
219 washing contaminated clothes and equipment (Table 1). Only 22.9% of rural workers and none
220 relative were trained or received technical support to handle pesticides. Most of the rural workers
221 (95.8%) and relatives (73.5%) consumed food and water on the crop site, including when pesticides
222 were applied.

223 All participants presented values of AChE above the reference values, considered as normal.
224 Twelve out of 44 rural workers (27.3%) and 2 out of 30 relatives (6.7%) presented BChE levels below
225 the reference values, considered as abnormal. In the multiple regression models, AChE reduction
226 pattern were significantly associated with the pesticide manipulation frequency ($p=0.04$), whereas
227 BChE presented an association near the significance level ($p=0.08$). The association coefficient and
228 confidence interval are presented in Table 4.

229 Subjects declared using regularly 49 pesticides from 31 chemical groups, including
230 organophosphates, carbamates, pyrethroids, nitriles, diamides, neonicotinoids, avermectins and
231 benzimidazole. Glyphosate, classified as highly toxic was mentioned by 35.4% of rural workers, and
232 Paraquat, moderately toxic to humans, by 16.7%, while 6.3% reported to use both. They are
233 prohibited in Brazil for tomato cultivation [1]. Another 15 extremely toxic pesticides and 7 highly
234 toxic were mentioned 91 and 36 times, respectively. Moreover, 21 moderately toxic pesticides were
235 mentioned 81 times and 5 low toxic pesticides were mentioned 9 times. In addition, Lorsban
236 (chlorpyrifos), an extremely toxic organophosphate, was mentioned 3 times, and 2,4-D
237 (aryloxyalkanoic acid), an extremely toxic herbicide was mentioned once, both are not permitted for
238 tomato cultivation. Furthermore, Endosulfan, a highly toxic insecticide/acaricide prohibited in Brazil
239 since 2013 was mentioned once [1].

240 241 3.3. Respiratory Health Assessment

242 Considering all participants, 33.3% reported none respiratory symptom in the crop season and
243 66% in the off-season. During the crop season, 32% had one and 22.7% two respiratory symptoms,
244 whereas during the off-season, 18.7% had one symptom and 13.3% two symptoms. In both periods,
245 the most prevalent symptoms were cough, nasal allergies and hay fever, chest tightness, and
246 breathlessness. During the crop season and off-season, respectively, the prevalence was 40% and
247 30.7% for cough, 30.7% and 24% for nasal allergies and hay fever, 24% and 17.3% for chest tightness,
248 and 17.3% and 10.7% for breathlessness. Among rural workers, 37% and 19.6% presented 1 and 2
249 symptoms during the crop season, and 17.8% and 11.1% in the off-season, respectively. Whereas
250 among relatives, 24.1% and 27.6% showed 1 and 2 symptoms during the crop season, and 20% and
251 16.7% in the off-season, respectively. Although there were no statistically significant differences
252 between the periods, the number and prevalence of respiratory symptoms were higher during the
253 crop season.

254 The individual comparison of respiratory symptoms between crop season and off-season is
255 presented in Table 2. The chance of having symptoms during the crop season was significantly
256 higher than during the off-season for two symptoms. Six individuals woke with breathlessness
257 during the crop season but not during the off-season, whilst the opposite did not happen. Eleven
258 individuals woke up with cough during the crop season but not during the off-season, while only 2
259 individuals had the opposite (OR = 5.5).

260 261 262 **Table 2.** Comparison of respiratory symptoms prevalence between crop season (2014) and off-season
263 (2015), using the ECRHS questionnaire in SJU.

Symptoms	Crop season/Off-season periods ^a	Odds Ratio (95% CI) ^b	P- Value
----------	---	----------------------------------	----------

	Yes/No	No/Yes	Yes/Yes	No/No		
Wheeze or chest tightness	9	4	6	51	2.25 (0.63, 10)	0.27
Wheeze with breathlessness	2	3	3	62	0.67 (0.06, 5.82)	1
Wheeze without cold	3	2	3	62	1.5 (0.17, 17.96)	1
Waking with chest tightness	6	1	7	56	6 (0.73, 275.99)	0.13
Waking with breathlessness	6	0	5	59	Not calculable	0.04*
Waking with cough	11	2	19	38	5.5 (1.20, 51.07)	0.03*
Asthma crisis	2	1	0	67	2 (0.1, 118.10)	1
Nasal allergies and hayfever	12	5	10	43	2.4 (0.79, 8.70)	0.15
Treatment for asthma	0	2	1	67	Not calculable	0.48
Asthma diagnosis ^c	1	3	1	65	0.33 (0.01, 4.15)	0.62

^a Comparison between crop season and off-season periods, being 'Yes' for 'with symptoms' and 'No' for

^b Odds Ratio calculated through McNemar test and Confidence Interval (CI) = 95%; ^c

Asthma diagnosis = at least one asthma attack in the past 12 months and/or confirmation of medication use.

* Values with statistical significance.

Both during the crop- and off-season, most individuals (80%) presented normal spirometry. Table 3 shows the spirometry associated patterns among rural workers and relatives assessed in SJU in both periods. The most common pattern of pulmonary change found in SJU was obstructive, followed by non-specific. During the crop season, 5 rural workers presented mild OD, one moderate OD, and 2 presented NSP. Moreover, 3 relatives presented mild OD, 1 presented RP, and 2 had NSP. During the off-season, 5 rural workers presented mild OD, one presented RP and 3 presented reduced vital capacity and FEV₁ close to inferior normal limit with normal FEV₁/FVC ratio. Also, 1 relative presented mild OD and 3 presented NSP.

Table 3. Spirometry patterns among individuals assessed in SJU during crop season and off-season.

	Crop season			Off-season		
	Rural workers (n=43)	Relatives (n=27)	Total (n=70)	Rural workers (n=38)	Relatives (n=24)	Total (n=62)
Normal	35 (81.3%)	21 (77.8%)	56 (80%)	29 (76.3%) *	20 (83.3%)	49 (79%)
OD ¹	6 (14%)	3 (11.1%)	9 (12.9%)	5 (13.2%)	1 (4.2%)	6 (9.7%)
RP ²	0	1 (3.7%)	1 (1.4%)	1 (2.6%)	0	1 (1.6%)
NSP ³	2 (4.7%)	2 (7.4%)	4 (5.7%)	0	3 (12.5%)	3 (4.8%)

¹ OD: obstructive disease; ² RP: restrictive pattern; ³ NSP: non-specific pattern; * 3 rural workers presented vital capacity and FEV₁ close to inferior normal limit with normal FEV₁/FVC ratio.

For each spirometry variable, the lower and upper limits, interquartile ranges, outliers, mean or median, were calculated and presented in boxplot in Figure 1. Non-statistical significant difference was seen in the comparison of evaluated periods. Nonetheless, values presented a slight reduction and less negative outliers during the off-season period.

Figure 1. Boxplot of spirometry results comparison (in percentage of predicted) between crop season (2014) and off-season (2015) among family farmers in SJU.

288
289
290
291
292
293

Notes: Light and dark boxes represent the crop season and off-season, respectively. The boxes show the interquartile range (IQR, 25th–75th percentile) and the horizontal line inside the box represents the median; the circles show the outlier values. FVC, FEV₁ and FEV₁/FVC presented non-normal distribution while FEF_{25-75%} presented normal distribution.

294
295
296
297
298
299
300
301
302
303
304
305

The multiple regression models show that spirometric variables are influenced by the proposed exposure indicators. Table 4 presents the association of the spirometry variables and cholinesterase enzymes with the exposure indicators during the crop season. FVC was associated with the years of working with pesticide as a rural worker or helper, and having two or more respiratory symptoms. FEV₁ was related to the IEB, having two or more symptoms, and years of working with pesticide. FEV₁/FVC was related to the frequency of handling pesticides, and to the IEB. FEF_{25-75%} was associated with the manipulation frequency, years of rural work, and having two or more respiratory symptoms.

Table 4. Multiple regression models ^a of spirometry variables (in percentages of predict) and cholinesterase levels on exposure indicators during the crop season in SJU, 2014.

Variables	Indicators	β-Coefficient (CI) ^b	p- Value
FVC	Years of rural work ^c	-0.01 (-0.14; 0.28)	<0.001
	Symptoms ^d	-0.79 (-1.21; -0.04)	0.005
FEV ₁	IEB ^e	-0.06 (-0.09; -0.023)	0.001
	Symptoms ^d	-0.11 (-0.17; -0.05)	<0.001
FEV ₁ /FVC	Years of rural work ^c	-0.003 (-0.005; -0.002)	0.01
	Manipulation frequency	-0.85 (-1.74; 0.89)	<0.001
FEF _{25-75%}	IEB ^e	-0.11 (-1.05; 0.13)	0.05
	Manipulation frequency	-0.62 (-0.77; -0.48)	<0.001
AChE	Years of rural work ^c	-0.05 (-0.07; 0.03)	<0.001
	Symptoms ^d	-0.89 (-1.14; -0.36)	0.002
AChE	Manipulation frequency	-14.27 (-27.11; -1.44)	0.039
BChE	Manipulation frequency	-11.80 (-25.24; -1.64)	0.08

306

^a multiple analysis adjusted for age and smoking; ^b confidence interval = 95%; ^c

307 years of working or helping as rural worker; ^d two or more declared
 308 respiratory symptoms; ^e IEB: individual exposure burden.
 309

310 Table 5 shows the inversely association of the pesticide exposure indicators with the spirometry
 311 measures during the off-season in SJU. FVC was related to having two or more respiratory
 312 symptoms. FEV₁ was associated with the manipulation frequency, and the years of working with
 313 pesticide as a rural worker or helper. FEV₁/FVC ratio was related to the years of rural work, whilst
 314 presented an association near the significance level with the IEB. Moreover, FEF_{25-75%} was associated
 315 with the manipulation frequency, and years working with pesticide or helping as a rural worker.
 316

317 **Table 5.** Multiple regression models ^a of spirometry variables (in percentages of
 318 predict) on exposure indicators during the off-season in SJU. 2015.

Variables	Indicators	β-Coefficient (CI) ^b	p - Value
FVC	Symptoms ^d	-0.79 (-1.21; -0.04)	0.005
FEV ₁	Manipulation frequency	-0.29 (-0.37; -0.28)	<0.001
	Years of rural work ^c	-0.02 (-0.03; -0.009)	<0.001
FEV ₁ /FVC	Years of rural work ^c	-0.001 (-0.001; -0.001)	<0.001
	IEB ^e	-0.001 (-0.002; 0.000)	0.07
FEF _{25-75%}	Manipulation frequency	-0.34 (-0.42; -0.26)	<0.001
	Years of rural work ^c	-0.03 (-0.04; 0.02)	<0.001

319 ^a multiple analysis adjusted for age and smoking; ^b confidence interval = 95%; ^c
 320 years of working or helping as rural worker; ^d two or more declared
 321 respiratory symptoms; ^e IEB: individual exposure burden.
 322

323 4. Discussion

324 This study investigated whether the occupational pesticide exposure is associated with the
 325 prevalence of respiratory symptoms and lung function impairments among rural workers and their
 326 relatives involved in tomato cultivation in Brazil. Only a few studies were conducted in Brazil to
 327 access the health impacts among pesticide-exposed populations. An innovative approach of this
 328 study was to compare the respiratory effects of high and low-exposure periods in Brazil. Our
 329 findings demonstrate an increased prevalence of self-reported cough, nasal allergies and hay fever,
 330 chest tightness, and breathlessness among workers and relatives, especially during the crop season.
 331 Furthermore, we found significant associations between the short and long-term exposure to
 332 pesticides and a decrease in lung function parameters in both crop season and off-season. These
 333 findings provide complementary evidence of the acute and chronic effects of pesticide exposure on
 334 respiratory health and possibly the development of chronic lung diseases.

335 We found a significant association between some exposure indicators used and a decrease of
 336 FVC, FEV₁, FEV₁/FVC ratio, and FEF_{25-75%} both during the crop season and off-season, even after
 337 adjusting for sex, age and smoking. In general, more exposure indicators were significantly related
 338 with the lung measures and presented higher coefficient during the crop season, suggesting that
 339 short-term exposure to pesticides had an additional effect on spirometry parameters. The pattern of
 340 spirometry observed in SJU suggests the involvement of small airways, but further studies should be
 341 done to investigate, since no specific small airways function test was performed. Previous studies
 342 investigated the pulmonary function of pesticide-exposed workers and found a significant decrease
 343 in the FVC [8,9], in the FEV₁ [8,9,17–19,28,39,40], in the FEV₁/FVC ratio [9,17,28,39,40], in the FEF_{25-75%}
 344 [8,9,18,39], and in the peak expiratory flow [9,17]. In addition, the only study that evaluated the
 345 influence of pesticide exposure on the lung function of Brazilian rural workers found a prevalence of
 346 obstructive diseases higher than our findings [23]. Taken together, these studies reinforce the
 347 association between respiratory impairments and occupational exposure to pesticides, independent

348 of smoking.

349 Not many studies have discussed the respiratory effects of pesticide exposure considering
350 seasonal variations. In the present study, we did not find any statistically significant differences on
351 lung function when comparing the crop season and the off-season. Nevertheless, the spirometry
352 variables presented a slight reduction during the off-season, in accordance with another study [19].
353 This minor reduction could be explained by the worsening of the individual condition, by less effort
354 of the participants at the reevaluation tests or by loss of follow-up subjects at this stage, especially
355 those in better health condition. Previous studies found a significant reduction in the FEV₁
356 measurement in the post-exposure when compared to the pre-exposure level [41], and lower
357 post-shift values of FVC and FEV₁ in both crop- and off-season [19]. It suggests that acute obstructive
358 diseases can arise from high exposure in crop activities. Even when all standards and
359 recommendations are followed, a precise estimation of the individual spirometric changes requires a
360 relatively prolonged follow-up due to seasonal, technical and biological variability [19].

361 In this study, the higher prevalence of respiratory symptoms during the crop season can be
362 attributable to the short-term effects of pesticide exposure. These findings are supported by several
363 epidemiological studies that associated respiratory symptoms to occupational pesticide exposure in
364 Brazil [21–23] and elsewhere [8,9,13,17,29].

365 In Brazil, family farmers frequently handle multiple pesticides and apply them by manual
366 pumping or backpack tank. Nonetheless, pesticide exposure is not restricted to direct contact during
367 the preparation and spraying. Commonly, rural workers are involved in all stages of the cultivation
368 process and very often are helped by their relatives in different agricultural tasks during the crop
369 season [1,3,21]. Although many relatives do not often participate directly in spraying activities, they
370 are occupationally exposed to pesticides when helping in other tasks, such as taking the sprout out,
371 tying the stems or harvesting the tomatoes. Some of these activities are carried out at the same day or
372 day after the pesticide spraying and are often done without personal protection. This situation was
373 observed in SJU. Moreover, our findings corroborate previous studies conducted in Brazil which
374 have shown that, in general, family farmers present low educational level and family income, and
375 lack of orientation or technical support for using chemical products. This scenario points to social
376 vulnerability, leading to a low risk-awareness and a misuse of protective equipment and,
377 consequently, to careless pesticide use and higher human exposure [3,21–23,42]. Indeed, during the
378 field work in SJU it was observed that no one used complete PPE even during spraying activities. In
379 the interviews they pointed these equipments as expensive, hot and uncomfortable. Despite most
380 rural workers affirming that they shower and wash hands after pesticide handling, this only occurs
381 at the end of the work day. Most also declared consuming food and water in the field during work.
382 These habits may increase the exposure and contamination risk [3,43].

383 Brazilian family farmers, besides the occupational exposure, are often environmentally exposed
384 to pesticides from an early age, either by living near planting sites, by using or storing pesticides at
385 home, or by having contact with contaminated clothes and work tools. This residential contact can
386 represent an extra pesticide exposure to rural families and increment the risk and effects on human
387 health [1,43].

388 The Brazilian law states that all agricultural workers must be submitted to periodic medical
389 examinations with cholinesterase measurements, however, these are not provided by public health
390 services to family farmers. The exposure assessment and health care of family farmers in Brazil are
391 limited by: the informal organization of these workers and their distribution in millions of small
392 properties, the constant and prolonged exposure to low doses of multiple pesticides, the distance to
393 health services, the shortage of laboratories with available analytical capacity, and the absence of an
394 integrated intoxication reporting system [1,4]. The AChE and BChE activities vary widely among
395 population groups but their reduction may indicate chronic and acute exposures, respectively [3].
396 Although the participants were exposed to multiple pesticides in SJU, a significant relation was
397 observed only between AChE inhibition and manipulation frequency, and few individuals
398 presented BChE below the proposed reference values. This can be partially explained by the chosen
399 reference values, by the sample size or because these biomarkers reflect only the exposure to a small

400 portion of the pesticides used in SJU. AChE has been pointed to be inadequate for monitoring
401 low-dose chronic exposure [44,45], and the BChE reboot effect and fast recovery can hide or
402 underestimate unsafe pesticide exposure [43], making their use as a biomarker for pesticide
403 exposure controversial. Nevertheless, the relation between pesticide exposure and the cholinesterase
404 depletion has been reported in longitudinal studies [41,46,47] and in cross-sectional ones comparing
405 to non-exposed controls [3,9,43]. In another study, agricultural workers presented an AChE
406 inhibition of 34.2% and positive associations with respiratory symptoms, lung function decrement
407 and COPD, compared to controls [9]. A study conducted in Brazil showed that, compared to
408 unexposed controls, rural workers and rural area residents presented BChE depletion during the
409 exposure period and AChE depression during both the exposure and non-exposure periods. On the
410 other hand, 31.7% had AChE over 30% higher than baseline levels, indicating a reboot effect [43].

411 As a limitation of our study, few individuals did not participate at all stages, resulting in some
412 missing data, but not invalidating our findings. The years of rural work were not considered in the
413 IEB because the frequency of manipulation was more explanatory in the analysis. However, the
414 years of working or helping as a rural worker presented significant relations to the pulmonary
415 function impairments in the multiple regression models. The absence of an unexposed control group
416 may also be considered a limitation of this study. A strong point is that the study included
417 approximately 11% of the total number of individuals working in tomato cultivation in SJU.

418 This study adopted an important methodological approach to access the respiratory health of
419 pesticide exposed individuals. It presented an exposure burden measurement which, even in a small
420 sample size, was associated with respiratory impairments and could be replicated, or even
421 improved, in other studies. Other strengths of this research were the focus on family farming, which
422 is responsible for most of the food consumed in Brazil; the assessment of seasonal variations; the
423 consideration of rural workers and their relatives as exposed groups; and the broader view of the
424 pesticide exposure, for example, considering the residential proximity to agricultural areas.
425

426 5. Conclusions

427 This study reinforces previous evidence that short- or long-term exposure to pesticides are
428 associated with a clinically relevant prevalence of respiratory symptoms and pulmonary function
429 impairment among family farmers often exposed occupationally and environmentally. This
430 situation deserves special attention and urgent preventive measures as poor respiratory condition at
431 productive age may decrease the quality of life of adults and elderly and increase the risk of chronic
432 disease. A higher morbidity and mortality burden associated with these diseases impacts the health
433 system and increases costs. Understanding the family farmers' health situation is essential to
434 establish early diagnosis and offer appropriate treatments.

435 Brazil is the world largest consumer of pesticides but local evidences of their impacts are very
436 scarce and further research is much needed. This study helps to show that occupational exposure to
437 pesticides can culminate in adverse respiratory health outcomes in Brazilian family farmers and
438 reinforces the need for adoption of more personal protection measures and sustainable agricultural
439 practices.

440 Despite this research being conducted in a small rural community in Brazil, similar situations
441 are very common in family farming and widespread in most of the low- and middle-income
442 countries. Moreover, data produced reinforces causal relationships and can help the design of
443 effective intervention measures and public policies to reduce exposure, risks and the consequences
444 for human health and the environment.

445

446

447 **Acknowledgments:** This research was funded by the Brazilian National Council for Scientific and
448 Technological Development (CNPq). Rafael Buralli is funded by the Coordination for the Improvement of
449 Higher Education Personnel (CAPES); Helena Ribeiro, Thais Mauad, Jean Remy Davée Guimarães, and Renata
450 Spolti Leão are funded by CNPq; Luís Amato-Lourenço is funded by the State of São Paulo Research

451 Foundation (FAPESP). The authors declare they have no actual or potential competing financial interests.

452 **Author Contributions:** Rafael Buralli conceived the idea of this article, collected the data and the samples,
453 conducted data analysis and wrote the manuscript. Helena Ribeiro supervised and Thais Mauad contributed
454 to the data analysis. João Salge conducted respiratory data analysis and result interpretation. Fredi
455 Diaz-Quijano and Luís Amato-Lourenço conducted statistical analysis. Renata Leão and Rejane Marques
456 contributed to study design and data collection. Daniela Silva collect the data. Jean Guimarães was the main
457 project coordinator and supervised sample collection. All authors reviewed and provided valuable input to the
458 manuscript.

459 **Conflicts of Interest:** The authors declare no conflict of interest.

460

461

462 References

- 463 1. Carneiro, F. F. (Org. .; Augusto, L. G. da S.; Rigotto, R. M.; Friedrich, K.; Búrigo, A. C. *Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde*; 2015; ISBN 978-85-9876-880-9.
- 464 2. Rigotto, R. M.; Vasconcelos, D. P. e; Rocha, M. M. Pesticide use in Brazil and problems for public health. *Cad. Saude Publica* **2014**, *30*, 3, doi:10.1590/0102-311XPE020714.
- 465 3. Nerilo, S. B.; Martins, F. A.; Nerilo, L. B.; Cocco, V. E.; Endo, R. Y.; Henrique, G.; Rocha, O.; Galerani, S. A.; Janeiro, V.; Nishiyama, P.; Junior, M. M. Pesticide use and cholinesterase inhibition in small-scale agricultural workers in southern Brazil. *Brazilian J. Pharm. Sci.* **2014**, *50*, 783–791.
- 466 4. Bendetti, D. An Evaluation of Occupational Exposures to Pesticides in Brazil. *Occup. Med. Heal. Aff.* **2014**, *02*, doi:10.4172/2329-6879.1000170.
- 467 5. Ye, M.; Beach, J.; Martin, J. W.; Senthilselvan, A. Occupational pesticide exposures and respiratory health. *Int. J. Environ. Res. Public Health* **2013**, *10*, 6442–71, doi:10.3390/ijerph10126442.
- 468 6. Mamane, A.; Baldi, I.; Tessier, J.-F.; Raherison, C.; Bouvier, G. Occupational exposure to pesticides and respiratory health. *Eur. Respir. Rev.* **2015**, *24*, 306–319, doi:10.1183/16000617.00006014.
- 469 7. Mostafalou, S.; Abdollahi, M. Pesticides: an update of human exposure and toxicity. *Arch. Toxicol.* **2017**, *91*, 549–599, doi:10.1007/s00204-016-1849-x.
- 470 8. Zuskin, E.; Mustajbegovic, J.; Schachter, E. N.; Kern, J.; Deckovic-Vukres, V.; Trosic, I.; Chiarelli, A. Respiratory function in pesticide workers. *J. Occup. Environ. Med.* **2008**, *50*, 1299–1305, doi:10.1097/JOM.0b013e3181845f6c.
- 471 9. Chakraborty, S.; Mukherjee, S.; Roychoudhury, S.; Siddique, S.; Lahiri, T.; Ray, M. R. Chronic Exposures to Cholinesterase-inhibiting Pesticides Adversely Affect Respiratory Health of Agricultural Workers in India. *J Occup Heal.* **2009**, *51*, 488–497.
- 472 10. Mathew, P.; Jose, A.; Alex, R. G.; Mohan, V. R. Chronic pesticide exposure: Health effects among pesticide sprayers in Southern India. *Indian J Occup Env. Med.* **2015**, *19*, 95–101.
- 473 11. Salameh, P. Respiratory diseases and pesticide exposure: a case-control study in Lebanon. *J. Epidemiol. Community Heal.* **2006**, *60*, 256–261, doi:10.1136/jech.2005.039677.
- 474 12. Baldi, I.; Robert, C.; Piantoni, F.; Tual, S.; Bouvier, G.; Lebailly, P.; Raherison, C. Agricultural exposure and asthma risk in the AGRICAN French cohort. *Int. J. Hyg. Environ. Health* **2014**, *217*, 435–442, doi:10.1016/j.ijheh.2013.08.006.
- 475 13. Hoppin, J. A.; Umbach, D. M.; Long, S.; London, S. J.; Henneberger, P. K.; Blair, A.; Alavanja, M.; Freeman Beane, L. E.; Sandler, D. P. Pesticides are associated with allergic and non-allergic wheeze among male farmers. *Environ. Health Perspect.* **2017**, *125*, 535–543, doi:10.1289/EHP315.
- 476 14. Hoppin, J. a; Valcin, M.; Henneberger, P. K.; Kullman, G. J.; Umbach, D. M.; London, S. J.; Alavanja, M.

495 C. R.; Sandler, D. P. Pesticide use and chronic bronchitis among farmers in the Agricultural Health
496 Study. *Am. J. Ind. Med.* **2007**, *50*, 969–79, doi:10.1002/ajim.20523.

497 15. Salameh, P. R.; Waked, M.; Baldi, I.; Brochard, P.; Saleh, B. A. Chronic bronchitis and pesticide
498 exposure: A case-control study in Lebanon. *Eur. J. Epidemiol.* **2006**, *21*, 681–688,
499 doi:10.1007/s10654-006-9058-1.

500 16. Alif, S. M.; Dharmage, S. C.; Benke, G.; Dennekamp, M.; Burgess, J. A.; Perret, J. L.; Lodge, C. J.;
501 Morrison, S.; Johns, D. P.; Giles, G. G.; Gurrin, L. C.; Thomas, P. S.; Hopper, J. L.; Wood-Baker, R.;
502 Thompson, B. R.; Feather, I. H.; Vermeulen, R.; Kromhout, H.; Walters, E. H.; Abramson, M. J.;
503 Matheson, M. C. Occupational exposure to pesticides are associated with fixed airflow obstruction in
504 middle-age. *Thorax* **2017**, *72*, 990–997, doi:10.1136/thoraxjnl-2016-209665.

505 17. Fareed, M.; Pathak, M. K.; Bihari, V.; Kamal, R.; Srivastava, A. K.; Kesavachandran, C. N. Adverse
506 respiratory health and hematological alterations among agricultural workers occupationally exposed to
507 organophosphate pesticides: a cross-sectional study in North India. *PLoS One* **2013**, *8*, e69755,
508 doi:10.1371/journal.pone.0069755.

509 18. Hernández, A. F.; Casado, I.; Pena, G.; Gil, F.; Villanueva, E.; Pla, A. Low level of exposure to pesticides
510 leads to lung dysfunction in occupationally exposed subjects. *Inhal. Toxicol.* **2008**, *20*, 839–49,
511 doi:10.1080/08958370801905524.

512 19. Shama, F. A.; Skogstad, M.; Nijem, K.; Bjertness, E.; Kristensen, P. Cross-shift changes in lung function
513 among palestinian farmers during high- and low-exposure periods to pesticides: A longitudinal study.
514 *Arch. Environ. Occup. Heal.* **2015**, *70*, 218–224, doi:10.1080/19338244.2013.859122.

515 20. De Jong, K.; Boezen, H. M.; Kromhout, H.; Vermeulen, R.; Postma, D. S.; Vonk, J. M. Association of
516 occupational pesticide exposure with accelerated longitudinal decline in lung function. *Am. J. Epidemiol.*
517 **2014**, *179*, 1323–1330, doi:10.1093/aje/kwu053.

518 21. Faria, N. M. X.; Facchini, L. A.; Fassa, A. G.; Tomasi, E. Pesticides and respiratory symptoms among
519 farmers. *Rev Saúde Pública* **2005**, *39*, 973–981.

520 22. Alves de Souza, N.; Inácia de Souza, A.; Bastos, C.; Rocha, J.; Oliveira, C.; Costa da Silva, V.
521 Prevalência de Distúrbios Respiratórios Associados ao Uso de Agrotóxicos em Trabalhadores Rurais
522 em uma Cidade da Zona da Mata Mineira. *Rev. Inspirar* **2010**, *2*, 6–10.

523 23. Senhorinho, H. C.; Maria, S.; Gomes, M.; Franqui, E.; Júnior, H. P. Prevalência de distúrbios
524 ventilatórios em trabalhadores rurais expostos a defensivos químicos no norte do Paraná. *Fisioter. e*
525 *Pesqui.* **2005**, *12*, 35–44.

526 24. IBGE - Instituto Brasileiro de Geografia e Estatística Características do município - São José de Ubá, RJ.

527 25. Gomes, M.; Barizon, R. *Panorama da contaminação ambiental por agrotóxicos e nitrato de origem agrícola no*
528 *Brasil: Cenário 1992/2011*; 2014;

529 26. Menezes, J.; Prado, R.; Silva Júnior, G.; Mansur, K.; Oliveira, E. Qualidade da água e sua relação espacial
530 com as fontes de contaminação antrópicas e naturais: bacia hidrográfica do rio São Domingos - RJ. *Eng.*
531 *Agríc* **2009**, *29*, 687–698.

532 27. Menezes, J.; Prado, R.; Silva Júnior, G.; Mansur, K.; Oliveira, E. Qualidade da água superficial em área
533 rural. *Cad. Estud. Geoambientais* **2012**, *3*, 32–43.

534 28. de Jong, K.; Boezen, H. M.; Kromhout, H.; Vermeulen, R.; Postma, D. S.; Vonk, J. M. Association of
535 occupational pesticide exposure with accelerated longitudinal decline in lung function. *Am. J. Epidemiol.*
536 **2014**, *179*, 1323–30, doi:10.1093/aje/kwu053.

537 29. Negatu, B.; Kromhout, H.; Mekonnen, Y.; Vermeulen, R. Occupational pesticide exposure and

538 respiratory health: a large-scale cross-sectional study in three commercial farming systems in Ethiopia.
539 *Thorax* 2016, 72, 498.1-499, doi:10.1136/thoraxjnl-2016-208924.

540 30. Mamane, A.; Tessier, J.-F.; Bouvier, G.; Salamon, R.; Lebailly, P.; Raherison, C.; Baldi, I.; Baldi, I. Increase
541 in the Risk of Respiratory Disorders in Adults and Children Related to Crop-Growing in Niger. *J.
542 Environ. Public Health* 2016, 2016, 1-8, doi:10.1155/2016/9848520.

543 31. Oliveira-Silva, J. J.; Alves, S. R.; Inacio, a F.; Meyer, a; Sarcinelli, P. N.; Mattos, R. C.; Ferreira, M. F.;
544 Cunha, J. C.; Moreira, J. C. Cholinesterase activities determination in frozen blood samples: an
545 improvement to the occupational monitoring in developing countries. *Hum. Exp. Toxicol.* 2000, 19,
546 173-177, doi:10.1191/096032700678827762.

547 32. Ribeiro, M.; Angelini, L.; Robles-Ribeiro, P.; Stelmach, R.; Santos Ude, P.; Terra-Filho, M. Validation of
548 the Brazilian-Portuguese version of the European Community Respiratory Health Survey in asthma
549 patients. *J Asthma* 2007, 44, 371-375.

550 33. Miller, M. R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, a; Crapo, R.; Enright, P.; van
551 der Grinten, C. P. M.; Gustafsson, P.; Jensen, R.; Johnson, D. C.; MacIntyre, N.; McKay, R.; Navajas, D.;
552 Pedersen, O. F.; Pellegrino, R.; Viegi, G.; Wanger, J. Standardisation of spirometry. *Eur. Respir. J.* 2005,
553 26, 319-38, doi:10.1183/09031936.05.00034805.

554 34. Polgar, G.; Promadhat, V. Pulmonary function testing in children: techniques and standards. *Ann Intern
555 Med* 1971, 75, 87-212.

556 35. Pereira, C. A. de C.; Sato, T.; Rodrigues, S. C. New reference values for forced spirometry in white
557 adults in Brazil. *J. Bras. Pneumol.* 2007, 33, 397-406,
558 doi:htp://dx.doi.org/10.1590/S0104-42302003000300025.

559 36. Rodrigues JC, Cardieri JMA, Bussamra MHCF, Nakaie CMA, Almeida MB, Silva Fº LVF, A. F. Provas
560 de função pulmonar em crianças e adolescentes. *J. Pneumol.* 2002, 28, 207-221.

561 37. Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R. O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten,
562 C. P. M.; Gustafsson, P.; Hankinson, J.; Jensen, R.; Johnson, D. C.; MacIntyre, N.; McKay, R.; Miller, M.
563 R.; Navajas, D.; Pedersen, O. F.; Wanger, J. Interpretative strategies for lung function tests. *Eur. Respir. J.*
564 2005, 26, 948-968, doi:10.1183/09031936.05.00035205.

565 38. McCullagh, P. Generalized linear models. *Eur. J. Oper. Res.* 1984, 16, 285-292,
566 doi:10.1016/0377-2217(84)90282-0.

567 39. Salameh, P.; Waked, M.; Baldi, I.; Brochard, P. Spirometric changes following the use of pesticides. *East
568 Mediterr Heal. J* 2005, 11, 126-136.

569 40. de Jong, K.; Boezen, H. M.; Kromhout, H.; Vermeulen, R.; Postma, D. S.; Vonk, J. M. Pesticides and other
570 occupational exposures are associated with airway obstruction: the LifeLines cohort study. *Occup.
571 Environ. Med.* 2014, 71, 88-96, doi:10.1136/oemed-2013-101639.

572 41. Pathak, M. K.; Fareed, M.; Srivastava, A. K.; Pangtey, B. S.; Bihari, V.; Kuddus, M.; Kesavachandran, C.
573 Seasonal variations in cholinesterase activity, nerve conduction velocity and lung function among
574 sprayers exposed to mixture of pesticides. *Environ. Sci. Pollut. Res.* 2013, 20, 7296-7300,
575 doi:10.1007/s11356-013-1743-5.

576 42. Pedlowski, M. A.; Canela, M. C.; da Costa Terra, M. A.; Ramos de Faria, R. M. Modes of pesticides
577 utilization by Brazilian smallholders and their implications for human health and the environment.
578 *Crop Prot.* 2012, 31, 113-118, doi:10.1016/j.cropro.2011.10.002.

579 43. Pasiani, J. O.; Torres, P.; Silva, J. R.; Diniz, B. Z.; Caldas, E. D. Knowledge, attitudes, practices and
580 biomonitoring of farmers and residents exposed to pesticides in Brazil. *Int. J. Environ. Res. Public Health*

581 2012, 9, 3051–3068, doi:10.3390/ijerph9093051.

582 44. García-García, C. R.; Parrón, T.; Requena, M.; Alarcón, R.; Tsatsakis, A. M.; Hernández, A. F.
583 Occupational pesticide exposure and adverse health effects at the clinical, hematological and
584 biochemical level. *Life Sci.* **2016**, *145*, 274–283, doi:10.1016/j.lfs.2015.10.013.

585 45. Ngowi, A. V. F.; Maeda, D. N.; Partanen, T. J.; Sanga, M. P.; Mbise, G. Acute health effects of
586 organophosphorus pesticides on Tanzanian small-scale coffee growers. *J. Expo. Anal. Environ. Epidemiol.*
587 **2001**, *11*, 335–339, doi:10.1038/sj.jea.7500172.

588 46. Krenz, J. E.; Hofmann, J. N.; Smith, T. R.; Cunningham, R. N.; Fenske, R. A.; Simpson, C. D.; Keifer, M.
589 Determinants of butyrylcholinesterase inhibition among agricultural pesticide handlers in Washington
590 State: An Update. *Ann. Occup. Hyg.* **2015**, *59*, 25–40, doi:10.1093/annhyg/meu072.

591 47. Crane, A. L.; Rasoul, G. A.; Ismail, A. A.; Hendy, O.; Bonner, M. R.; Lasarev, M. R.; Al-batanony, M.;
592 Steven, T.; Khan, K.; Olson, J. R.; Rohlman, D. S. Longitudinal assessment of Clorpyrifos Exposure and
593 Effect Biomarkers in Adolescent Egyptian Agricultural Workers. *J Expo Sci Env. Epidemiol.* **2014**, *23*,
594 356–362, doi:10.1038/jes.2012.113.Longitudinal.

595

596